
LION SECRETLY SOLVES CONSTRAINED OPTIMIZA-
TION, AS LYAPUNOV PREDICTS

Lizhang Chen∗ Bo Liu∗ Kaizhao Liang∗ Qiang Liu
The University of Texas at Austin
{lzchen,bliu,kaizhaol,lqiang}@utexas.edu

ABSTRACT

Lion (Evolved Sign Momentum), a new optimizer discovered through program
search, has shown promising results in training large AI models. It performs com-
parably or favorably to AdamW but with greater memory efficiency. As we can
expect from the results of a random search program, Lion incorporates elements
from several existing algorithms, including signed momentum, decoupled weight
decay, Polak, and Nesterov momentum, but does not fit into any existing category
of theoretically grounded optimizers. Thus, even though Lion appears to perform
well as a general-purpose optimizer for a wide range of tasks, its theoretical basis
remains uncertain. This lack of theoretical clarity limits opportunities to further
enhance and expand Lion’s efficacy.
This work aims to demystify Lion. Based on both continuous-time and discrete-
time analysis, we demonstrate that Lion is a theoretically novel and principled
approach for minimizing a general loss function f(x) while enforcing a bound
constraint ∥x∥∞ ≤ 1/λ. Lion achieves this through the incorporation of decou-
pled weight decay, where λ represents the weight decay coefficient. Our analysis
is made possible by the development of a new Lyapunov function for the Lion
updates. It applies to a broader family of Lion-K algorithms, where the sign(·)
operator in Lion is replaced by the subgradient of a convex function K, leading to
the solution of a general composite optimization problem of minx f(x) +K∗(x).
Our findings provide valuable insights into the dynamics of Lion and pave the way
for further improvements and extensions of Lion-related algorithms.

1 INTRODUCTION

Optimization serves as the cornerstone in training contemporary AI models. Given the immense
computational demands associated with training large AI models, the design of an effective opti-
mizer emerges as a paramount endeavor.

Traditionally, efficient optimizers are devised by machine learning experts based on theoretical in-
sights [4, 15, 20, 11]. Adam [14] and its variant AdamW [20] remain the most widely employed
methods in deep learning. Recently, however, a new optimization named Lion (Evolved Sign Mo-
mentum) [7] was discovered by an evolutionary search algorithm [32] applied to a symbolically
represented program space [3]. Lion has been shown to achieve at least comparable performance to
AdamW on a wide range of tasks while reducing memory cost and training time [7].

However, as the outcome of a stochastic search algorithm, Lion does not have an a priori theoretical
guarantee by design. It is still uncertain whether Lion can be regarded as a reliable and legitimate
general-purpose optimization algorithm, despite the reported positive results on a large, yet finite,
set of tasks [7]. The lack of theoretical understanding also significantly restricts the potential for
improving and extending Lion to obtain better new optimizers.

In this work, we demonstrate that Lion, along with a broader family of Lion-K algorithms, can be
established as a theoretically novel and intriguing approach for solving optimization problems with
convex regularization or constraints. This is surprising because Lion was discovered in a search

∗Equal Contribution

1

space that includes arbitrary symbolic operations and was not designed with any theoretical guar-
antees. This discovery opens up promising opportunities for developing improved optimizers by
leveraging the existing success of Lion.

Lion: Evolved Sign Momentum The update rule of Lion for minimizing a loss f(x) on Rd is

Lion:
mt+1 = β2mt − (1− β2)∇f(xt),

xt+1 = xt + ϵ(sign(β1mt − (1− β1)∇f(xt))− λxt),
(1)

where mt ∈ Rd is the momentum, ϵ > 0 is the learning rate, β1, β2 ∈ [0, 1] are two momentum
related coefficients, and λ ≥ 0 is a weight decay coefficient. A default value of β1 = 0.9 and
β2 = 0.99 was suggested in Chen et al. [7], with which the Lion update rule can be written directly
as

xt+1 ← (1− ϵλ)xt − ϵ sign
(
(10 + 1)gt + 0.99gt−1 + 0.992gt−2 + · · · 0.99kgt−k + · · ·

)
,

where gt = ∇f(xt). Here the update of xt combines a weight decay term with coefficient (1− ϵλ),
and the sign of a weighted average of the trajectory gradients. Notably, the weight of the current
gradient gt is increased by (β2 − β1)/((1 − β2)β1) ≈ 10 times compared with typical exponential
moving average of gradients as used in the classical Polyak momentum [30].

One can think of Lion as made by “splicing” the elements of many existing algorithms in Lion, which
is exactly what an efficient search program can do when given a proper search space [29, 7, 3]. The
update of the momentum mt is common to the Polyak momentum-based algorithms and yields the
exponential moving average part of the update. What sets it apart is the unique update of xt, which
uses the combination of three key elements:

i) [Sign Reshaper] The use of the sign(·) function for update, similar to signed gradient descent
and signed momentum [5, 8], can be viewed as an extreme way of normalizing the magnitude
of the coordinate-wise updates. It is closed related to normalized gradient [19, 25] and adaptive
gradient methods such as Adam [14] and RMSprop [36]. Note that Adam can be viewed as signed
momentum with an adaptive variance based step size [2], which might be the key factor explaining
the gap between Adam and SGD [18].

ii) [Gradient Enhancement] When using β2 > β1, the importance of the current gradient gt is
increased compared to the exponential moving average in standard Polyak momentum update. It can
be shown that Polyak momentum with this gradient enhancement results in Nesterov momentum,
and leads to the well-known acceleration phenomenon [e.g., 35].

iii) [Decoupled Weight Decay] The weight decay term λxt outside of the gradient and sign(·).
Such idea of the decoupled weight decay is what make AdamW [21] significantly outperform the
vanilla Adam in training large AI models.

As demonstrated by the empirical findings of Chen et al. [7] and subsequent research, the combi-
nation of these elements has been shown to make Lion perform well on a wide range of problems,
including image classification, language models, and diffusion models [7].

However, it remains unclear whether the combination of these elements yield a theoretically valid
and convergent general-purpose optimizer. Furthermore, the use of decoupled weight decay adds to
the uncertainty regarding what optimization problem Lion aims to solve: due to its interaction with
other parts of the algorithm, decoupled weight decay is always not equivalent to simply introducing
ℓ2 regularization [20].

“Lion King Meets Mr. Lyapunov” We propose and analyze a general family of Lion-K algo-
rithms, in which we replace the sign(·) function in Lion with a subgradient∇K of a general convex
function K : Rd → R:

Lion-K:
mt+1 = β2mt − (1− β2)∇f(xt),

xt+1 = xt + ϵ(∇K(β1mt − (1− β1)∇f(xt))− λxt).
(2)

Lion is recovered when K(x) = ∥x∥1 and ∇K(x) = sign(x). Taking the continuous time limit of
(2), we obtain the following ordinary differential equation (ODE):

Lion-K (ODE):
ṁt = −α∇f(xt)− γmt

ẋt = ∇K(mt − ε(α∇f(xt) + γmt))− λxt,
(3)

2

Polyak Momentum [30] K(x) = ∥x∥22 /2, γλ = 0, ε = 0

Nesterov Momentum [27] K(x) = ∥x∥22 /2, γλ = 0

Signed Momentum [5] K(x) = ∥x∥21, ε = 0, λ = 0

Hamiltonian Descent [22] ε = 0, λ = 0

Hamiltonian Descent for Composite Objectives [22] ε = 0, λ > 0

Dual Space Preconditioning [23], Mirror Descent [26] εγ = 1, λ = 0

Signed Gradient Descent [5] K(x) = ∥x∥1, εγ = 1, λ = 0

Accelerated Mirror Descent [16] γ = 0, ε = 0, λ > 0

Frank–Wolfe [10] εγ = 1, λ > 0

Table 1: Lion-K includes a large family algorithms as special cases. See Section 3.1

Eq. (2) is the Euler discretization of Eq. (3) with step size ϵ in the case of α = γ, with β1 = 1− εγ,
and β2 = 1− ϵγ. Lion-K includes a broad set of algorithms as special cases, as shown in Table 1.

To avoid the complexities associated with regularity conditions, we can assume that K is continu-
ously differentiable when discussing the ODE. But parallel results hold for the time discrete algo-
rithm (2) for general non-differentiable convex functions K.

The crest of this work is to show that, when εγ ≤ 1, Lion-K ODE solves the following optimization:

min
x∈Rd

F (x) := αf(x) +
γ

λ
K∗(λx), (4)

where K∗(x) := supz(x
⊤z−K(z)) is the conjugate function of K. Because we may have K∗(x) =

+∞ for some x, solving (4) requires to enforce a constraint of λx ∈ domK∗, where domK∗ :=
{x : K∗(x) < +∞} is the effective domain of K∗. In the case of Lion, we have K(x) = ∥x∥1 and
hence K∗(x) = δ(∥x∥∞ ≤ 1), where δ the∞-indicator function with δ(True) = 0, δ(False) =
+∞. Hence, Lion solves the following bound-constrained optimization problem:

min
x∈Rd

f(x) s.t. ∥x∥∞ ≤ 1/λ, (5)

where the bound 1/λ is solely decided by the weight decay coefficient λ.

a) b) c) d)

Figure 1: (a)-(c) Trajectories of Lion on 2D function f(x) = (x1 − 1.5)2 + x2
2, with λ = 1.5 and λ = 0.5

((a)-(c)). The boxes in a) represent the constraint set : blue box is for ∥x∥∞ ≤ 1/λ with λ = 0.5, green box
is for λ = 1.5. (d) λ vs. the converged loss We can see that the converged loss starts to increase only when λ
excel a threshold (λ ≥ 0.6) to excluded the unconstrained minimum from the constrained set.

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

Param
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Fr
eq

ue
nc

y

0th Iteration
1/ = 0.1

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

Param
0.00

0.01

0.02

0.03

0.04

50th Iteration

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

Param
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

100th Iteration

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

Param
0.00

0.01

0.02

0.03

0.04

0.05

150th Iteration

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

Param
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

200th Iteration

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

Param
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
250th Iteration

Figure 2: Histograms of the network parameters of ResNet-18 on CIFAR-10 trained by Lion with λ = 10. The
constraint of ∥x∥∞ ≤ 1/λ (indicated by the red vertical lines) is satisfied within only ∼200 steps.

3

params params params params

Ite
ra
tio

n

(a) (b) (c) (d)

Figure 3: Evolution of histogram of parameter weights trained by Lion on ResNet-18 on CIFAR-10 [13, 17],
with different λ and initialization methods. Frequency of network parameters in ResNet on the CIFAR-10
dataset across iterations. (a): Kaiming uniform initialization [12] and λ = 20. (b): Kaiming normal ini-
tialization [12] and λ = 20. (c): Kaiming uniform initialization [12] and λ = 0. (d): Kaiming normal
initialization [12] and λ = 0. The weights are quickly confined into the bound [−0.05, 0.05] with λ = 20,
while keep growing with zero weight decay (λ = 0).

Our proof shows that the Lion-K dynamics consists of two phases:

1) [Phase 1] When λx ̸∈ domK∗, it exponentially decays the distance from λxt to the set domK∗:

dist(λxt, domK∗) ≤ exp(−λ(t− s)) dist(λxs, domK∗), ∀s ≤ t.

Hence, λxt converges to domK∗ rapidly and stays within domK∗ once it arrived.

2) [Phase 2] After λxt enters domK∗, the dynamics minimizes the finite valued objective F (x).
This is proved by showing that the Lion-K dynamics minimizes the following Lyapunov function:

H(x,m) = αf(x) +
γ

λ
K∗(λx) +

1− εγ

1 + ελ
(K∗(λx) +K(m)− λm⊤x). (6)

We show that, whenever H(xt,mt) is finite, it is decreased monotonically (i.e., d
dtH(xt,mt) ≤ 0)

along trajectories of (3) until a local minimum of point of H(x,m) is reached.

Furthermore, we have F (x) = minm H(x,m), and hence minimizing H(x,m) is equivalent to
minimizing F (x); this is because the minimum of the last term in (6) equals zero, minmK∗(λx) +
K(m)− λm⊤x = 0, for any fixed x, by Fenchel-Young inequality.

The discovery of this Lyapunov function is a new and non-trivial mathematical result. But intuitively,
one can see easily the connection of (3) and (4) by comparing their fixed points. Assume K and K∗

are differentiable, then a fix point of (3) must implies a stationary point of (4):

α∇f(xt) + γmt = 0, ∇K(mt) = λxt︸ ︷︷ ︸
fixed point of (3)

=⇒ α∇f(xt) + γ∇K∗(λxt) = 0,︸ ︷︷ ︸
stationary point of (4)

where we used∇K(∇K∗(x)) = x, and ∇x

(
1
λK∗(λx)

)
= ∇K∗(λx).

Why Should Lion Decay Weight? From the analysis above, the role of weight decay λ in Lion is
two-fold:

1) It alternates the solution if λ is large and the constraint ∥x∥∞ ≤ 1/λ is strong enough to exclude
the unconstrained minimum x∗

unc of f(x). This may improve the generalization and stability of the
solution while sacrificing the training loss.

2) If λ is sufficiently small to include the unconstrained minimum x∗
unc in the constrained set, it does

not alter the final solution. In this case, the main role of weight decay is to speed up the convergence
because Phase 1 brings the solution into the constrained set with a linear rate. Hence, the ideal
choice of λ is λ = 1/ ∥x∗

unc∥∞ .

In Figure 4 we plot Lion’s performance with different λ. The right plot confirms that larger λ results
in faster convergence but might sacrifice the performance. The left plot shows that there exists an
optimal λ (=0.56), beyond which the training loss starts to increase.

4

Figure 4: Analysis of weight decay on CIFAR-10 using Lion. a) The converged Loss vs. weight decay in Lion.
We can see that the loss starts to increase only when λ excel a threshold, which is expected from the constrained
optimization view. b) The loss curves vs. epochs with different weight decays. Larger weight decay λ yields
faster convergence (due to stronger Phase 1), but may yield larger final loss when it is too large.

Line ID K(x) ∇K(x) minx f(x) +K∗(x)

1⃝ ∥x∥1 sign(x) min f(x) s.t. ∥x∥∞ ≤ 1

2⃝ ∥x∥p
sign(x)|x|p−1

∥x∥p−1
p

min f(x) s.t. ∥x∥q ≤ 1

3⃝
∑

i max(|xi| − e, 0) sign(x)I(|x| > e) min f(x) + e ∥x∥1 s.t. ∥x∥∞ ≤ 1

4⃝
∑

i≤icut

∣∣x(i)

∣∣ sign(x)I(|x| >
∣∣x(icut)

∣∣) min f(x) s.t. ∥x∥1 ≤ icut, ∥x∥∞ ≤ 1

5⃝
∑

i hubere(xi) clip(x,−e, e)/e min f(x) + e
2
∥x∥22 s.t. ∥x∥∞ < 1

Table 2: Examples of K and ∇K, and the optimization problems they solved (we set γ = λ = 1 for simplicity).
We assume x = [x1, . . . , xd] ∈ Rd and

∣∣x(1)

∣∣ ≥ ∣∣x(2)

∣∣ ≥ · · · is a monotonic sorting of the elements of x, and
icut is an integer in {1, . . . , d}. The Huber loss is hubere(xi) = I(|xi| ≥ e)(|xi| − e

2
) + I(|xi| < e) 1

2e
x2
i ,

e > 0. See Appendix A for more examples.

Going Beyond Lion Different K yield optimization with different convex constraints and/or reg-
ularizations. For example, using the ℓp norm K(x) = ∥x∥p yields a constraint on the dual norm
∥x∥q ≤ 1/λ where 1/p+1/q = 1 (Table 2, Line 2⃝); zeroing out the coordinates with small magni-
tude corresponds to introducing an ℓ1 regularization (Line 3⃝) or ℓ1 constraint (4⃝), which is useful
for sparse learning; replacing ∇K(x) = sign(x) with a continuous function would introduce an
extra regularization term on the loss (e.g., 5⃝). This work will focus on building the basic theoretical
framework, and leave the vast opportunities of practical applications as future directions.

Outline The rest of the paper is organized as follows. Section 2 introduces preliminaries on convex
functions. Section 3 analyzes the continuous-time Lion-K dynamics and discusses connections with
existing algorithms. Section 4 presents the discrete-time analysis. Section 5 presents experiments
that study and verify the behavior of using different Ks.

2 PRELIMINARIES ON CONVEX FUNCTIONS

Assume K : Rd → R is convex. A vector u ∈ Rd is said to be a subgradient of K at x, denoted as
u ∈ ∂K(x), if

K(y)−K(x) ≥ u⊤(y − x), ∀y ∈ Rd.

With an abuse of notation, we use ∇K(x) to denote a subgradients of K, that is, ∇K(x) ∈ ∂K(x).
When K is differentiable at x, there is an unique subgradient ∇K(x) which coincides with the
regular derivative.

The conjugate function K∗ of K is defined as

K∗(x) = sup
z∈Rd

(x⊤z −K(z)).

5

Hence, by definition, we have the following Fenchel-Young inequality:

K(x) +K∗(y) ≥ x⊤y, ∀x, y. (7)

The conjugate function K∗ can take values in the extended real set R = R ∪ {±∞}, and K∗ is
always closed and convex, even when K is not. Recall that a function f is said to be closed if for
each b ∈ R, its sublevel sets {x : f(x) ≤ b} is a closed set.

If K is closed and convex, we have K∗∗ = K, and

y ∈ ∂K(x) ⇐⇒ x ∈ ∂K∗(y) ⇐⇒ K(x) +K∗(y) = x⊤y. (8)

When K and K∗ are differentiable, (8) suggests that ∇K and ∇K∗ is a pair of inverse maps:
∇K(∇K∗(x)) = x. Combining (7) and (8), we get minmK(m) + K∗(x) − x⊤m = 0, which
yields F (x) = minm H(x,m). We refer to Rockafellar [33] for a systematic introduction to convex
functions.

A key property of any subgradient ∇K and ∇K∗ is that they are monotonic maps, which plays a
crucial rule in our results.
Lemma 2.1. AssumeK,K∗ is a closed convex conjugate pair and∇K,∇K∗ are their subgradients,
we have

(∇K(x)−∇K(y))⊤(x− y) ≥ 0, (∇K(x)− y)⊤(x−∇K∗(y)) ≥ 0. (9)

See Appendix B.1 for the proof. These two inequalities are crucial because they allow us to identify
vectors that have a non-negative inner product with a given direction to achieve monotonic descent
in optimization.
Example 2.2. In the case of Lion, we take K(x) = ∥x∥1 with∇K(x) = sign(x), and

K∗(y) =

{
0 if ∥y∥∞ ≤ 1

+∞ if ∥y∥∞ > 1
, [∇K∗(y)]i =





0 if |yi| ≤ 1

+∞ yi > 1

−∞ yi < −1.
One can verify that the inequalities in (9) hold (even though the values on the left side can be +∞).
The Lyapunov function in (6) becomes

H(x,m) =

{
f(x) + 1−εγ

1+ελ (∥m∥1 − λx⊤m) if ∥x∥∞ ≤ 1

+∞ if ∥x∥∞ > 1.

3 MAIN RESULT: CONTINUOUS-TIME

We study the continuous-time Lion-K dynamics (3), and discuss its connection to existing algo-
rithms listed in Table 1. We defer the detailed proofs to Appendix B.7, but outline a novel implicit
Hamiltonian + descent decomposition that underpins the construction of the Lyapunov function
H(x,m).
Theorem 3.1. Let (xt,mt) be a continuously differentiable trajectory of the Lion-KODE (3), where
K is differentiable convex with conjugate K∗. Assume α, γ, λ, ε > 0 and ϵγ ≤ 1.

1) [Phase 1] Define dist(λxt, domK∗) = infz∈domK∗ ∥z − λxt∥ w.r.t. any norm ∥·∥. We have

dist(λxt, domK∗) ≤ exp(λ(s− t)) dist(λxs, domK∗), ∀0 ≤ s ≤ t.

Hence, λxt converges linearly to set domK∗ and stays within domK∗ once it enters it.

2) [Phase 2] When H(x,m) in (6) is finite and continuously differentiable, it is decreased monoton-
ically along the trajectory:

− d

dt
H(xt,mt) = ∆(xt,mt) :=

λ+ γ

1 + ελ
∆1(xt, m̃t) +

1− εγ

1 + ελ
∆2(mt, m̃t) ≥ 0,

where we define m̃t = mt − ε(α∇f(xt) + γmt), and

∆1(xt, m̃t) = (m̃t −∇K∗(λxt))
⊤(∇K(m̃t)− λxt) ≥ 0,

∆2(mt, m̃t) =
1

ε
(m̃t −mt)

⊤(∇K(m̃t)−∇K(mt)) ≥ 0.
(10)

6

3) [Stationarity] Assume ∇K∗ is strictly monotonic. All the accumulation points of (xt,mt) as
t → +∞ are stationary points of the objective function F (x) = αf(x) + γ

λK∗(λx), and satisfy
λx ∈ domK∗.

∆(xt,mt) can be viewed as an indication of the stationarity of the system. If H(x0,m0) is finite and
Hb := infx,m H(x,m) > −∞, we have 1

T

∫ T

0
∆(xt,mt)dt ≤ H(x0,m0)−Hb

T → 0 when T → +∞.

Proof Sketch. See Appendix B.7 for the full proof. The original discovery of the Lyapunov func-
tion was made possible by starting from the inequalities in (10) as guaranteed by Lemma 2.1, and
working backwards with some guesswork. The following is a simplified proof that highlights the
essential mathematical structure that makes H(x,m) Lyapunov. Define

ẋ = Vx(x,m) := ∇K(m̃)− λx, ṁ = Vm(x,m) := −α∇f(x)− γm =
m̃−m

ε
and related

V̂x(x,m) = m̃−∇K∗(λx), V̂m(x,m) = ∇K(m̃)−∇K(m).

The V̂x and V̂m have two critical properties:

1) By Lemma 2.1, V̂x and V̂m have non-negative inner products with Vx, Vm, respectively:

V̂x(x,m)⊤Vx(x,m) ≥ 0, V̂m(x,m)⊤Vm(x,m) ≥ 0, ∀x,m.

2) By Lemma B.5 in Appendix B.7, the gradients of H can be decomposed as follows:

∇xH(x,m) = −η′V̂x−ηVm

∇mH(x,m) = −ηV̂m+ηVx,
(Implicit Hamiltonian + Descent) (11)

where η = 1−εγ
1+ελ and η′ = γ+λ

1+ελ . We call (11) an “implicit” Hamiltonian + descent decomposition,
in connection with the Hamiltonian + descent decomposition we introduce in sequel.

Then we have,
d

dt
H(xt,mt) = ∇xH

⊤Vx +∇mH⊤Vm = (−η′V̂x−ηVm)⊤Vx + (−ηV̂m+ηVx)
⊤Vm

= −(η′V̂ ⊤
x Vx + ηV̂ ⊤

m Vm) ≤ 0.

The key here is that the cross term ηV ⊤
x Vm is canceled, leaving only the negative terms. The

convergence property uses Lasselle’s invariance principle; see Appendix B.7 for details.

Hamiltonian + Descent Decomposition The decomposition structure (11) is a key characteriza-
tion of Lion-K ODE. An interesting remark is that H(x,m) is also Lyapunov if we have the follow-
ing Hamiltonian + descent structure [22, 28] in which the roles of [∇xH,∇mH] and [Vx, Vm] in
(11) are switched:

Vx = −Ĥx−η∇mH

Vm = −Ĥm+η∇xH,
(Hamiltonian + Descent) (12)

where Ĥx, Ĥm are two vector fields satisfying Ĥ⊤
x (∇xH) ≥ 0 and Ĥ⊤

m(∇mH) ≥ 0, then
d

dt
H(xt,mt) = ∇xH

⊤Vx +∇mH⊤Vm = ∇xH
⊤(−Ĥx−η∇mH) +∇mH⊤(−Ĥm+ηHx)

= −(Ĥ⊤
x (∇xH) + Ĥ⊤

m(∇mH)) ≤ 0.

The structure in (12) can be intuitively viewed as a generalized damped Hamiltonian system with
H(x,m) as the total energy, where [−Ĥx,−Ĥm] serves a damping force that monotonically de-
creases the total energy, and [−∇mH,∇xH] is the Hamiltonian vector field which preserves the
energy but introduces an inertia-like effect into system. One can easily verify (12) on the classi-
cal Polayk’s momentum. The more general idea is explored in the Hamiltonian descent method
of [22, 28], which considers systems of structure (12) for the separatiable Hamiltonian of form
H(x,m) = f(x) + K(m) with Ĥx = 0. In contrast, (11) do not seem to have a clear physical
interpretation, yet provides a handy tool for understanding the general Lion-K dynamics. Some
special cases of Lion-K, such as when λ = 0 or ε = 0, can also be alternatively viewed from the
Hamiltonian + descent structure as shown in Section 3.1.

7

3.1 CONNECTION WITH EXISTING ALGORITHMS

What makes Lion-K unique is the combination of the gradient enhancement (ε > 0), the decoupled
weight decay (λ > 0), and the momentum damping (γ > 0), the use of reshaper function ∇K(·).
We discuss the effects of these elements in connection to existing algorithms as shown in Table 1.

Lion-K Without Weight Decay When λ = 0 and ∇K∗(0) = 0, we have limλ→0
1
λK∗(λx) =

∇K(0)⊤x = 0, and the Lyapunov function can be defined as

H(x,m) = αf(x) + (1− εγ)K(m),

for which we have

− d

dt
H(xt,mt) = γ∇K(m̃t)m̃t +

(1− εγ)

ε
(m̃t −mt)

⊤(∇K(m̃t)−∇K(mt)) ≥ 0.

In this case, the algorithm solves minx f(x), without the regularization term K∗(λx).

Interestingly, in this case (λ = 0) and 1− εγ > 0, there exists a second Lyapunov function:

H̃(x,m) = αf(x) +
1

1− εγ
K((1− εγ)m), (13)

with which the Lion-K ODE (λ = 0) can be decomposed in the form of (12), as a sum of a Hamil-
tonian vector field and a descent direction:

[
ẋt

ṁt

]
=

[
+∇mH̃(xt,mt)

−∇xH̃(xt,mt)

]

︸ ︷︷ ︸
Hamiltonian

−
[
∇K(m̃0

t)−∇K(m̃t)

γmt

]

︸ ︷︷ ︸
Descent

,

where m̃0
t = (1− εγ)mt and hence m̃0

t − m̃t = εα∇f(xt). If m = 0 is a minimum of K(m), one
can show that the second component above is a descent direction of H̃(x,m) in (13), with

− d

dt
H̃(xt,mt) = γ∇K(m̃0

t)
⊤mt +

1

ε
(m̃0

t − m̃t)
⊤(∇K(m̃0

t)−∇K(m̃t)) ≥ 0,

See Appendix B.6 for details.

Lion-KWithout Momentum Damping When γ = 0, we have

H(x,m) = αf(x) +
1

1 + ελ
(K∗(x) +K(m)− λx⊤m),

Because minm(K∗(x)+K(m)−λx⊤m) = 0, the algorithm also corresponds to solving minx f(x)
without regularization K∗(λx).

It is interesting to see that the weight decay and momentum damping play a somewhat symmetric
role, because turning off either one of it turns off the regularization term K∗(λx). In particular, if
K(x) = ∥x∥22 /2, the Lion-K ODE can be rewritten into a second-order ODE:

ẍt + (λ+ γ)ẋt + εα∇2f(xt)ẋt + γλxt + α∇f(xt) = 0, (14)

in which the role of γ, λ are symmetric. Equation (21) coincides the high-resolution ODE in [35]
for minimizing F (x) = αf(x) + γλ ∥x∥22 /2, which is a high resolution continuous time limit of
Nesterov momentum. The hessian-based damping term∇2f(xt)ẋt plays a key role for acceleration
phenomenon [see e.g., 35, 1]. When we turn off the gradient enhancement (ε = 0), then we get
ODE for Ployak momentum.

Interestingly, if we set λ = γ = 0, but ε > 0, ODE (21) still serve to minimize f(x), due to the
Hessian damping term.

8

Lion-K without Gradient Enhancement When ε = 0, we have

H(x,m) = αf(x) +
γ

λ
K∗(λx) + (K∗(λx) +K(m)− λm⊤x),

and ∆2(m, m̃) = 0,

∆(x,m) = (λ+ γ)∆1(x,m) = (λ+ γ)(m−∇K∗(λx))⊤(∇K(m)− λx).

In this case, minimizing H(x,m) still yields the minimization of F (x). Hence, the choice of ε does
not alter the objective function.

Moreover, with ε = 0, one can conveniently decompose the velocity field in the form of (12), as a
sum of a Hamiltonian vector field and mirror descent direction:

[
ẋt

ṁt

]
=

[
+∇mH(xt,mt)

−∇xH(xt,mt)

]

︸ ︷︷ ︸
Hamiltonian

−
[

0

(γ + λ)(mt −∇K∗(λxt))

]

︸ ︷︷ ︸
Descent

.

This system can be shown to be equivalent to the Hamiltonian descent system for composite objects
of [28]. Further, if λ = 0, it reduces to the conformal Hamiltonian system [e.g., 22, 24].

Mirror Descent and Frank-Wolfe If εγ = 1, Lion-K reduces to

ẋt = ∇K(−εα∇f(xt))− λxt,

which can be shown to be equivalent to the Frank-Wolfe algorithm for minimizing F (x) = αf(x)+
γ
λK∗(λx).

When εγ = 1, and λ = 0 with ∇K(x) = 0 iff x = 0, Lion-K reduces to ẋt = ∇K(−εα∇f(xt)),
which is dual space conditioning [23], or a variant of mirror descent for minx f(x). See Ap-
pendix B.4 for more discussion.

Accelerated Mirror Descent The accelerated mirror descent of Krichene et al. [16] is

ẋt = λt(∇K(mt)− xt), ṁt = −αt∇f(xt),

which is shown to exhibit an acceleration behavior for minimizing a convex f (without the K∗

regularization) when αt = t/r and λt = r/t and r ≥ 2. This can be viewed as Lion-K ODE with
γ = 0, ε = 0 and but a special time-dependent coefficient.

4 DISCRETE TIME ANALYSIS

We now present a result on the discrete-time Lion-K parallel to the continous-time results in Theo-
rem 3.1, but work for non-differentiable convex functions K. We analyze a slight reform of (2):

mt+1 = β2mt − (1− β2)∇f(xt)

m̃t+1 = β1mt − (1− β1)∇f(xt)

xt+1 = xt + ϵ(∇K(m̃t+1)− λxt+1),

(15)

in which we use an implicit scheme for the xt-update, replacing λxt with λxt+1. It is equivalent to
the explicit scheme in (2) with ϵ replaced by ϵ′ = ϵ

1+ϵλ .

Theorem 4.1. Assume f : Rd → R is L-smooth, and K : Rd → R is closed and convex, and ∇K is
a subgradient of K. Assume β1, β2 ∈ (0, 1), and β2 > β1, and ϵ, λ > 0.

1) For any two non-negative integers s ≤ t, we have

dist(λxt, domK∗) ≤
(

1

1 + ϵλ

)s−t

dist(λxs, domK∗), ∀s ≤ t.

2) Define the following Lyapunov function:

H(x,m) = f(x) +
1

λ
K∗(λx) +

β1

ϵλ(1− β1) + (1− β2)
(K∗(λx) +K(m)− λx⊤m),

9

and

∆1
t = (∇K(m̃t+1)− λxt+1)

⊤(m̃t+1 −∇K∗(λxt+1)) ≥ 0,

∆2
t = (∇K(m̃t+1)−∇K(mt+1))

⊤(m̃t+1 −mt+1) ≥ 0,

where∇K∗ is a subgradient of K∗. Then we have

H(xt+1,mt+1)−H(xt,mt) ≤ −ϵ∆t +
Lϵ2

2
∥∇K(m̃t+1)− λxt+1∥22 ,

where ∆t = a∆1
t + b∆2

t , with

a =
β1

ϵλ(1− β1) + (1− β2)
+ 1 ≥ 0, b =

β1(1− β2)

ϵλ(β2 − β1)(ϵλ(1− β1) + (1− β2))
≥ 0.

Hence, a telescoping sum yields

1

T

T−1∑

t=0

∆t ≤
H(x0,m0)−H(xT ,mT)

ϵT
+

Lϵ

2
BT ,

where BT = 1
T

∑T
t=1 ∥∇K(m̃t+1)− λxt+1∥22.

The result above shows that 1
T

∑T−1
t=0 ∆t decays with an O(1

ϵT + ϵ) rate, if BT is a finite upper
bound. This reduces to the continuous-time result of 1

t

∫ t

0
∆(xs,ms)ds = O

(
1
t

)
when the step size

ϵ converges to zero.

If K is smooth, it is possible to improve the discrete-time rate to O
(

1
ϵT

)
with standard arguments

based on the proof of Theorem 4.1. Hence, the impact of the non-differentiability of K contributes
to the O(ϵ) term, which suggests that the algorithm converges upto an ϵ accuracy. This is an typical
phenomenon in optimization with non-smooth objectives (like sub-gradient descent) or non-smooth
update (like signed GD). Because in practice the step size is small or decaying, the O(ϵ) term may
not have a substantial impact for practical performance.

5 EXPERIMENTS ON DIFFERENT K

This section provides a preliminary investigation on the behaviors of Lion-K with different K. We
experiment with the Ks listed in Table 2 on the toy example shown in Figure 1 to confirm the
behavior follows exactly as what the theory predicts. Then we focus on the Lion-ℓp optimizer with
general p ∈ [1, 2] since it is the most straightforward extension of the original Lion (with p = 1).

5.1 LION-KS ON THE TOY EXAMPLE

In the following, we plot the behavior of different Lion-Ks on the toy example shown in Figure 1.
For each K, we draw the optimization trajectory using the corresponding optimizer, the loss f(x),
and the corresponding constraint (e.g., the norm of x) v.s. iteration. The results are shown in
Figure 5.

Observation From Figure 5, one can observe that for K(x) = ∥x∥2, the constraint is a circle.
For K(x) =

∑
i max(|xi| − e, 0), an additional ℓ1 regularization is introduced in addition to the

ℓ∞ constraint, which encourages sparse solutions. When K(x) = ∑
i≤icut |x(i)|, it enforces an ℓ1

constraint (rather than regularization) in addition to the ℓ∞ constraint. The K(x) =∑i hubere(xi)
introduces an ℓ2 regularization effect in addition to ℓ∞ constraint. All optimization trajectories
closely match what the theory predicts.

5.2 LION-ℓp FOR IMAGENET AND LANGUAGE MODELING

Lion-ℓp corresponds to K(x) = ∥x∥p, p ≥ 1 and amounts to solving minx f(x) s.t. ∥x∥q ≤ 1/λ

where 1/p+ 1/q = 1. In Figure 6, we plot how the parameter norms (e.g., || · ||∞ when p = 1 and
|| · ||2 when p = 2) change over training iterations. In Figure 7, we compare the performance of
using Lion-ℓp with different p, on ImageNet [34] and Language Modeling tasks, using ResNet-50,
Vision Transformer (ViT) [9], and the GPT-2 model [31].

10

<latexit sha1_base64="1eDqiJQajJcWJoAq+Mdq5mg4LXc=">AAACFHicbVDLSsNAFJ3UV62vqEs3g0VoUUsiom6EohvBTQX7gCaEyXTSDp08mJlIS9qPcOOvuHGhiFsX7vwbJ20W2npg4HDOvdw5x40YFdIwvrXcwuLS8kp+tbC2vrG5pW/vNEQYc0zqOGQhb7lIEEYDUpdUMtKKOEG+y0jT7V+nfvOBcEHD4F4OI2L7qBtQj2IkleToh5aPZA8jltyOS4MyvISWiH2HQqUPSnA0cOgIHkNyBI2yoxeNijEBnCdmRoogQ83Rv6xOiGOfBBIzJETbNCJpJ4hLihkZF6xYkAjhPuqStqIB8omwk0moMTxQSgd6IVcvkHCi/t5IkC/E0HfVZBpBzHqp+J/XjqV3YSc0iGJJAjw95MUMyhCmDcEO5QRLNlQEYU7VXyHuIY6wVD0WVAnmbOR50jipmGcV8+60WL3K6siDPbAPSsAE56AKbkAN1AEGj+AZvII37Ul70d61j+loTst2dsEfaJ8/Il6cUA==</latexit>

K(x) =
X

i

max(|xi|� e, 0)

<latexit sha1_base64="OGsx1geeq/7tEi9wqFlrp3YijHc=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWAR6qYkRdSNUHQjuKlgH9CGMJlO2qGTSZiZSEtaN/6KGxeKuPUv3Pk3TtostPXAhcM593LvPV7EqFSW9W3klpZXVtfy64WNza3tHXN3ryHDWGBSxyELRctDkjDKSV1RxUgrEgQFHiNNb3Cd+s0HIiQN+b0aRcQJUI9Tn2KktOSaB50AqT5GLLmdlIYn8BKOx8Px2K24ZtEqW1PARWJnpAgy1Fzzq9MNcRwQrjBDUrZtK1JOgoSimJFJoRNLEiE8QD3S1pSjgEgnmX4wgcda6UI/FLq4glP190SCAilHgac703vlvJeK/3ntWPkXTkJ5FCvC8WyRHzOoQpjGAbtUEKzYSBOEBdW3QtxHAmGlQyvoEOz5lxdJo1K2z8r23WmxepXFkQeH4AiUgA3OQRXcgBqoAwwewTN4BW/Gk/FivBsfs9ackc3sgz8wPn8AnCmWWQ==</latexit>K(x) = ||x||2
<latexit sha1_base64="Y9tSkvN8oIZ2J32/eTFeBsZVIYs=">AAACCnicbVC7TgJBFJ31ifhatbQZJSbYbHaJUUuijSUm8kiAkNlhFibMzK4zswYCbGvjr9hYaIytX2Dn3zjAFgqe5CYn59ybe+/xI0aVdt1va2l5ZXVtPbOR3dza3tm19/YrKowlJmUcslDWfKQIo4KUNdWM1CJJEPcZqfq964lffSBS0VDc6UFEmhx1BA0oRtpILfuowamAQb5/CpNEOdpJktGoPxq1ChA2GLmHXsvOuY47BVwkXkpyIEWpZX812iGOOREaM6RU3XMj3RwiqSlmZJxtxIpECPdQh9QNFYgT1RxOXxnDE6O0YRBKU0LDqfp7Yoi4UgPum06OdFfNexPxP68e6+CyOaQiijUReLYoiBnUIZzkAttUEqzZwBCEJTW3QtxFEmFt0suaELz5lxdJpeB45453e5YrXqVxZMAhOAZ54IELUAQ3oATKAINH8AxewZv1ZL1Y79bHrHXJSmcOwB9Ynz9iCplt</latexit>

min f(x) s.t. ||x||2  1

<latexit sha1_base64="hvq9TNfWLrveXRZih7a8pV5pKCc=">AAACGHicbVDLSsNAFJ3UV62vqEs3g0VoNzURUTdC0Y3gpoJ9QBPDZDpph04ezkykJc1nuPFX3LhQxG13/o2TtgttPTBwOOde7pzjRowKaRjfWm5peWV1Lb9e2Njc2t7Rd/caIow5JnUcspC3XCQIowGpSyoZaUWcIN9lpOn2rzO/+US4oGFwL4cRsX3UDahHMZJKcvRjy0eyhxFLbtPSoHwJLRH7TkKhxcgjpA8JjmWawtHASUq0nI4cvWhUjAngIjFnpAhmqDn62OqEOPZJIDFDQrRNI5J2grikmJG0YMWCRAj3UZe0FQ2QT4SdTIKl8EgpHeiFXL1Awon6eyNBvhBD31WTWQwx72Xif147lt6FndAgiiUJ8PSQFzMoQ5i1BDuUEyzZUBGEOVV/hbiHOMJSdVlQJZjzkRdJ46RinlXMu9Ni9WpWRx4cgENQAiY4B1VwA2qgDjB4Bq/gHXxoL9qb9ql9TUdz2mxnH/yBNv4BmBqgIQ==</latexit>

K(x) =
X

iicut

|x(i)|

<latexit sha1_base64="dmX0HEHvynlT/6b2SHT0sNhS4sI=">AAACFnicbVA9SwNBEN2LXzF+RS1tFoOQFIY7EbURgjaCTQTzAUk49jaTZMnu3bG7JwnH/Qob/4qNhSK2Yue/cXNJoYkPBh7vzTAzzws5U9q2v63M0vLK6lp2PbexubW9k9/dq6sgkhRqNOCBbHpEAWc+1DTTHJqhBCI8Dg1veD3xGw8gFQv8ez0OoSNI32c9Rok2kps/bguiB5Tw+DYpjkr4ErdVJFyGU12KeBB5IBMXiiOXldx8wS7bKfAicWakgGaouvmvdjegkQBfU06Uajl2qDsxkZpRDkmuHSkICR2SPrQM9YkA1YnTtxJ8ZJQu7gXSlK9xqv6eiIlQaiw80zk5Vs17E/E/rxXp3kUnZn4YafDpdFEv4lgHeJIR7jIJVPOxIYRKZm7FdEAkodokmTMhOPMvL5L6Sdk5Kzt3p4XK1SyOLDpAh6iIHHSOKugGVVENUfSIntErerOerBfr3fqYtmas2cw++gPr8wesGZ8T</latexit>

K(x) =
X

i

hubere(xi)
<latexit sha1_base64="qN+ohzX/eX/cRpZywAvw/x/vHxw=">AAACIXicbVBNS8NAEN34bf2qevSyWISKEJIg2oMH0YvHClYLTS2b7cYu3WzC7kRa0vanePGvePGgSG/in3Fbc/DrwcDjvRlm5gWJ4Boc592amZ2bX1hcWi6srK6tbxQ3t651nCrKajQWsaoHRDPBJasBB8HqiWIkCgS7CbrnE//mninNY3kF/YQ1I3InecgpASO1ihU/4hKH5d7+gR8qQjM2zLwhHgx6g0HLu/VGI22DPRrlis9lCH18gt1WseTYzhT4L3FzUkI5qq3i2G/HNI2YBCqI1g3XSaCZEQWcCjYs+KlmCaFdcscahkoSMd3Mph8O8Z5R2jiMlSkJeKp+n8hIpHU/CkxnRKCjf3sT8T+vkUJYaWZcJikwSb8WhanAEONJXLjNFaMg+oYQqri5FdMOMUGBCbVgQnB/v/yXXHu2e2S7l4el07M8jiW0g3ZRGbnoGJ2iC1RFNUTRA3pCL+jVerSerTdr/NU6Y+Uz2+gHrI9PFpWjeA==</latexit>

min f(x) +
e

2
||x||22 s.t. ||x||1 < 1

<latexit sha1_base64="waoJbtP2EJE3k5G9D0ti8OF2jdI=">AAACHnicbVDJSgNBEO1xjXGLevTSGAQFGWbE7Rj04jGCWSATQ0+nJ2ns6Rm7ayRhkvyIF3/FiwdFBE/6N3aWgxofFDzeq6Kqnh8LrsFxvqyZ2bn5hcXMUnZ5ZXVtPbexWdZRoigr0UhEquoTzQSXrAQcBKvGipHQF6zi314M/co9U5pH8hq6MauHpCV5wCkBIzVyx17IJQ72OvsDbYM96PU6vV7D9QS7w/wmpQn0D8aax2UA3ZHhNnJ5x3ZGwNPEnZA8mqDYyH14zYgmIZNABdG65jox1FOigFPB+lkv0Swm9Ja0WM1QSUKm6+novT7eNUoTB5EyJQGP1J8TKQm17oa+6QwJtPVfbyj+59USCM7qKZdxAkzS8aIgERgiPMwKN7liFETXEEIVN7di2iaKUDCJZk0I7t+Xp0n50HZPbPfqKF84n8SRQdtoB+0hF52iArpERVRCFD2gJ/SCXq1H69l6s97HrTPWZGYL/YL1+Q0XEaMa</latexit>

min f(x) s.t. ||x||1  icut, ||x||1  1

<latexit sha1_base64="wCHlUZZsF+GnPjBITgp+X2kbfdU=">AAACGHicbVDLSgNBEJyNrxhfUY9eBoOgCOuuiHoUvXiMYFTIhjA76U0GZ2fXmV4x5PEXXvwVLx4U8erNv3HyOGi0oKGmqpvprjCVwqDnfTm5qemZ2bn8fGFhcWl5pbi6dmWSTHOo8EQm+iZkBqRQUEGBEm5SDSwOJVyHt2cD//oetBGJusR2CrWYNZWIBGdopXpxL4iFotH2ww7dpUC73Ydut+7TvnHR7Y9egVARtgMJd9Sn9WLJc70h6F/ij0mJjFGuFz+DRsKzGBRyyYyp+l6KtQ7TKLiEXiHIDKSM37ImVC1VLAZT6wwP69EtqzRolGhbCulQ/TnRYbEx7Ti0nTHDlpn0BuJ/XjXD6LjWESrNEBQffRRlkmJCBynRhtDAUbYtYVwLuyvlLaYZR5tlwYbgT578l1ztu/6h618clE5Ox3HkyQbZJNvEJ0fkhJyTMqkQTh7JM3klb86T8+K8Ox+j1pwznlknv+B8fgPonZ8Z</latexit>

min f(x) + e||x||1 s.t. ||x||1  1

Figure 5: The behavior of Lion-K with different Ks from Table 2. The blue trajectory always reaches the
optimum as the optimum is included in the constraint. The green trajectory converges to the boundary of the
constraint.

Experiment Setting For the ImageNet training, we follow the standard PyTorch ImageNet train-
ing code.1 We train the ResNet-50 and the ViT-B/16 model using batch size 1024 and cosine learning
rate scheduler. For GPT-2 training, we follow the HuggingFace code2, train it on OpenWebText3
using cosine learning rate scheduler.

Observation From Figure 6, we observe that even on deep neural networks like ViT [9],
ResNet [13], and GPT-2 [31], the behavior of the Lion-K optimizers strictly follow what the theory
predicts. From Figure 7, we observe that Lion-ℓ1 (the original Lion optimizer) performs better than
Lion with other p on ImageNet when ViT is used, and on language modeling with the GPT-2 model.
The plot indicates a trend that smaller p ∈ [0, 1] results in better training efficiency. However, the
trend is reversed when ResNet-50 [13] is used on ImageNet. Therefore, this indicates that the choice
of K might depend on the underlying neural architecture. Based on the empirical observation, we
conjecture that Lion-ℓ1 performs well among all Lion-ℓp on the transformer architecture, which
is consistent with the fact that Lion-ℓ1 is found by an evolutionary search using the transformer
architecture [6].

6 DISCUSSION

As demonstrated in the analysis of the Lyapunov function in Theorem 3.1, the Lion-K dynamics
exhibit a distinct nature when compared to typical momentum-based methods like Polyak, Nes-
terov momentum, and Hamiltonian descent, all of which can be conveniently understood as certain
generalized dissipative Hamiltonian systems. While the Lyapunov function provides a powerful

1https://github.com/pytorch/examples/blob/main/imagenet/main.py.
2https://huggingface.co/gpt2
3https://huggingface.co/datasets/Skylion007/openwebtext

11

https://github.com/pytorch/examples/blob/main/imagenet/main.py
https://huggingface.co/gpt2
https://huggingface.co/datasets/Skylion007/openwebtext

<latexit sha1_base64="aI+EQA/rXe+3m/L0p55s6rE1AwA=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSxC3ZRERN0IRTeCmwr2AW0Ik+mkHTqZhJmJtCR146+4caGIW//CnX/jpM1CWw9cOJxzL/fe40WMSmVZ38bC4tLyymphrbi+sbm1be7sNmQYC0zqOGShaHlIEkY5qSuqGGlFgqDAY6TpDa4zv/lAhKQhv1ejiDgB6nHqU4yUllxzvxMg1ceIJbfj8vAYXsI0Haapa7tmyapYE8B5YuekBHLUXPOr0w1xHBCuMENStm0rUk6ChKKYkXGxE0sSITxAPdLWlKOASCeZfDCGR1rpQj8UuriCE/X3RIICKUeBpzuze+Wsl4n/ee1Y+RdOQnkUK8LxdJEfM6hCmMUBu1QQrNhIE4QF1bdC3EcCYaVDK+oQ7NmX50njpGKfVey701L1Ko+jAA7AISgDG5yDKrgBNVAHGDyCZ/AK3own48V4Nz6mrQtGPrMH/sD4/AGapZZY</latexit>K(x) = ||x||1
ImageNet
ViT-16B

Language	Modeling
GPT-2	

ImageNet
ViT-16B

Language	Modeling
GPT-2	

ImageNet
ResNet-50

ImageNet
ResNet-50

Figure 6: Constraint verification for Lion-ℓ1 and Lion-ℓ2 on ImageNet and Language Modeling tasks, using
the ResNet-50, ViT-B/16 and the GPT-2 architectures.

ImageNet
ViT-16B

Language	Modeling
GPT-2

ImageNet
ResNet-50

Figure 7: Performance of Lion-ℓp with different p, on ImageNet [34] (left 2 figures) and Language Modeling
(right), using ResNet-50 [13] (left), ViT [9] (middle), and GPT-2 [31] (right).

characterization of the dynamical behavior, our intuitive understanding of the Lion-K dynamics re-
mains obscured because we lack a “physical intuition” or constructive derivation like the standard
optimization algorithms. This invites more studies in studies and understandings in future works.

The connection between Lion-K and Nesterov momentum and accelerated mirror descent suggests
the possibility of acceleration phenomena in variants of Lion-K, which opens an exciting avenue for
future exploration and research. It might be possible to find novel accelerated algorithms based on
the Lion-K family.

It is surprising and compelling that an algorithm found by a random search program has such a rich
and intriguing theoretical basis. The reasons for this remain elusive, whether it is a coincidence or
due to some inherent necessity. For instance, the design of the search space in Chen et al. [6] may
in some way entails a high likelihood of discovering theoretically sound algorithms with random
search. Understanding the underlying logic here could lead to future advancements in automatic
machine-based algorithm discovery.

Regarding applications, since Lion-K offers a broader family than Lion, it is possible to find within
the Lion-K family new algorithms that outperform Lion in various tasks and metrics. Addition-
ally, by using different values of K, Lion-K can be utilized to address different types of constraint
optimization problems.

7 ACKNOWLEDGEMENT

The research is conducted in Statistics & AI group at UT Austin, which receives supports in part
from NSF CAREER1846421, SenSE2037267, Office of Navy Research, and NSF AI Institute for
Foundations of Machine Learning (IFML).

REFERENCES

[1] Hedy Attouch, Juan Peypouquet, and Patrick Redont. Fast convex optimization via inertial
dynamics with hessian driven damping. Journal of Differential Equations, 261(10), January
2016. doi: 10.1016/j.jde.2016.08.020.

12

[2] Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of
stochastic gradients. In International Conference on Machine Learning, pages 404–413.
PMLR, 2018.

[3] Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V Le. Neural optimizer search with
reinforcement learning. In International Conference on Machine Learning, pages 459–468.
PMLR, 2017.

[4] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar.
signSGD: Compressed Optimisation for Non-Convex Problems, August 2018. URL http:
//arxiv.org/abs/1802.04434. arXiv:1802.04434 [cs, math].

[5] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pages 560–569. PMLR, 2018.

[6] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham,
Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic Discovery
of Optimization Algorithms, 2023. arXiv:2302.06675 [cs].

[7] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham,
Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, et al. Symbolic discovery of optimization algo-
rithms. arXiv preprint arXiv:2302.06675, 2023.

[8] Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang. Ro-
bustness to unbounded smoothness of generalized signsgd. arXiv preprint arXiv:2208.11195,
2022.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

[10] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics
Quarterly, 3(1-2):95–110, 1956. doi: 10.1002/nav.3800030109.

[11] Elad Hazan and Sham Kakade. Revisiting the Polyak step size, August 2022. URL http:
//arxiv.org/abs/1905.00313. arXiv:1905.00313 [math].

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 1026–1034, 2015.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 770–778, 2016.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[16] Walid Krichene, Alexandre Bayen, and Peter L Bartlett. Accelerated mirror descent in contin-
uous and discrete time. Advances in neural information processing systems, 28, 2015.

[17] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[18] Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not
the main factor behind the gap between sgd and adam on transformers, but sign descent might
be. arXiv preprint arXiv:2304.13960, 2023.

[19] Kfir Y Levy. The power of normalization: Faster evasion of saddle points. arXiv preprint
arXiv:1611.04831, 2016.

13

http://arxiv.org/abs/1802.04434
http://arxiv.org/abs/1802.04434
http://arxiv.org/abs/1905.00313
http://arxiv.org/abs/1905.00313

[20] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[21] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

[22] Chris J Maddison, Daniel Paulin, Yee Whye Teh, Brendan O’Donoghue, and Arnaud Doucet.
Hamiltonian descent methods. arXiv preprint arXiv:1809.05042, 2018.

[23] Chris J Maddison, Daniel Paulin, Yee Whye Teh, and Arnaud Doucet. Dual space precondi-
tioning for gradient descent. SIAM Journal on Optimization, 31(1):991–1016, 2021.

[24] Robert McLachlan and Matthew Perlmutter. Conformal hamiltonian systems. Journal of Ge-
ometry and Physics, 39(4):276–300, 2001.

[25] Ryan Murray, Brian Swenson, and Soummya Kar. Revisiting normalized gradient descent:
Fast evasion of saddle points. IEEE Transactions on Automatic Control, 64(11):4818–4824,
2019.

[26] Arkadij Semenovic Nemirovskij and David Borisovich Yudin. Problem complexity and
method efficiency in optimization. 1983.

[27] Yurii Evgen’evich Nesterov. A method for solving the convex programming problem with
convergence rate o (1/κˆ 2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547, 1983.

[28] Brendan O’Donoghue and Chris J Maddison. Hamiltonian descent for composite objectives.
Advances in Neural Information Processing Systems, 32, 2019.

[29] Daiyi Peng, Xuanyi Dong, Esteban Real, Mingxing Tan, Yifeng Lu, Gabriel Bender, Hanxiao
Liu, Adam Kraft, Chen Liang, and Quoc Le. Pyglove: Symbolic programming for automated
machine learning. Advances in Neural Information Processing Systems, 33:96–108, 2020.

[30] Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr
computational mathematics and mathematical physics, 4(5):1–17, 1964.

[31] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[32] Esteban Real, Chen Liang, David So, and Quoc Le. Automl-zero: Evolving machine learning
algorithms from scratch. In International conference on machine learning, pages 8007–8019.
PMLR, 2020.

[33] R. T. Rockafellar. Convex Analysis, volume 11. Princeton University Press, 1997.

[34] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

[35] Bin Shi, Simon S Du, Michael I Jordan, and Weijie J Su. Understanding the acceleration
phenomenon via high-resolution differential equations. Mathematical Programming, pages
1–70, 2021.

[36] Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a run-
ning average of its recent magnitude. COURSERA: Neural networks for machine learning, 4
(2):26–31, 2012.

14

A EXAMPLES OF K
We provide a list of examples of K and the corresponding ∇K and K∗. It is useful to define the
following indicator functions of set {z = 0}:

δ(z) =

{
0 if z = 0

+∞ if z ̸= 0.
, I(z) =

{
0 if z = 0

1 if z ̸= 0.
,

Note that δ is the conjugate function of f(x) = x, as δ(x) = supz x
⊤z.

ℓp norm When K(x) = ∥x∥p = (
∑

i |xi|p)1/p for p ≥ 1, we can take

∇K(x) = sign(x) |x|p−1

∥x∥p−1
p

,

and
K∗(x) = sup

z
x⊤z − ∥z∥p = sup

c≥0
∥x∥q c− c = δ(∥x∥q ≤ 1),

where q is the conjugate number of p, satisfying 1
p+

1
q = 1. Hence, Lion-K with ℓp norm correspond

to solving
min
x

f(x) s.t. ∥x∥q ≤ 1/λ.

Group ℓp norm Assume x is partitioned into a number of groups: x = [xGi
]ki=1. Consider the

group ℓp norm: K(x) =∑k
i=1 ∥xGi

∥p. Then, we can take

∇K(x) =
[
sign(xGi

) |xGi
|p−1

∥xGi
∥p−1
p

]k

i=1

The conjugate function is

K∗(x) = sup
z

k∑

i=1

x⊤
Gi
zGi − ∥zGi∥p =

k∑

i=1

δ(∥xGi∥q ≤ 1).

Hence, Lion-K with grouped ℓp norm corresponds to solving
min
x

f(x) s.t. ∥xGi∥q ≤ 1/λ, ∀i.

Lower Truncated ℓ1 Norm Consider K(x) =∑d
i=1 max(|xi| − e, 0) where e > 0. We can take

∇K(x) = I(|x| ≥ e)sign(x), (16)
which uses sign(x) as Lion, but zeros out the gradient on the elements with absolute values smaller
than e. The conjugate is

K∗(x) = sup
z

d∑

i=1

(xizi −max(|z|i − e, 0))

= sup
z,c

d∑

i=1

(xizi − ci) s.t. ci ≥ 0, c ≥ |zi| − e

= sup
c≥0

d∑

i=1

|xi| (ci + e)− ci

=
d∑

i=1

δ(|xi| ≤ 1) + e |xi|

= δ(∥x∥∞ ≤ 1) + e ∥x∥1 .
Hence, Lion-K corresponds to solving

min
x

αf(x) + eγ ∥x∥1 s.t. ∥x∥∞ ≤ 1/λ. (17)

Hence, truncating the small gradients in Lion induces an ℓ1 penalty, which encourages the sparsity
of the final solution.

15

Lower (Vector-wise) Truncated ℓp Norm Consider K(x) = max(∥x∥p − e, 0). We have

∇K(x) = I(∥x∥p − e ≥ 0)
sign(x) |x|p−1

∥x∥p−1
p

,

in which the gradient is zeroed out when ∥x∥p ≤ e. The conjugate is

K∗(x) = sup
z
(x⊤z −max(∥z∥p − e, 0))

= sup
z,c

(x⊤z − c) s.t. c ≥ 0, c ≥ ∥z∥p − e

= sup
c≥0
∥x∥q (c+ e)− c

= δ(∥x∥q ≤ 1) + e ∥x∥q .
Hence, Lion-K corresponds to solving

min
x

αf(x) + eγ ∥x∥q s.t. ∥x∥q ≤ 1/λ.

Sorting Norm For x = [x1, . . . , xd], let
∣∣x(1)

∣∣ ≥
∣∣x(2)

∣∣ . . . be the sorting of the elements by
absolute values. Define

Sorting norm: K(x) =
∑

i

ci
∣∣x(i)

∣∣ ,

where c1 ≥ c2 ≥ ... ≥ 0 is a descending non-negative sequence. The sorting norm is convex
because it can be represented as the supreme of a set of convex functions, by the rearrangement
inequality, as follows

K(x) = max
σ∈Γ

d∑

i=1

cσ(i) |xi| ,

where Γ denotes the set of permutations on {1, . . . , n}. One subgradient of K is

∇K(x)i = crank(i,x)sign(xi),

where rank(i, x) denotes the rank of |xi| in x.

K∗(x) = sup
z

{
x⊤z −

∑

i

ci
∣∣z(i)

∣∣
}

= sup
z≥0

{∑

i

∣∣x(i)

∣∣× z(i) −
∑

i

ciz(i)

}
//by rearrangement inequality

= sup
w≥0




∑

i

(
∣∣x(i)

∣∣− ci)× (
∑

j≥i

wj)



 //let z(i) =

∑

j≥i

wj , wj ≥ 0

= sup
w≥0




∑

j

∑

i≤j

(
∣∣x(i)

∣∣− ci)× wj



 //let z(i) =

∑

j≥i

wj , wj ≥ 0

=
∑

j

δ(
∑

i≤j

∣∣x(i)

∣∣ ≤
∑

j≤i

cj)

Hence, Lion-K corresponds to imposing a sequence of bounds on the cumsum of the sorted x:

min
x

f(x) s.t.
∑

j≤i

∣∣x(i)

∣∣ ≤ Ci, where Ci =
∑

j≤i

cj .

An interesting special case is when ci = I(i ≤ icut) for some integer icut ∈ {1, . . . , d}, so that

K(x) =
∑

i≤icut

∣∣x(i)

∣∣ , ∇K(x) = I(|x| ≥ x(icut))sign(x),

16

in which we zero out the updates of the elements whose absolute values are smaller than the icut-th
largest element. It is useful to compare this with (16) which applies the truncation based on a fixed
number ϵ, rather than the percentile.

The conjugate is
K∗(x) =

∑

j≤icut

δ(
∣∣x(j)

∣∣ ≤ 1) + δ(∥x∥1 ≤ icut)

Then, Lion-K in this case corresponds to solving

min
x

f(x) s.t. ∥x∥1 ≤ icut/λ, ∥x∥∞ ≤ 1/λ,

in which the percentile-based truncation effectively imposes a constraint on the ℓ1 norm of x. It is
different from (17) in which the ℓ1 norm appears as a regularization term in the objective, rather
than as a hard constraint.

Entropy Consider K(x) =∑d
i=1

1
a log

(
1
2 (exp(axi) + exp(−axi))

)
, where a > 0. We have

∇K(x) = exp(ax)− exp(−ax)
exp(ax) + exp(−ax) = tanh(ax).

Taking the inverse, we have ∇K∗(x) = 1
2a log 1+x

1−x , with domain in ∥x∥∞ ≤ 1. by integration, the
conjugate function is hence,

K∗(x) =
d∑

i=1

1

2a
(xi + 1) log(xi + 1) +

1

2a
(1− xi) log(1− xi) + δ(∥x∥∞ < 1).

Lion-K correspond to solving an entropy-regularized optimization:

min
x

αf(x) +
γ

λ
E(λx) s.t. ∥x∥∞ ≤ 1/λ,

where E(x) =
∑d

i=1
1
2a (xi + 1) log(xi + 1)n+ 1

2a (1− xi) log(1− xi).

Huber Loss For a ≥ 0, define the Huber loss:

K(x) =
d∑

i=1

Hubera(xi) where Hubera(xi) = I(|xi| ≥ a)× |xi|+ I(|xi| < a)× 1

2a
x2
i ,

We have

∇K(x) = Clip(x,−a, a)/a, with Clip(xi, a, b) =





xi if x ∈ [a, b]

b if x > b

a if x < a.

The conjugate is

K∗(x) =
a

2
∥x∥22 + δ(∥x∥∞ ≤ 1),

K∗(x) =
d∑

i=1

max(sup
|z|≥a

xizi − |zi| , sup
|zi|<a

xizi −
1

2a
z2i)

=

d∑

i=1

max

(
δ(|xi| ≤ 1) + a(|xi| − 1),

1

2
ax2

i

)

=
d∑

i=1

δ(|xi| ≤ 1) +
1

2
ax2

i

=
a

2
∥x∥22 + δ(∥x∥∞ ≤ 1).

17

Relativistic Consider K(x) =∑d
i=1

√
x2
i + e2, then ∇K(x) = x√

x2+e2
, and

K∗(x) = sup
z

(
d∑

i=1

xizi −
√
z2i + e2

)

=
d∑

i=1

x2
i e√

1− x2
i

− e√
1− x2

i

//Solution: z2i =
x2
i e

2

1− x2
i

=
d∑

i=1

−e
√
1− x2

i + δ(|xi| ≤ 1)

=
d∑

i=1

−e
√
1− x2

i + δ(∥x∥∞ ≤ 1).

A related case is

K(x) = |x| − e log(|x| /e+ 1), with ∇K(x) = x

|x|+ e
,

whose conjugate function is

K∗(x) = sup
x

(
d∑

i=1

xizi − |zi|+ e log(|zi| /e+ 1)

)

=
d∑

i=1

|xi|2 e/(1− |xi|)− |xi| e/(1− |xi|) + e log(1/(1− |xi|)) //Solution: z = |x| e/(1− |x|)

=
d∑

i=1

−e(|xi|+ log(1− |xi|)) + δ(∥x∥∞ < 1).

B PROOFS

B.1 CONVEX FUNCTION PRELIMINARIES

Lemma 2.1 AssumeK,K∗ is a closed convex conjugate pair and∇K,∇K are their subgradients,
we have

(∇K(x)−∇K(y))⊤(x− y) ≥ 0, (∇K(x)− y)⊤(x−∇K∗(y)) ≥ 0. (18)

Proof. 1) By definition of subgradient, we have

K(y)−K(x) ≥ ∇K(x)⊤(y − x)

K(x)−K(y) ≥ ∇K(y)⊤(x− y).

Summing them together yields (∇K(x)−∇K(y))⊤(x− y) ≥ 0.

2) Because∇K∗(y) ∈ ∂K∗(y), we have

K∗(∇K(x))−K∗(y) ≥ ∇K∗(y)⊤(∇K(x)− y),

Because ∇K(x) ∈ ∂K(x), by the property of conjugate functions, we have x ∈ ∂K∗(∇K(x)), and
hence

K∗(y)−K∗(∇K(x)) ≥ x⊤(y −∇K(x)).
Summing the two inequalities above yields

(∇K(x)− y)⊤(∇K∗(y)− x) ≤ (K∗(∇K(x))−K∗(y)) + (K∗(y)−K∗(∇K(x))) = 0.

18

B.2 CONNECTION WITH NESTEROV MOMENTUM

Lemma B.1. The Lion-K ODE is

ẋt = ∇K(mt − ε(α∇f(xt) + γmt))− λxt

ṁt = −α∇f(xt)− γmt.

is equivalent to

∇2K∗(ẋt + λxt)(ẍt + λẋt) + εα∇2f(xt)ẋt + γ∇K∗(ẋt + λxt) + α∇f(xt) = 0, (19)

if K∗ and f are second order differentiable.

In particular, if K(x) = ∥x∥22 /2, we have

ẍt + (λ+ γ)ẋt + εα∇2f(xt)ẋt + γλxt + α∇f(xt) = 0. (20)

This ODE minimizes F (x) = αf(x) + γλ ∥x∥22 /2.

Remark We have the following observations from (21):

1) The role of the weight decay λ and momentum damping coefficient γ is symmetric in (21).

2) When either the weight decay or momentum damping is turned off, i.e., γλ = 0, the ℓ2 regular-
ization in F (x) is turned off, and we have

ẍt + (λ+ γ)ẋt + εα∇2f(xt)ẋt + α∇f(xt) = 0, (21)

which coincides with the high-resolution ODE [35] that serves as a continuous-time modeling of
Nesterov momentum for minimizing f(x).

3) The Hessian-dependent damping term∇2f(xt)ẋt arises to due the gradient enhancement (ε > 0),
and it is known to play a key role in Nesterov momentum and acceleration [1, 35]. When we turn
off the gradient enhancement (ε = 0), we get

ẍt + (λ+ γ)ẋt + α∇f(xt) = 0,

which is the ODE for Polayk momentum, the equation of motion of a ball with unit mass moving in
a potential field αf(x) with a friction coefficient (λ+ γ).

Proof. We want to cancel out mt. The first equation yields

(1− εγ)mt = (∇K∗(ẋt + λxt) + εα∇f(xt)) . (22)

Plugging it into the second equation yields

(1− εγ)ṁt = −α(1− εγ)∇f(xt)− γ (∇K∗(ẋt + λxt) + εα∇f(xt))

= −α∇f(xt)− γ∇K∗(ẋt + λxt).
(23)

Combining (22) and (23) yields

d

dt
(∇K∗(ẋt + λxt) + εα∇f(xt)) = −α∇f(xt)− γ∇K∗(ẋt + λxt).

Or

∇2K∗(ẋt + λxt)(ẍt + λẋt) + εα∇2f(xt)ẋt + γ∇K∗(ẋt + λxt) + α∇f(xt) = 0.

B.3 DISCRETE-TIME SCHEMES OF LION-K

In the most general form, the Euler approximation of the Lion-K ODE with step size ϵ is

xt+1 = xt + ϵ(∇K(mt − ε(α∇f(xt) + γmt))− λxt)

mt+1 = mt − ϵ(α∇f(xt) + γmt),
(24)

19

The discrete Lion-K scheme in (2) is recovered when α = γ, β1 = 1− εγ, β2 = 1− ϵγ. By scaling
f(x) by a positive multiplicative ratio, (2) in fact covers all cases of (24) when γ ̸= 0.

When γ = 0, however, (24) reduces to a momentum-undamped variant of Lion-K:

Undamped Lion-K:
xt+1 = xt + ϵ(∇K(mt − β1∇f(xt))− λxt)

mt+1 = mt − β2∇f(xt),

which is the Euler approximation of Lion-K ODE γ = 0, step size ϵ, and β1 = εα, and β2 = ϵα.
Due to γ = 0, the undamped Lion-K amounts to solving minx f(x), without the regularization
K∗(λx).

The connection to Polyak and Nesterov momentum discussed in Section extends to discrete-time
forms. From the first equation (24), we have

mt =
1

1− εγ

(
∇K∗

(
xt+1 − xt

ϵ
+ λxt

)
+ εα∇f(xt)

)
.

Plugging it into the second equation of (24), we get(
∇K∗

(
xt+2 − xt+1

ϵ
+ λxt+1

)
+ εα∇f(xt+1)

)
= (1 − ϵγ)

(
∇K∗

(
xt+1 − xt

ϵ
+ λxt

)
+ εα∇f(xt)

)
− (1 − εγ)ϵα∇f(xt).

Hence,

∇K∗
(
xt+2 − xt+1

ϵ
+ λxt+1

)
= −εα∇f(xt+1)+(1−ϵγ)∇K∗

(
xt+1 − xt

ϵ
+ λxt

)
+(ε−ϵ)α∇f(xt).

When∇K∗(x) = x, we have
xt+2 = (1− ϵλ)xt+1 − ϵεα∇f(xt+1) + (1− ϵγ)((xt+1 − xt) + ϵλxt) + ϵ(ε− ϵ)α∇f(xt).

It is simplified into
xt+2 = (1−ϵ2λγ)xt+1−ϵ2α∇f(xt+1)+(1−ϵγ)(1−ϵλ)(xt+1−xt)−ϵ(ε−ϵ)α(∇f(xt+1)−∇f(xt)).

When ε > ϵ (corresponding to β1 < β2 in Lion-K (2)), this can be shown to be identical to
the Nesterov momentum algorithm for minimizing F (x) = αf(x) + λγ ∥x∥22 /2. When ε = ϵ
(corresponding to β1 = β2 in (2)), it is identical to Polyak momentum.

B.4 FRANK-WOLFE AND MIRROR DESCENT

Frank-Wolfe When εγ = 1, Lion-K reduces to
ẋt = ∇K(−∇f(xt))− λxt, (25)

where we also set εα = 1 without loss of generality. In this case, the ODE monotonically decreases
the objective

F (x) = f(x) +
1

λ
K∗(λx),

without resorting to an additional Lyapunov function. This can be seen from
d

dt
F (xt) = (∇f(x) +∇K∗(λx))⊤(∇K(−∇f(x))− λx) ≤ 0,

where the inequality follows Lemma 2.1.

The Euler discretization of (25) is
xt+1 = xt + ϵ (∇K(−∇f(xt))− λxt) . (26)

This can also be derived from conditional gradient descent, or Frank–Wolfe. To see this, recall that
the conditional gradient descent update for the F (x) above is

yt+1 = argmin
x

{
∇f(xt)

⊤(x− xt) +
1

λ
K∗(λx)

}

xt+1 = xt + ϵ0(yt+1 − xt),

Solving yt+1 yields

yt+1 =
1

λ
∇K(−∇f(xt)), and hence xt+1 = (1− ϵ0)xt +

ϵ0
λ
∇K(−∇f(xt)).

Taking ϵ = ϵ0λ yields (26).

20

Dual Space Preconditioning and Mirror Descent When we further set λ = 0 in (26), Lion-K
reduces to

xt+1 = xt + ϵ∇K(−∇f(xt)), (27)
When ∇K(0) = 0, Eq. (27) is dual space preconditioning [23], which is closely related to mirror
descent [26], for minimizing f(x). To see the connection with mirror descent, note that (27) is
equivalent to

xt+1 = xt + ϵδt, with δt = argmin
δ

{
∇f(xt)

⊤δ +K∗(δ)
}
.

BecauseK∗ andK are differentiable, then∇K(0) = 0 implies∇K∗(0) = 0, and henceK∗ achieves
the minimum at zero. In this case, K∗(δ) − K∗(0) can be viewed as a Bregman divergence, and
hence justifying the connection of (27) with mirror descent. Recall that the Bregman divergence
Bh(x || y) is the Bregman divergence associated with a convex function h : Rd → R is defined as

Bh(x || y) = h(x)− h(y)−∇h(y)⊤(x− y).

With∇K∗(0) = 0, it is then easy to show
K∗(δ)−K∗(0) = BK∗(δ || 0) = BK∗

t
(xt + ϵδ || xt),

where K∗
t = K∗ (x−xt

ϵ

)
.

B.5 LION-K WITHOUT GRADIENT ENHANCEMENT (ε = 0)

Theorem B.2. Consider the ODE of Lion-K-W without gradient correction:
ẋt = ∇K(mt)− λxt

ṁt = −α∇f(xt)− γmt,
(28)

with λ, α, γ > 0. Its fixed point is the minimum of

min
x

αf(x) +
γ

λ
K∗(λx).

It yields the following Lyapunov function:

H(x,m) = αf(x) +
γ

λ
K∗(λx) + (K∗(λx) +K(m)− λx⊤m).

Proof. Observe that
∇xH(x,m) = α∇f(x) + (γ + λ)∇K∗(λx)− λm

∇mH(x,m) = ∇K(m)− λx,

and (28) can be written into
ẋt := Vx(xt,mt) = ∇mH(xt,mt)

ṁt := Vm(xt,mt) = −∇xH(xt,mt)− Ĥm(xt,mt),

with Ĥm(xt,mt) = (γ + λ)(mt −∇K∗(λxt)). By Lemma 2.1, we have

Ĥ⊤
m(∇mH) = (m−∇K∗(λx))⊤(∇K(m)− λx) ≥ 0.

Then
d

dt
H(xt,mt) = ∇xH

⊤Vx +∇mH⊤Vm

= ∇xH
⊤(∇mH) +∇mH⊤(−∇xH − Ĥm) = −∇mH⊤Ĥm ≤ 0.

In fact, this ODE has a Hamiltonian + descent structure [22], as it can viewed as a Hamiltonian
system damped with a descending force:

[
ẋt

ṁt

]
=

[
+∇mH(xt,mt)

−∇xH(xt,mt)

]

︸ ︷︷ ︸
Hamiltonian

−
[

0

(γ + λ)(mt −∇K∗(λxt))

]

︸ ︷︷ ︸
Descent

,

where the Hamiltonian component is orthogonal to the gradient [∇xH,∇mH] of H(x,m) and
preserves the total energy H(x,m), and the descent component introduces a damping like effect
to decrease the energy H(x,m).

21

B.6 LION-K WITHOUT WEIGHT DECAY – A HAMILTONIAN + DESCENT DERIVATION

When the weight decay in Lion-K is turned off (λ = 0), there is an alternative way to analyze it that
is amendable to the Hamiltonian + descent structure in (12).

Recall that the Lion-K ODE is of the following form when λ = 0:

ẋt = ∇K(m̃t), m̃t = mt − ε(α∇f(xt) + γmt)

ṁt = −α∇f(xt)− γmt
(29)

Assume εγ < 1. Define K̃(m) = 1
1−εγK((1− εγ)m), and the following Lyapunov function:

H(x,m) = αf(x) + K̃(m) = αf(x) +
1

1− εγ
K((1− εγ)m). (30)

Note that ∇xH(x,m) = α∇f(x) and ∇mH(x,m) = ∇K((1 − ε)m). One can decompose (29)
into the following Hamiltonian + descent decomposition:

[
ẋt

ṁt

]
=

[
+∇mH(xt,mt)

−∇xH(xt,mt)

]

︸ ︷︷ ︸
Hamiltonian

−
[
∇K(m̃0

t)−∇K(m̃t)

γmt

]

︸ ︷︷ ︸
Descent

,

where we define m̃0
t = (1− εγ)mt and hence m̃t − m̃0

t = −εα∇f(xt).

Using the monotonicity of subgradient (Lemma 2.1), one can show that the second component in
the decomposition above is a descent direction of H(x,m) in (30):

1) Let ∇̂xHt := −∇K(m̃0
t) +∇K(m̃t), then it is a descent direction of H(x,m), because

∇xH(xt,mt)
⊤∇̂xHt = α∇f(xt)

⊤∇̂xHt

= −1

ε
(m̃0

t − m̃t)
⊤(∇K(m̃0

t)−∇K(m̃t)) ≤ 0,

where we used the monotonicity of∇K(·).
2) If m = 0 is the minimum of K, then ∇̂mHt := −γmt is a descent direction of H(x,m) because,

∇mH(xt,mt)
⊤∇̂mHt = −γ∇K((1− εγ)mt)

⊤mt ≤
γ

1− εγ
(K(0)−K((1− εγ)mt)) ≤ 0.

Hence, we have

d

dt
H(xt,mt) = ∇xH(xt,mt)

⊤∇̂xHt +∇mH(xt,mt)
⊤∇̂mHt

= −1

ε
(m̃0

t − m̃t)
⊤(∇K(m̃0

t)−∇K(m̃t))− γ∇K((1− εγ)mt)
⊤mt ≤ 0.

Moreover, if m = 0 is the unique minimum of K, and εγ < 1, then ∇K((1 − εγ)mt)
⊤mt = 0

implies that mt = 0, and one can show that the equilibrium points of (29) are stationary points of
H(x,m) using LaSalle’s invariance principle.

B.7 MAIN RESULT OF LION-K ODE

Theorem B.3. Assume K is convex with conjugate K∗. Assume f,K,K∗ are continuously differen-
tiable. Assume (xt,mt) is the solution of the following ODE:

ẋt = ∇K(m̃t)− λxt, with m̃t = mt − ε(γmt + α∇f(xt)),

ṁt = −α∇f(xt)− γmt,

where α, γ, λ, ε > 0 and ϵγ ≤ 1. Let

H(x,m) = αf(x) +
γ

λ
K∗(λx) +

1− εγ

1 + ελ
(K∗(λx) +K(m)− λm⊤x).

22

Then H yields a Lyapunov function in that

− d

dt
H(xt,mt) = ∆(xt,mt) :=

λ+ γ

1 + ελ
∆1(xt, m̃t) +

1− εγ

(1 + ελ)
∆2(mt, m̃t) ≥ 0,

where

∆1(x, m̃) = (m̃−∇K∗(λx))⊤(∇K(m̃)− λx),

∆2(m, m̃) =
1

ε
(m̃−m)⊤(∇K(m̃)−∇K(m)).

Moreover, the accumulation points of all trajectories are stationary points of F (x) = αf(x) +
γ
λK∗(λx).

Proof. It is not obvious how to construct the Lyapunov function directly from the ODE. The fol-
lowing proof describes the process of discovering H(x,m). We start by examing what inequalities
we can write down using the monotonicity of ∇K and ∇K∗ via Lemma 2.1, and then work out the
Lyapunov function backward.

Write m̃ = m− ε(γm+ α∇f(x)). Because ∇K is a monotonic mapping, we have by Lemma 2.1
the following key inequalities:

(−m̃+∇K∗(λx))⊤(∇K(m̃)− λx) ≤ 0,

(m− m̃)⊤(∇K(m̃)−∇K(m)) ≤ 0,

or equivalently

(εα∇f(x)− (1− εγ)m+∇K∗(λx))⊤(∇K(m̃)− λx) ≤ 0 (31)

ε(α∇f(x) + γm)⊤((∇K(m̃)− λx)− (∇K(m)− λx)) ≤ 0 (32)

Write Vx = ∇K(m̃)− λx, and Vm = −α∇f(x)− γm. So the ODE is ẋ = Vx and ṁ = Vm. The
inequalities can be rewritten into

(εα∇f(x)− (1− εγ)m+∇K∗(λx))⊤Vx ≤ 0 (33)

− εV ⊤
m (Vx − (∇K(m)− λx)) ≤ 0 (34)

Taking 1
ε(1+η) (Eq. (33) + η × Eq. (34)) for any η ≥ 0, we get

(
α∇f(x)− 1− εγ(1 + η)

ε(1 + η)
m+

1

ε(1 + η)
∇K∗(λx)

)⊤
Vx +

ηε

ε(1 + η)
(∇K(m)− λx))⊤Vm ≤ 0

Define

H̃(x,m) = αf(x) +
1

ε(1 + η)λ
K∗(λx) +

1− εγ(1 + η)

ε(1 + η)

1

λ
K(m)− 1− εγ(1 + η)

ε(1 + η)
m⊤x.

Then the inequality was reduced to

∇xH̃(x,m)⊤Vx +
εηλ

1− εγ(1 + η)
∇mH̃(x,m)⊤Vm ≤ 0.

If we take η such that

εηλ

1− εγ(1 + η)
= 1, (35)

then we have when following ẋ = Vx and ṁ = Vm,

d

dt
H̃(x,m) = ∇xH̃(x,m)⊤Vx +∇mH̃(x,m)⊤Vm ≤ 0.

Furthermore, when (35) holds, we have

η =
1− εγ

ε(λ+ γ)
,

1

ε(1 + η)
=

λ+ γ

1 + ελ
,

1− εγ(1 + η)

ε(1 + η)
=

(1− εγ)λ

1 + ελ
, (36)

23

and hence

H̃(x,m) = αf(x) +

(
λ+ γ

(1 + ϵλ)λ
− 1− εγ

1 + ελ

)
K∗(λx) +

1− εγ

1 + ελ

(
K∗(λx) +K(m)− λm⊤x

)

= αf(x) +
γ

λ
K∗(λx) +

1− εγ

1 + ελ

(
K∗(λx) +K(m)− λm⊤x

)

= H(x,m).

In this case,

d

dt
H(x,m)

=
1

ε(1 + η)
(Eq. (33) + η × Eq. (34))

=
λ+ γ

1 + ελ
× Eq. (33) +

1− εγ

ε(1 + ελ)
× Eq. (34). //

η

ε(1 + η)
=

1− εγ

ε(1 + ελ)
from (36)

= − λ+ γ

1 + ελ
(m̃−∇K∗(λx))⊤(∇K(m̃)− λx)− 1− ϵγ

(1 + ϵλ)ε
(m̃−m)⊤(∇K(m̃)−∇K(m)) ≤ 0.

To ensure that η ≥ 0, we need εγ ≤ 1.

LaSalle’s invariance principle Let H(z) is a continuously differentiable Lyapunov function of
d
dtzt = v(zt), satisfying d

dtH(zt) ≤ 0. By LaSalle’s Invariance Principle, the accumulation points
of any trajectories of d

dtzt = v(zt) is included in

I = {the union of all trajectories zt satisfying
d

dt
H(zt) = 0 for all t ≥ 0 }.

For the Lion-K ODE and its H , the points in I should satisfy m̃t = ∇K∗(λxt), which yields
∇K(m̃t) = λxt, and hence

ẋt = ∇K(m̃t)− λxt = 0.

This suggests that xt is constant for the trajectories in I. Because m̃t = ∇K∗(λxt) and m̃t =
mt − ε(α∇f(xt) + γmt), we have

(1− εγ)mt = ∇K∗(λxt) + εα∇f(xt)

Hence, (1 − εγ)mt is also constants in the trajectories in I. This suggests that (1 − εγ)ṁt = 0
along the trajectories in I, and hence

0 = (1− εγ)ṁt

= −(1− εγ)(α∇f(xt) + γmt)

= −(1− εγ)α∇f(xt)− γ∇K∗(λxt)− εγα∇f(xt)

= −α∇f(xt)− γ∇K∗(λxt)

= −∇F (xt) //F (x) = αf(x) +
γ

λ
K∗(λx)

Hence, all trajectories in I are singleton points and are stationary points of the objective F (x) =
αf(x) + γ

λK∗(λx).

B.8 THE DECOMPOSITION STRUCTURE

We provide the decomposition structure (11) which provides a simplified proof of the Lyapunov
property.

Lemma B.4. For ODE ẋt = Vx(xt,mt), ṁt = Vm(xt,mt), let H(x,m) be a function satisfying

∇xH(x,m) = −Ṽx(x,m) + ηVm(x,m)

∇mH(x,m) = −V̂m(x,m)− ηVx(x,m),

24

where a ∈ R and V̂x and V̂m have positive inner products with Vx, Vm, respectively, that is,

V̂x(x,m)⊤Vx(x,m) ≥ 0, V̂m(x,m)⊤Vm(x,m) ≥ 0, ∀x,m.

Then we have
d

dt
H(xt,mt) ≤ 0.

Proof.
d

dt
H(xt,mt) = ∇xH

⊤Vx +∇mH⊤Vm

= (−V̂x + aVm)⊤Vx + (−V̂m − aVx)
⊤Vm

= −(V̂ ⊤
x Vx + V̂ ⊤

m Vm) ≤ 0.

Lemma B.5. Under the condition of Theorem 3.1, let
Vx(x,m) = ∇K(m̃)− λx

Vm(x,m) = −α∇f(x)− γm =
m̃−m

ε
and related

V̂x(x,m) = m̃−∇K∗(λx) = −εα∇f(x) + (1− εγ)m−∇K∗(λx),

V̂m(x,m) = ∇K(m̃)−∇K(m).

Then we have V̂ ⊤
x Vx ≥ 0 and V̂ ⊤

m Vm ≥ 0 by Lemma 2.1. Moreover,

∇xH(x,m) = −η′V̂x − ηVm

∇mH(x,m) = −ηV̂m + ηVx,

where η = 1−εγ
1+ελ and η′ = γ+λ

1+ελ . This yields

d

dt
H(xt,mt) = ∇xH

⊤Vx +∇mH⊤Vm = −(η′V̂ ⊤
x Vx + ηV̂ ⊤

m Vm) ≤ 0.

Proof. Let η = 1−εγ
1+ελ . We have We have

∇mH(x,m) = η(∇K(m)− λx)

= η(∇K(m̃)− λx+∇K(m)−∇K(m̃))

= η(Vx − V̂m).

∇xH(x,m)

= α∇f(x) + γ∇K∗(λx) + η(λ∇K∗(λx)− λm)

= α∇f(x) + (γ + ηλ)∇K∗(λx)− ηλm

= (γ + ηλ)(εα∇f(x)− (1− εγ)m+∇K∗(λx)) + (α− (γ + ηλ)εα)∇f(x)− (ηλ− (γ + ηλ)(1− εγ))m

=
γ + λ

1 + ελ
(εα∇f(x)− (1− εγ)m+∇K∗(λx)) + ηα∇f(x) + ηγm

= − γ + λ

1 + ελ
V̂x − ηVm,

where we used the following identities on η:

(γ + ηλ) = γ +
1− εγ

1 + ελ
λ =

γ + λ

1 + ελ

1− (γ + ηλ)ε = 1− γ + λ

1 + ελ
ε =

1− εγ

1 + ελ
= η

ηλ− (γ + ηλ)(1− εγ) = −γ +
γ + λ

1 + ελ
εγ =

εγ2 − γ

1 + ελ
= −γη.

25

B.9 CONSTRAINT ENFORCING: CONTINUOUS TIME

When K∗ can possible take infinite values, the minimization of H(x,m) becomes a constrained
optimization. Let domK∗ = {x : K∗(x) < +∞}. The optimization can be framed as

min
x,m

H(x,m) s.t. λx ∈ domK∗.

The Lion-K algorithm would first steer xt to the region where K∗ has finite values, and then de-
crease the finite parts of the objective function. In the following, we show that Lion-K enforces the
constraint with a fast linear rate: the distance from λxt and domK∗ decays exponentially fast with
time t, and once λxt0 ∈ domK∗, then λxt stays within domK∗ for all t > t0.
Theorem B.6. Under the condition of Theorem 3.1, we have

dist(λxt, domK∗) ≤ exp(λ(s− t)) dist(λxs, domK∗).

Proof. Define ws→t = exp(λ(s− t)). Integrating ẋt = ∇K(m̃t)− λxt, we have

λxt = (1− ws→t)zs→t + ws→t(λxs), where zs→t =

∫ t

s
wτ→t∇K(m̃τ)ds∫ t

s
wτ→tdτ

, ∀0 ≤ s ≤ t.

We have ∇K(m̃τ) ∈ domK∗ from Lemma B.7 and domK∗ is convex. Hence zs→t, as the convex
combination of {∇K(m̃τ}τ , belongs to domK∗. For any ϵ > 0, let λx̂s ∈ domK∗ to the point
satisfying ∥λx̂s − λxs∥ ≤ dist(λxs, domK∗) + ϵ. Hence,

dist(λxt, domK∗) = inf
z∈domK∗

∥λxt − z∥

≤ ∥λxt − (1− ws→t)zs→t − ws→tλx̂s)∥
= ws→t ∥λxs − λx̂s∥
≤ exp(λ(s− t))(dist(λxs, domK∗) + ϵ).

Taking ϵ→ 0 yields

dist(λxt, domK∗) ≤ exp(λ(s− t)) dist(λxs, domK∗).

Lemma B.7. Assume K is proper, closed and convex, and K∗ is the conjugate of K. We have

∂K(z) ⊆ domK∗, ∀z ∈ domK.

Proof. If x ∈ ∂K(z), then z attains the minimum of K∗(x) = supz{x⊤z −K(z)}, suggesting that
K∗(x) = x⊤z −K(z) < +∞, and hence x ∈ domK∗.

B.10 DISCRETE TIME ANALYSIS

Theorem B.8. Assume f : Rd → R is L-smooth, and K : Rd → R is closed and convex. Consider
the following scheme:

mt+1 = β2mt − (1− β2)∇f(xt)

m̃t+1 = β1mt − (1− β1)∇f(xt)

xt+1 = xt + ϵ(∇K(m̃t+1)− λxt+1),

(37)

where ∇K is a subgradient of K, and β1, β2 ∈ (0, 1), and β2 > β1, and ϵ, λ > 0. Let K∗ be the
conjugate function of K. Define the following Lyapunov function:

H(x,m) = f(x) +
1

λ
K∗(λx) +

β1

ϵλ(1− β1) + (1− β2)
(K∗(λx) +K(m)− λx⊤m),

and

∆1
t = (∇K(m̃t+1)− λxt+1)

⊤(m̃t+1 −∇K∗(λxt+1)),

∆2
t = (∇K(m̃t+1)−∇K(mt+1))

⊤(m̃t+1 −mt+1),

26

where∇K∗ is a subgradient of K∗. Then we have ∆1
t ≥ 0 and ∆2

t ≥ 0 from Lemma B.9, and

H(xt+1,mt+1)−H(xt,mt) ≤ −ϵ(a∆1
t + b∆2

t) +
Lϵ2

2
∥∇K(m̃t+1)− λxt+1∥22 ,

where

a =
ϵλβ1

ϵλ(1− β1) + (1− β2)
+ 1 ≥ 0, b =

β1(1− β2)

(β2 − β1)(ϵλ(1− β1) + (1− β2))
≥ 0.

Hence, a telescoping sum yields

1

T

T−1∑

t=0

a∆1
t + b∆2

t ≤
H(x0,m0)−H(xT ,mT)

ϵT
+

Lϵ

2
Bt,

where Bt =
1
T

∑T
t=1 ∥∇K(m̃t+1)− λxt+1∥22.

Note that we used an implicit scheme in the update of xt in (43). It is equivalent the explicit scheme
with an adjusted learning rate:

xt+1 = xt +
ϵ

1 + ϵλ
(∇K(m̃t+1)− λxt).

Proof. We follow the proof in the continuous-time case to find out a Lyapunov function for the
discrete time update in (43). We start with constructing the basic inequalities and work out the
Lyapunov function backwardly. From Lemma 2.1, we have

(∇K(m̃t+1)− λxt+1)
⊤(∇K∗(λxt+1)− m̃t+1) ≤ 0. (38)

(∇K(m̃t+1)−∇K(mt+1))
⊤(mt+1 − m̃t+1) ≤ 0. (39)

Taking a× Eq.(38) + b× Eq(39) for a, b ≥ 0, we have

(∇K(m̃t+1)− λxt+1)
⊤(a(∇K∗(λxt+1)− m̃t+1) + b(mt+1 − m̃t+1)) + · · ·

+ b(∇K(mt+1)− λxt+1)
⊤(−mt+1 + m̃t+1) ≤ 0.

Plugging (43) yields

(∇K(m̃t+1)− λxt+1)
⊤(a∇K∗(λxt+1)− ((a+ b)β1 − bβ2)mt + (a− (a+ b)β1 + bβ2)∇f(xt))

− b(β2 − β1)(∇K(mt+1)− λxt+1)
⊤(mt +∇f(xt)) ≤ 0

Define

H(x,m) = (a− c)f(x) +
a

λ
K∗(λx) +

c

λ
K(m)− cx⊤m, with c = (a+ b)β1 − bβ2,

and

∇̂xHt = (a− c)∇f(xt) + a∇K∗(λxt+1)− cmt, ∇̂mHt =
c

λ
∇K(mt+1)− cxt+1.

Then the inequality can be written into

∇̂xH
⊤
t (∇K(m̃t+1)− λxt+1) + ∇̂mH⊤

t

(
b(β2 − β1)λ

c
(−mt −∇f(xt))

)
≤ 0.

Plugging the update rule of xt+1 = xt+ϵ(∇K(m̃t+1)−λxt+1) and mt+1−mt = −(1−β2)(mt+
∇f(xt)), we get

∇̂xH
⊤
t

(
xt+1 − xt

ϵ

)
+ ∇̂mH⊤

t

(
b(β2 − β1)λ

c(1− β2)
(mt+1 −mt)

)
≤ 0.

To make this coincide with the linear approximation of the difference H(xt+1,mt+1)−H(xt,mt)
(see Lemma B.9), we want

b(β2 − β1)λ

c(1− β2)
=

1

ϵ
.

27

On the other hand, to make the coefficient of f(x) in H(x,m) equal to one, we want a − c = 1.
This yields the following equations on a, b, c:

c = (a+ b)β1 − bβ2,
b(β2 − β1)λ

c(1− β2)
=

1

ϵ
, a− c = 1, a, b ≥ 0.

To solve this, let c = zϵ(β2 − β1)λ and b = z(1− β2) for some z ≥ 0 and plug them together with
a = c+ 1 into the first equations:

zϵ(β2 − β1)λ = (zϵ(β2 − β1)λ+ 1 + z(1− β2))β1 − z(1− β2)β2.

We get

z =
β1

ϵ(β2 − β1)λ− ϵ(β2 − β1)λβ1 − (1− β2)β1 + (1− β2)β2

=
β1

ϵλ(β2 − β1)(1− β1) + (1− β2)(β2 − β1)

=
β1

(β2 − β1)(ϵλ(1− β1) + (1− β2))
≥ 0.

Hence

b =
β1(1− β2)

(β2 − β1)(ϵλ(1− β1) + (1− β2))
≥ 0, c =

ϵλβ1

ϵλ(1− β1) + (1− β2)
≥ 0, a = c+ 1 ≥ 0.

In this case, we have

H(x,m) = f(x) +
1

λ
K∗(λx) + c(K∗(λx) +K(m)− λx⊤m)

= f(x) +
1

λ
K∗(λx) +

ϵλβ1

ϵλ(1− β1) + (1− β2)
(K∗(λx) +K(m)− λx⊤m),

and

∇̂xH
⊤
t

(
xt+1 − xt

ϵ

)
+ ∇̂mH⊤

t

(
mt+1 −mt

ϵ

)
= −a∆1

t − b∆2
t ≤ 0.

From Lemma B.9, we get

H(xt+1,mt+1)−H(xt,mt) ≤ −ϵ(a∆1
t + b∆2

t) +
L

2
∥xt+1 − xt∥22 .

Lemma B.9. Let H(x,m) = f(x) + K1(x) + K2(m) − λxm, where f is L-smooth, and K1,K2

are convex functions with subgradient∇K1 and ∇K2. Then

H(xt+1,mt+1)−H(xt,mt) ≤ ∇̂xH
⊤
t (xt+1 − xt) + ∇̂mH⊤

t (mt+1 −mt) +
L

2
∥xt+1 − xt∥22 ,

where

∇̂xHt = ∇f(xt) +K1(xt+1)− λmt

∇̂mHt = K2(mt+1)− λxt+1.

Note the use of xt vs. xt+1 and mt vs. mt+1 in ∇̂xHt and ∇̂mHt.

Proof. We have

f(xt+1)− f(xt) ≤ ∇f(xt)
⊤(xt+1 − xt) +

L

2
∥xt+1 − xt∥22

K1(xt+1)−K1(xt) ≤ ∇K1(xt+1)
⊤(xt+1 − xt)

K2(mt+1)−K2(mt) ≤ ∇K2(mt+1)
⊤(mt+1 −mt)

x⊤
t+1mt+1 − x⊤

t mt = m⊤
t (xt+1 − xt) + x⊤

t+1(mt+1 −mt).

Summing them together yields the result.

28

Theorem B.10. Under the same conditions of Theorem 4.1, for any two integers s ≤ t,

dist(λxt, domK∗) ≤
(

1

1 + ϵλ

)t−s

dist(λxs, domK∗), ∀s ≤ t.

Proof. Rewriting the update into the explicit form:

xt+1 =
1

1 + ϵλ
xt +

ϵ

1 + ϵλ
∇K(m̃t+1).

Unrolling this update yields, with ws→t =
(

1
1+ϵλ

)t−s

,

λxt = (1− ws→t)zs→t + ws→txs, zs→t =

∑t
k=s+1 wk→t∇K(m̃k)∑t

k=s+1 wk→t

.

We have ∇K(m̃k) ∈ domK∗ from Lemma B.7 and domK∗ is convex. Hence zs→t, as the convex
combination of {∇K(m̃k}k, belongs to domK∗. For any η > 0, let λx̂s ∈ domK∗ to the point
satisfying ∥λx̂s − λxs∥ ≤ dist(λxs, domK∗) + η. Hence,

dist(λxt, domK∗) = inf
z∈domK∗

∥λxt − z∥

≤ ∥λxt − (1− ws→t)zs→t + ws→tλx̂s)∥
= ws→t ∥λxs − λx̂s∥

≤
(

1

1 + ϵλ

)s−t

(dist(λxs, domK∗) + η).

Taking η → 0 yields the result.

B.11 ANALYSIS WITH STOCHASTIC GRADIENT FOR LION-K

In this section, we are going to have the convergence analysis of discrete time Lion-K. The proof
idea is adapted for section B.10, by defining the same Hamiltonian function, we obtain the bound
for ∆1

t and ∆2
t .

Compared with the deterministic case, the main challenge is to bound an additional correlation term
due to the stochastic gradient at each iteration t:

Vt := cov(gt, ∇K(m̃t+1)) = cov(gt, ∇K(β1mt + (1− β1)gt)), (40)

where cov(X,Y) = E[(X − E[X])⊤(Y − E[Y])].
Definition B.11. For a random variable X on Rd, its (trace of) variance var(X), when exists, is
defined as

var(X) = E[∥X − E[X]∥22]
Assumption B.12. Assume

var(gt) ≤
vmax

nbatch
,

where nbatch represents the batch size.
Assumption B.13. D is the data distribution, the stochastic sample ξt ∼ D is i.i.d., given a function
f(x; ξ), the gradient∇f(x; ξ) is taken with respect to variable x, and E[∇f(x, ξ)] = ∇f(x)
Theorem B.14. Under the assumptions delineated in B.13 and B.12, consider a function f : Rd →
R that is L-smooth. Additionally, let K : Rd → R be a closed and convex function, consider the
following scheme:

mt+1 = β2mt − (1− β2)gt
m̃t+1 = β1mt − (1− β1)gt
xt+1 = xt + ϵ(∇K(m̃t+1)− λxt+1),

(41)

29

where gt = ∇f(xt; ξt) as shown in B.13, m0, g1, . . . , gt, . . . are random variables with
E[gt] = ∇f(xt). ∇K is a weak gradient of K with ∇K(0) = 0, ∥∇K(x)−∇K(y)∥ ≤
LK ∥x− y∥ , ∀x, y ∈ Rd, and β1, β2 ∈ (0, 1), and β2 > β1, and ϵ, λ > 0.

Let K∗ be the conjugate function of K. Define the following Lyapunov function:

H(x,m) = f(x) +
1

λ
K∗(λx) +

β1

ϵλ(1− β1) + (1− β2)
(K∗(λx) +K(m)− λx⊤m),

and

∆1
t = (∇K(m̃t+1)− λxt+1)

⊤(m̃t+1 −∇K∗(λxt+1)),

∆2
t = (∇K(m̃t+1)−∇K(mt+1))

⊤(m̃t+1 −mt+1),

where∇K∗ is a subgradient of K∗. Then we have ∆1
t ≥ 0 and ∆2

t ≥ 0 from Lemma B.9, and

E [H(xt+1,mt+1)−H(xt,mt)] ≤ E
[
−ϵ(a∆1

t + b∆2
t) +

Lϵ2

2
∥∇K(m̃t+1)− λxt+1∥22

]

+ϵ
LK

1 + λϵ
(1− β1)

vmax

nbatch
+

LK
1 + λϵ

√
(1− β2)

(1 + β2)

vmax

nbatch

where

a =
ϵλβ1

ϵλ(1− β1) + (1− β2)
+ 1 ≥ 0, b =

β1(1− β2)

(β2 − β1)(ϵλ(1− β1) + (1− β2))
≥ 0.

vmax, nbatch are defined in B.12

Hence, a telescoping sum yields

1

T

T−1∑

t=0

E
[
a∆1

t + b∆2
t

]
≤ E

[
H(x0,m0)−H(xT ,mT)

ϵT
+

Lϵ

2
Bt +

Ct

nbatch

]
,

where Bt =
1
T

∑T
t=1 ∥∇K(m̃t+1)− λxt+1∥22, and Ct =

(
LK
1+λϵ (1− β1) +

LK
1+λϵ

√
(1−β2)
(1+β2)

)
vmax.

Proof. The proof is a simple extended variant of 4.1. Following the proof of Theorem B.8, define

H(x,m) = (a− c)f(x) +
a

λ
K∗(λx) +

c

λ
K(m)− cx⊤m, with c = (a+ b)β1 − bβ2,

where

a =
ϵλβ1

ϵλ(1− β1) + (1− β2)
+ 1 ≥ 0, b =

β1(1− β2)

(β2 − β1)(ϵλ(1− β1) + (1− β2))
≥ 0, c = a− 1.

By the definition of ∆1
t ,∆

2
t , we have

a∆1
t + b∆2

t

= a(∇K(m̃t+1)− λxt+1)
⊤(m̃t+1 −∇K∗(λxt+1))

+ b(∇K(m̃t+1)−∇K(mt+1))
⊤(m̃t+1 −mt+1)

= (∇K(m̃t+1)− λxt+1)
⊤(a(∇K∗(λxt+1)− m̃t+1) + b(m̃t+1 −mt+1))

+ b(∇K(mt+1)− λxt+1)
⊤(mt+1 − m̃t+1)

= −(∇K(m̃t+1)− λxt+1)
⊤(a∇K∗(λxt+1)− ((a+ b)β1 − bβ2)mt + (a− (a+ b)β1 + bβ2)∇f(xt))

− b
β2 − β1

1− β2

λ

c
(
c

λ
∇K(mt+1)− cxt+1)

⊤(mt+1 −mt)

= − [(a− c)gt + a∇K∗(λxt+1)− cmt]
⊤
(∇K(m̃t+1)− λxt+1)

− 1

ϵ

[c
λ
∇K(mt+1)− cxt+1

]⊤
(mt+1 −mt)

= −1

ϵ
[(a− c)gt + a∇K∗(λxt+1)− cmt]

⊤
(xt+1 − xt)

− 1

ϵ

[c
λ
∇K(mt+1)− cxt+1

]⊤
(mt+1 −mt) (42)

30

By Lemma B.9,

H(xt+1,mt+1)−H(xt,mt) ≤ ∇̂xH
⊤
t (xt+1 − xt) + ∇̂mH⊤

t (mt+1 −mt) +
L

2
∥xt+1 − xt∥22 ,

where
∇̂xHt = (a− c)∇f(xt) + a∇K∗(λxt+1)− cmt,

∇̂mHt =
c

λ
∇K(mt+1)− cxt+1 =

c

ϵλ
(V̂x,t −∇K(m̃t+1) +∇K(mt+1))

with
Vx,t = xt+1 − xt = ϵ(∇K(m̃t+1)− λxt+1)

Vm,t = mt+1 −mt = −(1− β2)(gt −mt)

m̃t+1 −mt+1 = −(β2 − β1)(gt −mt) = −(β2 − β1)Vm,t

V̂m,t = −∇K(m̃t+1) +∇K(mt+1)

This gives
H(xt+1,mt+1)−H(xt,mt)

≤ ∇̂xH
⊤
t (xt+1 − xt) + ∇̂mH⊤

t (mt+1 −mt) +
L

2
∥xt+1 − xt∥22

Hence,

H(xt+1,mt+1)−H(xt,mt) ≤ [(a− c)∇f(xt) + a∇K∗(λxt+1)− cmt]
⊤
(xt+1 − xt)

+
[c
λ
∇K(mt+1)− cxt+1

]⊤
(mt+1 −mt) +

L

2
∥xt+1 − xt∥22

= [(a− c)gt + a∇K∗(λxt+1)− cmt]
⊤
(xt+1 − xt)

+
[c
λ
∇K(mt+1)− cxt+1

]⊤
(mt+1 −mt) +

L

2
∥xt+1 − xt∥22

+ ϵ(a− c)(∇f(xt)− gt)
⊤(∇K(m̃t+1)− λxt+1)

= −ϵ(a∆1
t + b∆2

t) +
L

2
∥xt+1 − xt∥22 //by equation 44

+ ϵ(a− c)(∇f(xt)− gt)
⊤(∇K(m̃t+1)− λxt+1)

It suffices to bound E
[
(∇f(xt)− gt)

⊤(∇K(m̃t+1)− λxt+1)
]
.

Note that
E
[
(∇f(xt)− gt)

⊤(∇K(m̃t+1)− λxt+1)
]

= E
[
(∇f(xt)− gt)

⊤(
1

1 + λϵ
∇K(m̃t+1)−

λ

1 + λϵ
xt)

]

=
1

1 + λϵ
E
[
(∇f(xt)− gt)

⊤∇K(m̃t+1)
]
+

λ

1 + λϵ
E
[
(∇f(xt)− gt)

⊤xt

]

By Assumption B.13,

E
[
(∇f(xt)− gt)

⊤λxt)
]
= λExt

[
Eξt

[
(∇f(xt)−∇f(xt, ξt))

⊤xt | xt

]]

= 0 //by B.13 E[∇f(x, ξ)] = ∇f(x)

Next, let us bound E
[
(∇f(xt)− gt)

⊤∇K(m̃t+1)
]
.

E
[
(∇f(xt)− gt)

⊤∇K(m̃t+1)
]
= E

[
(∇f(xt)− gt)

⊤∇K(β1mt − (1− β1)gt)
]

≤ LK(1− β1)var(gt) + LK
√

var(β1mt) · var(gt) //by B.18

≤ LK(1− β1)
vmax

nbatch
+ LK

√
(1− β2)

(1 + β2)

vmax

nbatch
//by B.18

31

Hence,

E
[
(∇f(xt)− gt)

⊤(∇K(m̃t+1)− λxt+1)
]

=
1

1 + λϵ
E
[
(∇f(xt)− gt)

⊤∇K(m̃t+1)
]
+

λ

1 + λϵ
E
[
(∇f(xt)− gt)

⊤xt+1

]

≤ LK
1 + λϵ

(1− β1)
vmax

nbatch
+

LK
1 + λϵ

√
(1− β2)

(1 + β2)

vmax

nbatch

Lemma B.15. Let X,Y be two Rd-valued random variables with var(X) < +∞ and var(Y) <
+∞, and assume K yields a weak derivative∇K. We have

E[(Y − EY)⊤∇K(X + ϵY)] ≤ LKϵvar(Y) + LKvar(X) · var(Y)

Proof.

E[(Y − E[Y])⊤∇K(X + ϵY)]

= E[(Y − E[Y])⊤ (∇K(X + ϵY)−K(E[X] + ϵE[Y])]

=

√
E ∥Y − E[Y]∥2

√
E ∥∇K(X + ϵY)−K(E[X] + ϵE[Y])∥2

=

√
E ∥Y − E[Y]∥2

√
LKE ∥X + ϵY − E[X]− ϵE[Y]∥2

= LK

√
E ∥Y − E[Y]∥2

(√
E ∥X − E[X]∥2 +

√
ϵ2 ∥Y − ϵE[Y]∥2

)

= LKϵE ∥Y − E[Y]∥2 + LK

√
E ∥Y − E[Y]∥2

√
E ∥X − E[X]∥2

= LKϵvar(Y) + LK
√
var(X) · var(Y)

Lemma B.16 (Cumulative error of stochastic gradient [4]). Following the same setting in theo-
rem B.14, denote δl = gl − ∇f(xl), for any k < ∞ and fixed weight −∞ < α1, ..., αk < ∞,∑k

l=1 δl is a Martingale. In particular,

E



[

k∑

l=1

αlδl

]2
 ≤

k∑

l=1

α2
l σ

2.

Proof. We simply check the definition of a Martingale. Denote Yk :=
∑k

l=1 αlδl. First, we have
that

E[|Yk|] = E

[∣∣∣∣∣
k∑

l=1

αlδl

∣∣∣∣∣

]

≤
∑

l

|αl|E[|δl|] triangle inequality

=
∑

l

|αl|E[E[|δl||xl]] law of total probability

≤
∑

l

|αl|E[
√
E[δ2l |xl]] Jensen’s inequality

≤
∑

l

|αl|σ <∞

32

Second, again using the law of total probability,

E[Yk+1|Y1, ..., Yk] = E

[
k+1∑

l=1

αlδl

∣∣∣∣∣α1δ1, ..., αkδk

]

= Yk + αk+1E [δk+1|α1δ1, ..., αkδk]

= Yk + αk+1E [E [δk+1|xk+1, α1δ1, ..., αkδk] |α1δ1, ..., αkδk]

= Yk + αk+1E [E [δk+1|xk+1] |α1δ1, ..., αkδk]

= Yk

This completes the proof that it is indeed a Martingale. We now make use of the properties of
Martingale difference sequences to establish a variance bound on the Martingale.

E[[
k∑

l=1

αlδl]
2] =

k∑

l=1

E[α2
l δ

2
l] + 2

∑

l<j

E[αlαjδlδj]

=
k∑

l=1

α2
lE[E[δ2l |δ1, ..., δl−1]] + 2

∑

l<j

αlαjE
[
δlE
[
E[δj |δ1, ..., δj−1]

∣∣δl
]]

=
k∑

l=1

α2
lE[E[E[δ2l |xl, δ1, ..., δl−1]|δ1, ..., δl−1]] + 0

=
k∑

l=1

α2
l σ

2.

The consequence of this lemma is that we are able to treat δ1, ..., δk as if they are independent, even
though they are not—clearly δl is dependent on δ1, ..., δl−1 through xl. By Lemma B.16, we can
compute the variance of momentum mt,

var(mt) = (1− β2)
2E

∥∥∥∥∥
t∑

i=1

βt−i
2 δi

∥∥∥∥∥

2

= (1− β2)
2E

t∑

i=1

β2t−2i
2 ∥δi∥2

=
(1− β2)vmax

(1 + β2)nbatch

B.12 ANALYSIS WITH STOCHASTIC GRADIENT LION

Theorem B.17. Under the assumptions delineated in B.13 and B.12, consider a function f : Rd →
R that is L-smooth. Consider the following scheme:

mt+1 = β2mt − (1− β2)gt
m̃t+1 = β1mt − (1− β1)gt
xt+1 = xt + ϵ(sign(m̃t+1)− λxt+1),

(43)

where gt = ∇f(xt; ξt) as shown in B.13, m0, g1, . . . , gt, . . . are random variables with E[gt] =
∇f(xt). β1, β2 ∈ (0, 1), and β2 > β1, and ϵ, λ > 0.

Define the following Lyapunov function:

H(x,m) = f(x) +
1

λ
∥λx∥∗ + β1

ϵλ(1− β1) + (1− β2)
(∥λx∥∗ + ∥m∥ − λx⊤m),

and
∆1

t = (sign(m̃t+1)− λxt+1)
⊤(m̃t+1 − sign∗(λxt+1)),

∆2
t = (sign(m̃t+1)− sign(mt+1))

⊤(m̃t+1 −mt+1),

33

where sign∗ is a subgradient of K∗. Then we have ∆1
t ≥ 0 and ∆2

t ≥ 0 from Lemma B.9, and

E [H(xt+1,mt+1)−H(xt,mt)] ≤ E
[
−ϵ(a∆1

t + b∆2
t) +

Lϵ2

2
∥sign(m̃t+1)− λxt+1∥22

]
+ ϵ

1

1 + λϵ

√
d · vmax√
nbatch

where

a =
ϵλβ1

ϵλ(1− β1) + (1− β2)
+ 1 ≥ 0, b =

β1(1− β2)

(β2 − β1)(ϵλ(1− β1) + (1− β2))
≥ 0.

vmax, nbatch are defined in B.12

Hence, a telescoping sum yields

1

T

T−1∑

t=0

E
[
a∆1

t + b∆2
t

]
≤ E

[
H(x0,m0)−H(xT ,mT)

ϵT
+

Lϵ

2
Bt +

1

1 + λϵ

√
d · vmax√
nbatch

]
,

where Bt =
1
T

∑T
t=1 ∥sign(m̃t+1)− λxt+1∥22

Proof. Define

H(x,m) = (a− c)f(x) +
a

λ
∥λx∥∗ + c

λ
∥m∥ − cx⊤m, with c = (a+ b)β1 − bβ2,

where

a =
ϵλβ1

ϵλ(1− β1) + (1− β2)
+ 1 ≥ 0, b =

β1(1− β2)

(β2 − β1)(ϵλ(1− β1) + (1− β2))
≥ 0, c = a− 1.

By the definition of ∆1
t ,∆

2
t , we have

a∆1
t + b∆2

t

= a(sign(m̃t+1)− λxt+1)
⊤(m̃t+1 − sign∗(λxt+1))

+ b(sign(m̃t+1)− sign(mt+1))
⊤(m̃t+1 −mt+1)

= (sign(m̃t+1)− λxt+1)
⊤(a(sign∗(λxt+1)− m̃t+1) + b(m̃t+1 −mt+1))

+ b(sign(mt+1)− λxt+1)
⊤(mt+1 − m̃t+1)

= −(sign(m̃t+1)− λxt+1)
⊤(asign∗(λxt+1)− ((a+ b)β1 − bβ2)mt + (a− (a+ b)β1 + bβ2)∇f(xt))

− b
β2 − β1

1− β2

λ

c
(
c

λ
sign(mt+1)− cxt+1)

⊤(mt+1 −mt)

= − [(a− c)gt + asign∗(λxt+1)− cmt]
⊤
(sign(m̃t+1)− λxt+1)

− 1

ϵ

[c
λ
sign(mt+1)− cxt+1

]⊤
(mt+1 −mt)

= −1

ϵ
[(a− c)gt + asign∗(λxt+1)− cmt]

⊤
(xt+1 − xt)

− 1

ϵ

[c
λ
sign(mt+1)− cxt+1

]⊤
(mt+1 −mt) (44)

By Lemma B.9,

H(xt+1,mt+1)−H(xt,mt) ≤ ∇̂xH
⊤
t (xt+1 − xt) + ∇̂mH⊤

t (mt+1 −mt) +
L

2
∥xt+1 − xt∥22 ,

where

∇̂xHt = (a− c)∇f(xt) + asign∗(λxt+1)− cmt,

∇̂mHt =
c

λ
sign(mt+1)− cxt+1 =

c

ϵλ
(V̂x,t − sign(m̃t+1) + sign(mt+1))

34

with
Vx,t = xt+1 − xt = ϵ(sign(m̃t+1)− λxt+1)

Vm,t = mt+1 −mt = −(1− β2)(gt −mt)

m̃t+1 −mt+1 = −(β2 − β1)(gt −mt) = −(β2 − β1)Vm,t

V̂m,t = −sign(m̃t+1) + sign(mt+1)

This gives
H(xt+1,mt+1)−H(xt,mt)

≤ ∇̂xH
⊤
t (xt+1 − xt) + ∇̂mH⊤

t (mt+1 −mt) +
L

2
∥xt+1 − xt∥22

Hence,
H(xt+1,mt+1)−H(xt,mt) ≤ [(a− c)∇f(xt) + asign∗(λxt+1)− cmt]

⊤
(xt+1 − xt)

+
[c
λ
sign(mt+1)− cxt+1

]⊤
(mt+1 −mt) +

L

2
∥xt+1 − xt∥22

= [(a− c)gt + asign∗(λxt+1)− cmt]
⊤
(xt+1 − xt)

+
[c
λ
sign(mt+1)− cxt+1

]⊤
(mt+1 −mt) +

L

2
∥xt+1 − xt∥22

+ ϵ(a− c)(∇f(xt)− gt)
⊤(sign(m̃t+1)− λxt+1)

= −ϵ(a∆1
t + b∆2

t) +
L

2
∥xt+1 − xt∥22 //by equation 44

+ ϵ(a− c)(∇f(xt)− gt)
⊤(sign(m̃t+1)− λxt+1)

It suffices to bound E
[
(∇f(xt)− gt)

⊤(sign(m̃t+1)− λxt+1)
]
.

Note that
E
[
(∇f(xt)− gt)

⊤(sign(m̃t+1)− λxt+1)
]

= E
[
(∇f(xt)− gt)

⊤(
1

1 + λϵ
sign(m̃t+1)−

λ

1 + λϵ
xt)

]

=
1

1 + λϵ
E
[
(∇f(xt)− gt)

⊤sign(m̃t+1)
]
+

λ

1 + λϵ
E
[
(∇f(xt)− gt)

⊤xt

]

By Assumption B.13,
E
[
(∇f(xt)− gt)

⊤λxt)
]
= λExt

[
Eξt

[
(∇f(xt)−∇f(xt, ξt))

⊤xt | xt

]]

= 0 //by B.13 E[∇f(x, ξ)] = ∇f(x)

Next, we can use B.18 to bound E
[
(∇f(xt)− gt)

⊤sign(m̃t+1)
]
.

E
[
(∇f(xt)− gt)

⊤
sign(m̃t+1)

]
= E

[
(∇f(xt)− gt)

⊤
sign(β1mt − (1− β1)gt)

]

≤
√

d · var(gt) //by B.18

≤
√

d · vmax

nbatch
//by B.12

Hence,
E
[
(∇f(xt)− gt)

⊤(sign(m̃t+1)− λxt+1)
]

=
1

1 + λϵ
E
[
(∇f(xt)− gt)

⊤sign(m̃t+1)
]
+

λ

1 + λϵ
E
[
(∇f(xt)− gt)

⊤xt+1

]

≤ 1

1 + λϵ

√
d · vmax

nbatch

35

Lemma B.18. Let X,Y be two Rd-valued random variables with var(Y) < +∞, and assume K
yields a weak derivative sign. We have E[(Y − EY)⊤sign(X + ϵY)] ≤

√
dvar(Y)

Proof.

E[(Y − E[Y])⊤sign(X + ϵY)] ≤ E[|Y − E[Y]|] ≤
√

d · E[∥Y − E[Y]∥2] =
√

d · var(Y)

36

	Introduction
	Preliminaries on Convex Functions
	Main Result: Continuous-Time
	Connection with Existing Algorithms

	Discrete Time Analysis
	Experiments on Different K
	Lion-Ks on the Toy Example
	Lion-p for ImageNet and Language Modeling

	Discussion
	Acknowledgement
	Examples of K
	Proofs
	Convex Function Preliminaries
	Connection with Nesterov Momentum
	Discrete-time Schemes of Lion-K
	Frank-Wolfe and Mirror Descent
	Lion-K without gradient Enhancement (=0)
	Lion-K without Weight Decay – A Hamiltonian + Descent Derivation
	Main Result of Lion-K ODE
	The Decomposition Structure
	Constraint Enforcing: Continuous Time
	Discrete Time Analysis
	Analysis with Stochastic Gradient for Lion-K
	Analysis with Stochastic Gradient LION

