
Composing Efficient, Robust Tests for Policy Selection

Dustin Morrill1 Thomas J. Walsh1 Daniel Hernandez1 Peter R. Wurman1 Peter Stone1,2

1Sony AI, New York, NY, USA
2Department of Computer Science, The University of Texas at Austin, Austin, TX USA

Abstract

Modern reinforcement learning systems produce
many high-quality policies throughout the learning
process. However, to choose which policy to actu-
ally deploy in the real world, they must be tested
under an intractable number of environmental con-
ditions. We introduce RPOSST, an algorithm to
select a small set of test cases from a larger pool
based on a relatively small number of sample evalu-
ations. RPOSST treats the test case selection prob-
lem as a two-player game and optimizes a solution
with provable k-of-N robustness, bounding the er-
ror relative to a test that used all the test cases in the
pool. Empirical results demonstrate that RPOSST
finds a small set of test cases that identify high qual-
ity policies in a toy one-shot game, poker datasets,
and a high-fidelity racing simulator.

1 INTRODUCTION

Reinforcement learning (RL) [Sutton and Barto, 2018] poli-
cies have made a number of stunning breakthroughs in mul-
tiplayer games [Silver et al., 2016, Moravčík et al., 2017,
Brown and Sandholm, 2018, Vinyals et al., 2019, Brown and
Sandholm, 2019, Wurman et al., 2022, FAIR et al., 2022,
Perolat et al., 2022]. However, the process of choosing an
RL policy for production usage, either in an exhibition or
deployment for end users, is challenging. Practitioners often
generate many policies that perform well during training but
which require thorough vetting on alternative conditions or
opponents. Ideally, we would construct a test case for every
conceivable deployment scenario, evaluate each policy on
each test case, and rank each policy according to a weighted
average of test case results. However, such a procedure is
typically infeasible because of the sheer numbers of poli-
cies and deployment scenarios, especially if test cases are
lengthy or involve people. In this work, we present a method

for selecting a small number of test cases from a larger pool
that minimizes the reduction in test quality.

Practitioners from other fields, e.g., educational test-
ing [van der Linden, 2005], will recognize this problem
as test construction–selecting a small yet robust set of test
cases, based on limited data, to evaluate many candidates.
This set of test cases should contain enough information
to indicate performance over the whole test case pool. For
instance, if a policy can defeat a skilled opponent, we can
infer that it can defeat an unskilled opponent. However, com-
plicated domains contain complex intransitive relationships
between policies, necessitating test case diversity. In addi-
tion, there is considerable uncertainty over what policies
may be produced in the future and what test cases are the
most important to game designers. This uncertainty needs
to be considered because once test cases are chosen, the
future policies to assess may be the most difficult ones for
the test to evaluate accurately. Therefore, a robust solution
is required.

We introduce a framework, robust population optimization
for a small set of test cases (RPOSST), to compose an ef-
ficient robust test of a fixed size. RPOSST tunes its test to
approximate the test scores of adversarially selected policies
and test case averaging weights, given test case results on a
small set of policies. We present two RPOSST algorithms
representing different use cases, focusing on RPOSSTSEQ,
which is better suited to current RL deployment pipelines.
We provide robustness guarantees for RPOSSTSEQ and
CVaR RPOSSTSEQ (a convenient special case) for k-of-
N robustness measures [Chen and Bowling, 2012]. These
guarantees provide confidence that RPOSST test scores for
future deployment candidates are reliable.

Our contributions include the RPOSST framework, includ-
ing two algorithm versions, robustness guarantees, and em-
pirical validation in domains widely ranging in complexity.
Empirical results are presented for a toy one-shot game simu-
lating race car passing, computer poker competition datasets,
and the high fidelity racing simulator, Gran Turismo™ 7.

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

ar
X

iv
:2

30
6.

07
37

2v
1

 [c
s.L

G
]

12
 Ju

n
20

23

mailto:<dustin.morrill@sony.com>?Subject=Your UAI 2023 paper

Rollouts

Test case result
c1,

c1
c2

c

Result matrix:

...

Tuning policies

Te
st

 c
as

e
po

ol

...
RPOSST

Input

Hyperparameters

Loss function

Number optimization rounds

Number test cases to select

Output

Robustness parameters

..

..

c1
c2
c3

Candidate deployment policies

Test cases

Test results for:

...

Test case
weights

Figure 1: Policy testing with RPOSST. From left to right, the result matrix A is constructed from rollouts, i.e., Ai,j is the
average rollout outcome for tuning policy j (ΠTNP is the set of tuning policies) on test case i. RPOSST analyzes A, taking
into account uncertainty distribution Ψ and a (possibly empty) initial set of test cases that must be used, τ0. RPOSST outputs
an efficient robust test ⟨τ∗, σ̂∗

τ∗⟩, here using only m = 3 test cases (if T is too large to select all 3 test cases at once, τ∗ can
be fed back into RPOSST as τ0). New candidate deployment policies, ΠCDP, are tested against each test case in τ∗ and each
result is weighted according to σ̂∗

τ∗ , producing a test score for each candidate deployment policy.

They show that RPOSST can dramatically reduce (com-
pared to the full set) the number of test cases needed to
identify good deployment policies.

2 PROBLEM DEFINITION

The goal of policy testing is to evaluate the strengths and
weaknesses of a large set of candidate deployment policies,
ΠCDP ⊆ Π, in order to choose one for deployment. A policy
π ∈ Π in this setting can be any mapping from environment
observations to a distribution over actions (e.g., Markov
policies; Sutton and Barto [2018]). A policy is evaluated on
a test consisting of various test cases chosen from a pool, T .
Each test case simulates an important aspect of the deploy-
ment environment, for example, different parameter settings
like weather conditions or different opponent policies in
a competative game. For straightforward comparisons be-
tween policies, we summarize a policy π’s test results with
a scalar test score, computed as the weighted average of π’s
test case results according to test case weights, σ ∈ △|T |.

If T is small, then right before deployment we could simply
test each policy, rank the policies in ΠCDP according to the
test scores, and deploy the best one. However, if policies will
encounter a wide range of conditions during deployment,
e.g., hundreds or thousands of different players for a policy
deployed to a popular video game, then T ostensibly needs
to be large in order to adequately reflect such diversity.
The linear scaling in |T | presents not just a computational
burden, but also costs in sample complexity (if the test
cases are lengthy) or even in person-time if human quality
assurance testers might be needed for test cases.

This work addresses the problem of composing an efficient
test, ⟨τ, σ̂τ ⟩, by selecting a small number of test cases τ ⊂ T
and test case weights σ̂ ∈ △|τ | to approximate a full test,
⟨T , σ ∈ △|T |⟩. Complicating this task are two sources of
uncertainty to which the efficient test must be robust. First,
⟨τ, σ̂τ ⟩ ought to be used on new candidate deployment poli-
cies, so ΠCDP is unknown before ⟨τ, σ̂τ ⟩ is chosen. Second,
the desired target distribution, σ, defining the full test to
approximate may drift after ⟨τ, σ̂τ ⟩ is chosen.

We assume access to a small set of representative tuning
policies ΠTNP ⊂ Π for immediate testing (Section 4 dis-
cusses practical considerations in the composition of ΠTNP).
Additionally, our algorithm takes as input a joint distribution
Ψ over ΠTNP and△|T | to represent the combined uncertainty
about which policies the output test will be applied to and
which target distribution to approximate. See Figure 1 for
an illustration of the test composition pipeline.

As a concrete example of the terms above and the need for
robustness in the face of uncertainty, consider a car-racing
agent developed for a one-on-one racing game. The first
source of uncertainty is over the future policies we may
want to test. Consider the case where, at test construction
time, we have policies from two training runs–one that pro-
duces aggressive (collision-prone) policies, and another that
produces more polite policies, but we are uncertain about
which type will be best suited for the game. In this case, we
want the selected test cases to provide good evaluations on
policies from either set, and thus require Ψ to reflect this
uncertainty. Policies from both sets should be included in
ΠTNP and our algorithm needs to be robust to policies within
ΠTNP.

The second source of uncertainty is over which test cases are
most important. Imagine that we have some test cases that
specifically target and penalize off-track infractions. In the
future, game designers could request fewer infractions or
allow for more risky racing lines. To hedge against both of
these possibilities we can add two target distributions to Ψ,
one where off-track tests cases have higher weights than the
other test cases and another where they have lower weights.
The job of an algorithm (such as RPOSST) is then to ensure
its tests are accurate according to both target distributions.

3 BACKGROUND

In order to compose an efficient and robust test, we utilize
established game-theoretic frameworks for modeling robust-
ness and learning optimal decisions (specifically, regret min-
imization). The following subsections present background
material on these two topics.

3.1 ROBUSTNESS

The idea of robustness is to prepare for an unfavorable por-
tion of possible outcomes sampled from an uncertainty dis-
tribution. In our formulation of policy testing the uncertainty
distribution covers the future policies in ΠCDP and the target
distribution. A percentile robustness measure [Charnes and
Cooper, 1959], µ, is a formal representation of a robust-
ness criterion as a probability distribution over percentiles.
For example, if µ has all of its weight on 0.01, then an
m-size test with weights σ̂τ that is robust according to µ,
then the test minimizes test score error on σ̂τ ’s worst 1% of
policy–target-distribution pairs sampled from Ψ.

The k-of-N robustness measures [Chen and Bowling, 2012]
are percentile robustness measures defined by parameters
k,N ∈ N, 1 ≤ k ≤ N , that permit tractable optimization
procedures. This parameterization reflects the mechanics of
how an efficient test ⟨τ, σ̂τ ⟩ is evaluated on such a measure:
N policy–target-distribution pairs are sampled from Ψ and
σ̂τ ’s performance is averaged over the k worst pairs for
σ̂τ . Every k-of-N robustness measure is a non-increasing
function, i.e., more weight is placed on smaller percentiles,
and the fraction k/N represents the percentile (technically
the fractile) around which the measure decreases.

In our test construction setting, the choice of k and N re-
flects the designer’s tolerance for test scores that are bad
because of “unlucky” outcomes from Ψ (that is, test scores
with large error on policy–target-distribution pairs sampled
from Ψ, even if they are sampled infrequently). Optimiz-
ing for performance under small percentiles (e.g., setting
k = 1, N = 100) yields tests with a small maximum test
score error across ΠTNP. Then, even if each candidate de-
ployment policy resembles the tuning policy that has the
largest test score error, the optimized test will yield small

test score errors. In contrast, optimizing for the uniform
measure (k = N) optimizes for mean performance across
ΠTNP, essentially assuming ΠCDP = ΠTNP, which can lead
to large test score error on the actual candidate deployment
policies.

As N → ∞, the k-of-N robustness measure approaches
the conditional value at risk (CVaR) robustness measure at
the k/N fractile [Chen and Bowling, 2012], which evenly
weights all of the fractiles ≤ k/N and puts a weight of zero
on all larger fractiles. Formally, the robustness optimization
objective is to minimize the percentile performance loss:

Lµ,Ψ(σ̂τ) = inf
y∈Y

∫
η∈[0,1],P[ℓ(σ̂τ ;π,σ)≤y(η)]≥η

y(η)µ(dη), (1)

under a loss function ℓ : △|T | ×ΠTNP ×△|T | → R where
we overload ℓ for incomplete test case weight vectors by
filling in zeros for missing elements, ⟨π, σ⟩ ∼ Ψ, and Y is
the class of real-valued, bounded, µ-integrable functions on
[0, 1]. An efficient (m-size) µ-robust test is a minimizer of
Lµ,Ψ across all σ̂τ where τ = m.

The optimization of the percentile performance loss under
k-of-N robustness measure, µk-of-N , can be modeled as a
zero-sum imperfect information game [Chen and Bowling,
2012]. Here, a protagonist player constructs efficient tests
and an antagonist chooses a tuning policy to test and a tar-
get distribution. For their payoffs, the antagonist receives
the test score error of the protagonist’s test given the an-
tagonist’s tuning policy and target distribution while the
protagonist receives the negation. The k and N parame-
ters determine which target distributions and tuning policies
that the antagonist can choose from and how many pairs
must be averaged across. At the start of the game, N target-
distribution–tuning-policy pairs are sampled. From these N
pairs, the antagonist must select k of them. Finally, one of
these k pairs is sampled, both players receive their payoffs,
and the game ends. A minimax test for the protagonist, i.e.,
one that minimizes the protagonist’s maximum loss in this
game is a µk-of-N -robust test.

3.2 REGRET

While the game above models the optimization process, it
does not instruct the protagonist on how to choose test cases
to win. A no-regret online decision process (ODP) algorithm
can find approximate minimax decisions by repeatedly play-
ing out the game and improving over time from payoff
feedback. Formally, on each round t of the game, an ODP
algorithm chooses an efficient test ⟨τ t, σ̂t

τt⟩ and receives
the payoff function vt = −∇σ̂t

τt
ℓ(σ̂t

τt ;πt, σt) as feedback
given ⟨πt, σt⟩ chosen by the antagonist. If the antagonist
always plays a best response to the ODP algorithm, that
is, the tuning-policy–target-distribution pair that maximizes
the loss of σ̂t

τt on each round t ∈ {1, . . . , T}, T ≥ 1, then

the no-regret property ensures that at least one of the tests
in the sequence ⟨⟨τ t, σ̂t

τt⟩⟩Tt=1 is at most O(G/√T) away
from the minimax value, where G > 0 is the maximum
magnitude of the loss gradient (see Lockhart et al. [2019a,b]
and Appendix Proposition C.4 for more details).

Regret matching+ [Tammelin, 2014, Tammelin et al., 2015]
is a no-regret algorithm for simplex decision sets, e.g., the m
dimensional test case weight space△m, that selects σ̂t

τt =
q1:t−1

1⊤q1:t−1 using pseudoregrets q1:t = [q1:t−1 + ρt]+, q1:0 =

0, where ρt = vt − (vt)⊤σ̂t
τt is the instantaneous regret

vector (σ̂t
τt = 1

d1 if none of the pseudoregrets are positive).

4 RPOSST

Our approach, robust population optimization for a small
set of test cases (RPOSST) begins by evaluating each tun-
ing policy π ∈ ΠTNP on each test case c ∈ T , yielding a
|T | × |ΠTNP| result matrix A of test case results. As an opti-
mization approach, RPOSST aims to minimize prediction
errors, as measured by a convex function ∆ : R× R→ R,
e.g., the absolute difference ∆(x̂, x) = |x̂−x|. RPOSST ro-
bustly optimizes for a small set of test cases and a weighting
over them according to how well it reproduces test scores
admitted by A as measured by a loss function

ℓ : σ̂;πj , σ 7→ ∆(Ei∼σ̂[Ai,j]︸ ︷︷ ︸
σ̂’s test score for πj .

, Ei∼σ[Ai,j]︸ ︷︷ ︸
σ’s test score for πj .

),

on test case distribution σ̂ ∈ △|T | compared to σ ∈ △|T |

with respect to test results from the jth tuning policy πj .
Since σ̂ is being used to produce test scores that approximate
those under σ, we call σ a target distribution in this context.
Our goal is to select a small number of test cases, so we
constrain RPOSST to output weights σ̂τ ∈ △m for groups
of test cases τ ⊂ T of size m.

Though T is large, the cost of computing A is balanced
by the savings of using fewer test cases for future policies.
RPOSST is robust to any distribution over ΠTNP, so as long
as this set covers the space of ΠCDP (i.e., all π ∈ ΠCDP

are convex mixtures of ΠTNP), this robustness imparts a
minimum test accuracy guarantee even on deployment can-
didates. Intuitively, this means the quality of RPOSST’s
tests will tend to improve with more diverse tuning policies.
Accordingly, it should be beneficial for a tuning policy to
represent an extreme point in a reasonable region of policy
space, or at least for it to be generated with a method simi-
lar to that which will generate deployment candidates (e.g.,
sampled from checkpoints of RL training runs). That way,
the tuning policies include a diverse collection of skilled and
unskilled policies with random variations, while retaining ar-
chitectural and algorithmic similarities to future deployment
candidates.

Following the earlier discussion of k-of-N robustness, we
frame the optimization in RPOSST as a zero-sum game.

By adversarially choosing policies to test, the antagonist
forces RPOSST to compose tests that are better at accurately
testing the more difficult-to-assess policies in the tuning set,
providing a degree of robustness to the distribution of future
deployment candidates. Similarly, by adversarially choosing
the target distribution, the antagonist also forces RPOSST
to be robust along this dimension. The steps of each round
t = 1, . . . , T of our optimization game follows.

1. The protagonist must choose an m-tuple of test cases
τ t ⊂ T and weights σ̂t

τt ∈ △m.

2. N policies to test and target distributions,
⟨⟨πji , σi⟩⟩Ni=1, are sampled from uncertainty dis-
tribution Ψ.

3. The antagonist chooses the k worst policies and target
distributions, i.e., those that maximize ℓ(σ̂t

τt ;πji , σi).

4. One of the k worst configurations is sampled uni-
formly, leading to the end of the round, at which
point the protagonist receives the payoff vtτt,(i) =

−ℓ
(
σ̂t
τt ;πj(i) , σ(i)

)
, where the subscript (i) denotes

the ith element of a sorted list in descending order (the
ith worst for the protagonist).

The protagonist is allowed to update their strategy at
the end of each round based on the expected payoff,
Ei∼Unif({1,...,k})

[
vtτ,(i)

]
, for each τ ∈ T m they could have

chosen. The more rounds of the game that are run (the larger
T is), the closer RPOSST gets to returning a minimax strat-
egy, and consequently, a robust optimal selection of test
cases and weights. Thus, in application, T can be set as
large as is convenient under computational and time con-
straints. Theorem D.2 gives a precise rate for RPOSST’s
improvement, with high probability, as a function of T . Al-
though the protagonist must consider an exponential (in m)
number of test case combinations, the premise of RPOSST
is that we want a small set of test cases, so m will be small.
To decrease computational requirements, RPOSST can be
run in a loop to select test cases iteratively until m have
been selected, at a potential cost to test accuracy compared
to optimizing for the entire m-tuple at once.

4.1 ANTAGONIST INFORMATION MODELS

We consider two RPOSST algorithm variants that utilize
different models of the information that the antagonist in
our optimization game has before they make their choice.
These models correspond to two policy testing use cases.
The first, “simultaneous move” model is less pessimistic,
but has impractical aspects, which are addressed by the
subsequent “sequential move” model.

Simultaneous move. The simultaneous move model is a
naïve application of the original k-of-N game by [Chen
and Bowling, 2012]. In this model, the antagonist does not

1 Inputs: ⟨k,N, T1,m,Ψ, τ0, ℓ, T2⟩

2 q1:0τ ← 0 ∈ Rm+|τ0| for τ ∈ T m

3 T ′ ∼ Unif({1, . . . , T1})
4 for t← 1, . . . , T ′ do
5 for τ ∈ T m do
6 zt ← 1⊤q1:t−1

τ

7 σ̂t
τ ← q1:t−1

τ /zt if zt > 0 else 1/m
8 // Add zeros to ensure σ̂t

τ ∈ △|T |.

9 σ̂t
τ (x)← 0 for x ∈ T \ (τ ∪ τ0)

10 [ℓτ,(i)]
k
i=1 ← Lk-of-N(σ̂

t
τ , ⟨k,N⟩,Ψ, ℓ)

11 vtτ ←
−1
k

∑k
i=1

∂ℓτ,(i), πj(i)

∂σ̂t
τ

12 // Update regret matching+.

13 ρtτ ← vtτ − (σ̂t
τ)

⊤vtτ
14 q1:tτ ← [q1:t−1

τ + ρtτ]+
15 τ∗ ←

SR

(
τ 7→ 1

2kL
1⊤ Lk-of-N

(
σ̂T ′

τ , ⟨k,N⟩,Ψ, ℓ
)
, T2

)
16 return τ∗, σ̂T ′

τ∗

1 Procedure Lk-of-N Inputs: ⟨σ̂, k,N,Ψ, ℓ⟩
2 for i = 1 . . . N do
3 // Sample antagonist actions.

4 πji , σi ∼ Ψ
5 // Evaluate σ̂.

6 ℓi ← ℓ(σ̂;πji , σi)

7 // Sort to identify the worst k.

8 Sort
(
[ℓi]

N
i=1

)
9 return [ℓ(i)]

k
i=1

Algorithm 1: RPOSSTSEQ with regret matching+

and Successive Rejects

observe which m-tuple of test cases, τ t, is selected by the
protagonist on each round t. Instead, it is randomized with
a distribution σ̂t

T ∈ △|T |m . This model corresponds to the
policy testing use case where a new m-tuple of test cases
is sampled independently for each test that is performed.
Every test only evaluates m cases, as desired from a compu-
tational efficiency perspective, however, the particular test
cases used in each test could be different, making results
incomparable across tests. See Appendix Appendix F for
additional details.

Sequential move. In the sequential move model, the antag-
onist observes τ t before acting. The antagonist is thus able
to tailor their choice of

〈〈
πj(i) , σ(i)

〉〉k
i=1

to whichever τ t is
selected, and randomizing over the m-tuple of test cases has
no benefit to the protagonist. Since the antagonist observes
τ t, the protagonist must update all the weights that they
would apply to each test case tuple τ as if τ t = τ . Thus, the
selection of τ t does not impact the protagonist’s updates and
we need not explicitly select an m-tuple until the very end

of the algorithm, after T ′ ∼ Unif({1, . . . , T1}) rounds.1

Since the set of N losses observed on each round are gen-
erally random, we cannot reuse them to identify which m-
tuple leads to the lowest loss using the the test case weights
computed after running for T ′ rounds, ⟨σ̂T ′

τ ⟩τ∈T m . In ad-
dition, we cannot access expected k-of-N losses directly;
we must estimate them by sampling from Ψ. Therefore, the
selection of a single τ is a “best arm identification” prob-
lem, where T m is the set of arms. The Successive Rejects
(SR) [Audibert et al., 2010] algorithm is an exploration-only
bandit algorithm that can be used to solve this problem with
a worst-case guarantee on the probability that it identifies
the best arm. The more SR iterations that are run, the more
likely it is to select the best arm. Algorithm 1 shows how to
implement RPOSST for the sequential move model using
regret matching+ for tuning the test case weights and SR
for the final selection of an m-tuple.

In specific applications, an example of which we will see in
Section 4.2 and our experiments, we can construct our opti-
mization game so that it is deterministic, and consequently,
we can replace SR with a simple argmax.

The RPOSSTSEQ objective is the percentile performance loss

min
τ∈T m

σ̂τ∈△m

inf
y∈Y

∫
η∈[0,1]

P[ℓ(σ̂τ ;πj ,σ)≤y(η)]≥η

y(η)µk-of-N (dη), (2)

where ⟨πj , σ⟩ ∼ Ψ.

The sequential move model represents the policy testing
use case where we select and fix m test cases and test case
weights for all future test policies. Test scores are easily
reproducible and comparable across test applications since
the test cases never change.

Theorem 4.1. After T ′ ∼ Unif({1, . . . , T1}), T1 > 0,
rounds of its optimization game, Algorithm 1 selects an
m-tuple of test cases, τ∗ and weights σ̂T ′

τ∗ ∈ △m that, with
probability (1−p)(1−q)(1−α), p, q, α > 0, are ε

q -optimal

for Equation (2), where ε = O
(√

1
T1
m+

√
1
T1

log(1/p)
)

and α = O
(
e−T2

)
.

All proofs deferred to the Appendix. In the extreme case
where ΠTNP covers Π, then this optimality result, (in terms
of an upper bounded percentile loss integral), extends to all
deployment candidates ΠCDP.

4.2 DETERMINISTIC CVAR RPOSST

While in general, an RPOSST algorithm has a randomized
procedure and a non-deterministic optimality guarantee,

1RPOSST is run for T ′ rather than T1 rounds because we
cannot guarantee a decrease in worst-case loss after every round.
See the proof of Theorem D.2 for more details.

we can actually select hyperparameters so that RPOSST
is deterministic, making the procedure simpler and more
reliable. If we fix the ratio k/N and allow N →∞, the k-of-
N robustness measure converges toward the CVaR measure
at the k/N fractile. A k-of-N algorithm where N → ∞
cannot be implemented with the usual sampling procedure,
but it can be implemented if the distribution characterizing
our uncertainty, Ψ, has finite support.

Sampling Ψ infinitely would result in sampling all tuning-
policy–target-distribution pairs in its support exactly in pro-
portion to their probabilities. Rather than selecting k tuning-
policy–target-distribution pairs, the antagonist must select
pairs until their cumulative probability sums to k/N. Effec-
tively, the antagonist assigns weights

α(i) = min

{
Ψ
(〈
πj(i) , σ(i)

〉)
, k/N −

i−1∑
h=1

α(h)

}

to each tuning-policy–target-distribution pair in Ψ’s sup-
port, where the ordering between pairs is determined by the
loss each induces for the protagonist. Finally, these tuning-
policy–target-distribution pairs are sampled according to the
normalized weights α(i)N

k .

The robustness guarantees become deterministic because the
entire RPOSST algorithm, denoted as CVaR(η) RPOSST
for the η = k/N fractile, can be run using exact expectations
(excluding randomness in A, which is taken as given in
RPOSST). Determinism in RPOSSTSEQ allows us to directly
check the exact expected loss of each test case distribution
on each round, letting us track the lowest loss test case
distribution across all rounds. This tracking, in turn, allows
us to avoid both sampling T ′ and running the SR algorithm
to do the final selection. Instead, we can simply return the
lowest loss test case distribution across all T rounds.

If there are d tuning-policy–target-distribution pairs in Ψ’s
support, then the expected CVaR(η) loss of the protagonist
on round t is Lt = minτ∈T m

∑d
i=1

α(i)

η ℓ(σ̂t
τ ;πj(i),σ(i)

).
The round with the lowest expected loss is t∗ =
argmint∈{1,...,T} L

t, and this definition allows us to state
the following corollary.

Corollary 4.2. Assume that Ψ ∈ △d for some finite d ≥ 1.
After T rounds of the CVaR(η) RPOSSTSEQ optimization
game, where the protagonist chooses m-size tests according
to regret matching+ against a best response antagonist, τ∗

and σt∗

τ∗ are ε-optimal for Equation (2) under the η-fractile

CVaR robustness measure, where ε = O
(√

1
T m
)

.

Pseudocode for CVaR(η) RPOSSTSEQ is presented in Ap-
pendix Algorithm 2.

In addition, we can construct a series of ablations of CVaR
RPOSSTSEQ to act as baselines for experiments, and to make
a connection to the test-construction literature.

CVaR RPOSSTSEQ generalizes an intuitive algorithm: find
the m-tuple of test cases that minimizes the maximum error
assuming a uniform distribution over the tuple. This mini-
max uniform algorithm is implemented by executing only
the initialization and selection steps of CVaR(0) RPOSSTSEQ

(T = 0). Further simplifying, minimax(TTD) uniform per-
forms the antagonist maximization only over target dis-
tributions and assumes a uniform distribution over tuning
policies. Minimax(TNP) uniform performs the antagonist
maximization only over tuning policies and assumes a uni-
form target distribution. Miniaverage uniform assumes both
a uniform distribution over tuning policies and for the target
distribution.

Additionally, we could select test cases one at a time to
minimize the maximum error, echoing greedy algorithms
from the test-construction literature (Chapter 4 of van der
Linden [2005]). This iterative minimax algorithm is almost
the same as running the initialization and return steps of
CVaR(0) RPOSSTSEQ to select a single test case in a loop.
The sole difference being that iterative minimax could select
the same test case multiple times within its loop to adjust
the test case weighting away from uniform.

5 EXPERIMENTS

We explore CVaR RPOSSTSEQ’s performance in three two-
player games spanning the range of complexity from a toy
one-shot game to a high-fidelity racing simulator, in compar-
ison with minimax and miniaverage baselines. We show that
robustness does tend to decrease test score errors on holdout
policies and that RPOSST specifically either outperforms
or performs about as well as each baseline in each domain.

5.1 EXPERIMENTAL SETUP

In each domain, we start with data from playing out every
pairing of n > 0 policies, yielding a matrix of scores for the
column policy. Each policy along the rows of this matrix
is then treated as a test case, making the score at row i and
column j the result of evaluating policy j on test case i.

To emulate unknown deployment candidate policies to be
tested, we hold out h > 0 columns of this matrix and call the
policy associated with a holdout column a holdout policy.
The remaining columns represent the test case results for
the set of tuning policies. The resulting n× (n− h) matrix
is shifted and rescaled so that all entries are between zero
and one, and then it is set as the test result matrix A that
our methods take as input. Note, although h test cases are
generated by holdout policies, as test cases they cannot
provide any special information about what tests would
be effective on the holdout policies. To simulate scenarios
where the set of tuning policies covers the set of future
candidate deployment policies to varying degrees, we run

(0) (5) (10) (15) (20) (25) (30) (35) (40)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e)

Racing Arrows (followers, 50)
iterative minimax(m = 2)
miniaverage uniform(m = 2)
minimax(TNP) uniform(m = 2)
minimax(TTD) uniform(m = 2)
minimax uniform(m = 2)
RPOSSTSEQ(m = 2)

(0) (5) (10) (15) (20) (25) (30) (35) (40)
0.0

0.1

0.2

0.3

0.4

0.5
Racing Arrows (leaders, 50)

(1) (2) (3) (4) (5) (6) (7) (8)
0.00

0.01

0.02

0.03

ACPC (2012)

(2) (4) (6) (8) (10) (12)
holdout policy--target-distribution pair

0.0

0.5

1.0

1.5

2.0

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e) ACPC (2017)

(0) (4) (8) (12) (16) (20) (24) (28) (32) (36)
holdout policy--target-distribution pair

0.0

0.1

0.2

0.3

0.4
GT (winrate)

(0) (4) (8) (12) (16) (20) (24) (28) (32)
holdout policy--target-distribution pair

0.0

0.1

0.2

0.3

0.4
GT (-1 for collision)

Figure 2: Expected test score error (absolute difference) across holdout-policy–target-distribution pairs on (top left and
middle) Racing Arrows, (top right) the 2012 two-player, limit competition of the ACPC, (bottom left) the 2017 two-player,
no-limit competition of the ACPC, (bottom middle and right) Gran Turismo™ 7 races, between CVaR(1%) RPOSSTSEQ

and baseline tests on 100 randomly sampled sets of holdout policies (20% of the full set of policies; 80% used as tuning
policies). Holdout-policy–target-distribution pairs are sorted according to test score error. Each RPOSSTSEQ instance was
run for 500 rounds (T = 500). Errorbars represent 95% t-distribution confidence intervals.

(0) (400) (800) (1200) (1600) (2000)
holdout policy--target-distribution pair

0.0

0.2

0.4

0.6

0.8

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e) Racing Arrows (followers, 500)

(a) m = 1

(0) (400) (800) (1200) (1600) (2000)
holdout policy--target-distribution pair

0.0

0.2

0.4

0.6

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e) Racing Arrows (followers, 500)

(b) m = 2

(0) (400) (800) (1200) (1600) (2000)
holdout policy--target-distribution pair

0.0

0.1

0.2

0.3

0.4

0.5

0.6

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e) Racing Arrows (followers, 500)

(c) m = 3

Figure 3: Expected test score error across holdout-policy–target-distribution pairs on Racing Arrows where test cases are
follower policies. Here, 500 Racing Arrows policies were sampled for both the follower and leader role and then 96% of
policies of both roles were held out before running RPOSST and each baseline. Each column uses a different test size m.
100 sets of holdout policies were sampled and each RPOSSTSEQ instance was run for 500 rounds (T = 500).

experiments with three different values of h: 0.2n, 0.4n,
and 0.6n. 100 different holdout sets are randomly sampled
for each value of h and in each domain.

Given results for n test cases, the goal is to produce a
distribution over m < n test cases that provides accu-
rate test results on the set of holdout policies, according
to a set of target distributions. For our experiments, we
use m ∈ {1, 2, 3} and the set of target distributions gen-
erated from the softmax function applied to the negative
average test case result under four different scales, specif-
ically, exp

(
−β
n A1

)
/1⊤ exp

(
−β
n A1

)
for β ∈ {0, 1, 2, 4},

so that the distributions put varying degrees of emphasis on
test cases that are more difficult on average across the tuning
policies. We set the RPOSST uncertainty distribution, Ψ, to
be uniform over each tuning-policy–target-distribution pair.
We set the CVaR percentile to 1% so that it is nearly optimiz-
ing for the worst-case, but is slightly less pessimistic, to add

an additional distinguishing factor to RPOSST compared to
the minimax and minaverage baselines. We use the absolute
difference loss for both optimization and evaluation.

5.2 DOMAINS

We test RPOSST on the following three domains of vary-
ing complexity. Each domain has two variants arising from
asymmetry, multiple datasets, or alternative scoring rules.
Appendix Appendix G provides further details on each do-
main.

Racing Arrows. Racing Arrows is a two-player, zero-sum,
one-shot, continuous action game invented for our exper-
iments to replicate aspects of a passing scenario in a race
featuring a “leader” player and faster “follower” player. The
follower tries to pass the leader while the latter tries to block.
Scores are recorded as 0 or +1 for a loss or win, respec-

tively, for the column player, which is either the leader or the
follower, depending on the configuration. We run RPOSST
on both configurations. For our experiments, we sample 50
or 500 different leader and follower policies evenly spread
through the valid policy space, angles in [0, π], by taking 50
or 500 evenly spaced angles between [0.05π, (1− 0.05)π]
and then shifting them independently with uniform samples
in [−0.05π, 0.05π].

Annual Computer Poker Competition. We take two open
datasets from the Annual Computer Poker Competition
(ACPC) [Bard et al., 2013] containing pairwise match data
for poker agents submitted to the 2017 two-player, no-limit
competition and the 2012 two-player, limit competition.
These competitions contain different agent populations since
they are separated by five years and are in different game
formats (limit and no-limit). The 2017 competition con-
sists of 15 agents and the 2012 competition consists of 12
agents. Scores are recorded as chip differentials of duplicate
matches (two sets of hands where players play with the same
set of shuffled decks in both seats).

Gran Turismo™ one-on-one races. Gran Turismo™ 7
(GT)2 is a high fidelity racing simulator on the PlayStation™

platform. Previous versions of GT served as benchmarks for
training RL policies [Fuchs et al., 2021, Song et al., 2021]
including policies that outraced the best human competi-
tors [Wurman et al., 2022] in four-on-four racing. We con-
sider a simpler one-on-one racing scenario (see Appendix
Appendix G.3 for details). We carry out two experiments,
one where test case results are average winrates, and another
where policies receive 0 for a loss, +1 for a win, and −1 if
there was a collision, making the game non-zero-sum. The
test case pool is comprised of 43 trained RL policies and 3
built-in “AI” policies.

5.3 RESULTS AND ANALYSIS

The results of running CVaR(1%) RPOSSTSEQ on each do-
main, with m = 2 and 20% of policies marked as holdout
policies, are shown in Figure 2. The same set of figures
with m = 1 and m = 3, as well as 40% and 60% holdout
policies, are qualitatively similar, except that the differences
between the algorithms are typically smaller, and are pro-
vided in Appendix Appendix G.4.

Looking across each domain and variant, we can see that
RPOSSTSEQ performs nearly as well or better than all of the
minimax and miniaverage baselines, particularly in terms
of maximum error across holdout-policy–target-distribution
pairs. Interestingly, RPOSSTSEQ has noticeably lower error
in ACPC 2017 and GT (winrate) on the four most diffi-
cult holdout-policy–target-distribution pairs to accurately
evaluate. The improvement over the next best method is sub-
stantial in ACPC 2017 because RPOSST is the only method

2https://www.gran-turismo.com/us/

with an unlimited ability to optimize with a non-uniform
test case weighting.3 On the other variant in each domain,
RPOSSTSEQ is within the group of the lowest error methods.
In the two Racing Arrows domains, RPOSSTSEQ and mini-
max uniform substantially outperform the other methods, at
least on the most difficult holdout-policy–target distribution
pairs. This result shows that robustness is indeed beneficial
here, but the uniform distribution over the selected two op-
ponents happens to be quite effective. The GT variant where
−1 is assigned to a collision appears to be more difficult
than the winrate variant, as all the methods cluster together
in this variant at higher errors than in the winrate variant.

These results illustrate the utility of incorporating robustness
generally, as all of the robust methods tend to outperform
miniaverage uniform. Minimax uniform and iterative min-
imax are the only baselines that minimize their maximum
error over both tuning policy and target distribution un-
certainty, and they are usually the next best methods after
RPOSSTSEQ. Minimax(TNP) uniform typically outperforms
minimax(TTD) uniform, showing that it is more important
to be robust to the tuning policy than the target distribution,
in these domains. When the target distributions are the same
in the optimization and holdout evaluation phases, robust-
ness should directly improve the minimum performance
across holdout realizations. Since no effort was made to
enforce any relationship between the tuning and holdout
policies, this result suggests that robustness to the tuning
policy can yield large error reductions when ΠTNP are even
somewhat similar to the holdout policies.

As an example of RPOSST’s capabilities, consider the pairs
of opponent policies chosen as test cases in GT (winrate)
over 100 experiment seeds (Appendix Table 2). RPOSSTSEQ

is both more accurate (Figure 2) and very consistent, choos-
ing the same pair 90% of the time. Figure 4 illustrates the
portion of the result matrix for just the two test cases most
frequently chosen by RPOSSTSEQ (test races against oppo-
nents 16 and 41). The race against policy 41 (bottom row)
is chosen because that policy wins/loses about half the time,
providing a 50/50 information split. Policy 16 is a weaker
policy in many ways (more blue in the top row) but it serves
to differentiate the worst policies (darker red squares in the
left side of the matrix) from the rest of the policies, and to
highlight the strongest policies. Specifically, the best per-
forming policies almost always win against policy 16, which
provides a strong complementary signal to the noisier but
more competitive policy 41 test case. Overall, the two test
cases indicate policies 1, 29, and 43 (darkest blue columns)
are the strongest for deployment. Policy 1 is a built-in AI
in an overpowered car but 29 and 43 are very strong RL
policies. Looking at the overall winrate matrix (Appendix
Figure 5b) we see that the same conclusion (the three dark-

3Iterative minimax can change its test case distribution away
from uniform, but only indirectly by selecting a test case it already
selected on a previous iteration before it fills its test-case quota.

https://www.gran-turismo.com/us/

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44
Candidate Deployment Policies

16
41Te

st
Ca

se
s 0.95 1 0.15 0 0 0.55 0.5 0.65 0.45 0.4 0.25 0.65 0.85 0.5 0.6 0.8 0.5 0.55 0.8 0.8 0.45 0.5 0.5 0.5 0.45 0.52 0.8 0.55 0.55 0.95 1 0.7 0.75 0.95 1 0.95 0.95 0.81 1 0.8 0.65 0.65 1 0.95 0.95 0.85

0.2 1 0.5 0 0 0.3 0.25 0.4 0 0.15 0.3 0.5 0.1 0.15 0.15 0.85 0.35 0.8 0.7 0.4 0.5 0.55 0.55 0.75 0.5 0.5 0.9 0.5 0.5 1 0.8 0.45 0.6 0.85 0.25 0.75 0.45 0.65 0.75 0.8 0.4 0.5 0.6 0.9 0.6 0

Figure 4: The GT test results of candidate deployment policies against the test case pair most favoured by RPOSST. Blue
and red indicates positive and negative winrates respectively for the candidate deployment policy.

est blue columns overall) would have been chosen using
all 46 test cases. Compressing from 46 test cases to two
presents a massive saving in test time for future policies,
and shows RPOSSTSEQ can construct small tests to select
deployment policies in a real and complex video game.

The results in Figure 3 repeat the previous analysis in Rac-
ing Arrows but with ten times the number of policies. Only
the results where follower policies are treated as test cases
are shown, but the corresponding results where leader poli-
cies are test cases appear similar and are shown in Appendix
Appendix G.4. 96% of policies are held out, including those
used as test cases, so there are only 20 test cases and tuning
policies for RPOSST and the other algorithms to utilize.
This experiment emulates a scenario where an efficient test
is constructed once with a relatively small number of tuning
policies and then reused for many future deployment candi-
dates. As in the previous experiments, RPOSST is almost
always one of the best methods.

6 RELATED WORK

The bulk of the work on policy selection in RL focuses
on selecting opponents for training with self-play algo-
rithms [Hernandez et al., 2021]. In that case, diversity is
key for training additional policies to cooperate [Rahman
et al., 2022] or compete [Liu et al., 2021, McAleer et al.,
2022] with pre-existing policies. However, the selection of
policies as training opponents is often guided by aggregate
performance metrics across entire populations [Li et al.,
2019, Lanctot et al., 2017, Omidshafiei et al., 2019, Bal-
duzzi et al., 2018] and thus do not reduce the number of
opponent pairings (test cases) required for assessments.

On the testing side, researchers in complex domains de-
velop procedures for testing skill competency using hand-
calibrated [Wurman et al., 2022] or randomly generated
tests with complex percentile-scoring functions [Team et al.,
2021]. Our work seeks to automate and target test construc-
tion in such scenarios. Complementary work [Rowland et al.,
2019] treats the computation of a result matrix as a multi-
armed bandit problem, each entry represented by one arm.
While this method can greatly reduce sampling costs in the
presence of low-variance outcomes, it does not generalize
to policies outside its input population, with the testing of a
new policy requiring adding extra arms to be estimated from

scratch. However, this method could be used in tandem with
RPOSST to reduce the samples required to compute A.

Learning to rank methods [Oosterhuis and de Rijke, 2021,
Bruch, 2021, Hu et al., 2018] aim to find a function that
ranks a set of items (e.g., documents) based on the rele-
vance of a given query, with hopes to generalize to future
queries. Indeed, Akiyama et al. [2016] use learning to rank
to evaluate action sequences. However, predicting unseen
policy performances under this model requires the tuning
policies to be the queries, which would produce a ranking of
the test cases themselves. The scores from such tests would
therefore be incomparable across policies, violating one of
our main objectives.

Test construction in educational modeling [van der Linden,
2005] starts from an item bank and a statistical model (e.g.,
Item Response Theory [Embretson et al., 2000]) predicting
the probability of answering each item correctly given a
student’s (unobserved) skill level. That model yields an
information matrix and then automatic test construction
methods, including linear optimization or greedy heuristics,
can then build a finite-sized test. By contrast, we do not
assume a model of the response variance or a univariate skill
measurement, so a closed-form calculation of information is
often infeasible. However, we do empirically compare our
optimization approach to the greedy heuristic.

7 CONCLUSION AND FUTURE WORK

RPOSST is, to the best of our knowledge, the first algorithm
to directly address test construction for reinforcement learn-
ing policies. By leveraging the k-of-N framework, RPOSST
provides bounds on the approximation error of the result-
ing test despite uncertainty over the exact policies that will
be evaluated and the desired test case weighting in the fu-
ture. Thus, RPOSST provides a much needed tool for policy
selection in real-world deployment scenarios. An interest-
ing direction for future work is generating the test cases
themselves [Marris et al., 2021, Pugh et al., 2016], which is
challenging on its own [Balduzzi et al., 2019].

Acknowledgements

Thanks to Francesco Riccio for reviewing this work. Thanks
to the whole Sony AI team for experiment infrastructure.

References

Hidehisa Akiyama, Masashi Tsuji, and Shigeto Aramaki.
Learning evaluation function for decision making of soc-
cer agents using learning to rank. In 2016 Joint 8th
International Conference on Soft Computing and Intelli-
gent Systems (SCIS) and 17th International Symposium
on Advanced Intelligent Systems (ISIS), pages 239–242.
IEEE, 2016.

Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos.
Best arm identification in multi-armed bandits. In COLT,
pages 41–53. Citeseer, 2010.

David Balduzzi, Karl Tuyls, Julien Perolat, and Thore Grae-
pel. Re-evaluating evaluation. Advances in Neural Infor-
mation Processing Systems, 31, 2018.

David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech
Czarnecki, Julien Perolat, Max Jaderberg, and Thore
Graepel. Open-ended learning in symmetric zero-sum
games. In International Conference on Machine Learn-
ing, pages 434–443. PMLR, 2019.

Nolan Bard, John Hawkin, Jonathan Rubin, and Martin
Zinkevich. The annual computer poker competition. AI
Magazine, 34(2):112–112, 2013.

Noam Brown and Tuomas Sandholm. Superhuman AI for
heads-up no-limit poker: Libratus beats top professionals.
Science, 359(6374):418–424, 2018.

Noam Brown and Tuomas Sandholm. Superhuman AI for
multiplayer poker. Science, 365(6456):885–890, 2019.

Sebastian Bruch. An alternative cross entropy loss for
learning-to-rank. In Proceedings of the Web Conference
2021, pages 118–126, 2021.

Neil Burch. Time and space: Why imperfect information
games are hard. PhD thesis, University of Alberta, 2017.

Abraham Charnes and William W Cooper. Chance-
constrained programming. Management science, 6(1):
73–79, 1959.

Katherine Chen and Michael Bowling. Tractable objec-
tives for robust policy optimization. Advances in Neural
Information Processing Systems, 25:2069–2077, 2012.

S.E. Embretson, S.E. Embretson, and S.P. Reise. Item Re-
sponse Theory for Psychologists. Multivariate applica-
tions book series. L. Erlbaum Associates, 2000. ISBN
9780805828184.

Meta FAIR, Anton Bakhtin, Noam Brown, Emily Dinan,
Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew
Goff, Jonathan Gray, Hengyuan Hu, et al. Human-level
play in the game of diplomacy by combining language
models with strategic reasoning. Science, 378(6624):
1067–1074, 2022.

Gabriele Farina, Christian Kroer, and Tuomas Sandholm.
Stochastic regret minimization in extensive-form games.
In International Conference on Machine Learning, pages
3018–3028, 2020.

Yoav Freund and Robert E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences, 55
(1):119–139, 1997.

Florian Fuchs, Yunlong Song, Elia Kaufmann, Davide Scara-
muzza, and Peter Dürr. Super-human performance in
Gran Turismo Sport using deep reinforcement learning.
IEEE Robotics and Automation Letters, 6(3):4257–4264,
2021. doi: 10.1109/LRA.2021.3064284.

Daniel Hernandez, Kevin Denamganai, Sam Devlin, Spyri-
don Samothrakis, and James Alfred Walker. A compar-
ison of self-play algorithms under a generalized frame-
work. IEEE Transactions on Games, 14(2):221–231,
2021.

Yujing Hu, Qing Da, Anxiang Zeng, Yang Yu, and Yinghui
Xu. Reinforcement learning to rank in e-commerce search
engine: Formalization, analysis, and application. In Pro-
ceedings of the 24th ACM SIGKDD international con-
ference on knowledge discovery & data mining, pages
368–377, 2018.

Michael Johanson, Nolan Bard, Neil Burch, and Michael
Bowling. Finding optimal abstract strategies in exten-
sive form games. In 26th AAAI Conference on Artificial
Intelligence (AAAI-12), 2012.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Ange-
liki Lazaridou, Karl Tuyls, Julien Pérolat, David Silver,
and Thore Graepel. A unified game-theoretic approach
to multiagent reinforcement learning. Advances in neural
information processing systems, 30, 2017.

Ang Li, Ola Spyra, Sagi Perel, Valentin Dalibard, Max
Jaderberg, Chenjie Gu, David Budden, Tim Harley, and
Pramod Gupta. A generalized framework for population
based training. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pages 1791–1799, 2019.

Xiangyu Liu, Hangtian Jia, Ying Wen, Yujing Hu, Yingfeng
Chen, Changjie Fan, Zhipeng Hu, and Yaodong Yang.
Towards unifying behavioral and response diversity for
open-ended learning in zero-sum games. Advances in
Neural Information Processing Systems, 34:941–952,
2021.

Edward Lockhart, Marc Lanctot, Julien Pérolat, Jean-
Baptiste Lespiau, Dustin Morrill, Finbarr Timbers, and
Karl Tuyls. Computing approximate equilibria in sequen-
tial adversarial games by exploitability descent. In IJCAI
2019, 2019a.

Edward Lockhart, Marc Lanctot, Julien Pérolat, Jean-
Baptiste Lespiau, Dustin Morrill, Finbarr Timbers, and
Karl Tuyls. Computing approximate equilibria in sequen-
tial adversarial games by exploitability descent. arXiv
preprint arXiv:1903.05614, 2019b.

Luke Marris, Paul Muller, Marc Lanctot, Karl Tuyls, and
Thore Graepel. Multi-agent training beyond zero-sum
with correlated equilibrium meta-solvers. In Interna-
tional Conference on Machine Learning, pages 7480–
7491. PMLR, 2021.

Stephen McAleer, Kevin Wang, John B Lanier, Marc Lanc-
tot, Pierre Baldi, Tuomas Sandholm, and Roy Fox. Any-
time psro for two-player zero-sum games. 2022.

Colin McDiarmid. Concentration. In Probabilistic methods
for algorithmic discrete mathematics, pages 195–248.
1998.

Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisỳ,
Dustin Morrill, Nolan Bard, Trevor Davis, Kevin Waugh,
Michael Johanson, and Michael Bowling. Deepstack:
Expert-level artificial intelligence in heads-up no-limit
poker. Science, 356(6337):508–513, 2017.

Shayegan Omidshafiei, Christos Papadimitriou, Georgios
Piliouras, Karl Tuyls, Mark Rowland, Jean-Baptiste
Lespiau, Wojciech M Czarnecki, Marc Lanctot, Julien
Perolat, and Remi Munos. α-rank: Multi-agent evaluation
by evolution. Scientific reports, 9(1):1–29, 2019.

Harrie Oosterhuis and Maarten de de Rijke. Robust gener-
alization and safe query-specializationin counterfactual
learning to rank. In Proceedings of the Web Conference
2021, pages 158–170, 2021.

Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene
Tarassov, Florian Strub, Vincent de Boer, Paul Muller,
Jerome T Connor, Neil Burch, Thomas Anthony, et al.
Mastering the game of stratego with model-free multi-
agent reinforcement learning. Science, 378(6623):990–
996, 2022.

Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. Quality
diversity: A new frontier for evolutionary computation.
Frontiers in Robotics and AI, page 40, 2016.

Arrasy Rahman, Elliot Fosong, Ignacio Carlucho, and Ste-
fano V Albrecht. Towards robust ad hoc teamwork agents
by creating diverse training teammates. arXiv preprint
arXiv:2207.14138, 2022.

Mark Rowland, Shayegan Omidshafiei, Karl Tuyls, Julien
Perolat, Michal Valko, Georgios Piliouras, and Remi
Munos. Multiagent evaluation under incomplete informa-
tion. NeurIPS, 32, 2019.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez,
Laurent Sifre, George van den Driessche, Julian Schrit-
twieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. Mastering the game of go with
deep neural networks and tree search. Nature, 529(7587):
484–489, 2016.

Yunlong Song, HaoChih Lin, Elia Kaufmann, Peter Dürr,
and Davide Scaramuzza. Autonomous Overtaking in
Gran Turismo Sport Using Curriculum Reinforcement
Learning. In ICRA, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

Oskari Tammelin. Solving large imperfect information
games using cfr+. arXiv preprint arXiv:1407.5042, 2014.

Oskari Tammelin, Neil Burch, Michael Johanson, and
Michael Bowling. Solving heads-up limit texas hold’em.
In 24th International Joint Conference on Artificial Intel-
ligence (IJCAI 2015), 2015.

Open Ended Learning Team, Adam Stooke, Anuj Maha-
jan, Catarina Barros, Charlie Deck, Jakob Bauer, Jakub
Sygnowski, Maja Trebacz, Max Jaderberg, Michaël Math-
ieu, Nat McAleese, Nathalie Bradley-Schmieg, Nathaniel
Wong, Nicolas Porcel, Roberta Raileanu, Steph Hughes-
Fitt, Valentin Dalibard, and Wojciech Marian Czarnecki.
Open-ended learning leads to generally capable agents.
ArXiv Pre-Print, abs/2107.12808, 2021. URL https:
//arxiv.org/abs/2107.12808.

Wim J. van der Linden. Linear models for optimal test
design. Springer, 2005.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki,
Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H. Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, pages 1–5,
2019.

Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James
MacGlashan, Kaushik Subramanian, Thomas J Walsh,
Roberto Capobianco, Alisa Devlic, Franziska Eckert, Flo-
rian Fuchs, et al. Outracing champion gran turismo
drivers with deep reinforcement learning. Nature, 602
(7896):223–228, 2022.

https://arxiv.org/abs/2107.12808
https://arxiv.org/abs/2107.12808

A APPENDIX

B GLOSSARY

Policy. A policy to solve a control problem or play a game, potentially generated by an RL algorithm.

Deployment policy. A policy used in production, e.g., deployed to end users, used in a competition, or integrated into a
technology demonstration.

Deployment candidate. A policy in consideration for deployment.

Test. The aggregate result of test cases applied to a policy.

Test case. An atomic unit of a test that reveals a particular skill or emulates a specific deployment scenario. RPOSST selects
a small number of test cases and a distribution over them so that we can avoid executing all conceivable test cases on
every deployment candidate every time we want to deploy a policy.

Test case result. The numerical result of evaluating a policy on a test case. This number should be a good estimate of the
policy’s expected performance in the test case scenario, but it maybe noisy if the test case is stochastic, e.g., the average
test case result observed from Monte Carlo rollouts.

Test score. The final score produced by a test, i.e., the average test case result across test cases, perhaps weighted by the
relative importance of each test case.

Tuning policy. A policy used at the start of the RPOSST procedure to gather information about test cases. Each tuning
policy is evaluated on each test case to construct the test case result matrix that forms the basis of RPOSST’s loss
function.

C THEORY BACKGROUND

We make use of six basic results, which are restated here for completeness.

Proposition C.1 (Azuma-Hoeffding inequality.). For constants ⟨ct ∈ R⟩Tt=1, martingale difference sequence ⟨Y t ∈ R⟩Tt=1

where |Y t| ≤ ct for each t, and τ ≥ 0,

P

[∣∣∣∣∣
T∑

t=1

Y t

∣∣∣∣∣ ≥ τ

]
≤ 2 exp

(
−τ2

2
∑T

t=1(c
t)2

)
.

For proof, see that of Theorem 3.14 by McDiarmid [1998].

Proposition C.2 (Regret matching+ regret bound). Consider an online decision process with m actions and the set of
bounded, linear loss functions, L = [0, L]m. Regret matching+ accumulates pseudoregrets q1:t = [q1:t−1 + ρt]+, q1:0 = 0,
where ρt = (ℓt)⊤σt − ℓt is the instantaneous regret on round t under loss function ℓt ∈ L, and σt = q1:t−1/(1⊤q1:t−1)
if 1⊤q1:t−1 > 0 or σt = 1

m1 otherwise, is regret matching+’s action distribution on round t. After T rounds, regret
matching+’s cumulative regret is bounded as

∑T
t=1 ρ

t ≤ L
√
Tm.

For proof, see Tammelin et al. [2015].

Proposition C.3 (The linearization trick). Consider an online decision process with convex decision set Θ ⊆ Rm and a set
of bounded, convex loss functions L ⊆ {ℓ | ℓ : Θ→ [0, L]}, where each loss function ℓ ∈ L has subgradients with bounded
maximum magnitude, i.e., ∥∇ℓ(θ)∥∞ ≤ G, for all θ ∈ Θ. The instantaneous regret under loss function ℓ ∈ L is upper
bounded by the instantaneous regret under the loss function subgradient∇ℓ(θ) given decision θ ∈ Θ, i.e.,

ℓ(θ)− ℓ(θ′) ≤ (∇ℓ(θ))⊤θ − (∇ℓ(θ))⊤θ′.

Proof. From the convexity of ℓ, its first-order Taylor expansion lower bounds ℓ, i.e., ℓ(θ′) ≥ ℓ(θ) + (∇ℓ(θ))⊤(θ′ − θ), for
all θ, θ′ ∈ Θ. Therefore,

ℓ(θ)− ℓ(θ′) ≤ ℓ(θ)−
(
ℓ(θ) + (∇ℓ(θ))⊤(θ′ − θ)

)
= (∇ℓ(θ))⊤θ − (∇ℓ(θ))⊤θ′,

as required.

Proposition C.4 (Lemma 2 of Lockhart et al. [2019a,b]). Assume that on each round t of an online decision process with
decision set Θ ⊆ Rm and bounded loss functions from L ⊆ {ℓ | ℓ : Θ→ [0, L]}, the loss function ℓt maximizes the loss of
θt ∈ Θ chosen by the decision-maker, i.e., ℓt ∈ argmaxℓ∈L ℓ(θt). On the round t∗ where the minimum loss was observed,
t∗ ∈ argmint∈{1,...,T} ℓ

t(θt), the decision θt
∗

has a maximum loss that is no more than 1
T ρ

1:T (θ) larger than that of any
alternative decision θ ∈ Θ, i.e., ℓt

∗
(θt

∗
)− ℓθ(θ) ≤ 1

T ρ
1:T (θ), where ℓθ(θ) ∈ L is a loss function that maximizes the loss

on θ.

Proof. Since the loss function on each round is chosen to maximize loss, the average regret for not choosing θ ∈ Θ is lower
bounded as

1

T
ρ1:T ≥ 1

T
min

t∈{1,...,T}
Tℓt(θt)− 1

T

T∑
t=1

ℓt(θ)

≥ ℓt
∗
(θt

∗
)− ℓθ(θ),

as required.

Proposition C.5 (Theorem 4 of Johanson et al. [2012]). Assume that on each round t of an online decision process with
decision set Θ ⊆ Rm and bounded (possibly random) loss functions from L ⊆ {ℓ | ℓ : Θ→ [0, L]}, the loss function ℓt

maximizes the loss of θt ∈ Θ chosen by the decision-maker, i.e., ℓt ∈ argmaxℓ∈L ℓ(θt). The loss function that the decision-

maker observes on each round t may be a random loss function ℓ̂t where E
[
ℓ̂t
]
= ℓt. On round T ′ ∼ Unif({1, . . . , T})

after T rounds of the online decision process, the decision θT
′

has a maximum loss that is no more than 1
qT ρ

1:T (θ) larger

than that of any alternative decision θ ∈ Θ with probability 1 − q, q ∈ (0, 1], i.e., ℓT
′
(θT

′
) − ℓθ(θ) ≤ 1

qT ρ
1:T (θ) holds

with probability 1− q, where ℓθ(θ) ∈ L is a loss function that maximizes the loss on θ and the cumulative regret ρ1:T is
with respect to the expected loss functions, ⟨ℓt⟩Tt=1.

See Johanson et al. [2012] for proof.

Proposition C.6 (Successive Rejects error probability). Consider a best action identification task with m actions from setA.
Each time an action a ∈ A is selected, a random sample of that action’s loss, ℓ(a) ∈ [−0.5, 0.5], under a fixed but random
loss function ℓ, is observed. The goal is to identify an action a∗ ∈ A∗ ⊂ A with the lowest expected loss, E[ℓ(a∗)], after T
samples. The probability that the action returned by the Successive Rejects algorithm is in A∗ is at least

1− m(m− 1)

2
exp

(
− T −m

log(m)H2

)
,

where log(m) = 1
2 +

∑m
i=2

1
i , H2 = maxi∈{1,...,|A\A∗|}

i

(E[ℓ(a(i))]−E[ℓ(a∗)])
2 , and a(i) is the action that achieves the ith

smallest loss (with ties broken arbitrarily) among the suboptimal actions.

See Audibert et al. [2010] for proof.

D SEQUENTIAL-MOVE MODEL THEORY

Lemma D.1. Consider a k-of-N game with m actions and the set of bounded, convex loss functions L =
{ℓ | ℓ : △m → [0, L]}, where each loss function ℓ ∈ L has subgradients with bounded maximum magnitude, i.e.,
∥∇ℓ(σ)∥∞ ≤ G, for all σ ∈ △m. Let the k-worst loss functions from N of those sampled from the given uncertainty
distribution Ψ on round t be ⟨ℓt(i) ∈ L⟩

k
i=1. The randomly sampled k-of-N loss function on round t is then the av-

erage ℓ̄t = 1
k

∑k
i=1 ℓ(i). After T rounds, regret matching+ on the random loss gradients ∇ℓ̄t(σt) has no more than

2G
√
Tm+ 2L

√
2T log 1/p cumulative regret on the expected k-of-N losses,

〈
E[ℓ̄]t

〉T
t=1

, with probability 1− p, p > 0.

Proof. Since regret matching+ observes and learns directly from∇ℓ̄t, its regret for not always choosing σ ∈ △m, under the
sampled loss functions, is deterministically upper bounded as

R1:T =
T∑

t=1

ℓ̄t(σt)− ℓ̄t(σ)︸ ︷︷ ︸
.
=Rt

≤ 2G
√
Tm,

where ⟨σt ∈ △m⟩Tt=1 are the decisions made by regret matching+. This bound comes from regret matching+’s regret bound
on linear losses (Proposition C.2) and the linearization trick (Proposition C.3), which states that the regret on loss gradients
upper bounds that of the loss itself, i.e., R1:T ≤

∑T
t=1

(
∇ℓ̄t(σt)

)⊤
σt −

(
∇ℓ̄t(σ)

)⊤
σ.

The rest of the proof largely follows the proof of Farina et al. [2020]’s Proposition 1. The sequence of differences,
⟨E[Rt]−Rt ≤ 2L⟩Tt=1, is a bounded martingale difference sequence.

The probability that the expected cumulative regret, E[R1:T], is bounded by the cumulative sampled regret plus slack λ ≥ 0
is bounded according to the Azuma-Hoeffding inequality (Proposition C.1) as

P
[
E[R1:T] ≤ R1:T + λ

]
(3)

≤ P

[
T∑

t=1

E[Rt]−Rt ≤ λ

]
(4)

= 1− P

[
T∑

t=1

E[Rt]−Rt ≥ λ

]
(5)

≤ 1− exp

(
2λ2

4T (2L)
2

)
. (6)

Setting λ = 2L
√
2T log(1/p) ensures that

E[R1:T] ≤ R1:T + 2L
√

2T log 1/p

with probability 1− p. Since R1:T ≤ 2L
√
Tm,

E[R1:T] ≤ 2G
√
Tm+ 2L

√
2T log 1/p

with probability 1− p, as required.

Theorem D.2. After T ′ ∼ Unif({1, . . . , T1}), T1 > 0, rounds of its optimization game, Algorithm 1 selects an m-tuple
of test cases, τ∗ and weights σ̂T ′

τ∗ ∈ △m that, with probability (1 − p)(1 − q)(1 − α), p, q, α > 0, are ε
q -optimal for

Equation (2), where ε = O
(√

1
T1
m+

√
1
T1

log(1/p)
)

and α = O
(
e−T2

)
.

Proof. Recall that the k-of-N loss ℓ̄t that RPOSSTSEQ updates from on each round t = 1, . . . , T1 is a Monte Carlo estimate
of the k-of-N percentile loss,

Lµk-of-N ,Ψ(σ̂
t
τ) = inf

y∈Y

∫
η∈[0,1]

Pπj,σ[ℓ(σ̂
t
τ ;πj ,σ)≤y(η)]≥η

y(η)µk-of-N (dη) = Eπj ,σ[ℓ̄
t], (7)

where (πj , σ) ∼ Ψ. The sequence of test case weights, ⟨σt
τ ⟩

T1
t=1, for each m-tuple of test cases τ ⊂ T is therefore random.

All of the following probabilities and expectations are with respect to these random variables.

Lemma D.1 guarantees that RPOSSTSEQ, in generating the test case weight sequence ⟨σt
τ ⟩

T1
t=1 has no more than C =

2G
√
T1m+ 2L

√
2T1 log 1/p cumulative regret on the k-of-N percentile losses,

ρ1:T1
στ

=

T∑
t=1

Lµk-of-N ,Ψ(σ̂
t
τ)− Lµk-of-N ,Ψ(στ),

for not always selecting test case weights στ , with probability 1− p. That is, 1− p = P
[
ρ1:T1
στ
≤ C

]
.

Proposition C.5 guarantees that, on round T ′ ∼ Unif(1, . . . , T1), the weights for each m-tuple are 1
qT1

ρ1:T1
στ

close to

optimal for Equation (7), with probability 1 − q. That is, 1 − q = P

[
Lµk-of-N ,Ψ(σ̂

T ′

τ)− Lµk-of-N ,Ψ(στ) ≤
ρ1:T1
στ

qT1

]
,

and this holds regardless of the value of ρ1:T1
στ

, i.e., P

[
Lµk-of-N ,Ψ(σ̂

T ′

τ)− Lµk-of-N ,Ψ(στ) ≤
ρ1:T1
στ

qT1

]
=

P

[
Lµk-of-N ,Ψ(σ̂

T ′

τ)− Lµk-of-N ,Ψ(στ) ≤
ρ1:T1
στ

qT1
| ρ1:T1

στ
≤ C ′

]
for all C ′ ∈ R.

Combining these two results, we see that the probability that σ̂T ′

τ has at most C
qT1

excess k-of-N percentile loss is

P

[
Lµk-of-N ,Ψ(σ̂

T ′

τ)− Lµk-of-N ,Ψ(στ) ≤
C

qT1

]
= P

[
Lµk-of-N ,Ψ(σ̂

T ′

τ)− Lµk-of-N ,Ψ(στ) ≤
ρ1:T1
στ

qT1
, ρ1:T1

στ
≤ C

]
(8)

= P

[
Lµk-of-N ,Ψ(σ̂

T ′

τ)− Lµk-of-N ,Ψ(στ) ≤
ρ1:T1
στ

qT1
| ρ1:T1

στ
≤ C

]
P
[
ρ1:T1
στ
≤ C

]
(9)

= P

[
Lµk-of-N ,Ψ(σ̂

T ′

τ)− Lµk-of-N ,Ψ(στ) ≤
ρ1:T1
στ

qT1

]
P
[
ρ1:T1
στ
≤ C

]
(10)

= (1− p)(1− q). (11)

The last remaining step is to complete the outer minimization in Equation (2) to select a single m-tuple of test cases. Since
the k-of-N loss observed on each round is random, we cannot compute a simple argmin using the test case weights on round
T ′, and are instead faced with a best arm identification problem. For this, we run the Successive Rejects algorithm, which
we know from Proposition C.6 identifies a minimum loss m-tuple of test cases with probability at least

α = 1− m(m− 1)

2
exp

(
− T2 −m

log(m)H2

)
.

The probability of selecting the best m-tuple using the test case weights on round T ′ is independent of whether or not the
regret bound C was actually achieved or if the test case weights on T ′ are actually nearly optimal for any given m-tuple, the
probability of which we previously characterized as (1− p)(1− q). Therefore, the probability of achieving C

qT1
-optimality

given each m-tuple and selecting the best m-tuple is the product (1− p)(1− q)(1− α), as required.

The
√
|T | dependence in Theorem D.2 could be improved to

√
log(|T |) if regret matching+ (within or without CFR,

respectively) was replaced with an algorithm like Hedge [Freund and Schapire, 1997], but this tends to lead to worse
performance in practice (see, e.g., Tammelin et al. [2015], Burch [2017]).

In the deterministic CVaR RPOSST case, we get the following corollary.

Corollary D.3. Assume that Ψ ∈ △d for some finite d ≥ 1. After T rounds of the CVaR(η) RPOSSTSEQ optimization game,
where the protagonist chooses m-size tests according to regret matching+ against a best response antagonist, τ∗ and σt∗

τ∗

are ε-optimal for Equation (2) under the η-fractile CVaR robustness measure, where ε = O
(√

1
T m
)

.

Proof. Proposition C.2 and Proposition C.4 ensures that there is a round t∗τ ≤ T where σ
t∗τ
τ is 2G

√
m

1

T
-optimal on the

deterministic k-of-N losses. Since the k-of-N loss function observed on each round is deterministic, we can perform a
simple minimization across {1, . . . , T} and the m-tuple of test cases to find the minimizers t∗ and τ∗, leading to the stated
optimality guarantee.

E DETERMINISTIC CVAR(η) RPOSSTSEQ PSEUDOCODE

Pseudocode for CVaR(η) RPOSSTSEQ is presented in Algorithm 2.

F SIMULTANEOUS-MOVE MODEL

We present a more in-depth description of the simultaneous move antagonist model which describes the RPOSSTSIM as
introduced in Section 4. This description is complemented by pseudocode describing its workings in Algorithm 3.

In this model, the antagonist does not observe which m-tuple of test cases, τ , is sampled from the protagonist’s σ̂t
T ∈ △|T |m

distribution, making the antagonist role more difficult. The simultaneous move model corresponds to the policy testing use
case where a new m-tuple of test cases is sampled independently for each test that is performed. Effectively, the protagonist
and antagonist choose τ and

〈〈
πj(i) , σ(i)

〉〉k
i=1

respectively in a simultaneous fashion. In this model, the antagonist must

choose a single list of tuples
〈〈
πj(i) , σ(i)

〉〉k
i=1

that will lead to a large loss across all of the m-tuples of test cases that the
protagonist might choose, thereby preventing the antagonist from exploiting the lacking aspects of each individual m-tuple.

The protagonist in the simultaneous move model must carefully choose σ̂t
T and each m-tuple distribution, [σ̂t

τ]τ∈T m , to
thwart the antagonist. We organize the protagonist’s actions into two sequential decisions: first choosing the m-tuple τ and
then choosing σ̂t

τ given τ . We then use CFR+ to refine both σ̂t
T and each σ̂t

τ after each round.

Instantiating the percentile performance loss of Equation (1) for the simultaneous move model, the RPOSST objective is,

min
σ̂T ∈△|T |m

[σ̂τ∈△m]τ∈T m

inf
y∈Y

∫
η∈[0,1]

P[Eτ∼σ̂T [ℓ(σ̂τ ;σ,πj)]≤y(η)]≥η

y(η)µk-of-N (dη), (12)

where σ, πj ∼ Ψ.

After (linearly) averaging the protagonist’s choices of σ̂t
T and [σ̂t

τ]τ∈T m across each round, Algorithm 3 returns the average
distributions ¯̂σT

T and
[
¯̂σT
τ

]
τ∈T m .

The simultaneous-move model can be made deterministic using a CVaR measure in the same way as the sequential-move
model. If we fix the ratio k/N and allow N →∞, the k-of-N robustness measure converges toward the CVaR measure at
the k/N fractile. Furthermore, if our the distribution characterizing our uncertainty, Ψ, is over a discrete set of manageable
size, then we can run RPOSST on CVaR robustness measures. In RPOSSTSIM, the lowest loss test case distributions across
all rounds can also be tracked instead of averaging all of the distributions.

G EXPERIMENTAL DETAILS

In this section we provide further details on some of the experimental setups used in Section 5.

All CVaR(1%) RPOSSTSEQ procedures were run on a 16 core AMD® Ryzen 7 5800h CPU with 30.7 GiB of memory. See
Table 1 for the time required to run CVaR(1%) RPOSSTSEQ on each domain.

G.1 RACING ARROWS

Racing Arrows is a two-player, zero-sum, one-shot, continuous action game that replicates simple aspects of a passing
scenario in a race featuring a "leader" player and faster "follower" player. The goal of the follower is to pass the leader while
the goal of the leader is to block the follower.

Both players privately choose an angle in the half-circle between 0 and pi for their arrow. The speed of each player is
represented as the length of their arrow. The leader and follower are assigned a speed according to their roles, where the
leader’s speed of 0.8 is slightly slower than the follower’s speed of 1 to give the follower a chance to pass. The distance a
player travels is the height of their arrow, i.e., speed · sin(angle).

The follower is blocked and the leader wins if the difference between the two arrows is below π/10, that is, the leader is close
enough to block the follower. If the follower is not blocked, then the player who traveled the farthest wins. Players receive
+1 for a win, 0 for a loss, or 0.5 if they travel exactly the same distance (these payoffs sum to the constant +1, which is
isomorphic to true zero-sum payoffs).

G.2 ANNUAL COMPUTER POKER COMPETITION

The Annual Computer Poker Competition (ACPC) was run to test autonomous poker playing agents from 2006 to 2017.
The logs of play are freely available online.4 Typically, these competitions are Texas hold’em variants: two-player limit,

4http://www.computerpokercompetition.org/downloads/competitions

http://www.computerpokercompetition.org/downloads/competitions

two-player no-limit, and 3-player limit, where “limit” and “no-limit” indicates whether players are only allowed to bet in
fixed increments or if they can bet any number of chips from their current stack, respectively. Chip stacks reset to their initial
sizes after every hand (Doyle’s game) so that players can be evaluated on their average one-hand performance across deck
shufflings and seat positions.

To reduce variance, hands are played in duplicate, which means that the same deck order is played out multiple times so
that each player has a turn playing with the same hands. For example, if Alice in seat 1 is dealt the ace and king of spades
and Bob in seat 2 is dealt the 2 and 7 of hearts in one hand, then Alice and Bob will also play the same hand in opposite
positions, where Bob is dealt the ace and king of spades in seat 1, and Alice is dealt the 2 and 7 of hearts. Alice’s duplicate
score is then the number of chips she wins over what Bob won in the same position, averaged across both positions.

Our experiments use duplicate score data, i.e., a test case result here is a duplicate score between two agents, from the 2012
two-player limit and the 2017 two-player no-limit events.

G.3 GRAN TURISMO™ 7

(a)

0 4 8 12 16 20 24 28 32 36 40 44
Agent ID

0

4

8

12

16

20

24

28

32

36

40

44

Ag
en

t I
D

(b)

Figure 5: Figure 5a shows a screenshot of two RL agents racing at the Trial Mountain racetrack. The layout of the track can
be seen in the top right. Figure 5b shows the result matrix for the zero-sum experiment. Blue / red colors indicate positive /
negative winrates from the point of view of the column player. Agents 0-2 correspond to the different built-in AIs, with the
remaining agents being the trained RL agents sorted according to skill. Diagonal values denote an agent playing against
itself, which we artificially set to 50%.

Our Gran Turismo™ 7 experiments were conducted using the Gran Turismo™ 7 racing simulator. Previous versions of
the Gran Turismo™ 7 franchise have been used to exhibit reinforcement learning results [Fuchs et al., 2021, Song et al.,
2021] including outracing top human drivers [Wurman et al., 2022]. Note our focus was not on agent training but rather the
problem of selecting the best policy for a deployment, so for training we used the same training parameters reported by by
Wurman et al. except for changes to training scenarios to match the track and car combination chosen for this experiment,
training only for one-on-one competition, and utilizing a version of self-play to simplify the training process.

The experiment was conducted at the Trial Mountain racetrack (see Figure 5a) with the RL policy (and any RL-trained
opponent policies) driving a Chevrolet Corvette C7 Stingray ’14 using Sport Hard tires. The track and car were chosen
because the long straightaways and sharp turns at Trial Mountain led to competitive racing among various RL policies as

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

32
34

36
38

40
42

44

 1
 1 1

 1 1 90 3 1

 1

 47

 46

 45

 44 43

 45

 57

 49 58

(a) k-of-N

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

32
34

36
38

40
42

44

 37 6 6

 1 3
 2

 3 40 1 1

(b) Minimax uniform

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

32
34

36
38

40
42

44

 3 3 2 1

 1 3 87

(c) Iterative minimax

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

32
34

36
38

40
42

44

 1

 4

 3
 92

(d) Minimax(TNP) uniform

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

32
34

36
38

40
42

44

2
1

 2

 1

 1
 1 1
 3 4
 2 1
 2 1 3
 2 1 1
 1 1 1
 1 1
 1 2 1 1
 3 1
 1
 1 1 3
 3 4 1 2
 1 1
 1
 1 1 1
 1 2
 5
 1 2
 1 1 1 1 2 2
 4 1 1
 3

 3 1
 1 1 1

(e) Miniaverage uniform

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

32
34

36
38

40
42

44

1

 1

 1

 1

 4 4
 2 1 1 2
 3

 1 3
 2 2 2
 1 2 1 2 2 3
 1
 1 2 1 1 3
 1 2 1 3 1 1
 1 2 2 1
 2 2 1 1

 2 1 3 3
 1 1
 1 4 2 3 1 1
 1 2 1 1

(f) Minimax(TTD) uniform

Figure 6: Triangular matrices denoting frequencies of test case pairs choosen by all 6 algorithmic ablations over 100 runs
of the winrate GT experiment on a holdout of size 20%. This visualization is possible because only 2 test cases where
chosen as output. The upper triangular matrix from Figure 6a denotes average probability mass given to test case i. All other
algorithms are limited to uniformly mixing over test cases so the upper triangular matrix is omitted for clarity.

there are many different areas of the track where passes can occur and the long straightaways allow the agent to use the
slipstream of the other car to stay in touch with the car in front.

From a single one-on-one training run we evaluated checkpoints from epochs 5, 200, and then every 75 epochs between
epoch 1000 and 4000 for a total of 43 checkpoints. We also evaluated 3 built-in AI agent using cars and tires that made them
competitive with the RL agents. Overall we evaluated 46 policies, each of which was considered as a candidate deployment
policy or an opponent in a test case.

To create the result matrix shown in Figure 5b, each race was run 20 times with a side-by-side standstill start with the
candidate and opponent policies swapping sides half the time to enforce symmetry. An agent would obtain 1 or 0 for winning
or losing the race respectively. The diagonal denoting a race between an agent against itself was filled in with 0.5 entries. As
a second experiment on Gran Turismo™ 7 for a non-zero sum game, using the sportsmanship rule mentioned in Section 5
we recomputed the result matrix from Figure 5b so as to penalize trajectories where any car collisions had happened, giving
both agents a payoff of −1. We remove the entries in the result matrix related to built-in AIs as they are highly collision
averse and therefore the sportsmanship constraints would not change their test results, reducing the test case pool size to 43.

G.4 SUPPLEMENTAL EXPERIMENTAL RESULTS

Figure 2 in Section 5 analyses the quantitative performance of RPOSST and its algorithmic ablations with respect to
measuring test scores on a holdout set of unseen candidate deployment policies. We complement that analysis with a
qualitative study of behaviors exhibited by the algorithms using the large GT experiment with holdout of size 20 as a
representative example. We are interested in examining (1) how deterministic each algorithm’s output is with respect to the
selection of test case pairs and (2) whether different algorithms choose the same test-cases.

The lower triangular matrices from Figure 6 show the frequency at which test case pairs were chosen over the 100 seeds.
The top 2 most selected test case pairs for each algorithm are presented in Table 2. We observe that RPOSST, alongside
Iterative minimax and Minimax(TNP) uniform are very deterministic algorithms, favouring the selection of the same test

(0) (5) (10) (15) (20) (25) (30) (35) (40)
0.0

0.2

0.4

0.6

0.8

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e)

iterative minimax(m = 1)
miniaverage uniform(m = 1)
minimax(TNP) uniform(m = 1)
minimax(TTD) uniform(m = 1)
minimax uniform(m = 1)
RPOSSTSEQ(m = 1)

(0) (10) (20) (30) (40) (50) (60) (70) (80)
0.0

0.2

0.4

0.6

0.8

(0) (15) (30) (45) (60) (75) (90) (105) (120)
0.0

0.2

0.4

0.6

0.8

(0) (5) (10) (15) (20) (25) (30) (35) (40)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e)

iterative minimax(m = 2)
miniaverage uniform(m = 2)
minimax(TNP) uniform(m = 2)
minimax(TTD) uniform(m = 2)
minimax uniform(m = 2)
RPOSSTSEQ(m = 2)

(0) (10) (20) (30) (40) (50) (60) (70) (80)
0.0

0.2

0.4

0.6

(0) (15) (30) (45) (60) (75) (90) (105) (120)
0.0

0.2

0.4

0.6

(0) (5) (10) (15) (20) (25) (30) (35) (40)
holdout policy--target-distribution pair

0.0

0.1

0.2

0.3

0.4

0.5

0.6

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e) iterative minimax(m = 3)
miniaverage uniform(m = 3)
minimax(TNP) uniform(m = 3)
minimax(TTD) uniform(m = 3)
minimax uniform(m = 3)
RPOSSTSEQ(m = 3)

(0) (10) (20) (30) (40) (50) (60) (70) (80)
holdout policy--target-distribution pair

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(0) (15) (30) (45) (60) (75) (90) (105) (120)
holdout policy--target-distribution pair

0.0

0.2

0.4

0.6

Figure 7: Expected test score error (absolute difference) across holdout-policy–target-distribution pairs on Racing Arrows
where test cases are 50 follower policies. Each row uses a different setting for the test size (m = 1 top, m = 2 middle, and
m = 3 bottom) and each column uses a different holdout proportion (20% held out in the left column, 40% middle, and
60% right). 100 sets of holdout policies were sampled. Holdout-policy–target-distribution pairs are sorted according to test
score error. Each RPOSSTSEQ instance was run for 500 rounds (T = 500). Errorbars represent 95% t-distribution confidence
intervals.

case pair over 90%, 87% and 92% of the seeds respectively. We deem this a desirable property, as variance in evaluation
scenarios is undesirable because it can hamper interpretability and reproducibility. In contrast, Minimax uniform exhibits a
bimodal choice. The remaining algorithms feature a very high variance in their choice of test case pairs, with their most
chosen test case pair being selected 5% of the time, spreading selection widely.

From Table 2, test case 16 is heavily favoured by half of the algorithms (RPOSSTSEQ, Minimax uniform and Minimax(TNP)
uniform), followed to a lesser extent by test case 41. This indicates that all these algorithms find useful structure in such
pairs of agents.

In Figures 7 to 12, we show the performance of RPOSSTSEQ and baselines in each domain across test sizes (m ∈ {1, 2, 3})
and holdout proportions (20%, 40%, and 60%). Figure 13 shows the results for the 500 policy Racing Arrows experiment
where the leader policies are treated as test cases.

We note that as m increases, the error on the holdout set typically decreases, particularly for RPOSST, since larger tests
have the capacity to be strictly more accurate. A qualitative analysis of these results suggests that there are few substantial
differences between RPOSST tests of different sizes or with different, reasonably sized, holdout sets. Furthermore, the
performance ordering of the tested algorithms remains the same as the results presented in the main paper.

(0) (5) (10) (15) (20) (25) (30) (35) (40)
0.0

0.2

0.4

0.6

0.8

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e)

iterative minimax(m = 1)
miniaverage uniform(m = 1)
minimax(TNP) uniform(m = 1)
minimax(TTD) uniform(m = 1)
minimax uniform(m = 1)
RPOSSTSEQ(m = 1)

(0) (10) (20) (30) (40) (50) (60) (70) (80)
0.0

0.2

0.4

0.6

0.8

(0) (15) (30) (45) (60) (75) (90) (105) (120)
0.0

0.2

0.4

0.6

0.8

(0) (5) (10) (15) (20) (25) (30) (35) (40)
0.0

0.1

0.2

0.3

0.4

0.5

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e)

iterative minimax(m = 2)
miniaverage uniform(m = 2)
minimax(TNP) uniform(m = 2)
minimax(TTD) uniform(m = 2)
minimax uniform(m = 2)
RPOSSTSEQ(m = 2)

(0) (10) (20) (30) (40) (50) (60) (70) (80)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(0) (15) (30) (45) (60) (75) (90) (105) (120)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(0) (5) (10) (15) (20) (25) (30) (35) (40)
holdout policy--target-distribution pair

0.0

0.1

0.2

0.3

0.4

0.5

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e) iterative minimax(m = 3)
miniaverage uniform(m = 3)
minimax(TNP) uniform(m = 3)
minimax(TTD) uniform(m = 3)
minimax uniform(m = 3)
RPOSSTSEQ(m = 3)

(0) (10) (20) (30) (40) (50) (60) (70) (80)
holdout policy--target-distribution pair

0.0

0.1

0.2

0.3

0.4

0.5

(0) (15) (30) (45) (60) (75) (90) (105) (120)
holdout policy--target-distribution pair

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 8: Expected test score error (absolute difference) across holdout-policy–target-distribution pairs on Racing Arrows
where test cases are 50 leader policies. Each row uses a different setting for the test size (m = 1 top, m = 2 middle, and
m = 3 bottom) and each column uses a different holdout proportion (20% held out in the left column, 40% middle, and
60% right). 100 sets of holdout policies were sampled. Holdout-policy–target-distribution pairs are sorted according to test
score error. Each RPOSSTSEQ instance was run for 500 rounds (T = 500). Errorbars represent 95% t-distribution confidence
intervals.

1 Inputs: ⟨η, T,m,Ψ, τ0, ℓ⟩

2 q1:0τ ← 0 ∈ Rm+|τ0| for τ ∈ T m

3 t∗ ← 1

4 v̄t
∗ ← −∞

5 for t← 1, . . . , T do
6 for τ ∈ T m do
7 zt ← 1⊤q1:t−1

τ

8 σ̂t
τ ← q1:t−1

τ /zt if zt > 0 else 1/m
9 // Fill in zeros so that σ̂t

τ ∈ △|T |.

10 σ̂t
τ (x)← 0 for x ∈ T \ (τ ∪ τ0)

11
[
ℓτ,(i)

]d
i=1
← Lη(σ̂

t
τ , η,Ψ, ℓ)

12 vtτ ← −
∑d

i=1

∂ℓτ,(i), πj(i)

∂σ̂t
τ

13 // Update regret matching+.

14 v̄tτ ← (σ̂t
τ)

⊤vtτ
15 ρtτ ← vtτ − v̄tτ
16 q1:tτ ← [q1:t−1

τ + ρtτ]+
17 // Update the best round.

18 if v̄tτ > v̄t
∗

then
19 t∗ ← t

20 v̄t
∗ ← v̄tτ

21 return τ t
∗
, σ̂t∗

τ∗

1 Procedure Lη Inputs: ⟨σ̂, η,Ψ, ℓ⟩
2 // The support of Ψ, supp(Ψ), is assumed to be a finite number d = |supp(Ψ)|.
3 for πji , σi ∈ supp(Ψ) do
4 // Evaluate σ̂.

5 ℓi ← ℓ(σ̂;πji , σi)

6 Sort
(
{i | ℓi}di=1

)
7 // Assign weights to each loss function.

8 // Iterate over Ψ’s support sorted accoding to descending loss value from the

previous step.

9 β ← 0
10 for πj(i) , σ(i) ∈ supp(Ψ) do
11 α(i) = min

{
Ψ
(〈
πj(i) , σ(i)

〉)
, η − β

}
12 β ← β + α(i)

13 return
[
α(i)

η ℓ(i)

]d
i=1

Algorithm 2: Deterministic CVaR(η) RPOSSTSEQ with regret matching+

1 Inputs:
〈
k,N, T,m,Ψ, τ0, ℓ

〉
2 // Initialize pseudoregrets.

3 q1:0T ← 0 ∈ R|T m|

4 q1:0τ ← 0 ∈ Rm+|τ0| for τ ∈ T m

5 // Initialize average distributions.

6 σ̂1:0
T ← 0 ∈ R|T m|

7 σ̂1:0
τ ← 0 ∈ Rm+|τ0| for τ ∈ T m

8 for t← 1, . . . , T do
9 // Sample antagonist actions.

10 πji , σi ∼ Ψ for i = 1 . . . N
11 // Generate test case distributions.

12 ztT ← 1⊤q1:t−1
T

13 σ̂t
T ← q1:t−1

T /ztT if ztT > 0 else 1/|T m|
14 for τ ∈ T m do
15 ztτ ← 1⊤q1:t−1

τ

16 σ̂t
τ ← q1:t−1

τ /ztτ if ztτ > 0 else 1/m
17 // Fill in zeros so that σ̂t

τ ∈ △|T |.

18 σ̂t
τ (x)← 0 for x ∈ T \ (τ ∪ τ0)

19 // Evaluate the CFR+ distributions.

20 ℓi ← (σ̂t
T)

⊤[ℓ(σ̂t
τ ;πji , σi)]τ∈T m for i = 1, . . . , N

21 // Sort to identify the worst k.

22 SortBy
(
[⟨σi, πji⟩]

N
i=1, [ℓi]

N
i=1

)
23 // Update CFR+.

24 for τ ∈ T m do
25 ℓτ,(i) ← ℓ(σ̂t

τ ;πj(i) , σ(i)) for i = 1, . . . , k

26 vtτ ← −1
k

∑k
i=1

∂ℓτ,(i)
∂σ̂t

τ

27 ρtτ ← vtτ − (σ̂t
τ)

⊤vtτ
28 q1:tτ ← [q1:t−1

τ + ρtτ]+

29 vtT ← −1
k

∑k
i=1

[
ℓτ,(i)

]
τ∈T m

30 ρtT ← vtT − (σ̂t
T)

⊤vtT
31 q1:tT ← [q1:t−1

T + ρtT]+
32 // Update average distributions.

33 σ̂1:t
T ← σ̂1:t−1

T + tσ̂t
T

34 σ̂1:t
τ ← σ̂1:t−1

τ + tσ̂t
T (τ)σ̂

t
τ for τ ∈ T m

35 return
〈

σ̂1:T
T

1⊤σ̂1:T
,

[
σ̂1:T
τ

1⊤σ̂1:T
τ

]
τ∈T m

〉
Algorithm 3: RPOSSTSIM (simultaneous model; CFR+)

Table 1: Approximate amount of time required to run T = 500 rounds of CVaR(1%) RPOSSTSEQ in each domain. Runtimes
are similar across both variants in each domain and across holdout policy set sizes.

domain runtime / seed
Racing Arrows ∼ 2 minutes
ACPC ∼ 10 seconds
GT ∼ 90 seconds

Table 2: Top two test case pairs and corresponding selection frequencies chosen by each algorithm over the 100 seeds in the
large GT experiment.

Algorithm Pairs Frequency

RPOSSTSEQ
(41, 16) 90
(41, 19) 3

Minimax uniform (41, 16) 40
(34, 9) 37

Iterative minimax (39, 32) 87
(39, 31) 3

Minimax(TNP) uniform (40, 16) 92
(36, 16) 4

Miniaverage uniform (37, 12) 5
(40, 1) 4

Minimax(TTD) uniform (43, 6) 4
(28, 1) 4

(1) (2) (3) (4) (5) (6) (7) (8)
0.00

0.01

0.02

0.03

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e)

iterative minimax(m = 1)
miniaverage uniform(m = 1)
minimax(TNP) uniform(m = 1)
minimax(TTD) uniform(m = 1)
minimax uniform(m = 1)
RPOSSTSEQ(m = 1)

(3) (6) (9) (12) (15) (18)
0.00

0.01

0.02

0.03

0.04

(0) (3) (6) (9) (12) (15) (18) (21) (24) (27)
0.00

0.01

0.02

0.03

0.04

(1) (2) (3) (4) (5) (6) (7) (8)
0.00

0.01

0.02

0.03

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e)

iterative minimax(m = 2)
miniaverage uniform(m = 2)
minimax(TNP) uniform(m = 2)
minimax(TTD) uniform(m = 2)
minimax uniform(m = 2)
RPOSSTSEQ(m = 2)

(3) (6) (9) (12) (15) (18)
0.00

0.01

0.02

0.03

0.04

(0) (3) (6) (9) (12) (15) (18) (21) (24) (27)
0.00

0.01

0.02

0.03

0.04

(1) (2) (3) (4) (5) (6) (7) (8)
holdout policy--target-distribution pair

0.00

0.01

0.02

0.03

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e) iterative minimax(m = 3)
miniaverage uniform(m = 3)
minimax(TNP) uniform(m = 3)
minimax(TTD) uniform(m = 3)
minimax uniform(m = 3)
RPOSSTSEQ(m = 3)

(3) (6) (9) (12) (15) (18)
holdout policy--target-distribution pair

0.00

0.01

0.02

0.03

0.04

(0) (3) (6) (9) (12) (15) (18) (21) (24) (27)
holdout policy--target-distribution pair

0.00

0.01

0.02

0.03

0.04

Figure 9: Expected test score error (absolute difference) across holdout-policy–target-distribution pairs on the ACPC 2012
data. Each row uses a different setting for the test size (m = 1 top, m = 2 middle, and m = 3 bottom) and each column uses
a different holdout proportion (20% held out in the left column, 40% middle, and 60% right). 100 sets of holdout policies
were sampled. Holdout-policy–target-distribution pairs are sorted according to test score error. Each RPOSSTSEQ instance
was run for 500 rounds (T = 500). Errorbars represent 95% t-distribution confidence intervals.

(2) (4) (6) (8) (10) (12)
0.0

0.5

1.0

1.5

2.0

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e)

iterative minimax(m = 1)
miniaverage uniform(m = 1)
minimax(TNP) uniform(m = 1)
minimax(TTD) uniform(m = 1)
minimax uniform(m = 1)
RPOSSTSEQ(m = 1)

(0) (3) (6) (9) (12) (15) (18) (21) (24)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(0) (4) (8) (12) (16) (20) (24) (28) (32) (36)
0

1

2

3

4

(2) (4) (6) (8) (10) (12)
0.0

0.5

1.0

1.5

2.0

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e)

iterative minimax(m = 2)
miniaverage uniform(m = 2)
minimax(TNP) uniform(m = 2)
minimax(TTD) uniform(m = 2)
minimax uniform(m = 2)
RPOSSTSEQ(m = 2)

(0) (3) (6) (9) (12) (15) (18) (21) (24)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(0) (4) (8) (12) (16) (20) (24) (28) (32) (36)
0

1

2

3

4

(2) (4) (6) (8) (10) (12)
holdout policy--target-distribution pair

0.0

0.5

1.0

1.5

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e) iterative minimax(m = 3)
miniaverage uniform(m = 3)
minimax(TNP) uniform(m = 3)
minimax(TTD) uniform(m = 3)
minimax uniform(m = 3)
RPOSSTSEQ(m = 3)

(0) (3) (6) (9) (12) (15) (18) (21) (24)
holdout policy--target-distribution pair

0.0

0.5

1.0

1.5

2.0

2.5

(0) (4) (8) (12) (16) (20) (24) (28) (32) (36)
holdout policy--target-distribution pair

0

1

2

3

Figure 10: Expected test score error (absolute difference) across holdout-policy–target-distribution pairs on the ACPC 2017
data. Each row uses a different setting for the test size (m = 1 top, m = 2 middle, and m = 3 bottom) and each column uses
a different holdout proportion (20% held out in the left column, 40% middle, and 60% right). 100 sets of holdout policies
were sampled. Holdout-policy–target-distribution pairs are sorted according to test score error. Each RPOSSTSEQ instance
was run for 500 rounds (T = 500). Errorbars represent 95% t-distribution confidence intervals.

(0) (4) (8) (12) (16) (20) (24) (28) (32) (36)
0.0

0.1

0.2

0.3

0.4

0.5

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e)

iterative minimax(m = 1)
miniaverage uniform(m = 1)
minimax(TNP) uniform(m = 1)
minimax(TTD) uniform(m = 1)
minimax uniform(m = 1)
RPOSSTSEQ(m = 1)

(0) (8) (16) (24) (32) (40) (48) (56) (64) (72)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(0) (15) (30) (45) (60) (75) (90) (105)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(0) (4) (8) (12) (16) (20) (24) (28) (32) (36)
0.0

0.1

0.2

0.3

0.4

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e)

iterative minimax(m = 2)
miniaverage uniform(m = 2)
minimax(TNP) uniform(m = 2)
minimax(TTD) uniform(m = 2)
minimax uniform(m = 2)
RPOSSTSEQ(m = 2)

(0) (8) (16) (24) (32) (40) (48) (56) (64) (72)
0.0

0.1

0.2

0.3

0.4

(0) (15) (30) (45) (60) (75) (90) (105)
0.0

0.1

0.2

0.3

0.4

(0) (4) (8) (12) (16) (20) (24) (28) (32) (36)
holdout policy--target-distribution pair

0.0

0.1

0.2

0.3

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e) iterative minimax(m = 3)
miniaverage uniform(m = 3)
minimax(TNP) uniform(m = 3)
minimax(TTD) uniform(m = 3)
minimax uniform(m = 3)
RPOSSTSEQ(m = 3)

(0) (8) (16) (24) (32) (40) (48) (56) (64) (72)
holdout policy--target-distribution pair

0.0

0.1

0.2

0.3

0.4

(0) (15) (30) (45) (60) (75) (90) (105)
holdout policy--target-distribution pair

0.0

0.1

0.2

0.3

0.4

Figure 11: Expected test score error (absolute difference) across holdout-policy–target-distribution pairs in the winrate GT
domain. Each row uses a different setting for the test size (m = 1 top, m = 2 middle, and m = 3 bottom) and each column
uses a different holdout proportion (20% held out in the left column, 40% middle, and 60% right). 100 sets of holdout
policies were sampled. Holdout-policy–target-distribution pairs are sorted according to test score error. Each RPOSSTSEQ

instance was run for 500 rounds (T = 500). Errorbars represent 95% t-distribution confidence intervals.

(0) (4) (8) (12) (16) (20) (24) (28) (32)
0.0

0.2

0.4

0.6

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e)

iterative minimax(m = 1)
miniaverage uniform(m = 1)
minimax(TNP) uniform(m = 1)
minimax(TTD) uniform(m = 1)
minimax uniform(m = 1)
RPOSSTSEQ(m = 1)

(0) (8) (16) (24) (32) (40) (48) (56) (64)
0.0

0.2

0.4

0.6

0.8

(0) (15) (30) (45) (60) (75) (90)
0.0

0.2

0.4

0.6

0.8

(0) (4) (8) (12) (16) (20) (24) (28) (32)
0.0

0.1

0.2

0.3

0.4

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e)

iterative minimax(m = 2)
miniaverage uniform(m = 2)
minimax(TNP) uniform(m = 2)
minimax(TTD) uniform(m = 2)
minimax uniform(m = 2)
RPOSSTSEQ(m = 2)

(0) (8) (16) (24) (32) (40) (48) (56) (64)
0.0

0.1

0.2

0.3

0.4

0.5

(0) (15) (30) (45) (60) (75) (90)
0.0

0.1

0.2

0.3

0.4

0.5

(0) (4) (8) (12) (16) (20) (24) (28) (32)
holdout policy--target-distribution pair

0.0

0.1

0.2

0.3

0.4

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e) iterative minimax(m = 3)
miniaverage uniform(m = 3)
minimax(TNP) uniform(m = 3)
minimax(TTD) uniform(m = 3)
minimax uniform(m = 3)
RPOSSTSEQ(m = 3)

(0) (8) (16) (24) (32) (40) (48) (56) (64)
holdout policy--target-distribution pair

0.0

0.1

0.2

0.3

0.4

(0) (15) (30) (45) (60) (75) (90)
holdout policy--target-distribution pair

0.0

0.1

0.2

0.3

0.4

Figure 12: Expected test score error (absolute difference) across holdout-policy–target-distribution pairs in the GT domain
where -1 is given for a collision. Each row uses a different setting for the test size (m = 1 top, m = 2 middle, and m = 3
bottom) and each column uses a different holdout proportion (20% held out in the left column, 40% middle, and 60% right).
100 sets of holdout policies were sampled. Holdout-policy–target-distribution pairs are sorted according to test score error.
Each RPOSSTSEQ instance was run for 500 rounds (T = 500). Errorbars represent 95% t-distribution confidence intervals.

(0) (400) (800) (1200) (1600) (2000)
holdout policy--target-distribution pair

0.0

0.2

0.4

0.6

0.8

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e) Racing Arrows (leaders, 500)

(a) m = 1

(0) (400) (800) (1200) (1600) (2000)
holdout policy--target-distribution pair

0.0

0.2

0.4

0.6

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e) Racing Arrows (leaders, 500)

(b) m = 2

(0) (400) (800) (1200) (1600) (2000)
holdout policy--target-distribution pair

0.0

0.1

0.2

0.3

0.4

0.5

0.6

te
st

 s
co

re
 e

rr
or

 (a
bs

ol
ut

e) Racing Arrows (leaders, 500)

(c) m = 3

Figure 13: Expected test score error (absolute difference) across holdout-policy–target-distribution pairs on Racing Arrows
where test cases are leader policies. Here, 500 Racing Arrows policies were sampled for both the follower and leader role
and then 96% of policies of both roles were held out before running RPOSST and each baseline. Each column uses a
different setting for the test size (m = 1 top, m = 2 middle, and m = 3 bottom). 100 sets of holdout policies were sampled.
Holdout-policy–target-distribution pairs are sorted according to test score error. Each RPOSSTSEQ instance was run for 500
rounds (T = 500). Errorbars represent 95% t-distribution confidence intervals.

	Introduction
	Problem Definition
	Background
	Robustness
	Regret

	RPOSST
	Antagonist Information Models
	Deterministic CVaR RPOSST

	Experiments
	Experimental Setup
	Domains
	Results and Analysis

	Related Work
	Conclusion and Future Work
	Appendix
	Glossary
	Theory Background
	Sequential-Move Model Theory
	Deterministic CVaR() RPOSSTseq Pseudocode
	Simultaneous-Move Model
	Experimental Details
	Racing Arrows
	Annual Computer Poker Competition
	Gran Turismo™ 7
	Supplemental Experimental Results

