In most modern cities, traffic congestion is one of
the most salient societal challenges. Past research has
shown that inserting a limited number of autonomous
vehicles (AVs) within the traffic flow, with driv-
ing policies learned specifically for the purpose of
reducing congestion, can significantly improve traf-
fic conditions. However, to date these AV policies
have generally been evaluated under the same lim-
ited conditions under which they were trained. On the
other hand, to be considered for practical deployment,
they must be robust to a wide variety of traffic con-
ditions. This article establishes for the first time that
a multiagent driving policy can be trained in such
a way that it generalizes to different traffic flows,
AV penetration, and road geometries, including on
multi-lane roads. Inspired by our successful results
in a high-fidelity microsimulation, this article further
contributes a novel extension of the well-known Cell
Transmission Model (CTM) that, unlike past CTMs,
is suitable for modeling congestion in traffic networks,
and is thus suitable for studying congestion-reduction

policies such as those considered in this article.
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1 Introduction

According to Texas A&M’s 2021 Urban Mobility
Report, traffic congestion in 2020 in the U.S. was
responsible for excess fuel consumption of about 1.7
billion gallons, an annual delay of 4.3 billion hours,
and a total cost of $100B [1]. A common form of
traffic congestion on highways is stop-and-go waves,
which have been shown in field experiments to emerge
when vehicle density exceeds a critical value [2]. Past
research has shown that in human-driven traffic, a

small fraction of automated or autonomous vehicles

(AVs) executing a controlled multiagent driving policy
can mitigate stop-and-go waves in simulated and real-
world scenarios, roughly double the traffic speed, and
increase throughput by about 16% [3]. Frequently, the
highest-performing policies are those learned by deep
reinforcement learning (DRL) algorithms, rather than
hand-coded or model-based driving policies.

Any congestion reduction policy executed in the
real world will need to perform robustly under a wide
variety of traffic conditions such as traffic flow, AV

penetration (percentage of AVs in traffic, referred to
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Fig. 1: Increasing incoming vehicle flow (the
demanded inflow) degrades performance of a policy
trained with inflow of 1650 veh/hour, with respect
to both throughput (a) and speed (b). A visual repre-
sentation (c) is given that shows what this decreased
efficiency looks like. The red curve shows the perfor-
mance of a human baseline with no AVs (AVP=0),
and the blue curve shows the performance of a trained
policy with 30% AVs (AVP=30).

here as “AVP”), AV placement in traffic, and road
geometry. However, existing driving policies have
generally been tested in the same conditions they were
trained on, and have not been thoroughly tested for
robustness to different traffic conditions. Indeed, their
performance can degrade considerably when evalu-
ated outside of the training conditions (Figure 1).
Therefore, it remains unclear how to create a robust
DRL congestion-reduction driving policy that is prac-
tical for real-world deployment.

In this article, we establish for the first time the
existence of a robust DRL congestion-reduction driv-

ing policy that performs well across a wide variety

of traffic flows, AVP, AV placement in traffic, and
several road geometries. Moreover, we investigate the
question of how to come up with such a policy and
what degree of robustness it can achieve. We create
a testbed with a diverse, pre-defined collection of test
traffic conditions of real-world interest including the
single-lane merge scenario shown in Figure lc. Such
merge scenarios are a common source of stop-and-go
waves on highways [4].

While there are different approaches to training
robust DRL policies in other domains with different
levels of success, our approach is to systematically
search for a robust policy by varying the training con-
ditions, evaluating the learned policy on our proposed
test set in a single-lane merge scenario, and selecting
the highest performing one. The highest performing
policy outperforms the human-only baseline with as
few as 1% AVs across different traffic conditions in
the single-lane merge scenario.

We further investigate the policy’s generalization
to more complex scenarios it has not seen during train-
ing, specifically a scenario with two merging ramps
at a variety of distances, and a merge scenario with
a double-lane main road, with cars able to change
lanes. Notwithstanding negative prior results show-
ing that a policy developed in a single-lane ring road
fails to mitigate the congestion on a double-lane ring
road [5], our learned policy outperforms human-only
traffic and effectively mitigates congestion in these

more complex scenarios as well.
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Inspired by our successful results in a high-fidelity
microsimulation, this article further contributes a
novel extension of the well-known Cell Transmis-
sion Model (CTM) that, unlike past CTMs, is suitable
for modeling congestion in traffic networks, and is
thus suitable for studying congestion-reduction poli-
cies such as those considered in this article. Taken
together, this article’s contributions and insights take
us a step closer towards making the exciting concept
of traffic congestion reduction through AV control a
practical reality.

The rest of the article is structured as follows.
Section 2 presents related work. Section 3 provides
a background that includes a formalization of the
traffic reduction problem, a description of the DRL
setup, and a description of our robustness evalua-
tion conditions. Section 4 describes how the DRL
policy is learned and analyzes its empirical perfor-
mance. Section 5 describes the generalization of our
policy to unseen, complex roads. Section 6 intro-
duces a novel Cell Transmission Model formulation
and use it to empirically characterize the operation of
congestion reducing policies. Section 7 presents the
hyper-parameters used by the training algorithm and
the Cell Transmission Model. The code that gener-
ates all data used in this study is available at https:

//github.com/yulinzhang/MITC-LARG.

2 Related work

Traffic optimization has long been a challenging
research area with direct real-world impact [6]. An
important research question is how to mitigate high-
way stop-and-go waves, which have been demon-
strated to emerge when vehicle density exceeds a
critical value, and to result in reduced throughput
and increased driving time [2]. In small-scale field
experiments, vehicles controlled autonomously by
hand-designed driving policies successfully dissipated
stop-and-go waves, thus reducing congestion [3]. The
industry-wide development of autonomous vehicles
(AVs) has inspired researchers to tackle this problem
at a larger scale.

Recent progress in Reinforcement Learning
(RL) [7] has made it possible to learn congestion
reduction AV driving policies that perform well in
simulation. Using state-of-the-art algorithms, signifi-
cant congestion reduction was achieved both in circu-
lar roads with a fixed set of vehicles (referred to as
closed road networks), and acyclic roads with vehi-
cles entering and leaving the system (referred to as
open road networks) [8—10], as compared with simu-
lated human-driven traffic implemented with accepted
human driving models [11]. Most of these past suc-
cessful driving policies controlled AVs in a centralized
manner, where a single controller simultaneously pro-
cesses all available sensing information and sends
driving commands to the AVs. More recent efforts

focused on developing decentralized driving policies
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which might be harder to learn, but are considered
a more realistic option for real-world deployment, as
they mostly rely on local sensing and actuation capa-
bilities [10, 12]. this article continues the line of
research on decentralized policies but aims to develop
one that is robust to real-world traffic conditions of
practical interest.

Recent RL techniques for developing robust poli-
cies include adversarial training [13] and domain ran-
domization [14]. Existing research uses these ideas to
build congestion reduction policies that are robust to
some particular traffic conditions. Wu et al. present
policies that can generalize on a closed ring road
to traffic densities higher and lower than the ones
they were trained on, by randomizing densities during
training [15]. Parvate et al. evaluate the robustness of
a hand-coded controller over different AV penetration
and driving aggressiveness [16]. This article focuses
on learning a driving policy that is robust to different
traffic flows, AV penetrations, AV placement within
traffic, and road geometries.

In contemporary unpublished work [17], Vinitsky
et al. studied a similar setup. In particular, similarly
to our work, they developed a robust, decentralized
policy that is shared among all AVs for an open road
network scenario. On the other hand, our work differs
from theirs in several ways. First we focus on merge
scenarios, while they focus on bottleneck scenarios.
Second, they developed a robust policy by randomiz-
ing the training conditions, while we did a systematic

sweep of the training conditions to understand how

each training condition contributes to the performance
of the trained policy. Third, we further examined the
robustness of the policy trained from a merge scenario
on a more complex road with multiple merging ramps
and multiple lanes.

Finally, to evaluate proposed traffic systems more
efficiently, traffic engineers often make use of more
abstract traffic models for their initial analyses, such
as Cell Transmission Models (CTMs) [18]. Unfortu-
nately, traditional CTMs are not applicable to the topic
of this article because they do not capture the traffic
congestion from multiple merging inflows. To allevi-
ate this limitation, in Section 6 we introduce a novel
CTM formulation that models the traffic congestion

by conditionally discounting the merging inflows.

3 Background and setup

We start by introducing the problem of learning a

robust traffic congestion reduction policy.

3.1 Road-merge congestion reduction

Consider a network with a main highway and a merg-
ing road, as shown in Figure lc. There are vehicles
joining and leaving the network, and the traffic con-
sists of both human-driven and autonomous vehicles.
The human drivers are assumed to be self-interested
and optimize their own travel time, while autonomous
vehicles (AVs) are assumed to be altruistic and have a

common goal of reducing traffic congestion. Our goal
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is to come up with a driving policy that controls each
AV such that traffic performance is improved.

We measure the performance of policies in terms
of both outflow and average speed. Outflow is the
number of vehicles per hour exiting the simulation,
representing system-level throughput. The average
speed represents the time delay it takes an average
driver to drive the simulated road. We note that it is
important to report both metrics, since scenarios with
low and high average speeds could have the same sys-
tem throughput, such that one is considered congested
while the other is not.

A policy can be hand-programmed or learned.
Reinforcement learning (RL) has been shown to pro-
duce superior policies [8—10, 19] and is therefore our
method of choice. Congestion reduction driving poli-
cies can either be centralized, controlling all vehicles
simultaneously based on global system information,
or decentralized, controlling each vehicle indepen-
dently based on its local observations. Decentralized
policies with no vehicle-to-vehicle communication are
most realistic, since they mostly rely on local sensing
and actuation capabilities [12, 17], and are therefore
the focus of this article.

This multiagent traffic congestion reduction prob-
lem can be modelled as a discrete-time, finite-horizon
decentralized partially observable Markov decision
process (Dec-POMDP) [20], denoted as a tuple
(S, {A:}, P, R, {Q},O, T, ) where,

* S is a state space representing the location and

speed of every vehicle in the network,

* {A;} is ajoint action space for all agents, where
A; € R is a real number that specifies an
acceleration action for agent 1,

* P:Sx{A;} xS§ — [0,1] is a stochastic state
transition function, which specifies the probabil-
ity distribution of target state given the source
state and action taken by the vehicle. In this
paper, this state transition function is realized via
a traffic simulator.

* R:S8 x {A;} — Ris a global reward function,

* {9, }is a collection of local observations for each
agent (see Section 3.2),

* 0 8§ x{A} x {9} — [0,1] outputs the
probability that each agent receives a specific
observation given the next state and the joint
action just taken,

* T is the episode length,

* v € [0, 1] is the discount factor of reward.

A decentralized, shared driving policy is a prob-
ability density function over the action space 7y
{Q;} x{A;} — [0, 1] parameterized by 6 that stochas-
tically maps each agent’s local observations to its
driving actions.

Throughout this article we use the SUMO traf-
fic simulator [21] as the state transition function.
SUMO is a high-fidelity micro simulator that includes
accepted human driving models [11, 22] with config-
urable traffic networks, flows, and driving aggressive-
ness, as well as mechanisms for enforcing traffic rules,
safety rules, and basic physical constraints. To learn

AV driving policies, we use the RLIib library [23]. We
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interface with SUMO and RLIib using UC Berkeley’s

Flow software [24].

3.2 RL-based decentralized driving policy

To learn a decentralized driving policy we use the
Proximal Policy Optimization (PPO) algorithm [25].
To facilitate data and computational efficiency and
reduce the risk of overfitting, all AVs learn and exe-
cute a single, shared driving policy. The observation
space and reward design used in this article are mod-
eled after those used by Cui et al. [12], which were
shown to be effective for decentralized policies. The
observation for each AV includes

* the speed and distance of the closest vehicles in
front of and behind it,

* the AV’s speed,

* the AV’s distance to the next merging point,

* the speed of the next merging vehicle and its
distance to the merge junction (assumed to be
obtained by the vehicle’s cameras/radars, or be
computed by some global infrastructure and then
shared with all the vehicles).

The reward of the ith AV at time step ¢ is defined as:

Z;ltzl Uy )

uz Vmam

rit =(1 — I{done}) ( —n+(1—-n)x

+ I{done} - Bonus

where I{done} is an indicator function of whether an

AV is leaving the network; Bonus is a constant reward
Z;;1 Vi

for an AV when it exits the network; the term T

represents the normalized average speed, where v; is
the speed of vehicle j, n; is the total number of vehi-
cles in the network at time t, V},,.x is the max possible
speed, and 7 is a constant that weights the individual

and the global reward.

3.3 Robustness evaluation conditions

Similarly to past work, our baseline setup consists of
simulated human-driven vehicles only, where the AVP
is 0. In contrast to past work, which typically showed
improvement over this baseline in a single combi-
nation of traffic conditions, our goal is to develop
a robust AV driving policy that improves over this
baseline across a range of realistic traffic conditions,
characterized by:

* Main Inflow Rate: the amount of incoming traffic
on the main artery (veh/hour),

* Merge Inflow Rate: the amount of incoming traf-
fic on the merge road (veh/hour),

* AV Placement: the place where the AVs appear in
the traffic flow; the AVs can either be distributed
evenly or randomly among the simulated human-
driven vehicles.

* AV Penetration: the percentage of vehicles that
are controlled autonomously,

* Merge road geometry: the distance between two
merge junctions (in relevant scenarios), and the
number of lanes.

In this article, we focus on a merge inflow rate of
200 veh/hour and a main inflow rate in the range

of [1600, 2000] veh/hour since these values tend to
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lead to congestion in the baseline (AVP=0) condi-
tions. We vary all the other parameters as follows:
AV penetration (AVP) is set to be within [0, 40] per-
cent to represent a realistic amount of controllable
AVs that can be expected in the coming years, and the
placement of the AVs can either be random or even.
For even placement, AVs are placed every N human-
driven vehicles in a lane. For random placement, AV's
are placed randomly among simulated human-driven
vehicles. Merge road geometries include one or two
merges at distances that vary between [200, 800]

meters, and the main road can have one or two lanes.

4 Learning a robust policy in the

single-lane merge scenario

While real-world congestion-reducing driving policies
need to operate effectively in a wide variety of traffic
conditions, most past research has tested learned poli-
cies under the same conditions on which they were
trained. Since in the real world it is impractical to
deploy a separate policy for each combination of con-
ditions, our primary goal is to understand whether it is
feasible to learn a single driving policy that is robust
to real-world variations in traffic conditions.

The performance of an RL-based driving policy
depends on the traffic conditions under which it is
trained. We hypothesize that the policy trained under
high inflow, medium AV penetration, and random
vehicle placement is robust in a range of traffic con-

ditions defined in Section 3.3 for a single-lane merge

scenario. We test this hypothesis by comparing 30
policies, each of which is trained under a combination
of traffic conditions specified below in Section 4.1.
The training of each policy takes about 7 hours on
a 3.7GHz Intel 12 Core i7 processor. SUMO has
built-in stochasticity which includes vehicle departure
times and vehicle driving dynamics. Hence, each pol-
icy, including human-only baseline, is evaluated 100
times using a fixed set of 100 random seeds, and each
evaluation takes about one hour. After we identify a
policy that generalizes well across traffic conditions
in the training road geometry, a later section will
describe an evaluation this policy on more complex

road geometries unseen at training time.

4.1 Discretization of traffic conditions for
training

Since there is an innumerable set of possible traffic
conditions, for the purpose of training we discretize
traffic conditions along their defining dimensions to a
total of 30 representative combinations of conditions,
as follows. We consider main inflows of 1650, 1850,
and 2000 veh/hour which result in low, medium,
and high congestion. We discretize AV placement in
traffic to be random or even-spaced. Finally, we dis-
cretize the training AV penetration into 5 levels: 10 %,
30%, 50 %, 80 %, 100 %. Based on this 3 x 2 x 5
discretization, we train 30 policies, one for each

combination.
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Each trained policy is then evaluated across the
range of traffic conditions described in Section 3.3,
leading to two performance values (outflow and aver-
age speed) on each testing condition for each policy.
We plot these results using the following convention.
The label of a data point consists of two parts: (i) the
training conditions of the policy to be evaluated, and
(i1) the policy’s evaluation conditions. The policy’s
training conditions indicate the vehicle placement,
main inflow, merge inflow, and AVP, separated by “-”.
For example, “random-2000-200-30 denotes the pol-
icy trained under random vehicle placement with main
inflow 2000 veh/hour, merging inflow 200 veh /hour,
and 30 % AVP. The evaluation conditions also con-
sist of vehicle placement, main inflow, merging inflow,
and AVP. In this article, the merging inflow is always
fixed to be 200veh/hour and the vehicle place-
ment is specified separately from the graph label.
Therefore we only specify the evaluation-time main
inflow and AVP to indicate the evaluation condition
for each data point. Hence, each evaluation result is
labeled as a 6-tuple, where the first four elements
describe the training conditions and the remaining
two describe the evaluation conditions. For example,
“random-2000-200-30:1800-10" labels the result of
policy “random-2000-200-30” evaluated under main
inflow 1800 veh/hour and AVP 10%. We further
use “+” in the evaluation condition to denote which
evaluation condition varies in a plot. For example,

“random-2000-200-30:1800-#" indicates that the pol-

icy “random-2000-200-30” was evaluated under main

inflow of 1800 and varying AVPs; “random-2000-200-
30:%-10" indicates that policy “random-2000-200-30"
was evaluated under AVP 10% and varying main

inflows.

4.2 Robustness to vehicle placement, AV

penetration and inflow

In this section, we test our hypothesis that training
with high inflow, medium AV penetration, and random
vehicle placement yields a robust policy, by showing
representative slices of the evaluation results.

We start by showing that the policies trained under
random vehicle placement outperform policies that
are trained under even vehicle placement. The per-
formance of a representative subset of these policies
is depicted in Figure 2a and 2b. The red curves rep-
resent the evaluation results for the policies trained
under random vehicle placement, and the blue curves
represent the results for the policies trained under
even vehicle placement. These policies are evalu-
ated using the outflow and average speed metrics
under both random vehicle placement (Figure 2a) and
even vehicle placement (Figure 2b). When evaluat-
ing on either random placement or even placement,
the policies trained with random placement outper-
form the human baseline as well as their counterparts
trained with even placement. Specifically, the results
in Figure 2a confirm the intuition that when evaluated
with random vehicle placement, the policies trained

under random vehicle placement should have better
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Fig. 2: Results of policies trained under different AV placements, AV penetrations, and main inflows. Figure (a)—
(b): we show that the policies trained under random vehicle placement outperform their counterparts trained with
even placement, when evaluated under both random and even vehicle placement. Figure (c): we fix the evaluation
inflow at a medium level and find that a training AVP of 30 % is the most robust when varying evaluation AVPs;
Figure (d): we fix the evaluation AVP, and verify that main inflow 2000 veh/hour is the most robust when varying

evaluation inflows.

performance than their counterparts trained with even
vehicle placement. However, counter-intuitively, ran-
dom placement at training time also results in more
robust policies when testing under even placement. We
hypothesize that this performance increase is due to
the more diverse data collected when RL vehicles are

randomly placed.

Next, we confirm the intuition that the polices
trained under medium AV penetration are better than
others. Figure 2c show when fixing the main inflow,
the policies trained under AVP 30 % (red curve with
triangle) are competitive in both their outflow and
average speed when evaluated under varying AVPs.

They have the best performance across a large range of
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the evaluation AVPs. We hypothesize that these mid-
range AVP values during training perform best since
(i) lower AVP may not encounter enough situations
with densely distributed AVs, and (ii) higher AVP
may not encounter enough situations with sparsely
distributed AVs.

Finally, we test the hypothesis that the policies
trained under high inflow are robust. When fixing
the AVP and varying main inflow during evalua-
tion, Figure 2d shows that the policy trained under
main inflow 2000 veh /hour (red curve) has better per-
formance than policies trained with different main
inflows, in terms of both outflow and average speed.
We hypothesize that the policies trained under the
highest inflow outperform others because a higher
main inflow yields more diverse vehicle densities at
training time. Specifically, the simulation dynamics
can lead high inflow to include both dense and sparse
vehicle placement, while a lower main inflow tends to
mostly result in a sparse vehicle distribution.

Verifying our hypothesis, we find that the policy
“random-2000-200-30”, which is trained under ran-
dom vehicle placement, main inflow 2000 veh/hour,
merge inflow 200 veh/hour, and AVP 30 %, outper-
forms the alternatives in terms of robustness. In the
single-lane merge scenario, this policy achieves sig-
nificant improvement over the human-only baseline
across all evaluating conditions when the AVP is
greater than or equal to 1 % during deployment (with

p-value 0.05 as the cutoff for significance).

5 Deploying the learned policy to

more complex roads

We learned a robust policy in a single-lane merge sce-
nario. To push this policy one step further toward a
real-world deployment, we test this policy’s robust-
ness to more complex road structures: roads with two

merging ramps, and double-lane roads.

5.1 Deployed to roads with two merging

ramps

We first deploy the selected policy on more complex
road structures, which have two merging roads at vary-
ing distances as shown in Figure 3, and evaluate the
performance of the learned policy with respect to the
distance between these two ramps.

Consider the merge scenario with two merging
ramps: the first merging ramp is located 500 meters
from the simulated main road’s start, the second merg-
ing ramp is located 200, 400, 600, or 800 meters
after the first, the total length of the main road is
1500 meters, and the total length of the merging roads
is 250 meters. We tested the random-2000-200-30
policy with random AV placement, main inflow of
1800 veh /hour, merge inflow 200 veh /hour, across a
range of AV penetrations and the above gaps between
the two merging roads.

The results are shown in Figure 4, where the blue
curves show the performance of the policy to be tested

with different AVP values, and the red curve shows
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Fig. 3: A merge road with two merging on-ramps.

the human baseline’s performance. The random-2000-
200-30 policy is best when the distance between
the two on-ramps is large. As we decrease this dis-
tance, the performance gap from the human baseline
decreases, but remains positive even when the merg-
ing ramps are just 200 meters apart, which is the
setup that is most different than the training condi-
tions, as explained next. When the distance between
on-ramps is small, the traffic congestion at the sec-
ond merging ramp interferes with the traffic flow at
the first merging ramp, but is not observable to the RL
vehicles approaching the first ramp. As we increase
the distance between these two merging ramps, such
interference decreases and the traffic flow approach-
ing these two merging ramps can be treated by the
AVs increasingly independently. As a consequence,
when these two merging ramps become further away
from each other, the decision making processes for
the AVs become similar to those on the single-lane
merge roads — they only need to consider the traffic
flow at the next incoming junction. To summarize, the
selected policy slightly reduces traffic congestion in
the two-ramp scenario; and its performance improves

as the distance between these two ramps increases.

B | |——Evaluating AVP=10
1,760 —a— Evaluating AVP=20
—+— Evaluating AVP=30
1.750 | |—e—Evaluating AVP=40
’ ——  human-baseline
g 17401 1
E=1
=
S 1,730 R

1,720} 1
1,710 ¢ /\/ i
200 300 400 500 600 700 800

Evaluated distance between two ramps

Fig. 4: Results of deploying the selected training pol-
icy on roads with two on-ramps. The result of human-
only traffic is represented as red, and the results of the
learned policy are represented as blue.

5.2 Deployed to double-lane merge roads

Urban highways often consist of multiple lanes. Thus
past research suggesting that AVs might increase traf-
fic congestion on multi-lane roads [5] has (rightfully)
raised concerns about the practical deployability of
systems like the one considered in this article. Con-
trary to those results, we find that AVs can reduce
congestion even in multi-lane scenarios. Specifically,
we consider a double-lane merge road, by adding a
second lane in the main road, as shown in Figure 5.

Similarly to the single-lane merge scenario, the vehi-

Fig. 5: A double-lane merge scenario.
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cles in the right lane must yield to the vehicles from
the merging lane and may cause potential congestion
in the right lane. But the vehicles in the left lane have
the right of way when passing the junction. As a con-
sequence, the vehicles in the left lane tend to move at
a faster speed, and there will be more vehicles chang-
ing from right to left for speed gain than the number
of vehicles changing from left to right. Those lane-
changing vehicles cause additional stop-and-go waves
in the left lane.

We test the robustness of our selected policy when
deployed in the right lane in this new road structure.
In our experiments, the left lane contains no AVs and
an inflow of 1600 veh/hour human-driven vehicles,
and the right lane contains an AVP of 10 %—40 % that
are controlled by our selected policy. Figure 6 shows
that for right main inflows of 1600 —2000 veh/hour,
our policy improves outflow by about 4 % and traffic
speed by about 2x compared with human-only traf-
fic. We observed that the learned policy, mitigating the
congestion in the right lane b also reduces the amount
of lane-changing vehicles since the right lane is less
congested. Hence, the policy trained on the single-lane
merge road generalizes well in the double-lane merge

scenario.

6 Abstract Analysis in an Extended

Cell Transmission Model

The findings presented in Sections 4 and 5 mark a

significant advancement as they showcase, for the

Evaluation: random vehicle placement, left main inflow=1600
right main inflow=[1600,2000], right AVP=10-40%, left AVP=0%
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Fig. 6: Results of deploying the selected training pol-
icy on the double-lane merge roads. The human-only
traffic is represented as red curves, and the traffic con-
trolled by the learned policy is represented as blue
curves.

first time, a driving policy that exhibits generalization
capabilities across diverse traffic conditions and real-
world road structures. This achievement represents a
notable stride towards the practical realization of traf-
fic congestion reduction through autonomous vehicle
(AV) control. Nonetheless, a knowledge gap persists
regarding the extent to which a local driving policy,
operating in a distributed manner with independent
control for each AV, contributes to overall enhance-
ments in average speed and outflow. Moreover, assess-
ing this driving policy’s effectiveness using a high-
fidelity microsimulation tool like SUMO poses com-
putational challenges, even on high-performance com-
puting platforms.

As summarized in Section 2, traffic engineers
commonly rely on abstract traffic simulators, which
efficiently calculate macroscopic traffic behavior with-
out simulating each individual vehicle, to prototype
and assess new traffic protocols. Cell Transmission

Models (CTM) [18] are widely utilized in such
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abstract traffic simulations. However, existing CTMs
do not incorporate the modeling of traffic congestion
resulting from multiple merging inflows, rendering
them unsuitable for our specific research focus. In this
section, we present a novel CTM that effectively cap-
tures the traffic congestion caused by merging inflows.
We validate this model by comparing it to microsim-
ulation outcomes obtained from SUMO. Additionally,
we employ this CTM to characterize the operation of
our proposed congestion-reducing policies and gain
insights about how a local driving policy improves
traffic performance globally.

Our analysis proceeds according to the following
steps:

* Discretizing the road into basic segments
(referred to hereby as cells)

* Empirically fitting a fundamental diagram of
traffic flow for each cell.

* Using these fundamental diagrams to construct a
novel extension of a CTM for the merge scenario
in Figure 1.

* Validating this CTM against SUMO by show-
ing that their global behaviors (overall simulation
inflow and outflow) are similar.

* Further introducing a novel extension of CTM
to model the double-lane merge scenario from
Figure 5, and similarly validating its global
behavior against SUMO’s.

* Using these CTMs to extract insights regarding

the desired local (intra-cell/segment) behavior of

a policy to improve global traffic flow (simula-
tion outflow), which in turn provides a direction
for designing congestion-reduction policies for
large-scale multilane scenarios that are too slow

to explore by exhaustive simulations.

6.1 Discretizing road into cells and fitting

their fundamental diagrams

We start by discretizing the single-lane merge sce-
nario from Figure 1 into 100 m cells, as shown in
Figure 7. The cell length of 100 m was selected to be
small enough to capture the local traffic around each
autonomous vehicle, and large enough for computa-

tional efficiency.

Fig. 7: Discretizing the road into cells.

Next, we import from traffic flow theory the con-
cept of a traffic fundamental diagrams, which yields
the relationship between the traffic density and traffic
flow [26]. To obtain a fundamental diagram for each
cell in SUMO, we profiled the instantaneous density
and average speed, and calculated the flow as the prod-
uct of instantaneous density and average speed. Since
the fundamental diagram characterizes the intrinsic
properties of the road conditions (such as capacity

and speed limit), the diagram is independent of the
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inflows. In Figure 8a, we profile the fundamental dia-
gram of merge inflow 200 (blue) and O (red) veh/hour.
For merge inflow 0, there is no congestion in the road
and so the density of the cells will never be higher than
0.05 veh/m. From this fundamental diagram, we can
observe that the results for both of these merge inflows
are almost the same. Similarly, we observe the same
fundamental diagrams for all cells, and therefore we
model every cell with the same fundamental diagram.

Based on the observed data, we see that the funda-
mental diagram is close to a triangular shape. Hence,
we fit a triangular fundamental diagram as shown in
Figure 8b, which is defined by the slope before the
peak (called free-flow speed v), maximum flow @) and
its corresponding density (critical density d.), slope
after the peak (speed of the backward wave w), and

the density to reach 0 flow (jam density d;).

6.2 Constructing an extended CTM from

fundamental diagrams.

Next, we introduce an extended CTM, which models
a single-lane merge scenario using the fitted funda-
mental diagram as a model of intra-cell behaviors.
We start by defining two additional parameters that
characterize all cells:
* () = d. x v is the maximum number of vehicles
that can flow into a cell when the clock advances,
* N = 100 x d; is the maximum number of

vehicles in a cell, where 100 is the cell length.

—e— merge200
0.7 //. = me%geﬂ
0.6 / AN
L // \\‘\
E 0.5 s N\
= \
0.4 ¥
0.3
02| *
1 2 38 4 5 6 7 8,
density 10

(a) The flow density relation under different merge inflows
(red curve represents the result of 0 merge inflow, and blue
curve represents the result of merge inflow 200 veh /hour.)
The horizontal axis is the density (veh/m), and the vertical
axis represents the flow (veh/s).
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(b) A triangular fundamental diagram and its parameters.

Fig. 8: Profiling the flow density relation of a cell in
SUMO, and modelling it as a triangular fundamental
diagram.

Let y;(t) and n;(t) be the inflow and number of vehi-
cles in cell 7 at time ¢. The inflow is upper bounded
by the total number of vehicles in the upstream cells,
maximum number of vehicles that can flow into the
current cell, and the number of available positions in
the cell discounted by the ratio of wave and free-flow

speeds [27] i.e.,
y;(t) = min {n;_1(t), Q, %[N —n;(t)]}

When the merge traffic exceeds a certain threshold,

more vehicles on the main road will have to slow down
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or stop to yield to merging traffic. This causes a reduc-
tion in the inflow right after the junction, i.e., at cell 7.
To model this, we introduce a conditional penalty fac-
tor « to discount the inflow of the cell after the merge:
if the flow from the merge road is larger than some
threshold 3, then the inflow of the downstream cell is

discounted by a, i.e.,

yr(t) = a x yq(t),

where both « and 3 are hyper-parameters.
Using the above rules, we can update the number
of vehicles at cell 7 at time ¢ + 1 by adding the inflow

and subtracting the outflow at time ¢:

ni(t+1) =n;(t) + vi(t) — yip1(t) (1)

The scenario’s overall inflow and outflow are then the
inflow of the left most cell (cell 1) and outflow of the
right most cell (cell 7). The video of the CTM simula-
tion for single-lane merge scenario can be found here:

https://tinyurl.com/single-lane-ctm.

6.3 Validating the single-lane CTM
against SUMO

To validate our novel single-lane merge CTM, we run
a CTM simulation by iterating the operation suggested
by Equation (1) until the inflow and outflow con-
verge to their steady state, and then compare its overall

inflow and outflow with SUMO’s. Figure 9 shows

this comparison, where each data point for SUMO
is collected by running 100 simulations, each with a
different random seed, and each data point for CTM
is collected from a single simulation (since CTM is
deterministic). The CTM outflows mostly fall within
the 95% confidence bounds of the mean, which rep-
resent 100 vehicles or fewer (around 5-6% of the
flow), thus providing reasonable similarity between
the inflow-outflow plots of the CTM and SUMO. Both
curves have similar values as the outflow first increase
with inflow, then decreases as the traffic congestion
develops, and finally saturates as we further increase
the inflow.

Running a CTM simulation takes less than a sec-
ond, while running 100 SUMO simulations can take
minutes, or even hours or days for large scenarios.
Therefore, CTM based on the triangular fundamental
diagram can be viewed as a lower-fidelity but more

computationally efficient alternative for SUMO.
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Main Inflow
Fig. 9: Comparing the inflow-outflow relation
between SUMO and CTM under different main
inflows and merge inflows. The range of the main
inflow is [1400, 2000], and the range of the merge
inflow is [160, 200]. The human-only result in SUMO
is represented as cyan curves, and that of CTM is
represent as red curves.
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6.4 Extending CTM to a double-lane

merge scenario

Next, we introduce another novel extension of CTM,
modelling for the first time a multilane merge sce-
nario. First, we discretize the double-lane scenario
from Figure 5 into 100m cells, as illustrated in
Figure 10. Next, to capture traffic changing from

neighboring cells, we add the following definitions:

Left lane
1

1

Right lane /

Fig. 10: Discretizing the double-lane scenario from
Figure 5 into CTM cells.

* nk(t),n(t): the number of vehicles on the left

and right lanes of cell ¢ at time ¢
* Ick(t),Ic} (t): the number of lane-changes to the
left and right lanes of cell ¢ at time ¢
We then add the following rules:
* The right main road follows the same update
rules as that of single-lane case.
* The left main road will not be blocked by the
merging vehicles.
* Rules for lane-changing vehicles Ick(t) and
Il (t) from current lane to the target lane:
— If the number of vehicles in the current lane
is less than or equal to that of the target lane,

then more vehicles will be motivated to stay

and the number of vehicles changing from
current lane is small and denoted as e.

— If the number of vehicles in the current
lane is larger than that of the target lane,
then additional vehicles will be motivated to
change to the less congested lane. Here, we
introduce a lane change factor J, to capture
the fraction of vehicles that are motivated to
change lanes:

leh(t) = & x (nl(t) — k() + ¢
* To capture the traffic congestion caused by lane-
changing behaviors, we build flow discounting
rules similar to those of the single-lane case as
follows. If the number of vehicles changing to
cell i (Icl(t)) is larger than O and the exist-
ing number of vehicles (nl(t)) is larger than a
certain threshold, then there will be congestion
caused by lane changing and we discount the out-
flow using the previously introduced discounting

factor a:

Yir1(t) = a X yiy1(t)

Based on the rules above, we can obtain a double-
lane CTM, and a video of this model can be found:
https://tinyurl.com/double-lane-ctm.

Similarly to the single-lane CTM, we validate the
CTM by iterating the update equation until conver-

gence of inflow and outflow, and then compare its
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overall inflow and outflow with SUMO’s. Figure 11
shows this comparison on a range of inflows and out-
flows, where the main inflow on the right lane is
chosen to be larger than that of the left lane so that
most traffic changes from the right lane to the left
lane to reflect a typical merge scenario. It can be seen
that the inflow-outflow curves match each other well.
We conclude that the double-lane CTM that uses a
triangular fundamental diagram to model each cell
can serve as a lower-fidelity, computationally effi-
cient alternative to SUMO for the double-lane merge

scenario.

6.5 Insights from fundamental diagrams

and CTM

We introduced novel CTMs for single-lane and
double-lane merge scenarios, by discretizing these
roads into cells that are simulated using fitted tri-
angular fundamental traffic flow diagrams. We have
observed that the inflow-outflow CTM plots approxi-
mate closely those of the SUMO micro-simulation, in
both single-lane and double-lane merge scenarios. So
the CTMs can be treated as a low-fidelity alternative of
the SUMO microsimulator. In this section, we present
insights about congestion reduction policies that are
suggested by studying the behavior of our extended
CTMs.

In the triangular fundamental diagram shown in
Figure 8b, the flow of each cell is maximized when

the density is around a critical density in which a
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Fig. 11: Comparing the inflows and outflows of
the double-lane CTM with SUMO’s. The results in
SUMO are represented as red curves, and the results in
CTM are represented as blue.Here we only present the
data points where the inflow on the left lane is smaller
than that from the right lane.

maximal flow is achieved (the peak of the rectangle
in Figure 8b). Hence, it seems that an effective AV
driving policy ought to seek to manipulate the traffic
density in its vicinity to remain close to the critical
density. Indeed, our proposed driving policy does so
by slowing down to reduce traffic density if there is
congestion ahead.

A similar intuition applies in the double-lane
merge scenario as well. According to the lane-
changing rules of CTM and SUMO, vehicles

change from high-density lanes to low-density lanes.
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Autonomous vehicles are observed to encourage such
lane-changing behaviors, by opening a gaps suitable
for other cars to merge into. This behavior helps to
optimize the traffic density in both lanes toward their
critical densities.

The benefit of our extended CTMs could become
even more apparent in large-scale multilane scenarios
that are too slow to explore by exhaustive simula-
tions of different traffic conditions. Using a similar
approach, we can discretize such scenarios into cells
modelled using fitted fundamental diagrams, and then
use the computationally-efficiently CTMs to explore a
range of traffic conditions and desired AV density con-
trol policies, which could direct the development of
practical congestion reduction policies for large-scale

scenarios.

7 Implementation Details and

Hyper-parameters

All experiments are built on top of SUMO 1.6.0 and
UC Berkeley’s Flow software framework [24]. The
human-driven vehicles are controlled by the Krauss
model with hyper-parameters defined in Table 1. To
control the autonomous vehicles, we use Proximal
Policy Optimization algorithm [25] to learn a driv-
ing policy, and the hyper-parameters for this algo-
rithm is defined in Table 2. The hyper-parameters
used by CTM is shown in Table 3. Our implemen-
tation is available at https://github.com/yulinzhang/

MITC-LARG.

8 Conclusion and future work

We presented an approach for learning a congestion
reduction driving policy that performs robustly in road
merge scenarios over a variety of traffic conditions
of practical interest. Specifically, the resulting policy
reduces congestion in AV penetrations of 1 %—40 %,
traffic inflows ranging from no congestion to heavy
congestion, random AV placement in traffic, single-
lane single-merge road, single-lane road with two
merges at varying distances, and double-lane single-
merge road with lane changes. The process of finding
this policy involved identifying a single combination
of training conditions that yields a robust policy across
different evaluating conditions in a single-lane merge
scenario. We find, for the first time, that the resulting
policy generalizes beyond the training conditions and
road geometry it was trained on.

Recently there has been an increasing interest in
developing RL training methods that result in robust
policies. In our domain we find that randomizing
AV placement and searching for an effective train-
ing setup over the space of traffic conditions achieve
robustness effectively. The straightforward nature of
our method and its limited set of assumptions and
tuning parameters make it a potential candidate for
real-world deployments. Given that RL algorithms
have been shown to be brittle in many domains, find-

ing an RL-based policy that performs robustly across
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Table 1: Hyper-Parameters for Human-driven Vehicles

Parameter Value
Controller IDM Controller
Max Acceleration 2.6
Max Deceleration 4.5
Expected Time Headway 1 second

Table 2: Hyper-Parameters for Training Autonomous Vehicles

Parameter Value
Algorithm Proximal Policy Optimization (PPO)
Horizon 14000
Simulation Time Step Size 0.5
Optimizer Stochastic Gradient Descent

Learning Rate

piece-wise linearly decreasing starting
from 5 x 10~ (From scratch)

Discount Factor (v) 0.998
GAE Lambda (\) 0.95
Actor Critic True
Value Function Clip Parameter 108
Number of SGD Update per Iteration 10
Model hiddens [100,50,25]
Clip Parameter 0.2
Entropy Coefficient 1073
Sgd Minibatch size 4096
Train Batch Size 60000
Value Function Share Layers True
Value Loss Coefficient 0.5
KL Coefficient 0.01
KL Target 0.01
Max Acceleration 2.6
Max Deceleration 4.5
Training Iterations 500
Number of Rollouts per Iteration 30
Bonus 20
n 0.9

a wide variety of traffic conditions in the challeng-
ing domain of multiagent congestion reduction is both
encouraging and somewhat surprising.

As a secondary contribution of the article, and in
order to more rapidly assess potential directions for
reducing congestion at merge points, we introduced a

novel variant of the Cell Transmission Model (CTM).

To this end, we first fit a fundamental diagram for
the micro-simulation results in SUMO. Based on this
fundamental diagram, we then construct an extended
CTM that accounts for traffic congestion in the merge
scenario. This extended CTM can serve as a lower
fidelity, but more computationally efficient, alterna-

tive to micro-simulation, and can thus be leveraged for
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Table 3: Hyper-Parameters for the Extended Cell Transmission Model

Parameter

Value

Q

4.0veh/s

14

21m/s

8.40m/s

0.04 veh/m

0.65

1

0.15

oo Q| &E |2

0.05

rapid prototyping. Additionally, we reflect on insights
from experiments using the extended CTM model that
motivate training policies that improve the traffic flow
by keeping the traffic density close to the critical
density from the fundamental diagram.

Nonetheless, our work has a few limitations that
could serve as important directions for future research.
First, the question of whether there exists a driving
policy that reduces congestion when deployed on the
left lane of multilane scenarios still open. Second, our
tests used the same aggressiveness level for all sim-
ulated human-driven vehicles. Testing with a variety
of human behaviors would further increase the sim-
ulation results’ applicability. Third, there is room to
investigate a wider variety of road geometries beyond
the ones we investigated. Finally, even after investi-
gating these extensions, there will likely be a sim2real
gap to close, due to noisy/limited sensing and actu-
ation delay. These limitations notwithstanding, this
article’s contributions and insights advance our ongo-
ing effort to reduce traffic congestion via AV control

in the real world.

9 Acknowledgement

This work has taken place in the Learning Agents
Research Group (LARG) at the Artificial Intelligence
Laboratory, The University of Texas at Austin. LARG
research is supported in part by the National Sci-
ence Foundation (FAIN-2019844), the Office of Naval
Research (N00014-18-2243), Army Research Office
(W911NF-19-2-0333), DARPA, Bosch, and Good
Systems, a research grand challenge at the University
of Texas at Austin. The views and conclusions con-
tained in this document are those of the authors alone.
Peter Stone serves as the Executive Director of Sony
Al America and receives financial compensation for
this work. The terms of this arrangement have been
reviewed and approved by the University of Texas at
Austin in accordance with its policy on objectivity in

research.



22

10

Learning a Robust Multiagent Driving Policy for Traffic Congestion Reduction

Compliance with Ethical
Standards

The prior and current affiliations that are in the conflict

of interest include The University and Texas at Austin,

General Motors, Texas A&M University and Ama-

zon Robotics. The corresponding author is prepared

to collect documentation of compliance with ethical

standards and send if requested.

References

(1]

(3]

[4]

Lomax, T., Schrank, D., Eisele, B.: 2021 Urban
Mobility Report. https://mobility.tamu.edu/umr/.

Accessed: 2021-10-07

Sugiyama, Y., Fukui, M., Kikuchi, M., Hasebe,
K., Nakayama, A., Nishinari, K., Tadaki, S.-
i., Yukawa, S.: Traffic jams without bottle-
necks—experimental evidence for the physical
mechanism of the formation of a jam. New

Journal of Physics 10(3), 033001 (2008)

Stern, R.E., Cui, S., Delle Monache, M.L.,
Bhadani, R., Bunting, M., Churchill, M., Hamil-
ton, N., Pohlmann, H., Wu, F., Piccoli, B., et
al.: Dissipation of stop-and-go waves via con-
trol of autonomous vehicles: Field experiments.
Transportation Research Part C: Emerging Tech-

nologies 89, 205-221 (2018)

Mitarai, N., Nakanishi, H.: Convective instabil-

ity and structure formation in traffic flow. Journal

(5]

(6]

(7]

(8]

[9]

[10]

of the Physical Society of Japan 69(11), 3752—
3761 (2000)

Cummins, L., Sun, Y., Reynolds, M.: Simulating
the effectiveness of wave dissipation by follow-
erstopper autonomous vehicles. Transportation
Research Part C: Emerging Technologies 123,
102954 (2021)

Downs, A.: Stuck in Traffic: Coping with Peak-
hour Traffic Congestion. Brookings Institution

Press, JSTOR (2000)

Sutton, R.S., Barto, A.G.: Reinforcement Learn-
ing: An Introduction. MIT press, Cambridge,
MA (2018)

Wu, C., Kreidieh, A., Vinitsky, E., Bayen, A.M.:
Emergent behaviors in mixed-autonomy traffic.
In: Conference on Robot Learning, pp. 398407
(2017)

Kreidieh, A.R., Wu, C., Bayen, A.M.: Dissi-
pating stop-and-go waves in closed and open
networks via deep reinforcement learning. In:
2018 21st International Conference on Intelli-
gent Transportation Systems (ITSC), pp. 1475—
1480 (2018)

Vinitsky, E., Parvate, K., Kreidieh, A., Wu, C.,
Bayen, A.: Lagrangian control through deep-rl:
Applications to bottleneck decongestion. In: 21st
International Conference on Intelligent Trans-

portation Systems (ITSC), pp. 759-765 (2018)


https://mobility.tamu.edu/umr/

Learning a Robust Multiagent Driving Policy for Traffic Congestion Reduction 23

(11]

[12]

[13]

[14]

[15]

[16]

(17]

Treiber, M., Kesting, A.: The intelligent driver
model with stochasticity-new insights into traffic
flow oscillations. Transportation Research Pro-

cedia 23, 174-187 (2017)

Cui, J., Macke, W., Yedidsion, H., Goyal, A.,
Urieli, D., Stone, P.: Scalable multiagent driving
policies for reducing traffic congestion. In: Pro-
ceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems,

pp. 386-394 (2021)

Pinto, L., Davidson, J., Sukthankar, R., Gupta,
A.: Robust adversarial reinforcement learning.
In: Precup, D., Teh, Y.W. (eds.) Proceedings of
the 34th International Conference on Machine

Learning, vol. 70, pp. 2817-2826 (2017)

Tobin, J., Fong, R., Ray, A., Schneider, J.,
Zaremba, W., Abbeel, P.: Domain randomiza-
tion for transferring deep neural networks from
simulation to the real world. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and

Systems (IROS), pp. 23-30 (2017). IEEE

Wu, C., Kreidieh, A.R., Parvate, K., Vinitsky,
E., Bayen, A.M.: Flow: A modular learning
framework for mixed autonomy traffic. IEEE

Transactions on Robotics, 1-17 (2021)

Parvate, K.: On training robust policies for flow

smoothing (UCB/EECS-2020-197) (2020)

Vinitsky, E., Lichtle, N., Parvate, K., Bayen, A.:

(18]

[19]

(20]

(21]

(22]

Optimizing mixed autonomy traffic flow with
decentralized autonomous vehicles and multi-
agent rl. ACM Transactions on Cyber-Physical
Systems (2023)

Daganzo, C.F.: The cell transmission model:
A dynamic representation of highway traf-
fic consistent with the hydrodynamic theory.
Transportation Research Part B: Methodological

28(4), 269-287 (1994)

Yan, Z., Kreidieh, A.R., Vinitsky, E., Bayen,
AM., Wu, C.: Unified automatic control of
vehicular systems with reinforcement learning.
IEEE Transactions on Automation Science and

Engineering 20(2), 789-804 (2023)

Bernstein, D.S., Givan, R., Immerman, N., Zil-
berstein, S.: The complexity of decentralized
control of markov decision processes. Mathe-
matics of Operations Research 27(4), 819-840
(2002)

Krajzewicz, D., Erdmann, J., Behrisch, M.,
Bieker, L.: Recent development and applications
of sumo-simulation of urban mobility. Inter-
national Journal on Advances in Systems and

Measurements 5(3&4) (2012)

KrauB, S.: Microscopic modeling of traffic flow:
Investigation of collision free vehicle dynam-
ics. Technical Report DLR-FB-98-08, German

Center for Air and Space Navigation (1998)



24 Learning a Robust Multiagent Driving Policy for Traffic Congestion Reduction

[23] Duan, Y., Chen, X., Houthooft, R., Schulman,
J., Abbeel, P.: Benchmarking deep reinforcement
learning for continuous control. In: International
Conference on Machine Learning, pp. 1329-
1338 (2016)

[24] Wu, C., Kreidieh, A., Parvate, K., Vinitsky, E.,
Bayen, A.M.: Flow: Architecture and bench-
marking for reinforcement learning in traffic
control. arXiv preprint arXiv:1710.05465, 10
(2017)

[25] Schulman, J., Wolski, F., Dhariwal, P., Radford,
A., Klimov, O.: Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347
(2017)

[26] Geroliminis, N., Daganzo, C.F.: Existence of
urban-scale macroscopic fundamental diagrams:
Some experimental findings. Transportation
Research Part B: Methodological 42(9), 759-
770 (2008)

[27] Boyles, S.D., Lownes, N.E., Unnikrishnan, A.:
Transportation Network Analysis vol. 1, 0.90

edn. (2022)



	Introduction
	Related work
	Background and setup
	Road-merge congestion reduction 
	RL-based decentralized driving policy
	Robustness evaluation conditions 

	Learning a robust policy in the single-lane merge scenario
	Discretization of traffic conditions for training
	Robustness to vehicle placement, AV penetration and inflow

	Deploying the learned policy to more complex roads
	Deployed to roads with two merging ramps
	Deployed to double-lane merge roads

	Abstract Analysis in an Extended Cell Transmission Model
	Discretizing road into cells and fitting their fundamental diagrams
	Constructing an extended CTM from fundamental diagrams.
	Validating the single-lane CTM against SUMO
	Extending CTM to a double-lane merge scenario
	Insights from fundamental diagrams and CTM

	Implementation Details and Hyper-parameters
	Conclusion and future work
	Acknowledgement
	Compliance with Ethical Standards

