
Causal Policy Gradient for
Whole-Body Mobile Manipulation

Jiaheng Hu1, Peter Stone1,2, Roberto Martı́n-Martı́n1
1The University of Texas at Austin 2SonyAI
{jhu, pstone, robertomm}@cs.utexas.edu

Abstract—Developing the next generation of household robot
helpers requires combining locomotion and interaction capa-
bilities, which is generally referred to as mobile manipulation
(MoMa). MoMa tasks are difficult due to the large action space
of the robot and the common multi-objective nature of the
task, e.g., efficiently reaching a goal while avoiding obstacles.
Current approaches often segregate tasks into navigation without
manipulation and stationary manipulation without locomotion
by manually matching parts of the action space to MoMa sub-
objectives (e.g. base actions for locomotion objectives and arm
actions for manipulation). This solution prevents simultaneous
combinations of locomotion and interaction degrees of freedom
and requires human domain knowledge for both partitioning
the action space and matching the action parts to the sub-
objectives. In this paper, we introduce Causal MoMa, a new
framework to train policies for typical MoMa tasks that makes
use of the most favorable subspace of the robot’s action space
to address each sub-objective. Causal MoMa automatically
discovers the causal dependencies between actions and terms
of the reward function and exploits these dependencies in a
causal policy learning procedure that reduces gradient variance
compared to previous state-of-the-art policy gradient algorithms,
improving convergence and results. We evaluate the performance
of Causal MoMa on three types of simulated robots across
different MoMa tasks and demonstrate success in transferring
the policies trained in simulation directly to a real robot, where
our agent is able to follow moving goals and react to dynamic
obstacles while simultaneously and synergistically controlling
the whole-body: base, arm, and head. More information at
https://sites.google.com/view/causal-moma

I. INTRODUCTION

Mobile Manipulation (MoMa) requires combining loco-
motion and interaction capabilities for tasks that integrate
elements from navigation and manipulation [42, 23]. In senso-
rimotor control for navigation and for stationary manipulation,
many of the most recent successes have come from posing
the tasks as reinforcement learning (RL) problems [46] and
training a policy that maximizes the expected return defined by
a reward function for the task, e.g., for stationary manipulation
of rigid [19, 32, 34, 9, 27] and flexible objects [10, 61, 3, 25],
and navigation based on visual data [63, 62, 47, 18, 54, 31]. In
robotic tasks, the reward function often takes on a composite
form, where the eventual reward is a linear sum of a set
of reward terms corresponding to a set of sub-objectives
for the robot, e.g., navigating to a location (navigation sub-
objective 1) without colliding with the environment (naviga-
tion sub-objective 2), or reaching a location with the end-
effector (manipulation sub-objective 1) while maintaining it
at a specific orientation (manipulation sub-objective 2). While

𝒓𝒓𝒆𝒂𝒄𝒉

𝒓𝒖𝒑

𝒓𝒄𝒐𝒍𝒍

𝒓𝒍𝒐𝒐𝒌

𝒂𝒉𝒆𝒂𝒅

𝒂𝒂𝒓𝒎

𝒂𝒘𝒓𝒊𝒔𝒕

𝒂𝒃𝒂𝒔𝒆

𝒂𝒘𝒓𝒊𝒔𝒕
𝒂𝒃𝒂𝒔𝒆

𝒓𝒍𝒐𝒐𝒌
𝒓𝒖𝒑
𝒓𝒄𝒐𝒍𝒍
𝒓𝒓𝒆𝒂𝒄𝒉𝒂𝒂𝒓𝒎

𝒂𝒉𝒆𝒂𝒅

Fig. 1: Robot executing a mobile manipulation task: placing a
jug on a table. The task is naturally defined by multiple objec-
tives corresponding to a factored reward function with multiple
components (red): reaching the placing location, keeping the
orientation upright, looking at the goal, and avoiding collisions
with the base. Only some subsets of the degrees of freedom
of the robot (green) are necessary to fulfill each objective.
This corresponds to causal dependencies between some action
space dimensions and reward terms (top-right). Causal MoMa
infers these underlying causal relationships and exploits them
in a causal policy gradient approach that enables learning
policies for complex mobile manipulation tasks.

the composite reward can be a challenge for modern RL algo-
rithms in stationary manipulation and navigation, it becomes
insurmountable for RL in MoMa, where many of these sub-
objectives are combined and must be optimized with a large
action space resulting from the integration of locomotion and
manipulation degrees of freedom (see Fig. 1).

Our main insight is that the sensorimotor control learning
in MoMa can be simplified and made tractable by finding
and exploiting the existing strong correlation between parts of
the controllable embodiment (i.e., dimensions of the action
space) to each of the sub-objectives, i.e., elements of the
reward signal. For example, collisions of the robot base with

https://sites.google.com/view/causal-moma

the environment are the result of wrong locomotion actions,
independent of the arm movement, while the reason for a
robot to collide with itself is usually the wrong use of arm
commands, independent of the base actions. These strong
causal dependencies need to be exploited to factorize and
simplify MoMa reinforcement learning problems.

In other domains, a priori known causal dependencies
have been used to factorize and simplify RL problems via
factored policy gradient [43] or action-dependent factored
baselines [57]. The factorization reduces the variance on the
common score-based gradient estimator used in RL that scales
quadratically with the dimensionality of the action space. But
the factorization in prior work is the result of the researchers’
manual hardcoding of task-domain knowledge, which limits
the generalization and applicability of these methods. In this
work, we present Causal MoMa, a two-step procedure to solve
MoMa tasks with RL without a priori domain knowledge
factorization: first, Causal MoMa infers autonomously the
causal dependencies existing between reward terms and action
dimensions through a causal discovery [48] procedure. Then,
Causal MoMa leverages the discovered causal relationship
within a policy learning solution based on causal policy
gradients that computes the advantage for each action based
only on causally related reward terms. Causal MoMa’s two-
step procedure reduces the variance of policy gradient for
MoMa tasks, achieving better performance compared to a
set of baselines that include non-factored policy gradient and
sampling-based motion planning. We evaluate the performance
of our approach on two mobile manipulation domains with
discrete and continuous action spaces, and with experiments on
a real-world mobile manipulator, a Toyota HSR, and observe
a significant improvement over the baselines.

In summary, in Causal MoMa our contributions include:
• Causal MoMa’s first step, a novel method to automatically

discover the direct causal dependencies between controllable
degrees of freedom of an agent (dimensions of the action
space) and objectives (reward terms) in mobile manipulation
tasks with composite reward,

• Causal MoMa’s second step, the integration of the discov-
ered causal dependencies into a policy learning implemen-
tation with causal policy gradients that reduces gradient
variance and achieves superior performance compared to a
state-of-the-art reinforcement learning algorithm (PPO) on
mobile manipulation tasks,

• A demonstration of zero-shot transfer of the policies learned
with Causal MoMa from simulation onto a real-world
mobile manipulator, and an empirical evaluation of the
superior performance of our approach compared to a strong
sampling-based planner (CBiRRT2) in the real world.

II. RELATED WORK

The prior research most relevant to ours comes from three
general areas. First, since our target application is whole-body
motion generation and control for MoMa, we summarize work
in that area. Second, there is significant relevant past work
on learning for mobile manipulators. Third, since the key

motivation for factoring the action space is to reduce variance
in the gradient estimation to improve RL policy learning, we
review prior methods to reduce policy gradient variance.

Generation of Whole-Body Motion for Mobile Manipu-
lators: Traditionally, the problem of coordinating locomotion
and interaction in mobile manipulation has been explored
through (whole-body) motion planning and control. When ap-
plying motion planning to MoMa problems [44, 6, 4, 56, 16],
uncertainty and inaccuracy in localization frequently impede
the accurate execution of planned whole-body trajectories.
In contrast, navigation and stationary manipulation are less
sensitive to these inaccuracies due to the lower accuracy
requirements of the former and the lack of base motion of the
latter. As a result, researchers often factorize MoMa problems
into sequences of navigation and stationary manipulation prob-
lems [45, 58, 20, 15], losing the capabilities of synergistically
combining all degrees of freedom. Moreover, in order to use
motion planning, the robot is typically assumed to have access
to some form of geometric models for planning and localiza-
tion during execution, and the environment is assumed static,
a strong assumption in unstructured environments. When the
robot task contains multiple sub-objectives, creating a whole-
body motion planner is even harder, as it requires solving
complex multi-objective optimization problems [13, 35, 50].
On the side of control, existing methods [41, 60, 42, 40, 7,
28, 30, 11, 29] resort to sophisticated prioritized solutions that
require tuning to create controllers per objective and a prior
decision by the developer on task priorities and necessary
action dimensions for each task. These solutions cannot be
guided by large dimensional sensor signals such as images or
LiDAR scans. In comparison, Causal MoMa learns a close-
loop policy that simultaneously optimizes for multiple sub-
objectives, is only based on onboard sensors, and does not
require prior domain knowledge nor manual fine-tuning.

Learning for Mobile Manipulation: Recently, reinforce-
ment learning has shown to be a solution to overcome the
aforementioned limitations of planning and control: it con-
trols the robot based on onboard sensing, and the resulting
controller policy is obtained autonomously from interactions
with the environment instead of manually engineered. When
applied to MoMa, previous works on reinforcement learn-
ing follow broadly two main strategies. The first group of
methods uses a hierarchical controlling scheme with low-level
policies that actuate predefined sections of the action space
separately [20, 58, 1, 14]. This approach allows the low-level
policy to consider only a portion of the state and action space,
enabling the system to train efficiently. However, by doing so,
the robot forfeits the ability for whole-body motion. Our goal
is to develop policies that can leverage the full potential of the
whole body for MoMa tasks.

A second group of methods directly uses reinforcement
learning over the entire action space to learn a policy. This
enables the robot to utilize simultaneously all of its actuation
capabilities but, when applied directly, is limited in the com-
plexity of tasks and environments it can handle [52], with per-
formance quickly deteriorating as tasks get more complex [17].

𝑠

𝑎!

𝑎"

𝑎#

…
…

𝑓$%

𝑓!%

𝑓"%

𝑓#%

…
…

elem
ent-w

ise	m
ax

ℎ"% 𝑝̂(𝑟%|𝑠, 𝒂\𝑎")

𝐶𝑀𝐼 𝑎! , 𝑟" =

= 𝔼#!,%,&" log
𝑝̂(𝑟"|𝑠, 𝒂)

𝑝̂(𝑟"|𝑠, 𝒂\𝑎!)

×𝑚Causal	Mutual	Information	Model	of	𝑎!with	𝑟"

𝑎"

…

Mask

𝐶𝑀𝐼'' … 𝐶𝑀𝐼'(
⋮ 𝐶𝑀𝐼!" ⋮

𝐶𝑀𝐼)' … 𝐶𝑀𝐼)(

𝑚

𝑛𝐵 =
1 0… 1
0
⋮

1…
⋮

1
⋮

1 0… 1

Threshold	Min	CMI

Causal	Matrix

𝒓

𝑟!

𝑟%

𝑟&

…
…

𝑉'!(…
…𝑉'%

(

𝑉'&(

𝑠 𝜋 𝑎! ⋯ 𝑎" … 𝑎#

Causal	Policy	Gradient	Update
Environment

(𝑠, 𝒂, 𝒓)

𝒂 ∈ ℝ#×*

𝒓 ∈ ℝ&,

𝑅 =8
"#$

%

𝑟"

𝜋+,#-.&

𝑎"

LiDAR Proprioception

𝑞
𝑥//

Task	Info

Generalized	Advantage	
Estim

ation

=𝐴!(
⋮
=𝐴%(

⋮
=𝐴&(

@𝐴′!(⋯ @𝐴′"(… @𝐴′#(

Advantage	per	Reward	Term

Advantage	per	Action	Dimension

𝒂

Causal	Discovery

Policy	Learning

Fig. 2: Two-step procedure in Causal MoMa for policy training in MoMa tasks with factored reward functions without a priori
known action-space factorization. Top: Causal MoMa infers the causal dependencies existing between reward terms and action
dimensions through a causal discovery procedure on randomly collected data: estimating and thresholding the conditional-mutual
information (CMI) between action dimensions and reward factors to infer the Causal Matrix, B. Bottom: Causal MoMa trains
a policy that generates whole-body action commands based on onboard sensor signals and task information. For that, Causal
MoMa exploits the discovered Causal Matrix through causal policy gradient: advantages per reward term are aggregated into
advantages for the causally related action dimension and used to update the policy, greatly reducing policy gradient variance.

More complex MoMa tasks can be tackled by Honerkamp
et al. [12], who learn base trajectories to adapt to given MoMa
trajectories. However, they do not solve the original MoMa
problem, only the base motion, and require a pre-computed
obstacle map and a pre-defined trajectory cost function. Fu
et al. [8] address full MoMa tasks by factorizing the action
space into base and arm (as the hierarchical approaches) and
assigning them manually to different sub-tasks. They compute
separate RL advantages per body part and train a unified policy
by mixing them. Causal MoMa goes beyond theirs as it can
mix advantages from an arbitrary number of action dimensions
and reward terms, and does not need any manual assignation:
Causal MoMa discovers automatically the relation between
action and reward.

Variance Reduction in Reinforcement Learning: A fun-
damental problem in policy-based reinforcement learning is
the large policy gradient variance, which leads to instabilities
and failures in the training process [46]. An effective method
to reduce the variance without incurring bias is to use a
baseline, typically in the form of a state-dependant value
function [55, 38]. Wu et al. [57] studied using action-state-
dependent baselines instead of state-dependent baselines to
exploit the factorisability of the policy and further reduce vari-

ance. However, calculating an action-state-dependent baseline
introduces additional computational overhead, e.g., additional
neural network forward passes, which can quickly become a
computational bottleneck. Furthermore, a closer examination
by Tucker et al. [49] showed empirically on multiple domains
that learned state-action-dependent baselines do not reduce
variance over state-dependent baselines.

For problems where there exist multiple objectives, Spooner
et al. [43] showed that it is possible to derive a low variance
state-dependent baseline by accounting for a known causal
relationship between action dimensions and reward terms.
Significantly, the factored policy gradient derived by Spooner
et al. [43] can be computed efficiently with little computational
overhead. Causal MoMa adapts Factored Policy Gradient to
the MoMa domain but does not require any given causal
graph between action dimensions and objectives; it discovers
it autonomously.

III. CAUSAL MOMA

We model the mobile manipulation task as a discrete-time
Markov Decision Process represented by the tuple (S , A, P ,
R, γ), where S is a state space, A is an action space, P is a
Markovian transition model, and R is a reward function. We

study it as a reinforcement learning problem: the goal of our
robot is to optimize the total expected return, characterized by
a reward function R(s, a) 1. We assume that the robot’s action
is a n-dimensional vector a ∈ A and that our reward function
is factored, meaning that it is the linear sum of m reward terms,
i.e., R(s, a) =

∑m
j=1 rj(s, a).

2 Additionally, we define r as a
vector with all the reward terms, i.e., r = (r1, . . . , rm). We
note that the problem described above is a common setup for
robotic tasks addressed with reinforcement learning, especially
in mobile manipulation tasks where multiple objectives for
navigation and manipulation represented by reward terms are
combined.

Our main insight is to assume that, in MoMa tasks, only
some dimensions of the action space are causally related to
each term of the reward, i.e., for each j ∈ {1 . . .m}, ai → rj
only for some i ∈ {1 . . . n}. By exploiting the intrinsic action-
reward structure of MoMa problems, we can decompose the
policy learning problem over the entire action space into a set
of learning problems on subsets of the original action space,
while still maintaining the ability to actuate all degrees of
freedom simultaneously when necessary.

Causal MoMa uses a two-step procedure to 1) discover this
causal structure and 2) exploit it to train policies for MoMa
tasks with factored reward, as depicted in Fig. 2. The steps
include 1) an action-reward causal discovery procedure that
infers autonomously the causal correlations between action
dimensions and objectives (reward terms) from exploratory
behavior, and 2) the integration of the learned causal structure
into a causal policy gradient implementation obtained by mod-
ifying the proximal-policy optimization (PPO [39]) algorithm.
In the following paragraphs, we explain both steps in detail.

A. Action-Reward Causal Discovery

The first step of Causal MoMa aims at inferring the causal
relationship between action dimensions and reward terms,
which can later be used to reduce policy gradient variance.
We represent this relationship as a binary bi-adjacency n×m
dimensional causal matrix B that defines a bipartite causal
graph (see Fig. 2, top). B encodes the causal relation be-
tween action dimensions and reward terms, where ai → rj
corresponds to Bij = 1, and ai ̸→ rj to Bij = 0. During
the causal discovery phase of our method, we infer the causal
matrix B from an exploratory dataset of robot actions collected
via random interactions with the environment. Each data
point in the exploratory dataset consists of a tuple (s, a, r),
corresponding to the state, action, and vector of per-channel
rewards at each timestep. Our goal is to determine whether
a causal edge ai → rj exists from each action dimension to
each reward channel. We present a method for determining the
existence of such causal relationships, based on the following
assumptions:

1For clarity of presentation, we indicate a full action vector with a bold a
and a one-dimensional element with a non-bold a

2One setting in which factored reward functions arise is when using reward
shaping [26] to densify an otherwise sparse-reward function; another common
setting is when there are multiple objectives to accomplish.

• A1: Causal Markov Condition [37]. Each variable in a
causal graph, when conditioned on all its direct causes, is
independent of all variables which are not effects or direct
causes of it.

• A2: Faithfulness in action-reward correspondence [37].
There are no conditional independence relations other than
the ones entailed by the Markov property.

• A3: Uncorrelated action dimensions during exploration. The
exploratory data used for causal discovery has no correla-
tion across action dimensions, i.e., for each pair of action
dimensions, i and j, at each timestep t, p(ati|atj) = p(ati).

• A4: Action-reward causality inferable in short-horizon tran-
sitions. The causal dependencies between action dimensions
and reward terms can be observed in one or few timesteps,
i.e., for every action-reward pair where a causal relation
exists, the action will affect the reward within k timesteps,
where k is a hyperparameter.

Both A1 and A2 are commonly made for causal inference.
We ensure A3 holds in our solution by collecting training data
using a random policy. A4 typically holds for dense and semi-
dense rewards (e.g. collision penalty) or reward terms that
consist of potential / shaping components (e.g. goal position
reaching), but may not hold in sparse reward settings. In
this work, we use reward terms adapted from prior MoMa
works [21, 58, 20], for which this assumption holds true.
We provide additional empirical analyses of Causal MoMa
in sparse reward settings in Appendix F. Notice that A4 does
not impose that a longer time-horizon causal relation does not
exist, as long as short time-horizon relation is also present.

Theorem 3.1: Let {s, a\ai} denote the conditioning set
{s, a1, a2, . . . , ai−1, ai+1, . . . , an}. Let at:t+k denote a n× k
dimensional matrix representing k-step actions from timestep
t to timestep t+ k − 1. Let r

∑
t:t+k denote a m dimensional

vector which is the vector sum of k-step rewards from timestep
t to timestep t + k − 1. Assuming A1-A4, we have ∀i, j :

ai → rj if and only if at:t+k
i ⊥̸⊥r

∑
t:t+k

j |{st,at:t+k\at:t+k
i }

for some timestep t.

We provide the proof for this Theorem in Appendix A. An
intuitive way of understanding Theorem 3.1 is that an action
dimension ai is causally related to a reward term rj if and
only if we find correlation between them within some k-step
interval conditioning on all other action dimensions and the
starting state of that interval. Also notice that when k is set to
1, the correlation will be reduced to between two scalars, ati
and rtj . In the following paragraphs, we remove the timestep
for simplicity and refer to at:t+k as a, r

∑
t:t+k as r, and st

as s.

Based on Theorem 3.1, the causal relationship between
action dimensions and reward terms can be inferred through
conditional independence tests, which can be made by measur-
ing the Conditional Mutual Information (CMI) between pairs

of action space dimensions and reward terms, (i, j), as follows:

CMI(ai, rj) = Eai,s,rj

[
log

p(ai, rj |{s, a\ai})
p(ai|{s, a\ai})p(rj |{s, a\ai})

]
= Eai,s,rj

[
log

p(rj |{s, a})
p(rj |{s, a\ai})

]
(1)

where the expectation is taken over the joint distribution of
{ai, s, rj}. We consider that a causal edge ai → rj exists if
CMI(ai, rj) > ϵ, where ϵ is a mutual-information threshold.

We estimate the CMI between action dimensions and re-
ward terms by training predictive models, p̂(rj |{s, a}) and
p̂(rj |{s, a\ai}, for each i, j over the exploratory dataset. How-
ever, training a separate model for estimating each probability
would require a total of n×m models, which is computation-
ally infeasible. To efficiently estimate the CMI between actions
and rewards, we adopt the model architecture and training
procedure proposed by Wang et al. [53] originally used for
learning causal dynamic models, in the form explained below.
This model architecture reduces the total number of models
needed to m, the number of reward terms.

Specifically, for each reward channel rj , we train a model
(Fig. 2, top) that predicts the value of that reward channel from
a full or partial action vector and the state, p̂(rj |{s, a}) and
p̂(rj |{s, a\ai}. The model consists of three steps: first, each
of the action dimensions, a1, ..., an, and the state s are individ-
ually mapped to feature vectors f1,j(a1), ..., fn,j(an), fs,j(s)
of equal length l (l = 128 in this work). Then, an overall
feature hj is obtained by taking the element-wise max of all
features. A prediction network gj() maps hj to the predicted
reward channel. Using all values of the action vector as input,
this procedure approximates the full conditional probability,
gj(hj) = p̂(rj |{s, a}). To estimate the conditional proba-
bility of the conditioning set for the action dimension ai,
we use a mask that sets the feature corresponding to ai,
fi,j(ai), to −∞ and repeat the reward inference obtaining
gj(hj) = p̂(rj |{s, a\ai}. This model is trained to maximize
the following log-likelihood:

L =
∑
j

[log p̂(rj |s, a) + log p̂(rj |{s, a\ai})] (2)

where i is uniformly sampled from {1, . . . , n} for each j.
Maximizing equation 2 corresponds to maximizing the accu-
racy of the two terms necessary for estimating CMI(ai, rj),
which promotes an accurate estimation of the causal graph. We
split the exploration data into the training part for maximizing
L and the validation part for evaluating CMI.

After training, we obtain the bi-adjacency causal matrix
B by examining the CMI for each reward-action pair, (i, j),
based on the model’s predicted conditional probability for each
reward term in the validation dataset. Notice that this causal
inference step incurs both data and computational overhead;
we consider this impact in our evaluation in Sec. IV.

B. Policy Learning
Once Causal MoMa has inferred the causal matrix B

through causal discovery, it uses it to reduce the policy gradi-

ent variance and learn a MoMa policy with a modified policy
gradient procedure (see Fig. 2, bottom). For this purpose, we
redefine the policy gradient to be

∇θJ(θ) = ∇θ log πθ(a|s) ·B · Âπ(s, a) (3)

where θ is the policy parameter, Âπ(s, a) is a m-dimensional
vector representing the advantage function factored across the
reward terms, Âπ(s, a) = (Âπ

1 , . . . , Âπ
m), and ∇θ log πθ(a|s)

is a |θ|×n matrix with each column corresponding to the log
gradient of a particular action dimension’s probability.3

Theorem 3.2: If the causal matrix B is correct, then Equa-
tion 3 is an unbiased estimator of the true policy gradient.

We include proof of this Theorem in Appendix B. The-
orem 3.2 entails that we can use the modified version of
the policy gradient while keeping the original convergence
guarantees. Moreover, Spooner et al. [43] demonstrated that
the variance reduction of Equation 3 compared to the original
policy gradient will be non-negative, and is often significant
when the causal matrix B is sparse. An intuitive way of
understanding the variance reduction here is to note that for
each action dimension ai, reward terms that ai cannot affect
will only contribute noise to its update. By multiplying the
per-reward-advantage Âπ(s, a) with the causal matrix B, we
actively remove the irrelevant terms from the policy gradient
estimator. Through this approach, Causal MoMa actively re-
duces gradient variance, stabilizing the training process while
retaining the original theoretical guarantees, all without losing
any of the capabilities of the agent to combine locomotion and
arm(s) interactions when necessary.

While our framework can be applied to any policy gradient
and actor-critic algorithms, in this work we focus on using
Proximal Policy Optimization (PPO) [39] due to its simplicity
and stability. Specifically, we modify the value network, Vϕ,
to be multi-dimensional such that V π

ϕ (s) ∈ Rm, one value
for each of the m reward terms. During Causal MoMa policy
training (Fig. 2, bottom), the agent takes actions a ∼ πθ(a|s)
in the environment generating tuples (s, a, s′, r), where r ∈
Rm with rj being each of the reward terms. The value network
is then updated using the target r + γV π

ϕ (s′). Causal MoMa
then calculates the per-reward-channel advantage Âπ(s, a)
using Generalized Advantage Estimate [38], and obtain the
per-action-dimension advantage with Â′π(s, a) = B ·Âπ(s, a).
Lastly, Causal MoMa updates its policy network πθ(s) with
causal policy gradient updates: updating each action dimension
separately using the per-action-dimension advantage Â′(s, a)
with the PPO policy objective.

IV. EXPERIMENTAL EVALUATION

We evaluate Causal MoMa in three sets of MoMa envi-
ronments: a simplistic simulated MoMa robot in Minigrid;
realistic simulated MoMa robots in iGibson and Gazebo;
and a physical MoMa robot in the real world. In the Min-
igrid simulator, the agent controls discrete actions, while in

3Notice that the ∇θ log πθ(a|s) here is different from the canonical
notation, which typically refers to a |θ|-dimensional vector representing the
log gradient of the entire action vector’s probability

0 1 2 3
Number of Steps 1e6

1

0

1

2

3

4

5

6

7

8

Re
wa

rd

Causal MoMa
PPO
FPPO:arm-base
FPPO:random causal
CD overhead

Fig. 3: Experimental evaluation of Causal MoMa on the Mini-
grid [5] domain: (Left) the agent controls an embodiment (red
triangle) with discrete actions for navigation and manipulation
with the goal of reaching a goal location (green tile). Blue tiles
and green tiles require the agent to perform specific virtual
manipulation actions. Orange tiles should be avoided by the
agent. (Right) training curves for Causal MoMa and baselines,
five seeds each, mean and std: Causal MoMa converges to the
highest reward thanks to the discovery and exploitation of the
causal dependencies between actions and reward terms.

Gibson, Gazebo, and the real world, the action spaces are
continuous. We compare Causal MoMa in simulation against
three baseline reinforcement learning algorithms: “vanilla”
PPO (not factored) and Factored PPO (FPPO) either with a
randomly generated causal dependency or with a hardcoded
arm-base separation and association to the reward terms based
on domain knowledge (similar to the method by Fu et al. [8]).
Additionally, in the Gazebo simulator, we compare against
SLQ-MPC [29], a reactive whole-body controller. In the real
world, we compare against CBiRRT2 [59], a modified version
of the rapidly exploring random trees (RRT) sampling-based
motion planner for whole-body motion planning combined
with a trajectory executor. We compare against two baselines
with CBiRRT2: an open-loop version (plan once and execute)
and a replanning version that re-evaluates the path every 3 s.
Both baselines have privileged access to the layout of the
environment at the beginning of the episodes.

In our experiments, we aim at answering the following
questions: Q1: Does the discovered causal matrix match the
ground truth when the ground truth is available? (Sec. IV-A)
Q2: Does Causal MoMa improve performance compared to
baseline RL algorithms that do not make use of (or make
use of the wrong) the causal structure between actions and
rewards? (Sec. IV-A, Sec. IV-B) Q3: Is Causal MoMa general
enough to apply to different types of robots? (Sec. IV-B) Q4:
Can the learned policy generalize to unseen environments and
to a real robot? (Sec. IV-C) Q5: How do the policies trained
with Causal MoMa compare against sampling-based planners
and reactive controllers? (Sec. IV-B, Sec. IV-C)

In the following, we first introduce and analyze both sets of
experiments in simulation, followed by a description and anal-
ysis of the experiments on the real-world mobile manipulator.
Hyperparameters and network architectures can be found in

Appendix C, D, and E.

A. Evaluation in the Minigrid Simulator

Our first set of experiments is performed in the Minigrid [5]
environment (Fig. 3, left). We build upon the Lava Gap
task in the original Minigrid, where a simulated agent (red
triangle) has to navigate to a specified goal (green tile) while
avoiding lava (orange tiles). We modify the original task by
expanding the action space to 4 dimensions, with the first two
action dimensions aup/down, aleft/right corresponding to naviga-
tion actions, and the other two action dimensions aarm1, aarm2
corresponding to virtual arm manipulation actions. Each of the
action dimensions has three possible discrete values. We also
modify the scene so that virtual arm actions are necessary at
different tiles (of different colors), creating a multi-objective
MoMa task represented by a complex composite reward with
five reward terms:

Rminigrid = Rup/down +Rleft/right +Rorg +Rgreen +Rblue

(4)
Rup/down and Rleft/right are decomposed navigation rewards

that encourage the agent to move towards the goal from
any tile. Rorg requires the agent to avoid stepping into the
orange tiles (penalty). Rgreen and Rblue are virtual manipulation
rewards that require the agent to perform a specific action
using aarm1 and aarm2 when in blue and green tiles with waves,
respectively. A complete description of the mathematical def-
inition of the reward terms can be found in Appendix C. The
observations of the agent are 6 × 6 images corresponding to
the state of the environment with the location of the agent. Our
modified Minigrid domain is defined to represent MoMa tasks
with a causal relation between action dimensions and reward
terms that can be easily determined by a human so that we can
evaluate the performance of Causal MoMa’s causal discovery
step (Q1).

Results in Minigrid: The ground truth causal matrix and
the learned one discovered by Causal MoMa, BMinigrid, can
be found in Appendix C. We observe that the learned causal
matrix matches exactly the ground truth, indicating the effec-
tiveness of Causal MoMa’s causal discovery step (Q1).

Fig. 3, right, depicts the evolution of the reward during
training for Causal MoMa and baselines. Perhaps surprisingly,
vanilla PPO fails in this seemingly simple domain, and con-
verges to a local optimum of completely avoiding the colored
tiles. This is because the agent is penalized by stepping onto
the colored tiles when it does not execute the correct action
in the virtual arm action dimension, and, at the early stages of
training, most of the experiences lead to penalties. As a result,
the vanilla PPO policy learns to avoid these tiles altogether,
which prevents the agent from reaching the goal. By compar-
ison, Causal MoMa avoids this local optimum by utilizing the
discovered causal matrix to focus each action dimension on
the reward terms that are causally related, and converges to
a total return that significantly outperforms vanilla PPO (Q2).
Interestingly, in the Minigrid domain, FPPO using a hardcoded
arm-base separation and manual reward association is able to

0 1 2 3 4 5
Number of Steps 1e6

0

50

100

150

200

250

300

Re
wa

rd

Causal MoMa
PPO
FPPO:arm-base
CD overhead

0 1 2 3 4 5
Number of Steps 1e6

0

50

100

150

200

250

300

Re
wa

rd

Causal MoMa
PPO
FPPO:arm-base
CD overhead

Fig. 4: Experimental evaluation of Causal MoMa on the iGibson [21] domain: (Left) the agent is placed in one of eight
possible household scenes and controls one of two realistically simulated mobile manipulation embodiments, a Fetch or an
HSR robot, with continuous action dimensions and different dexterity (7 vs. 5 degrees of freedom in the arm, non-holonomic vs.
holonomic base) for a virtual place glass task: reaching a desired location with the hand while keeping a fixed hand orientation
and avoiding collisions. Obstacles and robot initial locations are randomized per episode. (Middle and Right) training curves
for Causal MoMa and baselines for Fetch (middle) and HSR (right) embodiments, five seeds each, mean and std. In this
complex setup, Causal MoMa consistently outperforms the baselines and achieves a higher return thanks to a reduced gradient
variance with the causal policy gradient.

Fig. 5: Evaluation environment for Causal MoMa in the
real-world. Left: The robot is placed in a mock apartment
never seen during training and the best Causal MoMa trained
policy is transferred zero-shot. Right: the robot is tasked with
reaching different locations with the end-effector (crosses)
from varying starting points (circles) while keeping a desired
orientation, avoiding collisions, and keeping the goal in sight.
We evaluate paths with three types of obstacles, no obstacles
(red), static obstacles (green), and dynamic obstacles (blue) in
the direct path to the goal, frequent in household environments.
Each setup repeats for two types of goals, static and dynamic.
First cross: robot’s initial end-effector goal (and final for static
goals); Second cross: robot’s final end-effector goal, when
the goal is dynamic. The policy trained with Causal MoMa
achieves higher performance than a planning-based solution
(with and without replanning) with privileged information
about the layout of the scene.

generate results that are almost as good as Causal MoMa.
This hardcoded causal dependency is included in Appendix C.
Note that both arm dimensions are associated with both arm-
related reward terms, an over-specification over the ground
truth causal dependency. These results indicate that, in simple
domains, exploiting a slightly inaccurate causal dependency
for causal policy gradient may still provide benefits over
no-factorization, a possible reason for the common use of

base/arm factorization in prior work. However, FPPO with
a randomly generated causal dependency fails completely to
train, achieving worse performance than non-factored PPO: a
completely wrong factorization is catastrophic for the training
process.

B. Evaluation in Realistic Robot Simulators

Our second set of experiments evaluates the performance
of Causal MoMa in two realistic robot simulators: iGibson
2.0 [21] and Gazebo [36]. We carried out all the training
in iGibson, a realistic simulation environment for mobile
manipulators in household scenes (Fig. 4, left). In iGibson, we
experimented with two types of mobile manipulators, a Fetch
and an HSR robot, both with continuous action spaces and
modeled based on real-world robot platforms. Fetch and HSR
offer very different motion capabilities, which allows us to test
whether our Causal MoMa is general enough to be applied on
different robots: Fetch is composed of a non-omnidirectional
base, a controllable pan-tilt head, and a 7-DoF robot arm
controlled by moving the end-effector with Cartesian space
commands. The HSR is composed of an omnidirectional base,
a controllable pan-tilt head, and an arm with only 5-DoF
controlled with joint space commands. The agent controls the
base with linear and angular velocity, where for Fetch the
linear velocity is a 1-D scalar, and for HSR is a 2D vector.
We compare against baselines and perform ablation studies in
iGibson. Finally, we tested zero-shot transferring the learned
HSR policies in iGibson to the Gazebo simulator [36] in order
to compare against SLQ-MPC [29], a reactive whole-body
controller.

The agent in the realistic simulator must achieve a MoMa
task with multiple sub-objectives that are ubiquitous in house-
hold tasks: reaching a location with the end-effector and
closing the hand, without collisions with the environment or
self-collisions, while keeping the goal in the camera view
and the hand in a predefined orientation and height. This

TABLE I: Real robot experiments on a set of tasks. Each entry in the table represents the success rate, averaged over nine runs
(over three distinct layouts, three trials each). A run is considered successful if the robot can get to within d distance of the
target without collisions. Our method is able to zero-shot transfer to the real world and achieve better performance compared
to a whole-body motion planner on five out of the six scenarios tested.

Goal Obstacles Causal MoMa (ours) CBiRRT2 [59] CBiRRT2-replan [59]

d=0.15m d=0.3m d=0.15m d=0.3m d=0.15m d=0.3m

Static Goal
No Obstacle 9/9 9/9 6/9 8/9 8/9 9/9

Static Obstacles 7/9 7/9 5/9 8/9 8/9 8/9
Dynamic Obstacles 8/9 9/9 0/9 2/9 1/9 4/9

Dynamic Goal
No Obstacle 9/9 9/9 1/9 3/9 4/9 8/9

Static Obstacles 9/9 9/9 0/9 1/9 2/9 6/9
Dynamic Obstacles 8/9 9/9 0/9 0/9 0/9 2/9

corresponds to a composite reward with eight reward terms:

RiGibson = Rreach +Reef ori +Reef height +Rbase col

+Rarm col +Rself col +Rhead ori +Rgripper
(5)

Rreach encourages the robot to reach a 3D goal with its
end-effector (eef). It also contains a shaping component that
rewards the robot every timestep if it gets closer to the goal.
Reef ori encourages the robot to align its eef’s orientation with a
target orientation that is randomly sampled at the start of each
episode. During deployment, the user can specify different
target orientations for different purposes, e.g. holding a cup of
water such that the water doesn’t spill. Reef height specifies the
desired eef height across the entire trajectory. Rbase col, Rarm col,
and Rself col are collision penalties for respective body parts of
the robot. Notice that Rbase col and Rarm col do not account for
collisions between the base and the arm, which is managed
by Rself col. Rhead ori encourages the head-mounted camera to
look in the direction of the goal, which helps the robot in the
real world to maintain a good estimation of the relative goal
position. Rgripper encourages the robot to toggle the gripper
when it is close to the goal. The HSR and Fetch experiments
share the same reward function. The observation space for
the HSR consists of a 25-dimensional proprioceptive and
task-related observation vector and a 270-dimensional LiDAR
scan. The observation space for the Fetch consists of a 27-
dimensional proprioceptive and task-related observation vector
and a 220-dimensional LiDAR scan. A complete description
of the action and observation spaces and the mathematical
definition of the reward terms can be found in Appendix D.

Results in iGibson: In iGibson, we obtain the main train-
ing results –causal matrices, reward curves, success rates–
of Causal MoMa, RL baselines, and ablations. The learned
causal matrix for Fetch and HSR, BFetch and BHSR, can
be found in Appendix D. Notice that BHSR is sparser than
BFetch, suggesting that smaller subsets of the available action
space dimensions are causally related to each reward term for
HSR than Fetch. We hypothesize that this caused a larger
improvement in the causal policy gradient in HSR than in
Fetch and led to the larger differences in Causal MoMa over
the baselines observable in Fig. 4 (Q3).

Fig. 4, depicts the evolution of the reward during training for
Causal MoMa and baselines for the iGibson experiment with
Fetch (middle) and HSR (right). For both robot embodiments,
Causal MoMa achieves superior performance compared to
both vanilla PPO and FPPO with arm-base separation, de-
spite the initial computational overhead of performing causal
inference (CD overhead - represented by the dotted line in
the plots). The arm-base separation underperforms Causal
MoMa, suggesting that, for real-world problems with multiple
objectives and high dimensional action spaces, more fine-
grained causal relationships between action and reward terms
are needed to fully take advantage of the factored nature of
the problem (Q2). Additionally, we examine the success rate
of the different learning algorithms at the end of training
in iGibson. A run is considered successful if the robot is
able to reach within d = 0.15m of the goal with its end-
effector without collision. For each method on each robot
type, we run 1000 trials with randomly generated start and
goal positions. In these conditions, Causal MoMa achieves
93.6% and 92.1% success on HSR and Fetch, significantly
over Vanilla PPO (74.3% HSR, 79.0% Fetch) and FPPO with
arm-base factorization (76.1% HSR, 78.7% Fetch).

Results in Gazebo: In Gazebo, we compare the policy
trained with Causal MoMa and the baselines against SLQ-
MPC, a state-of-the-art model predictive control (MPC) strat-
egy for reactive whole-body mobile manipulation. We use
Gazebo as it is the platform where the implementation of SLQ-
MPC is available; to that end, we zero-shot transfer our poli-
cies learned in iGibson into the Gazebo simulator (sim2sim)
and evaluate them on four distinct scenarios based on the goal
type (static/dynamic) and obstacle type (none/static/dynamic).
When either the goal or the obstacle is dynamic, they move at
0.3m/s along hand-crafted trajectories. We report the success
rates for the learned policies and SLQ-MPC, as well as addi-
tional descriptions of the Gazebo environment, in Appendix G.

We observe that the SLQ-MPC reactive approach improves
over the baselines for the scenes with static goal and no
obstacles or static ones, but it still underperforms compared
to Causal MoMa. The performance is significantly lower

Fig. 6: Temporal evolution of one of our experiments with Causal MoMa in the real world. The robot is tasked with reaching
the object on the table marked with a tag while going around static and dynamic obstacles in the direct path, keeping the
orientation of the end-effector upright, avoiding self-collisions, and keeping the target in view. The policy trained with Causal
MoMa can robustly achieve the task in this unseen environment, controlling simultaneously the whole body. More examples
in the video attachment.

than Causal MoMa in dynamic scenes because SLQ-MPC is
unable to balance multiple objectives correctly and lacks an
additional solution to map sensor signals to its internal model.
These failures reveal a fundamental limitation of model-based
reactive control and planning methods: they require some
additional mechanism to map sensor data to their internal
model (e.g., defining, detecting, tracking obstacles, or creating
and maintaining a map with SLAM. . .), and struggle when
such mechanisms are missing and the internal model becomes
inaccurate. By contrast, Causal MoMa’s policy does not re-
quire building and maintaining a geometric world model as it
maps directly sensor signals to actions (Q5).

C. Evaluation on a Real-World Mobile Manipulator

In a final set of experiments, we evaluate the performance
of our policies trained in simulation with Causal MoMa when
transferred zero-shot to control a real robot, an HSR mobile
manipulator, and compare against two baselines based on
the sampling-based planner CBiRRT2 [59], with and without
replanning. We use the published implementation of CBiRRT2
customized and tuned for the HSR robot. In the first CBiRRT2-
based baseline, an open-loop trajectory is computed at the
beginning and is directly executed using a trajectory execution
controller with spline interpolation and scheduled motion
generation. The end of a CBiRRT trial is indicated by the
robot terminating all the points in the trajectory and stopping.
The second baseline (CBiRRT2-replan) replans for a new
trajectory every 3 s and executes with the trajectory controller.
Both baselines have access to privileged information: a layout
(obstacle map) of the environment; Causal MoMa solely relies
on onboard sensors.

We set up our experiment in a household scene (see Fig. 5)
that has never been seen by the agent during training. The
robot is tasked with reaching a desired location with the end-
effector while keeping the hand in a user-specified orientation
and avoiding collisions with the environment and with itself.
This MoMa task is one of the most general skills required for a
mobile manipulator in household domains. Causal MoMa and
baselines track the relative goal location through a QR marker
recognized with the robot’s onboard head camera [59]. Action
and observation spaces are similar to the iGibson HSR setup.

We evaluate our method on six distinct scenarios
based on the goal type (static/dynamic) and obstacle type
(none/static/dynamic). Each scenario consists of three different

initial and goal configurations, as depicted in Fig. 5, right.
When either the obstacle or the goal is dynamic, it moves at
about 0.3m/s along the trajectory indicated in Fig. 5, right. We
repeat each configuration three times to account for episodic
randomness. Similar to Sec. IV-B, we consider a run to be
successful if the robot reaches within d meters of the goal
with the end-effector without collision. We evaluate results
for two different d values, corresponding to low precision and
high precision conditions.

Results on the real mobile manipulator: The results of our
evaluation in the real world are summarized in Table I. Each
row in the table corresponds to a different scenario (goal and
obstacle type), and each entry is averaged over nine runs across
three different layouts. Our method is able to outperform
the baselines on all but one scenario (static goal with static
obstacles) and has a significant advantage over the baselines
in all the dynamic cases, indicating the capacity of our policy
trained with Causal MoMa to control the whole-body motion
reactively (Q5). Notice that our training environment does not
include any dynamic obstacles, which indicates the robustness
of our method and its generalization ability (Q4).

A typical failure mode for CBiRRT2 in the dynamic sce-
nario is to either collide with a moving obstacle or lose track
of the goal location, even with re-planning. Even in the easiest
case (static goal, no obstacle), the open-loop execution of the
CBiRRT2 plan is not able to reach the goal position very
accurately due to the mismatch between the motion model
of the robot and the real motion (possibly because of wheel
slip or inaccuracies of the model), causing the executed plans
to deviate from the planned ones. These results confirm our
conclusions in Sec. IV-B that model-based planning and re-
active control methods struggle with dynamic problems when
there is a lack of a perceptual system to update the internal
model with observations. More advanced planning solutions
integrating sensing [24, 22, 51, 2] may alleviate this issue but
would still be affected by the multiple objectives in the MoMa
tasks.

Significantly, the lower success rate of Causal MoMa under
the static goal and static obstacles setting (second row) is
caused by one particular set of initial and goal configurations,
where the robot starts off in a local optimum blocked by a
long obstacle, a sofa bed (green circle and cross at the center
of Fig. 5, right). In these conditions, Causal MoMa is not
able to reliably plan the long path required around the sofa

based only on the partial observation from the LiDAR. By
contrast, the CBiRRT2 planner with a privileged layout map
can consider global information and plans a path around the
obstacle, outperforming Causal MoMa in this setup. Notice
that in addition to reaching the goal, Causal MoMa is also able
to keep the robot’s hand towards user-indicated orientations
during the execution of the policy, as it was trained in
simulation. We provide an analysis of the deviation of the
orientation to the desired value over the course of an episode
in Appendix H.

Finally, as a proof of concept, we demonstrate the potential
of the skills learned with Causal MoMa with two semantically
meaningful MoMa tasks in the real robot: carrying a cup of
water (beads) without spilling it and pouring it into a bowl,
and following a person, while avoiding emerging obstacles.
We demonstrate these behaviors in the supplementary video.

V. LIMITATIONS AND CONCLUSION

We introduced Causal MoMa, a two-step procedure to
train policies for Mobile Manipulation problems exploiting
the causal dependencies between action space dimensions and
reward terms. Causal MoMa infers autonomously the under-
lying causal dependencies, removing the need for manually
defining them, and exploits them in a causal policy gradient
approach that leads to improved training performance through
a reduction of the gradient variance. We demonstrated the
benefits of training with Causal MoMa for several tasks in
simulation and the successful zero-shot transfer to an unseen
real-world environment, where we control the whole body of
a mobile manipulator around static and dynamic obstacles.

However, Causal MoMa is not without limitations. The
most severe derive from possible violations of the assumptions
in Sec. III. In particular, as indicated in assumption A4,
Causal MoMa cannot deal with very long causal dependencies
between actions and rewards, e.g., in long-horizon tasks with
sparse rewards. We hypothesize that a hierarchical causal dis-
covery procedure at different horizon lengths would overcome
this problem. In addition, the policy generated with Causal
MoMa performs visuo-motor whole-body MoMa control and,
as such, it may fail to plan long trajectories that avoid local
minima. However, this problem was not deemed severe in
our experiments. Finally, our current policy does not consume
images directly but transforms them into an end-effector goal
position first; this is not a limitation of Causal MoMa but rather
a way to accelerate the training procedure. We are extending
Causal MoMa to include RGB observations. Even with these
limitations, we hope Causal MoMa simplifies the use of
mobile manipulators in households and other environments.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful com-
ments on improving the paper. We thank members of RobIn
and LARG for their valuable feedback on the idea formulation
and manuscript. In particular, we thank Zizhao Wang for dis-
cussions on causal discovery, and Yuqian Jiang for discussions
on real robot setup.

A portion of this work has taken place in the Learn-
ing Agents Research Group (LARG) at UT Austin. LARG
research is supported in part by NSF (CPS-1739964, IIS-
1724157, FAIN-2019844), ONR (N00014-18-2243), ARO
(W911NF-19-2-0333), DARPA, Bosch, and UT Austin’s Good
Systems grand challenge. Peter Stone serves as the Executive
Director of Sony AI America and receives financial compen-
sation for this work. The terms of this arrangement have been
reviewed and approved by the University of Texas at Austin
in accordance with its policy on objectivity in research.

REFERENCES

[1] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Her-
zog, et al. Do as i can, not as i say: Grounding language
in robotic affordances. Conference on Robot Learning,
2022.

[2] Georges S Aoude, Brandon D Luders, Joshua M Joseph,
Nicholas Roy, and Jonathan P How. Probabilistically
safe motion planning to avoid dynamic obstacles with
uncertain motion patterns. Autonomous Robots, 35:51–
76, 2013.

[3] Sarthak Bhagat, Hritwick Banerjee, Zion Tsz Ho Tse, and
Hongliang Ren. Deep reinforcement learning for soft,
flexible robots: Brief review with impending challenges.
Robotics, 8(1):4, 2019.

[4] Felix Burget, Armin Hornung, and Maren Bennewitz.
Whole-body motion planning for manipulation of artic-
ulated objects. In 2013 IEEE International Conference
on Robotics and Automation, pages 1656–1662. IEEE,
2013.

[5] Maxime Chevalier-Boisvert, Lucas Willems, and Suman
Pal. Minimalistic gridworld environment for gymna-
sium, 2018. URL https://github.com/Farama-Foundation/
Minigrid.

[6] Hongkai Dai, Andrés Valenzuela, and Russ Tedrake.
Whole-body motion planning with centroidal dynamics
and full kinematics. In IEEE-RAS International Confer-
ence on Humanoid Robots, pages 295–302. IEEE, 2014.

[7] Alexander Dietrich, Thomas Wimbock, Alin Albu-
Schaffer, and Gerd Hirzinger. Reactive whole-body
control: Dynamic mobile manipulation using a large
number of actuated degrees of freedom. IEEE Robotics
& Automation Magazine, 19(2):20–33, 2012.

[8] Zipeng Fu, Xuxin Cheng, and Deepak Pathak. Deep
whole-body control: Learning a unified policy for ma-
nipulation and locomotion. CoRL, 2022.

[9] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey
Levine. Deep reinforcement learning for robotic ma-
nipulation with asynchronous off-policy updates. In
2017 IEEE international conference on robotics and
automation (ICRA), pages 3389–3396. IEEE, 2017.

[10] Abhishek Gupta, Clemens Eppner, Sergey Levine, and
Pieter Abbeel. Learning dexterous manipulation for a
soft robotic hand from human demonstrations. In 2016

https://github.com/Farama-Foundation/Minigrid
https://github.com/Farama-Foundation/Minigrid

IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 3786–3793. IEEE, 2016.

[11] Jesse Haviland, Niko Sünderhauf, and Peter Corke. A
holistic approach to reactive mobile manipulation. IEEE
Robotics and Automation Letters, 7(2):3122–3129, 2022.

[12] Daniel Honerkamp, Tim Welschehold, and Abhinav Val-
ada. n2m2: Learning navigation for arbitrary mobile ma-
nipulation motions in unseen and dynamic environments.
arXiv preprint arXiv:2206.08737, 2022.

[13] Qiang Huang, Kazuo Tanie, and Shigeki Sugano. Co-
ordinated motion planning for a mobile manipulator
considering stability and manipulation. The International
Journal of Robotics Research, 19(8):732–742, 2000.

[14] Snehal Jauhri, Jan Peters, and Georgia Chalvatzaki.
Robot learning of mobile manipulation with reachability
behavior priors. IEEE Robotics and Automation Letters,
2022.

[15] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Inte-
grated task and motion planning in belief space. The
International Journal of Robotics Research, 32(9-10):
1194–1227, 2013.

[16] Mrinal Kalakrishnan, Sachin Chitta, Evangelos
Theodorou, Peter Pastor, and Stefan Schaal. Stomp:
Stochastic trajectory optimization for motion planning.
In 2011 IEEE international conference on robotics and
automation, pages 4569–4574. IEEE, 2011.

[17] Julien Kindle, Fadri Furrer, Tonci Novkovic, Jen Jen
Chung, Roland Siegwart, and Juan Nieto. Whole-body
control of a mobile manipulator using end-to-end rein-
forcement learning. arXiv preprint arXiv:2003.02637,
2020.

[18] Jonáš Kulhánek, Erik Derner, Tim De Bruin, and Robert
Babuška. Vision-based navigation using deep reinforce-
ment learning. In 2019 european conference on mobile
robots (ECMR), pages 1–8. IEEE, 2019.

[19] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter
Abbeel. End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1):1334–
1373, 2016.

[20] Chengshu Li, Fei Xia, Roberto Martı́n-Martı́n, and Silvio
Savarese. Hrl4in: Hierarchical reinforcement learning
for interactive navigation with mobile manipulators. In
CoRL, pages 603–616. PMLR, 2020.

[21] Chengshu Li, Fei Xia, Roberto Martı́n-Martı́n, Michael
Lingelbach, Sanjana Srivastava, Bokui Shen, Kent Elliott
Vainio, Cem Gokmen, Gokul Dharan, Tanish Jain, et al.
igibson 2.0: Object-centric simulation for robot learning
of everyday household tasks. In Conference on Robot
Learning, pages 455–465. PMLR, 2022.

[22] Matthew R Maly, Morteza Lahijanian, Lydia E Kavraki,
Hadas Kress-Gazit, and Moshe Y Vardi. Iterative tem-
poral motion planning for hybrid systems in partially
unknown environments. In Proceedings of the 16th
international conference on Hybrid systems: computation
and control, pages 353–362, 2013.

[23] Roberto Martı́n-Martı́n, Georgia Chalvatzaki, and Ken-

suke Harada. - mobile manipulation, Oct 2022. URL
https://mobile-manipulation.net/.

[24] Ellips Masehian and Yalda Katebi. Robot motion plan-
ning in dynamic environments with moving obstacles
and target. International Journal of Computer and
Information Engineering, 1(5):1249–1254, 2007.

[25] Jan Matas, Stephen James, and Andrew J Davison.
Sim-to-real reinforcement learning for deformable object
manipulation. In Conference on Robot Learning, pages
734–743. PMLR, 2018.

[26] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy
invariance under reward transformations: Theory and
application to reward shaping. In Icml, volume 99, pages
278–287. Citeseer, 1999.

[27] Hai Nguyen and Hung La. Review of deep reinforcement
learning for robot manipulation. In 2019 Third IEEE
International Conference on Robotic Computing (IRC),
pages 590–595. IEEE, 2019.

[28] Francesco Nori, Silvio Traversaro, Jorhabib Eljaik,
Francesco Romano, Andrea Del Prete, and Daniele Pucci.
icub whole-body control through force regulation on
rigid non-coplanar contacts. Frontiers in Robotics and
AI, 2:6, 2015.

[29] Johannes Pankert and Marco Hutter. Perceptive model
predictive control for continuous mobile manipulation.
IEEE RAL, 5(4):6177–6184, 2020.

[30] Evangelos Papadopoulos and John Poulakakis. Planning
and model-based control for mobile manipulators. In
Proceedings. 2000 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2000)(Cat. No.
00CH37113), volume 3, pages 1810–1815. IEEE, 2000.

[31] Claudia Pérez-D’Arpino, Can Liu, Patrick Goebel,
Roberto Martı́n-Martı́n, and Silvio Savarese. Robot
navigation in constrained pedestrian environments using
reinforcement learning. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages
1140–1146. IEEE, 2021.

[32] Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland
Hafner, Gabriel Barth-Maron, Matej Vecerik, Thomas
Lampe, Yuval Tassa, Tom Erez, and Martin Riedmiller.
Data-efficient deep reinforcement learning for dexterous
manipulation. arXiv preprint arXiv:1704.03073, 2017.

[33] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam
Gleave, Anssi Kanervisto, and Noah Dormann. Stable
baselines3, 2019.

[34] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta,
Giulia Vezzani, John Schulman, Emanuel Todorov, and
Sergey Levine. Learning complex dexterous manipula-
tion with deep reinforcement learning and demonstra-
tions. arXiv preprint arXiv:1709.10087, 2017.

[35] Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and
Siddhartha Srinivasa. Chomp: Gradient optimization
techniques for efficient motion planning. In 2009 IEEE
International Conference on Robotics and Automation,
pages 489–494. IEEE, 2009.

[36] Open Robotics. Gazebo simulator, 2002. URL https:

https://mobile-manipulation.net/
https://staging.gazebosim.org/

//staging.gazebosim.org/.
[37] Richard Scheines. An introduction to causal inference.

Carnegie Mellon University, 1997.
[38] John Schulman, Philipp Moritz, Sergey Levine, Michael

Jordan, and Pieter Abbeel. High-dimensional continuous
control using generalized advantage estimation. arXiv
preprint arXiv:1506.02438, 2015.

[39] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[40] Luis Sentis and Oussama Khatib. A whole-body control
framework for humanoids operating in human environ-
ments. In ICRA, pages 2641–2648, 2006.

[41] Homayoun Seraji. A unified approach to motion control
of mobile manipulators. The International Journal of
Robotics Research, 17(2):107–118, 1998.

[42] Bruno Siciliano, Oussama Khatib, and Torsten Kröger.
Springer handbook of robotics. Springer, 2008.

[43] Thomas Spooner, Nelson Vadori, and Sumitra Ganesh.
Factored policy gradients: Leveraging structure for effi-
cient learning in momdps. Advances in Neural Informa-
tion Processing Systems, 34:5481–5493, 2021.

[44] Mike Stilman. Global manipulation planning in robot
joint space with task constraints. IEEE Transactions on
Robotics, 26(3):576–584, 2010.

[45] Mike Stilman, Jan-Ullrich Schamburek, James Kuffner,
and Tamim Asfour. Manipulation planning among mov-
able obstacles. In Proceedings 2007 IEEE international
conference on robotics and automation, pages 3327–
3332. IEEE, 2007.

[46] Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

[47] Lei Tai, Giuseppe Paolo, and Ming Liu. Virtual-to-
real deep reinforcement learning: Continuous control of
mobile robots for mapless navigation. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), pages 31–36. IEEE, 2017.

[48] Jin Tian and Judea Pearl. Causal discovery from changes.
arXiv preprint arXiv:1301.2312, 2013.

[49] George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard
Turner, Zoubin Ghahramani, and Sergey Levine. The
mirage of action-dependent baselines in reinforcement
learning. In International conference on machine learn-
ing, pages 5015–5024. PMLR, 2018.

[50] Jur Van Den Berg, Pieter Abbeel, and Ken Goldberg.
Lqg-mp: Optimized path planning for robots with motion
uncertainty and imperfect state information. The Inter-
national Journal of Robotics Research, 30(7):895–913,
2011.

[51] Eduard Vidal, Mark Moll, Narcı́s Palomeras, Juan David
Hernández, Marc Carreras, and Lydia E Kavraki. Online
multilayered motion planning with dynamic constraints
for autonomous underwater vehicles. In 2019 Interna-
tional Conference on Robotics and Automation (ICRA),
pages 8936–8942. IEEE, 2019.

[52] Cong Wang, Qifeng Zhang, Qiyan Tian, Shuo Li, Xi-

aohui Wang, David Lane, Yvan Petillot, and Sen Wang.
Learning mobile manipulation through deep reinforce-
ment learning. Sensors, 20(3):939, 2020.

[53] Zizhao Wang, Xuesu Xiao, Zifan Xu, Yuke Zhu, and Pe-
ter Stone. Causal dynamics learning for task-independent
state abstraction. ICML, 2022.

[54] Erik Wijmans, Abhishek Kadian, Ari Morcos, Ste-
fan Lee, Irfan Essa, Devi Parikh, Manolis Savva, and
Dhruv Batra. Dd-ppo: Learning near-perfect pointgoal
navigators from 2.5 billion frames. arXiv preprint
arXiv:1911.00357, 2019.

[55] Ronald J Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Re-
inforcement learning, pages 5–32, 1992.

[56] Jason Wolfe, Bhaskara Marthi, and Stuart Russell. Com-
bined task and motion planning for mobile manipulation.
In Twentieth international conference on automated plan-
ning and scheduling (ICAPS), 2010.

[57] Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Ku-
mar, Alexandre M Bayen, Sham Kakade, Igor Mordatch,
and Pieter Abbeel. Variance reduction for policy gradient
with action-dependent factorized baselines. In Interna-
tional Conference on Learning Representations, 2018.

[58] Fei Xia, Chengshu Li, Roberto Martı́n-Martı́n, Or Litany,
Alexander Toshev, and Silvio Savarese. Relmogen: Inte-
grating motion generation in reinforcement learning for
mobile manipulation. In 2021 International Conference
on Robotics and Automation (ICRA), 2021.

[59] Takashi Yamamoto, Koji Terada, Akiyoshi Ochiai, Fumi-
nori Saito, Yoshiaki Asahara, and Kazuto Murase. Devel-
opment of human support robot as the research platform
of a domestic mobile manipulator. ROBOMECH journal,
6(1):1–15, 2019.

[60] Yoshio Yamamoto and Xiaoping Yun. Coordinating
locomotion and manipulation of a mobile manipulator.
In [1992] Proceedings of the 31st IEEE Conference on
Decision and Control, pages 2643–2648. IEEE, 1992.

[61] Haochong Zhang, Rongyun Cao, Shlomo Zilberstein,
Feng Wu, and Xiaoping Chen. Toward effective soft
robot control via reinforcement learning. In Intelligent
Robotics and Applications: 10th International Confer-
ence, ICIRA 2017, Wuhan, China, August 16–18, 2017,
Proceedings, Part I 10, pages 173–184. Springer, 2017.

[62] Kai Zhu and Tao Zhang. Deep reinforcement learning
based mobile robot navigation: A review. Tsinghua
Science and Technology, 26(5):674–691, 2021.

[63] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim,
Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-
driven visual navigation in indoor scenes using deep
reinforcement learning. In 2017 IEEE international
conference on robotics and automation (ICRA), pages
3357–3364. IEEE, 2017.

https://staging.gazebosim.org/

APPENDIX

A. Proof of Theorem 3.1 (Causal Sufficiency and Necessity)

As a first step to prove Theorem 3.1, we prove the following
lemma, which is a local version of Theorem 3.1:

Lemma A.1: ∀i, j : at:t+k
i → r

∑
t:t+k

j if and only if
at:t+k
i ⊥̸⊥r

∑
t:t+k

j |{st,at:t+k\at:t+k
i }

First, we consider the forward direction and prove that that:

at:t+k
i ⊥̸⊥ r

∑
t:t+k

j |{st, at:t+k\at:t+k
i } =⇒ at:t+k

i → r
∑

t:t+k
j

Base on A3 (action independence), at:t+k have no parent in
the causal graph. Therefore, there cannot exist a confounder
Q with confounding path at at:t+k

i ← Q→ r
∑

t:t+k
j .

Next, following A1 (causal Markov assumption) and A2
(causal faithfulness), conditioning on all other potential parents
of r

∑
t:t+k

j (i.e., {st, at:t+k\at:t+k
i }), the conditional depen-

dence at at:t+k
i ⊥̸⊥ r

∑
t:t+k

j |{st, at:t+k\at:t+k
i } must result

from the existence of the edge at at:t+k
i → r

∑
t:t+k

j .
Next, we prove the converse, i.e.,

at:t+k
i → r

∑
t:t+k

j =⇒ at:t+k
i ⊥̸⊥r

∑
t:t+k

j |{st, at:t+k\at:t+k
i }

Notice that this directly follows from the causal faithfulness
assumption. This completes the proof for Lemma A.1.

Finally, assuming A4, we have ai → rj if and only if
at:t+k
i → r

∑
t:t+k

j for some t. This means that ai → rj ,
at:t+k
i → r

∑
t:t+k

j , and at:t+k
i ⊥̸⊥r

∑
t:t+k

j |{st,at:t+k\at:t+k
i }

are materially equivalent. This completes the proof. ■

B. Proof Sketch of Theorem 3.2 (Causal Policy Gradient)

First, we summarize the Factored Policy Gradient (FPG)
proposition derived in Spooner et al. [43]:

Proposition A.2: Take a Σ-factored policy πθ(a|s), a causal
matrix for the Σ-factored action space KΣ, and |θ|×|Σ| matrix
of scores S(s, a). Then, for target vector Ψ(s, a) and multi-
pliers λ, the FPG estimator gF (s, a) = S(s, a)KΣλ ◦Ψ(s, a)
is an unbiased estimator of the true policy gradient.
We refer the reader to Spooner et al. [43] for detailed proof
and terminology definition of this proposition.

Now, we set the policy factorization Σ to be per-action-
dimension factorization, which turn S(s, a) to ∇θ log πθ(a|s)
and KΣ to Btrue. Next, we use advantage Âπ(s, a) in place
of the target vector Ψ(s, a), and set multipliers λ (which
represents the weight of each reward term) to be 1, to obtain
the modified FPG estimator gFmod(s, a) = ∇θ log πθ(a|s) ·
Btrue · Âπ(s, a)

The derivation above indicates that Eq. 3 used in Causal
MoMa is a special case of the Factored Policy Gradient, and
thus it follows that our Eq. 3 is an unbiased estimator of the
true policy gradient. ■

C. Minigrid Experimental Details

Reward Function: The reward function in the Minigrid
domain is defined by

Rminigrid = Rup/down +Rleft/right +Rorg +Rgreen +Rblue

(6)

• Rup/down and Rleft/right rewards with +1 every time the agent
moves closer to the goal in the vertical/horizontal direction,
and with -1 if it moves further away.
• Rorg penalizes with -5 every time the agent steps onto an

orange tile.
• Rgreen and Rblue penalizes with -5 every time the agent

steps out from a green/blue tile with waves without executing
the correct arm1 or arm2 action, where the correct arm1/arm2
action is defined by the number of empty tiles (black) around
the tile location.

Observations: The observations in the Minigrid domain are
6 × 6 images. These images have two channels: one channel
that indicates the agent’s location, and another channel for
the layout of the grid, where each pixel corresponds to a tile
and can take five different integer values indicating the five
different types of tiles: blue tile with waves, green tile with
waves, orange tile with waves, goal (green, no waves), empty
(black).

Causal Matrices in Minigrid: Given the reward explained
above, we can derive the ground truth causal dependency
between action space dimensions and reward terms:

Bgt
minigrid =


Rup/down Rleft/right Rorg Rgreen Rblue

aup/down 1 0 1 0 0
aleft/right 0 1 1 0 0
aarm1 0 0 0 1 0
aarm2 0 0 0 0 1


where the decomposed locomotion reward (Rup/down&Rleft/right)
are causally related to the respective locomotion action
(aup/down&aleft/right), the locomotion penalty (Rorg) are related
to both of the locomotion actions, and the manipulator rewards
(Rgreen&Rblue) are only causally related to the respective
manipulation action (aarm1&aarm2).

The learned causal matrix, Bcmi
minigrid, using k = 1 presents

the following form:

Bcmi
minigrid =


Rup/down Rleft/right Rorg Rgreen Rblue

aup/down 1 0 1 0 0
aleft/right 0 1 1 0 0
aarm1 0 0 0 1 0
aarm2 0 0 0 0 1


which corresponds exactly to the ground truth causal matrix.

In Minigrid, for our experiments with predefined arm-base
separation, we group together the locomotion actions and the
manipulation actions and map them manually in the most
optimal manner to the different reward terms. This leads to the
following causal matrix as best association between groups of
action dimensions and reward terms:

Barm-base
minigrid =


Rup/down Rleft/right Rorg Rgreen Rblue

aup/down 1 1 1 0 0
aleft/right 1 1 1 0 0
aarm1 0 0 0 1 1
aarm2 0 0 0 1 1



This matrix is an over-specification of the causal dependency:
all action dimensions that are causally related to each reward
term are correctly indicated (no false-negatives) but there are
some action dimensions that are additionally indicated and
should not (some false-positives). In these conditions, the
second step of Causal MoMa, training the policy with causal
policy gradient, can still leverage some of the benefits of
the factorization but suffers from additional variance in the
gradient estimation compared to the learned causal matrix,
leading to the slightly worse performance observed in our
experiments (Fig. 3, right).

Hyperparameters: The hyperparameters for the Minigrid
experiments are included in the table below:

Causal Discovery Parameters
CMI threshold 0.02

k (time interval) 1
Learning rate 1e-4

Batch size 64
Gradient clipping norm 20

PPO Parameters
Learning rate 1e-3

GAE λ 0.95
Discount factor γ 0.99

target-KL None
PPO clip range 0.2

Advantage Normalization False

For all PPO hyperparameters that are not specified in the
table, we use the default value in stable baselines3 [33].

D. iGibson Experiments Details

Reward Function: For each timestep, t, we denote the 3D
position of the robot end-effector as posteef, the orientation of
the robot end-effector with respect to base link as oriteef, the 3D
position of the goal as posgoal, and the target local orientation
of the end-effector as oritgoal. We use st to denote the state
vector that encompasses all the variables above. We use d to
denote distance, which is the L2 distance for positions and the
arc distance for orientations.

The reward function for iGibson is defined by

RiGibson = Rreach +Reef ori +Reef height +Rbase col

+Rarm col +Rself col +Rhead ori +Rgripper
(7)

• Rreach = Rpot
reach +Rpoint

reach, where:

Rpoint
reach(s

t) =

{
20, if d(posgoal, posteef) ≤ 0.1

0, otherwise

Rpot
reach(s

t) = d(posgoal, post−1
eef)− d(posgoal, posteef)

(8)

• Reef ori(s
t) = −d(oritgoal, oriteef) ∗ 0.25 penalizes deviating

from a desired height.
• Reef height(s

t) = −d(posgoal.z, posteef.z) ∗ 0.25 penalizes
deviating from a desired orientation. During training, we
use this reward combined with an orientation goal that is
uniformly sampled and kept constant during each episode. In

our real robot experiments, we demonstrate the generalization
capabilities of the robot to change orientation by setting two
different values depending on the distance between the end-
effector and the position goal, posgoal, one value when the
distance is larger than 1m and a different one for closer
distances. This emulates real-world tasks such as pouring a
substance into a container placed at the final position, as
illustrated in Fig. 1.
• Rbase col, Rarm col, andRself col all incur a penalty of −1 if

a corresponding collision happens at a given time step.
• Rhead ori gives a reward of 0.2 at every time step if the goal

is within the field of view of the camera, and -0.2 otherwise.
• Rgripper requires that the robot close the gripper when

d(posgoal, posteef) ≤ 1, and open otherwise. If not, a cost of
-0.2 will be incurred at each timestep.

Task specification: At the start of each episode, we ran-
domly sample a 3D goal location, a robot starting location,
and a target local end-effector orientation. Every time the
robot reaches a goal, a new goal is automatically generated.
Therefore, the robot is trying to reach as many goals as
possible within an episode. The length of each episode is set
to be 500.

Observations: Both Fetch and HSR agents are provided
an observation composed of a LiDAR reading, proprioceptive
information, and a task observation vector. The LiDAR reading
of Fetch and HSR are both down-sampled to an angular resolu-
tion of 1◦, resulting in 220-dimensional and 270-dimensional
readings respectively. The proprioceptive information for both
the Fetch and the HSR consists of the robot’s base velocity, the
end-effector’s current local position, the end-effector’s current
local orientation, joint positions, and the current timestep.
The task observation vector for both the Fetch and the HSR
consists of the robot’s relative distance to the goal, and the end-
effector’s goal orientation. All orientations are represented as
quaternions.

Action Space: We used different action spaces for the HSR
and Fetch robot. For Fetch, we use Cartesian space control for
the arm, resulting in an 11-dimensional action space consisting
of 2D locomotion actions for linear and angular velocity with
the non-omnidirectional base (aforward, aturn), 2D head actions
(apan, atilt), 3D arm position actions (aarm.x, aarm.y, aarm.z), 3D
arm orientation actions (aarm.rx, aarm.ry, aarm.rz), and 1D gripper
action (agrip). The arm Cartesian space actions are delta motion
with respect to the current end-effector pose, they are defined
with respect to the base link of the robot and converted
to joint-level actions using an inverse-kinematics solver. For
HSR, we directly operate in joint space. The action space
is also 11-dimensional, consisting of 3D locomotion actions
for linear and angular velocity with the omnidirectional base
(aforward, aside, aturn), 2D head actions (apan, atilt), 5D manipu-
lation joint actions (aarm.lift, aarm.flex, aarm.roll, awrist.flex, awrist.roll),
and 1D gripper action (agrip). Joint space actions are deltas
with respect to the current joint configuration.

Causal Matrices in iGibson: For the Fetch robot, the causal
matrices discovered by Causal MoMa are presented in Fig. 9.
The HSR causal matrices discovered by Causal MoMa are

presented in Fig. 10. In these experiments, we are not able
to define ground truth causal matrices but from a reasoned
comparison between the learned matrices and the reward terms
(and from the benefits observed by using them through causal
policy gradient in Fig. 4) we conclude they are close to the
underlying causal dependency.

We also include in Fig. 10 and Fig. 9 the result of using a
classical separation into base action dimensions and arm action
dimensions and associating each group to the most related
reward terms. In our experiments, this classical hardcoded
factorization failed to train successful policies. We believe this
is the case because they do not reflect all action dimensions
that should be causally related to each reward term (some
false negatives), making it impossible to learn to correct those
actions through reinforcement.

Hyperparameters: We use the same hyperparameters for
the experiments with Fetch and HSR robots indicating some
versatility of our solution (no need to fine tuning per robot).
The parameters are summarized in the table below:

Causal Discovery Parameters
CMI threshold 0.02

k (time interval) 1
Learning rate 1e-4

Batch size 64
Gradient clipping norm 20

PPO Parameters
Learning rate 5e-5

GAE λ 0.95
Discount factor γ 0.99

target-KL 0.15
PPO clip range 0.2

Advantage Normalization True

For all PPO hyperparameters that are not specified in the
table, we use the default value in stable baselines3 [33].

E. Network Architectures
We denote convolution layers as C(n, k, s), with n being

the number of kernels, k being the kernel size, and s being the
stride; fully connected layer as F (n), with n being the output
size; max pooling layer as M(n), with n being the pooling
size; Flattening as L.

State Feature Extractor Networks: For both policy learn-
ing and causal discovery, states are pre-processed by a state
feature extractor network to obtain state features vector. Notice
that the state feature extractor network for policy learning and
causal discovery share the same architecture but not the same
weight. The state feature extractor network is shown below,
with all C and F followed by a ReLU activation function
except for the output layer:
• Minigrid: C(16, 2, 1)−M(2)−C(32, 2, 1)−C(64, 2, 1)−L
• iGibson: the LiDAR scan is passed through C(32, 8, 4) −
C(64, 4, 2) − C(64, 3, 1) − L; the task observation vector is
passed through R(128). The two resulting vectors are then
concatenated.

Causal Discovery Networks: iGibson and Minigrid share
the same causal discovery network architecture, with all F

followed by a ReLU activation function except for the output
layer:
• Feature Mapping f(): F (128)− F (128)
• Prediction Network g() : F (128)− F (128)− F (1)

Policy Learning Networks: All F in policy learning are
followed by a Tanh activation function except for the output
layer:
• Minigrid policy network: F (64)− F (4)
• Minigrid value network: F (64)− F (5)
• iGibson policy network: F (64)− F (64)− F (11)
• iGibson value network: F (64)− F (64)− F (8)

F. Causal MoMa in Spare Reward Settings

While the goal of Causal MoMa is not to handle sparse
rewards, we empirically evaluated the success and failure cases
of our method in sparse reward settings. We perform this
experiment in a new Minigrid domain, where the state and
action spaces are the same as in Appendix C, but the agent is
only rewarded at the end of the episode for reaching the goal
while performing a specific arm action.

We consider two settings: 1) The agent has to perform
the correct arm action at the last timestep (immediate sparse
reward). 2) The agent has to perform the correct arm action at
the first timestep but receives the reward at the end (delayed
sparse reward). With the causal detection interval k = 1, our
method infers the correct causal relations in setting 1), but
misses the causal relation between the arm action and the
reward in setting 2). As a result, the learned policy is optimal
in setting 1) but suboptimal in setting 2). We then tested with
k = 5 and found that our method was able to identify the
causal relationships and train correctly in both settings.

To summarize, even with sparse reward and k = 1, Causal
MoMa can still identify the correct causal relationships be-
tween action and sparse reward if the reward is “immediate”
(i.e., only depends on the last step). When the reward is not
only sparse but also delayed, Causal MoMa with k = 1 can no
longer find the true causal connections, but a larger k (k = 5
in this case) allows it to identify causal connections across
longer time horizons and recover the true causal correlations.

G. Evaluation in Gazebo Simulation

We perform empirical evaluations of Causal MoMa against
reactive controller by zero-shot transferring the learned policy
into a Gazebo environment. A top-down view of our test
environment is shown in Fig. 7 Results are presented in
Table II.

We first compare against SLQ-MPC [29], a state-of-the-art
model predictive control (MPC) strategy for reactive whole-
body mobile manipulation. Our implementation of SLQ-MPC
is based on the OCS2 toolbox. We observe that a typical failure
mode for SLQ is colliding with dynamic obstacles because of
the lack of a mechanism to map observations to the internal
model. This demonstrates that SLQ (and other similar reactive
methods) rely on an explicit model of the environment to

TABLE II: HSR Gazebo experiments on a set of tasks. Each entry in the table represents the success rate, averaged over 20
trials. A trial is considered successful if the robot can get to within d = 0.15m of the target without collisions. Our method
is able to zero-shot transfer to the gazebo simulator and achieve better performance compared to SLQ-MPC and the baseline
RL algorithms.

Static Goal Dynamic Goal

No Obstacle Static Obstacles Dynamic Obstacles Static Obstacles

Causal MoMa (ours) 20/20 20/20 19/20 20/20
SLQ-MPC [29] 20/20 17/20 3/20 9/20

Vanilla PPO [39] 17/20 14/20 14/20 13/20
FPPO arm-base [8] 16/20 15/20 14/20 15/20

Fig. 7: A top-down view of the Gazebo environment that we
use to test against SLQ-MPC [29].

be accurate, and can often suffer when such a model is not
available or inaccurate, creating additional needs for ad-hoc
perceptual solutions. In addition, we found that it is non-
trivial to trade-off different objectives with SLQ (e.g., obstacle
avoidance, target reaching, camera angle), which results in
behaviors such as converging to a local optimum behind
obstacles or losing track of dynamic goals. By contrast, Causal
MoMa does not require building and maintaining a geometric
world model and can directly map sensor signals to actions.
Incorporating additional objectives into our policy is as simple
as adding an extra reward term, making it easy to implement
and customize.

We also compare against the baseline learning algorithms
(Vanilla PPO and FPPO arm-base) and find that our method
can achieve a higher success rate in the Gazebo simulator,
which corresponds to the higher reward and success rate in
iGibson reflected in Fig. 4.

H. End-effector Orientation
Fig. 8 depicts the time evolution of the orientation error

between the end-effector and the goal in one of our real-world

experiments. In these experiments, we alternate dynamically
between two goals for the orientation of the robot’s hand,
one orientation when the distance of the hand to the position
goal is over 1m and a different one when it gets closer.
The policy learned with Causal MoMa and transferred zero-
shot to the real world maintains a low error in orientation
and quickly achieves the new goal when it changes (vertical
line in Fig. 8), even when the scene and this dynamically
changing goals are conditions never seen during training.
This dynamically changing orientation resembles semantically
meaningful tasks in household domains such as carrying and
pouring a substance into a bowl, as illustrated in Fig. 1 and
shown in our supplementary video. Compared to the planning-
based solution based on CBiRRT2, our solution keeps a
mean orientation error of 0.094 rad (σ = 0.13 rad) while the
baseline’s mean error increases to 0.73 rad (σ = 0.23 rad).

0 10 20 30 40 50 60 70
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Or
ie

nt
at

io
n

Er
ro

r (
ra

d)

Fig. 8: Orientation error over time for one of the real-world
experiments with HSR. The robot is tasked with pouring a
substance onto a bowl (see task in the supplementary video).
Vertical dotted line: the goal orientation changes when the
robot approaches the position goal but the policy trained with
Causal MoMa can quickly adjust to the new goal and reduce
the error, which leads to a successful pouring execution of the
substance (beads) into the bowl.

Bcmi
Fetch =



Rreach Reef ori Reef height Rbase col Rarm col Rself col Rhead ori Rgripper

aforward 1 0 0 1 1 0 1 0
aturn 1 0 0 1 1 0 0 0
apan 0 0 0 0 0 0 1 0
atilt 0 0 0 0 0 0 1 0
aarm.x 1 0 0 0 1 1 0 0
aarm.y 1 0 0 0 1 1 0 0
aarm.z 1 0 1 0 0 1 0 0
aarm.rx 0 1 0 0 0 1 0 0
aarm.ry 0 1 0 0 0 1 0 0
aarm.rz 0 1 0 0 0 1 0 0
agrip 0 0 0 0 0 0 0 1



Barm-base
Fetch =



Rreach Reef ori Reef height Rbase col Rarm col Rself col Rhead ori Rgripper

aforward 1 0 0 1 1 0 1 0
aturn 1 0 0 1 1 0 1 0
apan 1 0 0 1 1 0 1 0
atilt 1 0 0 1 1 0 1 0
aarm.x 1 1 1 0 1 1 0 1
aarm.y 1 1 1 0 1 1 0 1
aarm.z 1 1 1 0 1 1 0 1
aarm.rx 1 1 1 0 1 1 0 1
aarm.ry 1 1 1 0 1 1 0 1
aarm.rz 1 1 1 0 1 1 0 1
agrip 1 1 1 0 1 1 0 1


Fig. 9: Causal matrices for the Fetch Robot

Bcmi
HSR =



Rreach Reef ori Reef height Rbase col Rarm col Rself col Rhead ori Rgripper

aforward 1 0 0 1 1 0 0 0
aside 1 0 0 1 1 0 0 0
aturn 1 0 0 0 1 0 1 0
apan 0 0 0 0 0 0 1 0
atilt 0 0 0 0 0 0 1 0

aarm.lift 1 0 1 0 1 1 1 0
aarm.flex 1 1 1 0 1 1 0 0
aarm.roll 0 1 0 0 0 1 0 0
awrist.flex 0 1 0 0 0 1 0 0
awrist.roll 0 1 0 0 0 1 0 0
agrip 0 0 0 0 0 0 0 1



Barm-base
HSR =



Rreach Reef ori Reef height Rbase col Rarm col Rself col Rhead ori Rgripper

aforward 1 0 0 1 1 0 1 0
aside 1 0 0 1 1 0 1 0
aturn 1 0 0 1 1 0 1 0
apan 1 0 0 1 1 0 1 0
atilt 1 0 0 1 1 0 1 0

aarm.lift 1 1 1 0 1 1 1 1
aarm.flex 1 1 1 0 1 1 1 1
aarm.roll 1 1 1 0 1 1 1 1
awrist.flex 1 1 1 0 1 1 1 1
awrist.roll 1 1 1 0 1 1 1 1
agrip 1 1 1 0 1 1 1 1


Fig. 10: Causal matrices for the HSR Robot

	Introduction
	Related Work
	Causal MoMa
	Action-Reward Causal Discovery
	Policy Learning

	Experimental Evaluation
	Evaluation in the Minigrid Simulator
	Evaluation in Realistic Robot Simulators
	Evaluation on a Real-World Mobile Manipulator

	Limitations and Conclusion
	Appendix
	Proof of Theorem 3.1 (Causal Sufficiency and Necessity)
	Proof Sketch of Theorem 3.2 (Causal Policy Gradient)
	Minigrid Experimental Details
	iGibson Experiments Details
	Network Architectures
	Causal MoMa in Spare Reward Settings
	Evaluation in Gazebo Simulation
	End-effector Orientation

