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Abstract

In real-world control settings, the observation space is often unnecessarily high-
dimensional and subject to time-correlated noise. However, the controllable dynam-
ics of the system are often far simpler than the dynamics of the raw observations. It
is therefore desirable to learn an encoder to map the observation space to a simpler
space of control-relevant variables. In this work, we consider the Ex-BMDP model,
first proposed by Efroni et al. (2022b), which formalizes control problems where
observations can be factorized into an action-dependent latent state which evolves
deterministically, and action-independent time-correlated noise. Lamb et al. (2022)
proposes the “AC-State” method for learning an encoder to extract a complete
action-dependent latent state representation from the observations in such prob-
lems. AC-State is a multistep-inverse method, in that it uses the encoding of the
the first and last state in a path to predict the first action in the path. However,
we identify cases where AC-State will fail to learn a correct latent representation
of the agent-controllable factor of the state. We therefore propose a new algo-
rithm, ACDF, which combines multistep-inverse prediction with a latent forward
model. ACDF is guaranteed to correctly infer an action-dependent latent state
encoder for a large class of Ex-BMDP models. We demonstrate the effectiveness
of ACDF on tabular Ex-BMDPs through numerical simulations; as well as high-
dimensional environments using neural-network-based encoders. Code is available
at https://github.com/midi-lab/acdf.

1 Introduction

In rich-observation decision-making domains, such as robotics, much of the information that the
agent observes is irrelevant to any plausible control objective. To allow for efficient planning, it is
therefore desirable to learn a compact latent state representation, containing only the information
potentially relevant to planning. One approach to this problem is to learn a control-endogenous
latent representation (Efroni et al., 2022b; Lamb et al., 2022). The intuition behind this approach
is that the observations that an agent receives, such as images, may contain a large amount of
irrelevant information (including time-correlated noise) which represents parts of the environment
that the agent has no control over. By contrast, the agent-controllable dynamics of the system
can in some cases be represented by a small number of states with deterministic transitions. This
representation allows for efficient planning, and provides a view of the world model than can be
directly interpreted by humans. The use of such representations has shown success, for example, in
learning robotic manipulation tasks from images in a noisy environment (Lamb et al., 2022).

Efroni et al. (2022b) introduces the Ex-BMDP formalism to represent this kind of environment. An
Ex-BMDP is a (reward-free) Markov Decision Process in which each observed state z € X can be
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factored into an agent-controllable endogenous state s € S, which follows a deterministic transition
function, and an exogenous state e € £, which evolves stochastically, independently of actions. It
is important to note that the observations x in this model are not explicitly segmented into factors:
rather, in order to extract the controllable latent state s, we must learn an encoder.!

Numerous prior works have proposed methods for discovering latent representations useful for plan-
ning (Wang et al., 2022; Zhang et al., 2020; Pathak et al., 2017; Mazoure et al., 2020). We focus
our attention on the multi-step inverse method (Lamb et al., 2022; Islam et al., 2023), which is
compelling due to its explicit theoretical justification. In brief, consider states x; and ;1 visited
by a policy. If an encoder ¢ is learned, such that ¢(x;) and ¢(x4y) provide sufficient informa-
tion to predict the first action a; on the path between x; and z;1, then the learned representation
s = ¢(x) is claimed to be a complete endogenous latent state representation, providing the necessary
and sufficient information to infer the latent dynamics.

This paper discusses cases where the multistep inverse method proposed by Lamb et al. (2022),
known as AC-State, will fail to discover control-endogenous latent dynamics of an Ex-BMDP, and
proposes a method that provably succeeds for a very general class of Ex-BMDP’s. In particular, we
identify two flaws with the AC-State method:

e The maximum length of the segment k between z; and ;4 required for multistep-inverse
dynamics prediction in order to correctly learn the encoder can be much larger than claimed.

o If the dynamics are periodic, then multistep-inverse dynamics are insufficient for learning
an appropriate encoder ¢, regardless of k.

We then propose a modified method, which we call ACDF, which fixes these issues. We show that
any encoder which minimizes our loss function (on infinite samples) is guaranteed to be a control-
endogenous latent representation. Specifically, we:

o Give a corrected formulation of the number of steps of multistep-inverse dynamics prediction
required to learn an Ex-BMDP.
e Propose to use a latent forward dynamics loss, to enforce that the learned endogenous states

are in fact compatible with deterministic dynamics.

In addition to our theoretical claims, we show empirically that ACDF can produce a more accurate
endogenous latent model in Ex-BMDPs exhibiting certain properties.

2 Background and Motivating Example

Here, we formally describe the Ex-BMDP model and AC-State algorithm, and provide a simple
example in which AC-State fails:

2.1 Ex-BMDP Model

To formalize this notion of control-endogenous latent dynamics, consider a reward-free MDP with
states x € X, discrete actions a € A, initial distribution Dy € A(X), and transition function
Zir1 ~ T(x|xg,a;). The MDP admits a control endogenous latent representation if its transition
function can be decomposed as follows:

Tiy1 ~ Qx[St41, €141),
st41 = T(s¢,a¢), s¢= d(xe), (1)
€t+1 ™~ 7;(€|€t)7 €t = d)e(xt)a

I Additionally, = can also have time-independent noise: the observation x is sampled from a distribution that
depends only on s and e. It is assumed that the observation x contains enough information to fully specify s and e.
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Figure 1: Probabilistic graphical model of the Ex-BMDP transition dynamics, as described in Section
2.1. Endogenous states s; are shown as squares to indicate that they are deterministic functions of
the previous endogenous states and actions. Observations x; and actions a; are shown in gray to
indicate that they are observable. We do not show dependencies that may determine the actions a;.

where:

e s€ S and e € €& are the control-endogenous and control-exogenous latent states. We assume
that S is finite, and typically |S| < |X].2

o The endogenous latent state s evolves according to a deterministic transition function 7.

e The exogenous latent state e evolves according to a Markovian transition function 7, that
does not depend on actions.

o We make the block assumption on the observation emission function @ (Du et al., 2019):
that is, we assume that if (s, e) # (s',€’), then Q(z|s, e) and Q(z|s’,e’) have disjoint support.
In other words, an observation z € X corresponds to only a single pair (s, e).

o The encoders ¢, ¢, are the (deterministic) inverses of Q: that is, if z ~ Q(x|s,e), then

s =¢(x), e = Ppe(x).

An MDP that admits such a representation is known as an Ex-BMDP. Note that an Ex-BMDP
can have multiple valid factorizations into endogenous and exogenous states. (We discuss this fact
further in Appendix C.) In this work, our objective is to learn the encoder ¢ that is the endogenous
state encoder for some valid factorization of the Ex-BMDP: specifically, we will aim to return a
minimal-state encoder: the number of endogenous states |S| should be as small as possible. We
show a probabilistic graphical model of the Ex-BMDP transition dynamics in Figure 1.

2.2 AC-State

We now give more detail on the AC-State method as proposed by Lamb et al. (2022). In addition to
the Ex-BMDP formulation, that work makes the following further “bounded diameter” assumption:

Assumption (Assumption 3.1 from Lamb et al. (2022)). “The length of the shortest path between
any z; € S to any 29 € S is bounded by D.”

Lamb et al. (2022) then proposes to learn the endogenous encoder ¢g by learning a multi-step inverse
dynamics model. This model is a learned classifier f(¢g (), dg(xs1x); k) which takes the encoded
endogenous latent states of two observations separated by k < D time-steps, as well as k, and returns

2In our proofs, we also assume that £ and X are finite, but this is a technical limitation of our theory: see discussion
in Appendix B. In any case, the Ex-BMDP formulation is most useful when |S| < |X|.



a normalized distribution over actions in A. This classifier is trained to predict the first action as
taken on the trajectory from x; to xy4,. The classifier f is trained jointly with the encoder model.
Then, in the theoretical treatment, the optimal encoder ¢y~ is defined as the encoder which allows f
to reach the minimum achievable value of this classification loss while also using the fewest number
of distinct output states. (In practice, we use a discrete bottleneck and an entropic loss term to
minimize the output range, rather than learning multiple models.) Explicitly:

Lac-state(¢9) :=min  E E —log(fa,(d6(xt), Po(xi4r); k))
I k~{1,....D} (z¢,a6,2015)
{0} :={07"]0"" = argmin Lac-state(¢0)} (2)

o* .= i R
argeglﬁ* [Range(¢g)||

where f,, (-) represents the probability assigned by f to the action a;. Given some assumptions about
the behavioral policy (which are satisfied, for example, by a uniformly random policy), it is claimed
that the ¢y which minimizes this loss (assuming perfect function approximation and large numbers
of samples) will produce a control-endogenous latent representation of the MDP. The transition
function T'(s,a) can then be inferred after-the-fact by applying the learned ¢ to all observed states
x and counting the transitions between the resulting latent states.

In practice, the diameter D of the endogenous latent dynamics of the Ex-BMDP is unknown a
priori. Throughout this work, we will use D to represent the true diameter of the endogenous latent
dynamics?, and K to represent the number of steps actually used in practice. Based on the above
assumption, AC-State is claimed by Lamb et al. (2022) to work as long as K > D.

However, we can demonstrate a simple case where AC-State will not recover a control-endogenous
latent representation. In particular, consider the Ex-BMDP shown in Figure 2. If we focus our
attention on the “correct” endogenous latent state dynamics shown in Figure 2-C, we can note that:

o We can’t infer the action a; from s; and sy, if s; is any state other than the state s; = {a,j},
because for all other states in Sacpr, the actions L and R have the same effect.

o We can’t infer a; given s; and sy for any k > 2, because, once {a, j} is visited a second
time, a; no longer has any impact on the current state.

o The only remaining case is that s; = {a,j} and k € {1,2}. In this case, if s;yy is either
{b,9} or {c,h}, then we know that a; = L. Similarly, if ;1 is either {d,i} or {e,j}, then
we know that a; = R.

Note that there are no cases where predicting a; requires distinguishing between the states {b, g}
and {c, h}, or distinguishing between the states {d,i} and {e,j}. Therefore the optimal minimal-
state AC-State encoder, the ¢y« produced by Equation 2, will distinguish between only three
“states”: {a,j}, {b,c,g,h}, and {d,e,i,j}. However, these learned states do not constitute a control-
endogenous latent representation of the MDP. In particular, the resulting transition function is not
deterministic (See Figure 2-E). Consequently, the inferred control-endogenous state dynamics are
not enough to predict, for example, whether taking the actions sequence L, R, R, R starting in state
{a,j} will end at state {a,j}, state {b, ¢, g, h}, or state {d,e,i,j}.

This example demonstrates the non-universality of the multistep-inverse method at learning control-
endogenous latent dynamics. In this work, we further develop the theory of endogenous latent
dynamics, and demonstrate that combining the multistep-inverse method with a latent forward
dynamics model is in fact sufficient to learn a control-endogenous latent encoder.

3Specifically, the minimum diameter of any endogenous representation which meets the assumptions in Appendix B.
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Figure 2: A tabular example where our proposed method ACDF successfully learns a control-
endogenous state encoder, while the multistep-inverse method AC-State fails. (A) Full dynamics of
the example Ex-BMDP: observed states are X = {a,b...,j} and actions are ‘L’ and ‘R. Transitions
are stochastic: numbers in parentheses after action labels on transitions represent the probability
of that transition, conditioned on the action. (B) Encoded latent states ¢(z) € S, where ¢ is the
encoder learned using our proposed method, “ACDF.” For example, ¢ maps the observed states b
and g to the same latent state in S. (C) Dynamics on the encoded latent states S. The dynamics
are deterministic, and capture the full agent-controllable factor of the state. Once ¢ is learned, these
dynamics can be inferred from transition data by simple counting. The agent-independent exogenous
dynamics are shown in the inset: these dynamics are not learned by our method. (D) Encoded latent
states produced by the encoder ¢ output by the AC-State algorithm (Lamb et al., 2022). (E) The
encoded latent states learned by AC-State are incorrect: the encoding conflates states with different
forward dynamics, resulting in under-determined transitions between latent states.

3 Guaranteed Learning of Control-Endogenous Dynamics

In this section, we propose a modified loss function to replace L£ac.State, for which we prove (in
Appendix E) that any minimum is a correct control-endogenous latent representation. Further,
we show that the minimum-range ¢¢ which minimizes our loss function is a minimal-state control-
endogenous latent representation. We call our method ACDF, or AC-State+D’+Forward. The
loss function is given as follows:

Lacor(¢g) :=min  E E  —log(fa,(¢0(zt), do(Ti11); k)
I k~{1,..,D'} (z4,00,200 k) (3)
+InlIl E 710g(g¢9($g+1)(¢19(1"t)3at))'

9 (zg,a¢,2Te41
Where, relative to Lac.state:
e We have replaced the upper-bound on the control-endogenous diameter, D, with a new

quantity D’, to be defined below. Note that if we are only given the diameter D, we can use
an upper-bound D’ := 2D? + D, which is tight up to a constant multiple in the worst case.
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Figure 3: A. Example of the witness distance W (a,b). B-D. Witness distance can be greater than D,
leading AC-State to fail. E-F. Witness distance can be infinite if the dynamics are periodic, which
also leads to AC-State failures. (See text of Section 3.1.)

e We have added a latent forward dynamics model g over the learned latent states. This
model takes the encoded endogenous latent state of an observation x;, and the action a;, and
returns a normalized probability distribution over the (discrete) encoded latent states. The
model is trained to predict the next latent state ¢g(xsy1), which should be a deterministic
function of the previous state and the chosen action, and is optimized jointly with ¢g.

We explain the logic behind these two modifications below:

3.1 Why D Steps is Insufficient for Multi-Step Dynamics

We assume, as Lamb et al. (2022) does, that the Ex-BMDP admits a latent representation such
that the control-endogenous dynamics have diameter upper-bounded by some D, as described in
Section 1. In order to introduce our alternative bound D', we first define a few quantities. For
a given endogenous representation with states S, we define the witness distance W (a,b) between
states a,b € S as the minimum number of steps k such that there exists some witness state ¢ € S
such that a path of length ezactly k exists from ¢ to a and also from ¢ to b (See Figure 3-A). Note
that this quantity may be infinite even for a bounded-diameter graph, if the dynamics are periodic
(in which case W (a,b) = oo, see Figure 3-E). The witness distance of an endogenous representation
W(¢) is the mazimum finite W (a,b), for any pair of states a,b in the endogenous representation.
Finally, the quantity D’ is defined as any upper bound on the witness distance W (¢).*

The proofs in Lamb et al. (2022) implicitly assume that the witness distance W (a, b) of any pair of
states a,b € S is upper-bounded by the diameter D of the transition graph. To briefly sketch the
main proof in Lamb et al. (2022), let W(a,b) = k < D with witness state c¢. Assume s; = ¢ and
stk € {a,b}, and we wish to accurately predict a; given s; and s;1,. Being able to distinguish a
and b is guaranteed to help us make this prediction, because the sets of possible values that a; can
take will be disjoint depending on if s;i; = a or Si4, = b. (Otherwise, the witness distance would
be most k — 1, because a and b could both be reached from s;11, leading to a contradiction.)

However, it is not true in general that W (a,b) < D. Figure 3-B,C,D gives an example on a simple
four-state graph, where D = 3, but the largest witness distance W (c,d) = 4. The AC-State loss
with K = D = 3 will learn an encoder that fails to distinguish all of the endogenous latent states.
(To analyse this example: we can’t infer the action a; from s; and si;4 if s; is any state other
than a, because for all other states, the actions L and R have the same effect. From a, the states

4More precisely, it is defined as any upper bound on the minimum value of the witness distance W () over the set
of ¢’s that are minimum-|S|, finite-diameter endogenous latent representations of the Ex-BMDP.



reachable in exactly k = 1 step are {b,d}; in k = 2 steps are {c, a}; and in k = 3 steps are {a,b,d}.
In particular, when the classifier f is provided with the value of k € {1,2,3}, there is no need for
the encoder to be able to distinguish the state c from the state d.)

AC-State will therefore produce incorrect learned endogenous latent dynamics for an Ex-BMDP
with these true endogenous dynamics (Figure 3-D). This learned representation is incorrect because
it is in fact controllable whether the agent is in state ¢ or state d four steps after being in state a (as
seen in 3-C), but the AC-State dynamics do not capture this controllablility.

It also may be impossible to reach two states from the same state in exactly the same number of steps,
leading to an infinite witness distance. This case occurs if the endogenous dynamics are periodic.
AC-State may then fail by conflating states belonging to different cyclic classes. (See Figure 3-E,F.)

3.1.1 D’:=2D?+ D is a Tight Upper-Bound

In Appendix D, we show that if the witness distance W (a, b) between any two states is finite, then it
is upper-bounded by D’ := 2D? + D. Therefore, if all pairs of endogenous states have finite witness
distance between them, and D (or an upper-bound on D) is known, then the multistep-inverse loss
with K > 2D? + D will be sufficient to distinguish all pairs of endogenous states, and hence learn a
correct endogenous state encoder.

Furthermore, we show that this bound is tight up to a constant multiplicative factor. We explicitly
construct Ex-BMDPs on which AC-State learns an incorrect state encoder for any K < D?/2+0(D),
for an infinite sequence of arbitrarily-large values of D. (If we use both the multistep-inverse loss
and a latent forward-dynamics loss, as in the ACDF algorithm (Equation 3), the particular family
of Ex-BMDPs we use to derive this lower-bound no longer minimizes the loss. However, through an
alternative construction, we can find Ex-BMDPs where the ACDF loss is minimized by an incorrect
encoder if K < D?/4+ O(D). Therefore the upper bound D’ := 2D? + D is still tight for ACDF.)

3.2 Forward Latent Dynamics for Periodic Transition Functions

The above discussion is applicable only to finite witness distances. With bounded-diameter en-
dogenous dynamics, we show in Appendix D that the witness distance between two states can be
infinite, if and only if the endogenous dynamics are periodic (meaning that, for some period p > 1,
each endogenous state s € S can only be visited in time intervals that are multiples of p). Then
AC-State may fail regardless of the number of steps K used in the multistep inverse dynamics.

However, we show in Appendix E that augmenting the multistep-inverse loss with a latent forward
dynamics loss is sufficient to force the encoder to distinguish between states belonging to different
cyclic classes of a periodic endogenous MDP. (In brief, either the states have different latent forward
dynamics, or else they can be differentiated entirely by a cyclic exogenous state factor, so the
Ex-BMDP admits a more-minimal endogenous representation.) Thus, we prove that any ¢ which
minimizes the ACDF loss is a correct endogenous latent state encoder.

4 Experiments

Numerical Simulation. First, to capture the statistical properties of our proposed method, with-
out concerns about optimization or function approximation, we performed numerical simulations on
tabular Ex-BMDPs. In these environments, |X| is small enough that we can consider all possible
encoders ¢, and use count-based estimates for the classifier f. Consequently, the only source of
error in minimizing L£ac.state OF LacDr is the sampling error caused by limited data collection. Full
details of the experiments are included in Appendix G, and results are shown in Figure 4. In general,
we see that the forward latent dynamics loss in £Lacpr not only enabled correct inference in periodic
examples, but also lowered the value of K necessary to learn the dynamics, and additionally yielded
improved sample-efficiency even when it wasn’t strictly necessary — as in the “control” example.
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Figure 4: Results of numerical simulation experiments. Four environments are tested, with the
dynamics given in the first two columns. For each environment, |X'| = 10, and X is isomorphic to
S x &. In the last two columns, we show the success rate of each method (AC-State and ACDF)
at learning the correct endogenous dynamics over 50 simulations. We show this success rate as a
function of the hyperparameter K and the number of environment steps used for learning.

Baseline/AC-State | Baseline/ACDF | Periodic/AC-State | Periodic/ACDF
Success Rate | 20/20 training runs 20/20 77 1/20 77 19/20 7”7

Table 1: Deep RL Results. Success measured as usability of the final ¢ for open-loop planning.

Deep Reinforcement Learning. We also ran deep-RL experiments on two gridworld-like en-
vironments with image observations. The first “baseline” environment, from Lamb et al. (2022)’s
released code, consists of nine copies of a four-room maze, with the ego-agent in one maze and ran-
dom “distractor” agents in the others as exogenous noise. The second environment is constructed
similarly, but with dynamics designed to be periodic. Brief results for optimized hyperparameters
are in Table 1, with more details and results in Appendix H. ACDF preserved performance on the
baseline task while also more consistently learning a correct encoder for the periodic task.

5 Related Works

In the area of learning latent representations for reinforcement learning problems, there are numerous
ways of defining the “purpose” of the representation — i.e., what information should ideally be
included or excluded from the representation. Our work specifically focuses on the Ex-BMDP
formulation given in Section 1, which was first proposed by Efroni et al. (2022b), and later studied by
Lamb et al. (2022). Note that the setting considered by Efroni et al. (2022b) is time-inhomogeneous:
the Ex-BMDP is assumed to progress for a finite number of steps H from a (near) deterministic
control-endogenous start state, and the algorithm learns a different state representation for each
time-step. Consequently, number of states needed to represent the dynamics is potentially greatly



increased, and this setting does not allow for generalization to long sequences, or encoding when the
current time step is not known. In contrast, Lamb et al. (2022) and this work consider the infinite-
time-horizon Ex-BMDP. Note that because AC-State is the only prior work to our knowledge that
considers the infinite-time-horizon finite-S Ex-BMDP explicitly, we compare to it as our sole baseline
in experiments. Other works present multi-step inverse methods learning for timestep-dependent
dynamics, including by Mhammedi et al. (2023), which allows for nondeterministic endogenous
dynamics, and Efroni et al. (2022a), which considers an explicitly factored state. Multi-step inverse
methods have also been used in the continuous-state setting. Mhammedi et al. (2020) considers the
special case of linear control-endogenous dynamics, and derives theoretical guarantees in this setting.
More recently, Islam et al. (2023) and Koul et al. (2023) have used multi-step inverse methods as
an empirical technique for representation learning under continuous latent states. Note that while
Koul et al. (2023) does learn a forward dynamics model, the forward-dynamics loss is not used to
train the state encoder: it is only used for planning.

Aside from the Ex-BMDP framework and multi-step inverse methods, other methods have been
proposed to learn compact relevant state representations. Efroni et al. (2022b) discusses how each
of these classes of methods will sometimes include control-exogenous noise into the latent repre-
sentation, or fail to include control-endogenous information. Techniques such as Deep Bisimulation
for Control (Zhang et al., 2020) and DeepMDP (Gelada et al., 2019) ultimately rely on an exter-
nal reward signal to determine what features are relevant for control, and so may fail to represent
controllable aspects of the environment that do not affect the training reward. Misra et al. (2020)
demonstrates that one-step inverse dynamics, such as those used empirically by Pathak et al. (2017),
are insufficient for learning control-endogenous dynamics. Techniques based on “compressing” states,
e.g. through auto-encoders (Hafner et al., 2019) may also include exogenous information.

Hutter & Hansen (2022) is another work that examines the limitations of inverse models. However, it
explores the conditions under which an inverse dynamics model on an MDP is sufficient to uniquely
learn the transition function. It does not consider endogenous state representations or the “block”
setting. Note that the problem of learning an endogenous encoder is somewhat “easier” than learning
a forward dynamics model: in the setting we consider, the forward dynamics on the endogenous states
are to be learned directly from samples of the transition function after learning the encoder. By
contrast, Hutter & Hansen (2022) considers the problem of inferring the transition function directly
from the inverse dynamics alone — the conditions in which these tasks are possible may differ.

6 Limitations and Future Work

One limitation to our work is that the cases where AC-State fails are in some sense “edge cases.” In
particular, if the endogenous dynamics have even a single state with a transition to itself, then AC-
State with K = D should succeed (see Appendix F.2.) However, in many real-world environments,
staying in place forever is not possible, so ACDF may still be useful. In addition, we have shown that
adding a forward dynamics loss can improve sample efficiency and reduce the dependence on K, even
when ACDF is not strictly necessary. A general limitation of the Ex-BMDP model is that it assumes
full observation of the state. However, Wu et al. (2023) has extended AC-State to partially-observed
environments: this extension can be straightforwardly adapted to ACDF. In Appendix F, we discuss
some alternative approaches we initially considered for “fixing” AC-State, which we determine do
not work generally; however, this discussion may provide inspiration for future algorithms.
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A A Note on Terminology

Due to assumptions (1), (4), and (5) in the technical assumptions section below (Section B), when
discussing MDPs (including Ex-BMDPs) in these appendices, we will most often be referring to
finite MDPs under stationary behavior policies that assign nonzero probability to each possible
action. As a consequence, properties of the induced Markov chain like periodicity, irreducibly, cyclic
classes, etc. will be invariant to the particular choice of behavior policy, and will only depend on the
structure of the MDP. Therefore, when unambiguous, we will sometimes refer to, for instance,“the
periodicity of the MDP”, as shorthand to mean “the periodicity of the induced Markov chain of the
MDP under any policy that assigns nonzero probability to each action.” (We avoid this shorthand
in major theorem statements, such as the statement of Theorem D.1.)

B Technical Assumptions

In this section, we discuss the technical assumptions we make on the Ex-BMDP model, the behavioral
policy, and on the collection of data. We also note where these assumptions differ from those of Lamb
et al. (2022). Recall that, by the definition of the Ex-BMDP, there must exist at least one endogenous
state representation, which we call s* € §*, with deterministic dynamics 7* and a corresponding
exogenous state representation, which we will call e* € £*. Let the endogenous encoder ¢* map X to
S§*, and exogenous encoder ¢f map X to £*. Specifically, we will use these symbols to refer to some
correct endogenous state representation which has minimal |S| among the set of correct endogenous
state representations.

While this representation is not necessarily unique (as we show in Appendix C) it will still be
useful to refer to it. In particular, some of our assumptions are in terms of this representation.
When we refer to an assumption about S*, £, etc., unless otherwise specified, we mean that there
exists at least one minimal-endogenous-state decomposition of the Ex-BMDP for which all of these
assumptions simultaneously hold.

We first give a brief statement of our assumptions, and then re-state them with more thorough
discussion.

Brief Assumptions:

1. In the proofs of the correctness of ACDF, we assume that X is finite.

2. We assume that for some correct minimal-state endogenous encoder ¢*, the en-
dogenous latent dynamics 7* have diameter bounded by D.

3. We assume that, for the exogenous encoder ¢* corresponding to the above ¢*, there are
no transient endogenous latent states in £*.

4. We assume that, for the above-mentioned endogenous encoder ¢*, the behavioral policy
7(x) used to collect data depends only on ¢*(z), and ignores exogenous noise £*.

5. Coverage assumptions: For k < D'z, 2’ € X,a € A, if 2’ is reachable from z,a
in exactly k steps, then we assume that we will sample (z; = z,a; = a, x4 = 2')
with fixed, finite, nonzero probability. Let D) be the distribution with this property
from which (z; = z,a; = a,241x = 2') are sampled when computing the expectation in
Equation 3.

We now discuss each of these assumptions in more detail:

1. In the proofs of the correctness of ACDF, we assume that X is finite. This assumption is
necessary because otherwise, some observations x € X occur with infinitesimal probability,
so an incorrect encoding ¢(x) on such observations would not have a finite effect on the
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overall loss. (However, in practice, ¢ is a neural network with the capacity to generalize to
new observations in a continuous space: this requirement should be thought of as more of a
technical limitation of our proofs rather than a real constraint.)

. Similar to the “bounded diameter” assumption of Lamb et al. (2022), we assume that for
some correct minimal-state endogenous encoder ¢*, the endogenous latent dy-
namics 7* have diameter bounded by D.

. We assume that, for the exogenous encoder ¢} corresponding to the above ¢*, there are
no transient endogenous latent states in £*. This assumption is necessary because
it might not be possible to uniquely determine the endogenous state of an observation if
the observation’s exogenous state only occurs in the first few steps of a trajectory. (For
example, if two endogenous states have the same forward dynamics, it would be impossible
to uniquely assign an observation x to one state or the other, if ¢%(x) only occurs at t = 0.)
Note that as a consequence of this assumption, the states of £* can be partitioned into
some number of closed, recurrent communicating classes, which each may be periodic or
aperiodic. Additionally, because X is finite, we can assume that £* is also finite.

. We assume that, for the above-mentioned endogenous encoder ¢*, the behavioral policy
7m(z) used to collect data depends only on ¢*(z), and ignores exogenous noise
E*. Lamb et al. (2022) also makes this assumption explicitly. While this assumption may
seem difficult to meet, because it seemingly requires prior knowledge of ¢*, we note that a
policy that takes actions in A according to a fixed distribution at all time-steps (such as a
uniform random policy) will meet this requirement.

. Coverage/Initial Distribution assumptions: We only provide an asymptotic, rather
than statistical, analysis. In other words, our results are only proven to hold for the pop-
ulation expectation in Equation 3, which occurs in the limit as samples approach infin-
ity. However, me must still be explicit about the distribution from which we draw tuples
(z¢,a¢,241r) (and (x4, a4, 2441)). To summarize, for k < D' z,2’ € X,a € A, if o
is reachable from z,a in exactly k steps, then we assume that we will sample
(¢ = z,a; = a, 2441 = 2') with fixed, finite, nonzero probability. We discuss some
implications below:

e Unlike Lamb et al. (2022), we do not assume a single trajectory. Lamb et al.
(2022) at one point mentions that data is assumed to be collected in a single, long
trajectory, which follows dynamics that have a stationary distribution which assigns
finite probability to all endogenous states. However, such a sampling process does
not necessarily give adequate coverage, because neither we nor Lamb et al. (2022)
explicitly assume that the overall dynamics 7 on the observations X are irreducible.
In particular, 7 may be reducible if either the exogenous dynamics 7. are reducible,
or if both 7 and the endogenous dynamics are periodic with the same period (a case
we discuss further below). We therefore assume at least one trajectory for each
communicating class in X. Because X is assumed finite, we can assume a finite
number of these communicating classes. When we consider the “infinite sample” limit,
we can assume that the length of each of these trajectories goes to infinity (and therefore
the time-averaged state visitation approaches a stationary distribution).

e Because (under any policy that assigns nonzero probability to every action) the en-
dogenous dynamics are irreducible while the exogenous dynamics only have recurrent
communicating classes, it follows that each communicating class of X is finite, closed
and recurrent. Therefore any stationary policy that assigns nonzero probability
to each action while in each endogenous state s* € §* will, averaging over
time, approach a stationary distribution assigning finite, nonzero probabil-
ity to each z in the communicating class in X that the chain started in.
Because chains will reach each x with finite, nonzero probability and the execute each
sequence of actions of finite length with finite probability, they will therefore sample
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each possible (z; = x,a; = a, x4 = 2') with fixed finite probability. Any
collection of such chains is a therefore valid data-collection mechanism.

o Unlike Lamb et al. (2022), we do not assume that the initial exogenous
and endogenous states are independent. Lamb et al. (2022) assumes that the
initial distribution of the Ex-BMDP Dy is such that ¢*(z¢) and ¢*(x¢) are distributed
independently. This assumption seems overly-strict, given that, as discussed above,
Lamb et al. (2022) also assumes that collecting a single trajectory is sufficient. (If
a single episode is sufficient to learn the dynamics, how can the distribution of xg
possibly matter?) We do not make this independence assumption, rather, we define
Dy to be a distribution over X directly.? A particular consequence of not making
this independence assumption is that we do not assume that all pairs (s*,e*)
necessarily correspond to an observation in X. In other words, we assume
coverage over X, not over §* x £*. This consequence comes into play when both
the endogenous and exogenous dynamics are periodic, with the same period. We discuss
the implications in Section B.1 below.

o A note about periodicity in Lamb et al. (2022): One of the major claims of
this paper is that Lamb et al. (2022) incorrectly handles Ex-BMDPs with periodic
endogenous dynamics. Note that Lamb et al. (2022) makes the explicit assumption
that “Markov chain 7p has a stationary distribution pp such that pp(s,a) > 0 and
mp(als) > Tmin, for all s € S and a € A”, where “Tp(s|s) [is] the Markov chain
induced on the control-endogenous state space by executing the policy wp by which
AC-State collects the data.” We wish to emphasise that this assumption should not
preclude Ex-BMDPs with periodic dynamics. In particular, note that periodic Markov
chains (like 7p would be in the case of periodic dynamics) can indeed have stationary
distributions that assign nonzero probabilities to all states. Recall that a stationary
distribution is merely any distribution p for which uP = u, where P is the transition
matrix. The existence of such a distribution is a property only of the transition function
P, not the initial distribution. Therefore, even if a periodic Markov chain has a fixed
initial state g, and therefore the distribution of the random variable z; (for any fixed
t) will only have nonzero probability on states of one cyclic class, it is still the case
that the Markov chain can have a stationary distribution that assigns probability to
every state. Therefore Lamb et al. (2022) is not “off the hook” for periodic Ex-BMDPs.
(Moreover, the periodicity or aperiodicity is never discussed explicitly in Lamb et al.
(2022), and the lines quoted above are part of a discussion about the behavioral policy
Tp, not about the structure of the Ex-BMDP. Therefore it is doubtful this assumption
was intended in any way to exclude periodic dynamics.)

B.1 Implications of not assuming independence in initial exogenous and endogenous
states

Above, we mentioned that, unlike Lamb et al. (2022), we do not assume that the initial exogenous
and endogenous states are distributed independently. This fact matters when both the endogenous
and exogenous dynamics are periodic, with the same period. Assume that this period is k, and
the exogenous dynamics are irreducible, such that S* has cyclic classes {Sg,...,S;_;} and £* has
cyclic classes {&F,...,&;_;}. If the support of Dy only includes states o such that, for example
(¢*(x0), % (20))) € S§ x &F, then the only states which will ever be reachable will be states x
such that (¢*(z),¢%(z)) € 8§ x Ef UST x & U ... US;_; x &. Because X is defined as the set
of states that the Ex-BMDP can be in, it is therefore the case that Vx € X, (¢*(z),dk(x)) €
S x EFUST x E3U...US}_; x &;. Note that in this case, X is not equivalent to the union of the
supports of Q*(s*,e*), for all s* € §* and all e* € £*: in fact, in this case, Q*(s*,e*) is not even
well-defined for cases where s* and e* cannot co-occur.

5We do, however, assume that zo is in fact in the support of Q*(¢*(zo0),¢:(z0)); in other words, that any
observation x in the support of Dy is also in the support of Q*(s*,e*) for some choice of (s*,e*).
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(Also, note that the initial distribution of the Ex-BMDP Dy is a distinct concept from the initial
states used in the sampling trajectories. The former is a property of the Ex-BMDP itself; the latter
is a property of our algorithm.)

This difference in assumptions is important because there exist some Ex-BMDPs where a decom-
position with independent (so,eq) exists, but a more-minimal endogenous representation is possible
if we allow for arbitrary initial distributions over X'. The ACDF algorithm will find these more-
minimal representations. Explicitly, consider the following deterministic Ex-BMDP with |X| = 10
and A= {L,R}:

Figure 5: Full Ex-BMDP model of example in Section B.1

For this Ex-BMDP, let the initial state distribution Dy take value xo = b1 with probability 0.5, and
o = €2 with probability 0.5.

The ACDF algorithm will learn the minimal-state endogenous representation of the Ex-BMDP
shown in Figure 6, with |S| = 5.

Lg
e v/ N Lp p=1.0 @ p=1.0
o g
LR p—l.()@‘_@ p=1.0
(a) Minimal endogenous dynamics learned by
ACDF. (b) Corresponding exogenous dynamics.

Figure 6: Decomposition of the Ex-BMDP in Figure 5 that would be learned by the ACDF algorithm.
As usual, the ACDF algorithm learns an encoder for the endogenous state alone (left); the exogenous
dynamics are implicit. (The observation z emitted by latent states (s, e) is given by concatenating
the labels of s and e; for example state x = ‘c5’ is reached when s = ‘¢’ and e = ‘5)

This is a minimal endogenous latent representation, and one can confirm that the endogenous
and exogenous latent dynamics together are equivalent to the dynamics shown in Figure 5 on any
trajectory that starts on Dy. However, under this decomposition, the initial state distribution Dy
corresponds to a non-independent joint distribution on & and &: it assigns probability 0.5 to the
pair (sg = ‘b, eg = ‘1’) and probability 0.5 to the pair (so = ‘€', e = ‘2).
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By contrast, consider the trivial encoder ¢'(x) = x, where &’ = X and &’ consists of a single state
with a self-edge. This is also a valid control-endogenous representation (the transitions on &’ are
deterministic, and the (single-state) exogenous dynamics do not depend on actions.) Moreover, s
and e, are independent in Dy under this decomposition. Therefore, if we were to accept independent
initial-state distribution as a defining feature of the Ex-BMDP framework, we would be forced to
return this trivial encoder with |X'| = 10, as the only valid Ex-BMDP decomposition.

We reject this assumption, because we believe that the more-minimal encoder returned by ACDF
better captures an intuitive notion of controllability: an agent has no control over whether they are in
state ‘a0’ or ‘a3’ for instance. Further, while it might seem like the fact that |S x €| > |X'| means that
our returned encoding is redundant, recall that only the encoding of S is actually learned. In fact,
loosening the definition of the Ex-BMDP model in this way can only lead to more concise learned
representations (because it can only increase the set of valid decompositions of the Ex-BMDP).

Lastly, we note that, while Lamb et al. (2022) may state an assumption of decoupled initial exogenous
and endogenous states, AC-State also does not enforce in any way that the returned representation
will have independent exogenous and endogenous states, even if such a representation is possible.
(In fact, on this particular example, AC-State will return an incorrect encoding consisting of 3 states
with nondeterministic dynamics).

B.1.1 Implications for the structure of X

As discussed above, our lack of an independence assumption on sg, ¢y means that X may not contain
elements corresponding to all pairs (s, e), for s € S, e € £. However, we prove the following lemma
which will be useful in showing when such an (s, e) pair does correspond to some element in X.

Lemma B.1. Consider any policy on S8* that assigns nonzero probability to all actions (i.e., any
valid behavioral policy). Let s,s' € S* and e, e’ € E*. If (s, €') is reachable from (s,e), then (s, e) is
reachable from (s',€'). Consequentially, if (s',€’) is reachable from (s,e), and (s',€’) corresponds to
an observation in X, then (s,e) also corresponds to an observation in X .

Proof. Note that the dynamics on §* are irreducible, and there are no transient states in £*. We
know that e and ¢’ must belong to the same communicating class in £*, so we can treat the dynamics
on &* as irreducible without loss of generality.

Let My and M, be the two Markov chain transition matrices. Let ks be the periodicity of the
endogenous dynamics, and k. be the periodicity of the exogenous dynamics. Note that MPFs is
ergodic when restricted to the domain of each cyclic class of S*, and MPe is ergodic when restricted
to the domain of each cyclic class of £*. Then for some n, m, for any n’ > n and m’ > m, Mf”' has
positive probability between any two states in the same cyclic class in &* and Mfe'm/ has positive
probability between any two states in the same cyclic class in £*. Then in particular, MFsFemn
has positive probability between any two states in the same cyclic class in S*, and MFs"*emn hag
positive probability between any two states in the same cyclic class in £*.

Now, let the cyclic classes of e and s be defined as 0 on their respective Markov chains. Let
I((s,€),(s',€")) be the length of a path from (s,e) to (s’,e’). Now, consider any state (s”,e”)
reached by taking k. - ks — (I((s, e), (s',¢')) % (k. - ks)) steps starting at (s',¢e’). Then (s”,¢e”) can be
reached in a path of length I((s,e), (s”,€¢”)) from (s, e), where

[((s,e),(s",€")) =1((s,e),(s',€") + ke - ks — (I((s,€),(s',€") % (ke - ks)) =0 (mod ke - ks)  (4)

Then s” belongs to the same cyclic class (0) as s on My, and €” belongs to the same cyclic class
(0) as e on M,. Then MFs"*ke'm'n hag positive probability to transition from s” to s, and MFs-kemn
has positive probability to transition from e’ to e. Then we can reach (s, e) from (s”,e”) in a finite
number (ks - ke -m - n) of steps. Because we can reach (s”;¢e”) from (s, ¢’), this implies that we can
reach (s,e) from (s, ¢€’), as desired. As a consequence, if (s',¢’) corresponds to an observation in X,
then the latent dynamics of the Ex-BMDP will eventually reach (s,e) with positive probability, so
(s,e) also corresponds to an observation in X. O
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C Endogenous Latent Dynamics are not Unique

In this section, we provide some clarifications on the theory of endogenous latent dynamics, which
allow us to more clearly state our theoretical results. In their theoretical presentation, Lamb et al.
(2022) implicitly assumes that a Ex-BMDP has a unique endogenous latent representation; i.e.,
that a single Ex-BMDP only admits a single (minimal |S|) decomposition of the observation z into
endogenous state s and exogenous state e. Consequentially, their theoretical claims are often made
in terms of the “ground truth” endogenous latent state. Here, we show that this assumption is
unwarranted.

C.1 An Ex-BMDP with Multiple Control-Endogenous Representations

Consider the Ex-BMDP defined by control-endogenous states S = {a, b}, exogenous states & =
{0,1}, actions A = {Stay, Move} and transitions as follows:

Stay Stay
p=1.0
OEN0
Move p=10
(a) Endogenous transitions T'(s, a) (b) Exogenous transitions Te(elet)

Figure 7: An Ex-BMDP with |S| = 2

The observations z € X are defined by simply concatenating the endogenous and exogenous state
labels: X = {a0,al,b0,b1}.

This Ex-BMDP in fact admits a different control-endogenous state representation, with the same
(minimal) endogenous state space size |S| = 2. In particular, consider the representation:

Move Move
Stay p=10
Stay p=1.0
(a) Endogenous transitions T'(s, a) (b) Exogenous transitions 7Te(elet)

Figure 8: A different decomposition of the same Ex-BMDP, also with |S| = 2

In this decomposition, the observation z is defined such that, for example, if s = a0/b1 and e = 0,
then x = a0.

Note that this alternative encoding is not a mere relabeling of the same endogenous states: the pair
of observations {a0,al} belong to different endogenous states under this representation, although
they have the same endogenous state under the first representation. We can confirm that the full
MDP (that is, the observed MDP on X) is in fact the same for both:

6For example, Lamb et al. (2022) makes claims such as “We present an asymptotic analysis of AC-State showing
it recovers the control-endogenous latent state encoder f*.”
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Figure 9: Observed transitions on the full MDP

D Bounds on D’ and K

In this section, we prove an upper bound on the maximum witness distance D’ in terms of the
endogenous transition diameter D. We also show lower bounds on the number of steps K of multi-
step inverse needed to correctly learn a dynamics model in terms of D.

Theorem D.1. Consider a MDP on states S with deterministic transition function T, and finite
diameter D as defined by Assumption 3.1 from Lamb et al. (2022) (reproduced in Section 2 above).
Recall the definition of witness distance W (a,b) from Section 3.1. For any a,b € S, either W (a,b) <
2D? + D, or W(a,b) = co. Furthermore, W(a,b) = oo if and only if all Markov chains induced by
any policy on T (that assigns nonzero probability to each action) are periodic, and a and b belong to
different cyclic classes of such chains.

Proof. Consider a Markov chain induced by any policy on the transition function 7' that assigns
nonzero probability to each action in each state. Because of the finite diameter, we know that the
Markov chain is irreducible. We will initially consider the case that the Markov chain is aperiodic,
and later reduce the general case to the aperiodic case.

Our proof technique is inspired by a related result from Perkins (1961), which demonstrated that, for
an irreducible aperiodic Markov chain consisting of N states, a path of length exactly N2 — 2N + 2
exists between any pair of states. Building on this technique, our proof additionally takes advantage
of the bounded-diameter assumption present in our setting, instead of simply using |S|. Perkins
(1961) uses the following theorem sourced from Brauer (1942), which is ultimately attributed to
Issai Schur (presented here in the form used in Perkins (1961)):

Theorem (Theorem of Schur). Consider any set of positive integers B = {b1,...,bx} such that
gcd(B) = 1, where k = |B|, by is the smallest integer, and by the largest. Then any integer n >
(by — 1)(bg — 1) can be represented as a sum in the form n = Ei;l a;b;, where ay,...,ar are non-
negative integers.

For any state a € S, we know from the definition of aperiodicity that the greatest common denom-
inator of the lengths of all possible self-loops from a to @ must be 1. Let £, be this complete set
of self-loops of a. We will use | - | to denote length of a path (such as a loop). We will show first
that there exists a subset Q, C L,, such that the length of each loop in Q, is at most 2D + 1, the
shortest loop in Q, has length at most D + 1, and such that ged({[p||p € Qa}) = 1.

Consider the subset P, C L, consisting of paths in the foorm ¢ = ... = @’ — ... = a, Va' € S\ {a},
where the segments a — ... — a’ take a shortest-possible path from a to a’, and conversely, the
segments a’ — ... — a take a shortest-possible path from a’ to a. In other words, P, is the
set of shortest self-loops of a containing each possible other state a’. Let d(a,a’) be the length
of the shortest path from a to a’. By the bounded-diameter assumption, we know that [p| =
d(a,a’) + d(a',a) < 2D,V¥p € P,. Furthermore, there must exist some o’ with an edge directly
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incident on a: for this a’, we have d(a’,a) = 1, and thus |p| = d(a,a’) + d(a’,a) < D + 1. Therefore
Vp € P,, |p| <2D,and Ip € P,, |p| < D + 1.

Now, there are two possibilities:

1. ged({|p||p € Po}) = 1. In this case we tan take Q, = P,

2. ged({|pl|p € Pa}) =n > 1. In this case, let m be any factor of n greater than 1. Because
ged({Ipl|p € La}) = 1, there must exist some p’ € L, such that m { [p'| (m does not divide
[p]). (Furthermore, we can assume that the state a does not occur in the middle of p’: if
we are given such a “double-loop" with m t [p|, then m must not divide the length of either
the first segment or the second segment, or both.) Let p; be the ith element in the path p’
(zero-indexed). Then pf, = Pl = a. Note that

. d(a,p?p,‘) —d(a,pp) =0—0=0=0 (mod m)

« [P'[=0=1p'[#0 (modm)
Therefore, it cannot be the case that for all i € [0, [p'|), d(a,p] ;) —d(a,p;) =1 (mod m).
(To confirm this fact, sum both sides of this equivalence over i from 0 to |p'|—1.) Fix ¢ so that
piil is some state on p’ where this equivalence does not hold. (That is, d(a, pj ;)—d(a,p;) # 1
(mod m).) Now, consider a self-loop of a constructed from the following segments:

o A shortest-length path from a to p)

+ The edge from pj to pj,

« A shortest-length path from p} ; to a.

Let this loop be known as p”, and note that |p”| < 2D+ 1, because it consists of two shortest
paths and a single edge. Also, observe that:

d(a,pj 1) —d(a,p;) #1 (mod m) (As derived above) (5)
d(a,pj 1) +d(pis,,a) =0 (mod m) (A self-loop in P,) (6)
—d(piyq,a) —d(a,p)) #1 (mod m) (Subtract Eq. 6 from Eq. 5) (7)
d(a,p;) +d(pi,1,a) # -1 (mod m) (Rearrange and negate Eq. 7.) (8)
d(a,p;) + 14 d(pi q,a) Z0 (mod m) (Add 1 to Eq. 8.) (9)
[p"| #0 (mod m) (From the definition of p” and Eq. 9.)  (10)

Note that we can construct such a p” for each factor m of n. Then we can let Q, consist
of each loop in P,, and additionally one of these p” loops constructed for for each factor
m. Then by construction, ged({|p||p € Q.}) = 1 and Vp € Qa, |p| < 2D + 1, as desired.
(Additionally, Q, still contains the loop of length < D + 1 from P,, as desired.)

Now, we have constructed Q, such that the longest loop in Q, has length at most 2D + 1 , while
the shortest loop has length at most D + 1, and furthermore that the lengths of the loops are
relatively prime. Then the Theorem of Schur given above tells us that by taking some combination
of self-loops in 9, from a in sequence, we can construct a path from a to a of any arbitrary length
n, for any n > (2D + 1 —1)(D + 1 — 1) = 2D?. Then for any b € S, we can construct a path
from a to b of length exactly 2D? + d(a,b) (by self-looping for exactly 2D? steps at a, and then
taking the shortest path to b), and also a path from a to a of length exactly 2D? + d(a, b) (because
2D? + d(a,b) > 2D?, so such a self-loop must exist). Then a can act as a witness for a and b, and
W(a,b) < 2D? +d(a,b) < 2D? + D, as desired.

Finally, we return to the periodic case. Let k be the periodicity of the Markov chain, such that the
chain is partitioned into the k cyclic classes Sy, ..., Sp—1, where a state in class i (mod k) is always
succeeded by a state in class i + 1 (mod k). There are two possibilities:
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o States a and b belong to the same cyclic class, which we can call S;,. Then consider the
Markov chain raised to the k’th power; that is, the Markov chain induced by taking k
steps of the original Markov chain at each step; call this new chain M*. We will show
that MF is irreducible, bounded-diameter, and aperiodic, and thus we can apply the above
aperiodic case to MF¥. First, consider any path starting in S;,, in the original chain, of length
|p|. Either k | |p|, in which case it ends in §;, and has an equivalent path of length |p|/k
in M*, or k { |p|, in which case it does not end in S;, and also has no equivalent path
in M*. Thus we see that, if we start in S;,, M* forms an irreducible Markov chain on
the states of S;, alone. Furthermore, M* on the states S;, has diameter at most |D/k|
(because there is a path of length of most D between every pair of states in S;, in the
original Markov chain). Finally, M* on the states S;, is aperiodic: to confirm this fact,
note that by the definition of periodicity, we have that in the original Markov chain, the
g.c.d. of the lengths of all self-loops from any particular state in S;, is k. All of these
self-loops will still exist in M*, but their lengths will be divided by k. Therefore, the g.c.d.
of the lengths of the self-loops will be 1. This fact directly implies that M* on S;, is
aperiodic. Now, because M* on S;, is irreducible and aperiodic with bounded diameter
| D/k|, we can apply the aperiodic case above to M*. Then, in M* on S;,, we have that
W(a,b) <2|D/k|*+ |D/k] <2D?/k? + D/k. The paths from the witness state to a and b
will also exist in the original MDP, but will be longer by a factor of k. Therefore the witness
distance in the original MDP will be W (a,b) < 2D?/k+ D < 2D? + D.

o States a and b belong to different cyclic classes, which we can call S;, and S;,, where 7, # 7
(mod k). In this case, for any witness state ¢ in any S;, , note that any path from ¢ to a
will have length congruent to i, — i, (mod k), while any path from ¢ to b will have length
congruent to i, — i, (mod k). Because i, # iy (mod k), we have that i, — i, Z @ — i
(mod k), so no path from ¢ to a can be the same length as any path from ¢ to b. Then
W (a,b) = co. Note that this case is the only case in which W(a,b) = occ.

O

The above result shows that the maximum witness distance D’ is upper-bounded by 2D? + D, and
thus, if we are given diameter D, we can safely set the hyperparameter K = 2D? + D and be
guaranteed that ACDF will correctly discover a endogenous state representation.

We now show two kinds of lower bounds on K, the number of multi-step inverse steps actually
needed to learn the endogenous state:

e A bound for the AC-State loss. For this bound, we assume that the dynamics are ape-
riodic; thus K = 2D? + D steps are in fact sufficient to find a correct endogenous state
representation.

¢ A bound for the ACDF loss.

These results are proven by construction: we will explicitly construct examples of dynamics for
which AC-State/ACDF fail when K is too small.

We first give the following useful lemma:

Lemma D.2. Consider an Ex-BMDP defined on states indexed as X = {0, ...,|X| — 1}, such that
the dynamics of the Ex-BMDP are deterministic, and such that any Markov chain induced by any
policy on the Ex-BMDP (that puts nonzero probability on every action) is irreducible and aperiodic.
Then the only valid endogenous latent encoder (up to a relabeling permutations) is the trivial one:
¢(x) = x. That is to say, the endogenous state s is the full state x, and the endogenous transition
function is the same as the full Ex-BMDP transition function.

Proof. We proceed as follows:
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e Consider any pair of endogenous state s and exogenous state e. By the block assumption,
each observed state z corresponds to exactly one such pair, and any two observed states
x,2’ which correspond to the same pair (s,e) must have in-edges in M from exactly the
same set of states in X', with exactly the same actions for each edge, with a fixed probability
ratio. Because the Ex-BMDP is deterministic, there are no such pairs, and it immediately
follows that each pair (s, e) corresponds to exactly one z, and vice-versa.

o Because the full dynamics of x = (s,e) are deterministic, and because the dynamics of s
are deterministic (by definition), it immediately follows that the dynamics of e must be
deterministic.

o Given that the dynamics of e are deterministic and by definition do not depend on actions, £
and 7. can only consist of some set of disjoint cycles of states. However, if there are multiple
such cycles, then under any choice of policy, any Markov chain on x = (s,e) would have
multiple communicating classes (because states © = (s, ) with values of e on different cycles
would be inaccessible from each other), and would therefore not be irreducible. Therefore
& can only consist of a single cycle. However, this cycle can in fact only consist of a single
state: note that the length of any self-loop of any state x = (s,e) will by divisible by the
cycle length of £ = |€]. Because the Markov chain is aperiodic, the g.c.d of such loops must
be 1. Then |€| must be equal to 1.

Therefore, each = corresponds one-to-one with a endogenous-exogenous pair (s, €), and there is only a
single exogenous state e. So each x corresponds one-to-one with an endogeous state s, as desired. [J

We now present our lower-bound results:

Proposition D.3. VD, there exists an Ex-BMDP such that a minimal endogenous latent dynamics
has a diameter of D and is aperiodic, and such that the AC-State algorithm given by Equation 2 with
a uniform exploration policy will return an encoder that does not produce a valid endogenous state
representation using K < h(D) -step inverse dynamics, where h(D) € Q(D?). Here, we are using
the Hardy-Littlewood Q2 notation (not to be confused with Knuth’s Q), and specifically h(D) ~ D?/2,
in the sense that:

h(D)
li =1 11
mew T s )

Proof. Consider two arbitrary primes p, g, with p < ¢, and let these primes define a deterministic
Ex-BMDP M with transition function T'(z,a) as follows:

o g states, labeled X = {0,...,q — 1}
o Two actions, {L, R}
o T(s,a) defined as:

— T(0,L) =1
- TO,R)=q—p+1
- VeeX,x#0: T(z,L) =T(z,R) = (x + 1) % g, where % is the modulo operator.

We first note that for this Ex-BMDP, under any policy that assigns nonzero probability to all actions,
the resulting Markov chain is irreducible and aperiodic. For irreducibility, simply note that any state
can be reached from any other state (i.e., any state b can be reached from any state a by simply
taking action L (b — a) % ¢ times). For aperiodicity, note that the state 0 € X has a self-loop of
length ¢ (by taking L and then any other ¢ — 1 actions) and a self-loop of length p (by taking R
and then any other p — 1 actions). Because these are both prime, the g.c.d. of the lengths of all of
state 0’s self-loops is 1, so the Markov chain is aperiodic. Then, by applying Lemma D.2, we know
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that the only valid endogenous latent encoder (up to a relabeling permutations) is the trivial one:
¢(x) = . We can thus regard the states S = X as the only “true” endogenous states: any encoder
which maps any two states in X to the same endogenous state must be incorrect.

Now, consider the AC-State prediction task of determining a; from ¢(z;), ¢(x1+r), and k. We will
assume that ¢ maps the state 0 € X to its own endogenous state (otherwise, AC-State has already
failed, as desired).

Note that under a uniform exploration policy, where defined,
Ve e X\ {0}, 2’ € X, keN Pr(a;=Llzy = 2,204, =2') =0.5 (12)

that is, it is impossible to determine a; from the inverse dynamics unless z; = 0 (because for x; # 0,
the next action a; does not affect the dynamics). Then it is only useful to distinguish two values of
x € X\ {0} if they produce distinct values of Pr(a; = L|z: = 0,z = x) for some particular k < K.
In particular, if two states z,2’ € X' \ {0} cannot each occur exactly k steps after state 0
for some k < K, then the AC-State loss can be minimized without ¢ distinguishing x=
and z’. Because AC-State returns the minimum-range encoder ¢, it will preferentially return an
encoder that maps z and z’ to the same endogenous state over the only correct encoder, which maps
every x to its own s. Therefore, to show that AC-State will fail for some K, we need only show that
there are two states x,2’ € X'\ {0} which cannot both be reached from state 0 in the same number
of steps < K.

For simplicity and without loss of generality assume that the Ex-BMDP is in state x = 0 at timestep
t = 0. Then the state at timestep k is given by:

(k4 (g—p)r) %q (13)

where 7 is the number of times the action R is selected while the Ex-BMDP is in the state 0, and
is at most [k/p] (because the agent can start to take the “short” p-length loop at most this many
times in k total steps.) Now, let z, 2’ be any two states in X' \ {0} such that

(x—2")=(¢-p)((¢—1)/2) (mod q) (14)

(Concretely, if ((g—p)(¢—1)/2) %q#q—1, wecanset x = q—1; 2" =q—1-((¢—p)(¢—1)/2) % ¢;
otherwise we can set t = ¢ —2, 2’ =¢—1.)

Then, a path of length k ends at x if and only if it contains r R-actions at state 0, where:
(k+(g—pr) ==z (modq) (15)
and such a path ends at z’ if and only if it contains ' R-actions at state 0, where
(k+(g—p)r') =2’ (mod q) (16)
Subtracting these two congruences (Eq. 15 and 16) gives:
(q—p)(r—7r)=z—2" (mod q). (17)
Substituting in Eq. 14 gives

(g—p)r—7")=(q—p)((¢g—1)/2) (mod g). (18)

Because ¢ is prime and ¢ — p < ¢, the quantities (¢ — p) and ¢ are relatively prime, so we can safely
divide off (¢ — p):

r—r =(g—1)/2 (mod q). (19)
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Now either » — ' > 0, in which case r — 1’ is at least (¢ — 1)/2, or r — ' < 0, in which case r — 1’ is
at most (¢ —1)/2—q=—(¢+1)/2,s0 ' —ris at least (¢ + 1)/2. In either case, because r and r’
are non-negative, one of r or ' must be at least (¢ — 1)/2. But r and ' must be at most [k/p], as
noted above. Therefore, for z and 2’ to both be reached from state 0 in the same number of steps
k, we must have:

(a—1)/2<[k/pl<(k—-1)/p+1 (20)
Then i
gp(q -3)+1<k (21)
Therefore, AC-State will fail if:
1
K < ip(q - 3). (22)

Now, we need to frame this bound in terms of the radius D, rather than p and ¢. First, note that
the radius of the MDP is in fact D = ¢ — 1 (In particular, the longest distance between any two
states is the distance from ¢ to i — 1, for 0 < i < g —p.)

Secondly, in order to make this bound as tight as possible in terms of D, we would like to make p
as close to D as possible. It is known (Polymath, 2014) that there are an infinite number of pairs
of primes p, g such that ¢ — p < 246. Then, in terms of D alone, we have that there are arbitrarily
large values of D for which AC-State can fail for all values of K with:

K < =(D —245)(D - 2) = %DZ +0(D). (23)

N |

If the Twin Prime conjecture holds, then this bound becomes tighter (although not asymptotically):
in this case, there are arbitrarily large values of D for which AC-State can fail for all values of K
with:

K < (D—l)(D—2):%D2—gD+1 (24)

N =

Finally, because we have shown that such MDPs can be constructed for an infinite number of
arbitrarily large values of D, we can define h(D) = 3(D — 245)(D — 2) for such values of D, and
h(D) = 0 elsewhere. By the definition of lim sup, we have:

h(D
lim sup 1( 2) =1 (25)
D—oco 3
as desired, and thus h(D) € Q(D?) (by the Hardy-Littlewood definition) as desired. O

While we have shown that we do in fact need to use K = Q(D?) steps in the AC-State method
(in environments with aperiodic latent dynamics, where AC-State works at all), it is natural to
ask whether (D?) steps are still necessary when using the ACDF loss. In the ACDF case, it is
not enough to show that the multistep inverse loss can conflate two individual states (i.e., to show
that two states can have a witness distance quadratic in D, as above). Rather, in order to fail,
the method must conflate some sets of states such that the resulting dynamics on the combined
“states” produced by the encoder are deterministic. In fact, this requirement does not hold for the
construction above: empirically, in Section 4 we see that ACDF is able to consistently, successfully
infer ¢ even with one-step inverse dynamics (K = 1) on the version of this MDP with p = 3, ¢ = 5.7

However, we are still able to construct a family of Ex-BMDPs such that ACDF will fail for K smaller
than a function € Q(D?), specifically, a function that goes as D?/4.

7Shown in the first numerical experiment at the top of Figure 4. Note that while the bound above for this problem
would suggest that AC-State will fail for K < 3, a tighter analysis of the specific instance shows that it will in fact
fail for K < 6, which is confirmed in the experimental results.
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Proposition D.4. VD, there exists an Ex-BMDP such that a minimal endogenous latent dynamics
has a diameter of D, and such that the ACDF algorithm given by Equation 8 with a uniform explo-
ration policy will return an encoder that does not produce a valid endogenous state representation
using K < h(D) -step inverse dynamics, where h(D) € Q(D?). Here, we are using the Hardy-
Littlewood Q2 notation (not to be confused with Knuth’s Q), and specifically h(D) ~ D?/4, in the
sense that:

lim sup hD)

1
D—oo ZDQ

—1 (26)

Proof. Consider two arbitrary primes p, g, with p < ¢, and let these primes define a deterministic
Ex-BMDP M with transition function T'(z,a) as follows:

o 2q states, labeled X = {0,...,q —2,¢— 1;0,1"..., (¢ — 1)}
o Two actions, {L, R}

o T(s,a) defined as:
— T(0,L) =1

-Vz € {1,...,q — 1}: T(z,L) = T(z,R) = (x +1)%gq; and T(2',L) = T(2',R) =
((z+1)%q)’, where % is the modulo operator.

First, we note that this Ex-BMDP is irreducible and aperiodic. To show that it is irreducible, simply
note that we can reach any state from any other state (i.e., any state b can be reached from any
state a by simply taking action L (b — a) % ¢ times; any state b’ can be reached from o’ in a similar
manner; any b’ can be reached from a by first going from a to 0 using L actions as described, using
the action R to go from 0 to (¢ — p 4+ 1)’, and then using L actions to go to b’; b can be reached
from ' similarly). For aperiodicity, note that the state 0 € X has a self-loop of length ¢ (by taking
L and then any other ¢ — 1 actions) and a self-loop of length 2p (by taking R and then any other
p — 1 actions to get to state 0, then repeating this process to return to 0). Because p and ¢ are
both prime and ¢ # 2, the g.c.d. of the lengths of these two self-loops is 1, so the Markov chain is
aperiodic. Then, by applying Lemma D.2, we know that the only valid endogenous latent encoder
(up to a relabeling permutations) is the trivial one: ¢(z) = x. We can thus regard the states S = X
as the only “true” endogenous states: any encoder which maps any two states in X to the same
endogenous state must be incorrect.

We will show that there is an alternate encoder, ¢’, such that the dynamics on the inferred “states”
produced by ¢’ are deterministic and the multistep inverse loss of ¢’ is minimal if K < h(D), where
h(D) € Q(D?). Specifically, Vz € [0,q — 1], ¢’ maps both z and 2’ to the same element. To avoid
ambiguity, we will refer to this element as x*. Thus, for example, the element 3* is the image of the
set {3,3'} under ¢’. Because ¢’ can only output ¢ unique elements, its range is smaller than that of
the correct encoder ¢, and therefore ACDF will produce ¢’ instead of ¢ if both have the same loss.

To show that ¢’ has zero forward dynamics loss, we need to verify that the dynamics on the elements
x* are deterministic. In fact, they are:

« T(0*,L)=1*
« T(0,R)=(¢—p+1)

o Vze{l,...,q—1}: T(x*, L) =T(2*,R) = (z + 1) % q)*;
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which happen to be the dynamics of the Ex-BMDP used in the proof of Proposition D.3.

As in the construction used in the proof of Proposition D.3, we note that the first action only affects
the dynamics, and hence will only be predictable, if the Ex-BMDP is initially in state 0 or state 0'.
We also note that by the symmetry of the dynamics:

Ve €{0,..,q— 1} k€N Pr(a; = Llz; = 0,244, = ) = Pr(ay = Lz = 0,206 = 2')  (27)
and:
Ve €{0,...q—1}, k€N Pr(a; =Llx; =0, 241 =) = Pr(a; = Llzy = 0,244, = ')  (28)

Therefore, up to symmetry, the only case in which distinguishing states z and a’ (where z €
{0,...,q — 1}) is necessary to minimize the multistep-inverse loss is when it is needed to distinguish

Pr(a; = Llzy = 0, 2444 = ') (29)
from

Pr(a; = Llxy = 0,241 = ) (30)
for some particular choice of z and k: otherwise ¢’ will be a sufficient encoder to minimize the loss.

For simplicity and without loss of generality assume that the Ex-BMDP is in state = 0 at timestep
t = 0. Then the state at timestep k is given by:

_ (k+ (¢ —p)r)%q if » even
"o {((’f +(¢—p)r)%q) ifrodd (31)

where r is the number of times the action R is selected while the Ex-BMDP is in the state 0 or the
state 0, and is at most [k/p]. (because the agent can start to take the “short” p-length path from

0 to 0’ or vice-versa at most this many times in k total steps.) Then, in order to reach both x and
2’ in the same number of steps k, we need, for some even r and odd r':

(k+(g—p)r)%q=(k+(qa—p)r') %q (32)

which implies
k+(g—p)r=k+(qg—p)r' (mod q) (33)

Rearranging:
0=(q—p)(' —r) (modq) (34)

Because q is prime and p < ¢, we know that g — p is relatively prime with ¢, so this equivalence
implies:

0=r"—r (mod q) (35)
Because 7’ is odd and non-negative, this equivalence implies that ' > ¢. But then we have:
g<r' <T[k/p] <(k-1)/p+1 (36)
Which gives us:
(q—p+1<k (37)
Therefore, ACDF will fail if:
K < (¢—1)p. (38)

Now, we need to frame this bound in terms of the radius D, rather than p and ¢. First, note that
the radius of the MDP is D = 2¢ — 1 (In particular, the longest distance between any two states is
the distance from 1 to (¢ — p)’, which requires going “all the way around” the non-primed states to
0, going from 0 to (¢ —p+1)’, and then going “all the way around” the primed states to (g—p+1)".)
then in terms of D and the “prime gap” g := q — p:

K< (30-0)- (5040-0) (39)
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As discussed in the proof of Proposition D.3, there are an infinite number of pairs of primes with
prime gaps bounded by a constant (=246), and under the Twin Primes conjecture, this bound can
be made even tighter, with ¢ = 2. In either case, we have, for arbitrarily large values of D:

K < EDQ +0(D). (40)

One can then proceed exactly as in Proposition D.3 to prove this proposition. O

E ACDF returns a correct, minimal Encoder

We show both that every function ¢ which minimizes the ACDF loss is a valid endogenous state
encoder of the Ex-BMDP, and that there exists a valid, minimal-state endogenous state encoder
of the Ex-BMDP which minimizes the ACDF loss. This is sufficient to prove that the minimal-
state encoder ¢’ returned Equation 3 will be a valid, minimal-state endogenous state encoder of the
Ex-BMDP. Our main result is given as Theorem E.2 below.

To show that a particular ¢’ is a valid endogenous state encoder, we will use the fact that, by the
definition of the Ex-BMDP, there must exist at least one minimal endogenous state representation,
which we will call s* € §*, and a corresponding exogenous state representation, which we will call
e* € £*. We assume this encoder follows the assumptions discussed in Section B. Even though it is
arbitrarily chosen, for simplicity in our proofs we will call this the “canonical” endogenous/exogenous
representation. The “canonical” endogenous encoder ¢*, which maps X to §*, and “canonical”
exogenous encoder ¢}, which maps X to £*, are also defined. We will similarly define the canonical
emission distribution Q*, such that z; ~ Q*(z|s,e), and ¢* and ¢} are inverses of Q*.

We will also introduce a pair of new objects, which we refer to as the “enhanced exogenous encoder”
(;;e*(as) and “enhanced exogenous state” £*. These are relevant if the dynamics on the canonical
endogenous states S* are periodic. Specifically, let k be the periodicity of the canonical endogenous
transition function 7%, and let c(s) € §* — [0,k — 1] refer to the cyclic class of the canonical state
s € §*. (We can fix any labeling of these classes; if T* is aperiodic, then Vs, c(s) = 0). Then the
“enhanced exogenous state” is defined by concatenating the canonical exogenous state with ¢(¢*(z));
that is, de (z) := (¢7(x),c(¢*(x))). Note that because the cyclic class of s evolves independently of
actions, the dynamics of states in £* is Markovian and exogenous. For a state e/ € £*, we will refer
to the two components as ¢’'[0] and €'[1].

We then introduce the following “simulation lemma”:

Lemma E.1. Consider an Exz-BMDP with states X, transition function T, canonical endogenous
states S* and canonical endogenous states S*, canonical encoders ¢* and ¢}, and canonical emission
distribution Q*. If some encoder ¢’ exists, such that:

1. Yz € X, there is a deterministic function which maps from the pair (¢%(x), ¢'(z)) to ¢*(x).

2. The dynamics on the encoded latent states produced by ¢'(x) are deterministic. That is, if
we fix any s € Range(¢') and a € A, then Va € {z|¢'(x) = s}, let 2’ ~ T (z,a), then ¢'(z')
takes a single deterministic value, a function only of s and a. Additionally, we assume that
the range of ¢' is discrete and finite.

then ¢’ is a valid endogenous latent encoder for the Ex-BMDP.

Proof. We will show that the Ex-BMDP’s transition function 7 can be decomposed into endogenous
and exogenous parts as defined in Equation 1, such that the endogenous encoder is ¢’, and the exoge-
nous decoder is ¢, (). We will refer to the endogenous/exogenous states under this decomposition
as s’ and e’. We showed above that the enhanced exogenous state has Markovian dynamics which
do not depend on actions; we will refer to these dynamics as 7.
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By assumption, there is a deterministic function F(-,-), which maps (¢'(z), ¢*(z)) to ¢*(z). There
is also, by assumption, a deterministic transition function 7”(-, ) which maps ¢'(x) and a to ¢'(z'),
where 2’ is any element in the support of T (z, a).

Then, we can define the emission distribution Q’ as:

Ve X,s' €S e €& l;;(ajt =zxls; =5 e, =¢) = gf(gct =z|s;y = F(s',€'),e; =€'[0]) (41)

We now show that:

1. The complete transition function given by:

Li+1 ~ Ql(x|sg+17€£+1)7
82—0—1 = TI(SQ, at)7 8;& = QS/(xt) (42)

— %
e~ T (¢ler), €= e (),

is equivalent to the Ex-BMDP transition function 7, which by assumption can be expressed
as:

Te41 ™~ Q*($|5:+1a€:+1)7
sipr =17 (sf,ar), s; =" (w) (43)

e ~ T (€7ler), ep = oc(),

To show this fact, is it sufficient to demonstrate that the overall transition probabilities on
X are equal in the two models. That is, we must show that:

Pr(ze1= alze, ar) => g,r(xtﬂ: zlst=T"(¢ (@), ar), ety = ) Pr(efle; = Pr(w)) (44)
e'eEx ¢
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We can proceed as follows:

> Pr(ze = alsn = T (20), ar), €11 = €) - Pr(ele; = () = (45)

< T
e'e€Ex
> Pr(we1= 2lsipr = &' (1), €hn =€) - Pr(elle = 67 (1)) = (46)
e’ el ¢
> Dr(@ip1=olsiyr = F(¢(we41),¢), ey = €[0]) - Pr(e'ley = Pr(x1)) = (47)
e'ckE* ¢
> Pr(wea= 2lsi=F(¢' (1), €), €= €'[0], e(s7r)=e'[1])-Pr(e|e} = ¢¢(w1)) = (48)
e’ el ¢
Z gf(l't-&-l:x|5:+1:F(¢,(xt+1)7 62+1), €:+1:€/[O]a C(5I+1):€/[1])'§_1f(6/|€;:Q;Z(xt)): (49)
e'efx ¢
> Pr(@ea=olsiyy = ¢"(@e41), €040 = e'0, c(sira) = €'[1]) - Pr(efle; = ¢r(z1)) = (50)
e'cEx ¢

> Pr(@epr= alsipy =T7(¢7 (1), ar) €341 = e'0)) - Pr(e'ler = de(e)) = (51)

e’ el ¢

> gf(ﬂﬂtﬂ: lsipy =T (" (w1), ar), €41 = €[0])
e'eEx (52)
'Ef(el[oﬂef = 05 (7)) - Lerj1)=c(¢* ()41 (mod k) =

> Pr(zen= lsiyy = T7(@"(20), a), €41 = €'[0]) - Pr(e’[Ole; = éc(ar)) = (53)
e’[0]eEx ¢

> Dr(werr= alsipy =T7(¢7 (@) ar), eqyq = €7) - Pr(e’le; = oc(ar)) = (54)
erefx ¢

P;r(th: x|z, ap) (55)

where Eq. 46 follows by the assumption that 7" exists and is deterministic (Assumption 2
of the Lemma); Eq. 47 follows by Assumption 1 of the Lemma; Eq. 48 follows from the fact
that, if Prr (€e/|e} = ¢%(x¢)) is nonzero, then e'[1] must follow €;[1] (mod k), therefore e'[1] =
c(sy, ) for all of these terms; the conditioning is merely making this constraint on e’ explicit.
Then in Eq. 49 we use the two conditions that e’[0] = e}, and €'[1] = c(sf,,) to conclude
that ¢’ = e}, and substitute using this identity in the other condition. Eq. 50 follows from
the definition of F'(-,-); and Eq. 51 follows from the definition of the canonical endogenous
transition function T* (we also hide the implicit conditioning/constraint on e’[1], which as
discussed above is redundant on all nonzero terms.) Eq. 52 factors the transition function
7] into the canonical exogenous transition function 7. and the deterministic procession
of the cyclic class of s*. Note that ¢/[1] now only appears in the final indicator function
term. Furthermore, the indicator is equal to 1 for exactly one of the possible values of €'[1].
Therefore, in Eq. 53 we split the sum over ¢/ € £* into a sum over ¢/[0] € £* and a sum
over €'[1] € [0,k —1]. The latter sum can be factored to apply only to the indicator function
term, and the resulting sum is equal to exactly 1, so it can be eliminated. Eq. 54 is simply
a notational change, from €’[0] to e*. Finally, Eq. 55 holds directly from the definition of
the Ex-BMDP in terms of the canonical endogenous and exogenous dynamics.

2. The conditions on Eq. 1 are met:

o &', the range of ¢’ is finite, by assumption.

e The transition function 7" is deterministic, by assumption.

o The transition function 7. is Markovian and independent of actions, because it consists
of factor 7., which is Markovian and independent of actions, and a cyclic term which
evolves deterministically as n — (n+1) % k, and is thus also Markovian and independent
of actions.
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e ' follows the “block” assumption, because the encoders ¢’ and (;_SZ are both functions,
which implies that every value of z € X’ corresponds to a unique (s, e’) pair.
o ¢ and ¢’ are inverses of Q": in other words, if z ~ Q'(s',¢’), then ¢'(z) = s’ and
¢*(x) = ¢'. This statement is only meaningful (i,e., Q’(s’,€’) is only defined) in cases
where s’ and e’ can co-occur (which is not always the case if 7 and 7" are both periodic
with the same period.) The sets S’ and £* are defined as the ranges of their respective
encoders, so (&', €’) can co-occur if and only if there is some =’ € X such that s’ = ¢'(2')
and ¢’ = ¢(2') . Then we must show that = ~ Q'(¢(z'), ¢} (2')) implies ¢(z) = H(z')
and (;5*( ) = ¢ (z ) For the first implication, note that, by Eq. 41, we have that
x ~ Q*(F(p(a"), 9k (x), ¢ (2")[0]), and therefore that qb*( ) = F(¢(m’),¢:(a§’)) and
¢:(x) = ¢z (2")[0] = ¢:( ) . Then, by the definition of F, ¢*(z) = ¢*(2’) and ¢} (z) =
@5(2'). Then, from the dynamics of the canonical latent encoding (specifically, the
bounded diameter assumption of S* and lack of transient states in £*), we know that
there must exist some z” such that z” can transition to both z and 2’ under the same
action a. Then, by the determinism of 7", we have that T'(¢'(2"),a) = ¢'(z) = ¢'(a),
50 ¢(xz) = P(a’) as desired. Given this result and the fact that ¢f(x) = ¢%(2'), it follows
by definition that ¢*(z) = ¢F(a').

Given this lemma, we can now prove our main theorem:

Theorem E.2. Given an Ex-BMDP, under the assumptions listed in Section B, there exists a correct
minimal-state endogenous state encoder ¢* that will minimize the ACDF loss given in Equation 3
on the Ex-BMDP. Conversely, any encoder ¢ which minimizes the ACDF loss given in Equation 3
on the Ex-BMDP is a correct endogenous state representation for the EFx-BMDP. As a consequence,
the encoder ¢' which minimizes Equation 3 with the minimum number of output states is a correct
minimal-state endogenous representation.

Proof. Our general approach is as follows:

1. We show that there exists a minimal-state endogenous encoder which simultaneously mini-
mizes both the multi-step inverse loss term and the latent forward loss term in Equation 3.
As a consequence, the encoder also minimizes the overall loss, the sum of these two terms.

2. We show that any ¢’ which achieves the minimum possible value of the both terms in the
ACDF loss (independently) is a correct endogenous-state encoder.

3. Due to item (1) above, we know that it is possible to simultaneously minimize both loss
terms. Therefore, any ¢’ which achieves the minimum value of the overall loss in Equation
3 must also minimize both loss terms independently. Then we can conclude that any ¢’
which minimizes the overall loss Lacpr is a correct endogenous latent state encoder.

4. Finally, because all minimizers of Lacpr are correct endogenous state encoders, and we
know that at least one of these minimizers is minimal-state among correct encoders, it
follows that the minimizers of Lacpr which have the fewest numbers of output states are
all minimal-state endogenous state encoders.

It show that points (1) and (2) above are correct; points (3) and (4) follow immediately.
(1) A correct, minimal-state encoder minimizes both loss terms.

Let ¢* be the correct “canonical” minimal-state endogenous state encoder, as described in Section B.
To show that ¢* minimizes the multistep inverse loss, we can proceed exactly as in Proposition 5.1
in Lamb et al. (2022).
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However, for completeness, we present a version of the proof here. Recall that, by assumption (4)
listed in Section B, the behavior policy used to collect data depends only on the endogenous state
s*. Let M be the represent the transition operator of the entire Ex-BMDP on X under the behavior
policy, so that x;, ~ MF¥z,. Similarly, let M, represent the exogenous-state transition operator un-
der the exogenous transition function 7. and M, represent the endogenous-state transition operator
under the behavioral policy 7w and the exogenous transition function 7. Then, by the definition of
the Ex-BMDP dynamics, we have that

Pr(@es = zlzy) = Pr(zl¢” (z), éc(x) - Eg(eak = ¢ (@)|dc (1)) - J\P;E(SLF’“ = ¢*(2)|¢" (1)) (56)

Additionally:

MIEH’T(l't-i-k =zlay = a,z¢) =

Pr(elg"(2),61(0) - Prless = G@02(e) - Pr (i = 9" @sia =T (@ @) )
e Mg

Now, for any (2, x+4; k) tuple, the multistep-inverse loss in Equation 3 is minimized by the function
foPt defined as: foP' (w4, weyk; k) = Prp,, (at|ze, 2441) where Dy is the sampling distribution
over which we compute the loss, as defined in Section B; note that the transition function on this
distribution is the M defined above. Now, we can write:

Pr (a; = alxy, x4k = ) =
Dk

Prﬂ(at = a|a:t) . Perfl,T(xt—i-k = x|at = a,xt)

Prye(zen = zl2)

Pr(a; = a|¢™(2:))-
55(33\(15*(13)7@(»’5)) : IE{(efM = ¢e(2)[dc(x1)) - Pr (siyp = o™ (@)|sip =T (0" (31)))
c M _
Pro«(2|¢* (), ¢ (2)) - Prage (e, = 0%(2)|9% (1)) - Prage (s, = ¢* ()¢ (24))
Prr(ar = al¢*(21)) - Pry-a(siy ), = 0" (@)|si =T (0" (24)))
Prysi(siyy, = ¢ (2)|0* (241))

(58)

Where the we use Equations 56 and 57, and the fact that m depends only on the endogenous state,
in the third line. Note that the final line of the equation depends on z and x; only through ¢*(z)
and ¢*(x;) respectively, so fOP* can be equivalently written as a function only of ¢*(zs1 1), ¢*(2),
and k. Then the encoder ¢* is able to achieve the minimum possible value of the multistep inverse
loss term.

We now show that ¢* minimizes the latent forward loss as well. Because T™ is deterministic, it
follows that, for all transitions (x¢, at, x141), ¢*(2¢41) is a deterministic function of ¢*(z;) and a; (in
particular, ¢*(x¢11) = T*(¢*(x¢),as)). Then the forward-prediction loss term will be exactly zero,
achieved by setting gy (s,a) := 1y —p+(s,4). This is the minimum possible value for a negative-log
loss term.

(2) An encoder ¢’ which minimizes both loss terms is a correct endogenous encoder.

By assumption, the Ex-BMDP must have some canonical endogenous states S* and canonical ex-
ogenous states £*, canonical encoders ¢* and ¢}, and canonical emission distribution Q*. In order
to use the above Lemma E.1, we will first show that if ¢ minimizes the multistep-inverse loss term,
then there is a deterministic mapping from (¢*(x), ¢'(x)) to ¢*(z).
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We proceed by contradiction. Suppose, for two distinct z,2’, we have that (¢f(z),d'(x)) =
(fx(2'), ¢’ (z')), but ¢*(x) # ¢*(2'). Because ¢f(x)[1] = ¢z(a')[1], we know that ¢*(x) and
¢*(2’) must belong to the same cyclic class in S*; additionally, we have that ¢i(z) = ¢%(z').
Let w = W(¢*(x), ¢*(2')). Because ¢*(x) and ¢*(z’) belong to the same cyclic class, we know by
Theorem D.1 that w < D’ < oo. Let ¢ € 8* be the corresponding witness state. By the lack of
transient states in £*, we know that there is some e* € E* such that under the exogenous dynamics
TS, ¢ (x) can be reached from e* in exactly w steps. We can step from (c,e*) to (¢*(z), ¢%(z)) in
exactly w steps, or from (c, e*) to (¢*(2'), ¢%(x)) in exactly w steps. By Lemma B.1, there exists an
observation z. € X such that ¢*(x.) = ¢ and ¢} (z.) = e*. Then, by Assumption 5 listed in Section
B, we sample (z; = @¢,ar € A, T¢4 = x) with finite probability and (x; = z¢,ar € A, Ty = ')
with finite probability. By assumption, ¢'(z) = ¢'(z’), so

f(@(xe), ¢/ (2);w) = (& (we), ¢ (); w). (59)

Note that the multistep inverse loss term is minimized on every tuple (x¢, x¢1x;k) by the trivial
encoder ¢,iy which maps @iy () := x. Under this encoder, we can simply define fgtpt' (x4, xpais k) =
Prp,, (a¢|ws, 241 ) where D(yy is the sampling distribution as defined in Section B. Furthermore, for
a fixed (x4, 41 1; k) which occurs with nonzero probability, this minimizer fOoP% (¢, x4y ; k) is unique:
the excess loss conditioned on (¢, ¢4x; k) is exactly the KL-divergence between Prp , (at|7s, Ti4k)
and the distribution output by the classifier f(z;, zrir; k).

Then, ¢’ can only minimize the loss term if, for some f and all a € A:

Pr (at = almt =Tc, Tipw = T) :fa(¢/(x0)a d)/(.%‘); w) =

D(w)
fa(¢/($c)7¢/($l)§w) :DPY (ay = alzy = Te, Tpqr = x’).
(w)

(60)

Where the middle equality is Equation 59.

However, Prp(w)(at = a|lry = Ty Tprw = ) and Prp(w)(at = a|zy = Te, Tipw = ') have disjoint
support over values of a € A. To see why, suppose that some o' € A existed such that both of
these probabilities were nonzero. This would imply that, for the canonical endogenous latent state
d € §* defined as d := T*(c,a’), it is possible to reach both latent states ¢*(x) and ¢*(2’) from d in
exactly w — 1 steps of T*. But then W(¢*(x),#*(2")) < w — 1, which contradicts the definition of

w:=W(¢*(z), 9" ().

Then we can conclude that distributions Prp ,, (a; = a|xs = Xey Tigp = ) and Prp,,, (ar = alzy =
Ze, T4 = @) have disjoint support. This leads to a contradiction with Equation 60, which requires
the two distributions to be equal. Therefore ¢’ cannot minimize the multistep inverse loss term if,
for any two distinct x,2’, we have (¢%(x), ¢/ (z)) = (¢z ('), ¢ (")), but ¢*(x) # ¢*(z'). Therefore
for any ¢’ which minimizes the loss term, there must be a deterministic mapping from (g7 (z), ¢’ (z))

to ¢*(x).

Secondly, we note that any ¢’ which minimizes the forward dynamics loss term must produce a set
of states 8’ with a deterministic transition function. To see this, note that this loss term can be zero
with some encoder (such as the encoder which maps all z to a single latent state), and further note
that the loss is only zero if ¢'(x411) is exactly predictable from ¢’(z;) and a;; which means that the
dynamics are deterministic.

From these two conclusions, that there is a deterministic mapping from (¢*(z), ¢'(x)) to ¢*(z), and
that there are deterministic dynamics on the endogenous states produced by ¢’, we can conclude by
Lemma E.1 that ¢ is a valid endogenous encoder of the Ex-BMDP.

O
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F Alternative “fixes” to AC-State that do not work

While ACDF has nice theoretical properties, one concern is that, unlike the purely supervised action-
prediction task of AC-State, the ACDF method’s latent-forward prediction task has moving targets.
In other words, the latent code of the next state s; + 1 will evolve throughout training, complicating
the training optimization. Given this difficulty, it would be desirable to come up with a method for
provably learning the endogenous encoder of an Ex-BMDP that does not rely on moving targets.
We considered two initially promising possibilities, but found that both can fail to capture a correct
endogenous state representation.

F.1 Full Multi-Step Inverse
F.1.1 What is it?/Why was it Promising?

The multistep inverse method proposed by Lamb et al. (2022) uses ¢(z;) and ¢(zyp) to predict
ag, that is, the action immediately following x;. A natural extension of this method would be to
model the probability distribution over all of the actions on the path between ¢(z;) and ¢(x¢1r),

that is, a;,at41.,,,,0t+k—1, based on ¢(z;) and ¢(ziqr) alone. Equivalently, this modeling can
be done autoregressively by, for each k' € [0,k — 1], predicting as1x given ¢(x:), ¢(zyr), and
Gty Gp41.yy,, 0tk —1. This formulation yields the following modified loss function:

LAcC-State-Full-Multi (0g) =

min E E E _log(faprk/(¢9(xt)7¢9(xt+k)7ata"'7at+k’*1;k))
kA1 K Y R {1 k=1 (4,005 58y g 15Ttk
(61)

Conceptually, this technique might seem promising because the task of predicting a; s from ¢(z),
d(x41k), and ag, agr1.,,,,at+k—1 can be accomplished by decomposing the problem into predicting
d(x41x) from ¢(ay) and ay, ay1.,,,, a4 —1, and then predicting a;yp from ¢(xi1p) and @(zpi).
In other words, it can be accomplished by composing a latent forward model with a multistep inverse
model. Thus, it would seem to require learning a representation similarly rich to the representation
learned by ACDF, without dealing with the moving-target issue caused by explicitly learning a
forward dynamics model.

Furthermore, the “AC-State-Full-Multi” method successfully learns the encoder for the 5-state peri-
odic Ex-BMDP shown in Figure 3-E in the main text, which AC-State fails on. In particular, the en-
coder must be able to distinguish states b and ¢, because Pr(as11 = L|s; = b, $44.3 = b,a; = L) = 0.5,
while Pr(as+1 = L|st = ¢, $t+3 = ¢,a; = L) = 1. States d and e can be distinguished similarly.

F.1.2 Why it fails

Unfortunately, while the “AC-State-Full-Multi” prediction task can be accomplished by learning a
deterministic latent forward model and a first-action multistep-inverse model, it does not require
learning these two things. We show a counterexample here. Consider the following Ex-BMDP on
the states X = {a,b,c,a’,V’, '}, with actions A = {4, B,C'} and deterministic transition function
T(x,a) shown in Figure 10.

The transition function is defined such that, letting x/X and y/Y represent a/A, b/B, or ¢/C, we
have that for most inputs, T(z,Y) = ¢’ and T(2',Y) = y, with the exceptions that T(c', B) = ¢
and T'(¢/,C') = b. This state representation turns out to be minimal (the only correct encoder up to
permutation is the trivial one ¢(z) = x). To confirm this fact, briefly, note being in {a,a’}, {b,0'},
or {c,c'} is clearly controllable, and furthermore we must always keep track of whether we are in a
primed or non-primed state to determine the effect of actions B and C when we reach {c,c'}.

However, the “AC-State-Full-Multi” loss will be minimized by an encoder ¢’ that produces only 5
latent states, with a and a’ conflated into a single latent state. The resulting endogenous dynamics
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Figure 10: Transitions of T'(x, a).

are not deterministic, because starting at the state {a,a’} and taking the action B may lead to
either the state b or state b, and similarly for for the action C. (See Figure 11).

Figure 11: Nondeterministic transitions on T'(¢’(z), a) for the example in Section F.1.2.

To show that this incorrect ¢’ minimizes the “AC-State-Full-Multi’ loss, note that, under a uniform
policy:

 For any sequence of actions that ends in state a or a’, none of the actions can be meaningfully
inferred except the final action of the sequence, which we know is A with probability 1.
Therefore distinguishing whether x4, = a or 41, = a’ is not necessary to minimize the
loss.
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o For any sequence of actions that begins with state a or @, but ends in b,b’,c or ¢’, one can
distinguish if the initial state is a or a’ by simply looking at the final state and the parity
of the length k of the sequence between them (e.g, if the final state is b, and k is odd, we
know the initial state was a’ rather than a). Then it is not necessary for the encoder to
distinguish between x; = a and z; = a'.

Therefore, ¢’ is sufficient to minimise the “AC-State-Full-Multi’ loss, and is more minimal than the
correct endogenous state representation, but is an incorrect endogenous representation. Therefore
the “AC-State-Full-Multi” loss fails to discover the true minimal endogenous state representation.

F.2 Artificial Self-Edges/Imprecise k
F.2.1 What is it?/Why was it Promising?

Note that for any bounded-diameter (i.e., irreducible) MDP, adding any self-edges, even a single
self-edge, will make the MDP aperiodic. (A self-edge is a transition from a state to itself.) Making
this change to the endogenous dynamics of an Ex-BMDP would therefore eliminate the need to use
a latent forward model, as in ACDF. In fact, if we add a self-edge to any state, the witness distance
between any pair of states will automatically become < D: if ¢ is the state with the self-edge, then
any states a and b can both be reached in exactly max(d(c,a),d(c,b)) steps. Concretely, if a is the
further state, then we can reach b in d(c,a) steps by taking the self-edge at ¢ for d(c,a) — d(c, b)
timesteps before going to b.

Unfortunately, we cannot simply alter the underlying dynamics by adding a self-edge, or many
self-edges. However, we might hope to simulate such self-edges by randomly duplicating some
observations x in the replay buffer, and inserting a “new” action symbol in between the duplicated
observations. After learning the state abstraction and dynamics, the self-edges with the “new” action
symbol can simply be removed.

A nearly-equivalent idea is to, rather than trying to predict a; given ¢(x¢), ¢(xirk), and k, instead
to predict a; given ¢(xy), d(xirk), and k', where k' is an upper bound on the true value of k (i.e.,
k < k’). Note that this formulation is similar to saying that we are given ¢(z;), ¢(x¢1x), and
but this path of length k' may contain some number (k' — k) of artificially-inserted self-edges. (The
only difference is that this second formulation does not allow the first action, the predicted action
at, to be the self-edge, but this distinction is a minor one.) This is an appealing picture, because it
directly addresses the core problem with the AC-State method, which is that in order to distinguish
two states, they must be ezactly the same distance k (on some path) from a third state. By allowing
some imprecision in k, this method would seem to address this issue.

F.2.2 Why it fails

The problem with this approach is that duplicating an observation effectively “pauses” the exogenous
state of the Ex-BMDP, not just the endogenous state. This modification makes the exogenous state
seem to be “controllable”, and therefore may cause the encoder to “leak” information about the
exogenous state. Concretely, an incorrect encoder ¢’, with a larger range of output “states” than a
correct minimal-range encoder ¢, will have a lower loss than ¢.

To give an example, consider the Ex-BMDP defined by control-endogenous states S = {a,b, c},
exogenous states & = {0, 1}, actions A = {L, R} and transitions shown in Figure 12.

The observations x € X are defined by simply concatenating the endogenous and exogenous state
labels: X = {a0,al,b0,b1,c0,cl}. Let ¢ be a “correct” minimal-state encoder, which maps a0 and
al to a, and so on.

The diameter of these dynamics is D = 2, and this value is indeed sufficient to learn all endogenous
state representations (although the maximum witness distance is in fact D’ = 3).
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L/R

R
L/R p=1.0
(a) Endogenous transitions T'(s, a) (b) Exogenous transitions 7. (e|e;)

Figure 12: An Ex-BMDP with |S| =2

Let’s consider what happens if we use “imprecise k” multi-step inverse, with ¥’ = 2. Suppose we
have that x; = a0, z,1 = cl. If we use the encoder ¢, our inverse model is only given that s; = a,
stk = ¢, and k € {1,2}. Then a; can either be L or R, because one can reach ¢ from a in one step
with action L, or in two steps with action R. The exact value of Pr(a; = L|s; = a, st41 = ¢,k € {1,2})
will depend on specifics of the implementation: either the distribution from which k is drawn given
k', or equivalently, the probability of taking an artificial self-edge (that is, of duplicating any given
state on the replay buffer). However, crucially, Pr(a; = L|s; = a, s¢4r = ¢,k € {1,2}) will not equal
1. However, if we instead use a less minimal encoder ¢’, which distinguishes a0 from al and c0 from
cl, we can infer by parity that k is in fact equal to 1, from the facts that z; = a0, x4+ = c1, and
k € {1,2}. We then know that Pr(a; = L) = 1, because taking L is the only way to reach ¢ from a in
a single step. Therefore, the inverse dynamics model will have a smaller loss if the learned encoder
¢’ outputs extra exogenous information. Then this loss function is nmot minimized by the minimal
endogenous state encoder.

G Numerical Simulation Experiment Details

G.1 Method

For each Ex-BMDP shown in Figure 4, we perform 50 data-collection runs, and use this data for
each value of K and each loss function, to generate 50 trial encoders each. We then determine
whether each resulting encoder is either (a) a minimal control-endogenous latent representation, (b)
a non-minimal but still correct control-endogenous latent representation, or (c¢) an incorrect encoder.
For each trial run, we:

e Collect two trajectories, each of T timesteps, used as “training” and “validation” datasets.
(This setup is similar to the setup of Lamb et al. (2022), where a single trajectory is used
for training.)

o Iterate over all possible encoders ¢. For each ¢, we:

— Fit the classifiers f and (g if applicable) on the “training” trajectory, with:

_ Freq. of (s,a) B, ¢ in Train.
(

fa(s, 8", k) == 5
Freq. of s — s’ in Train.
ONE .
Freq. of (s,a) — s’ in Train.
gs (s, a) :=

Freq. of (s,a) in Train.

Note that the states s, s’ here are the encoded states under ¢. For both classifiers, if
the denominator is zero, we set the distribution as uniform over actions/latent states.
If the numerator is zero but the denominator is not, we set the probability as 10~7 to
avoid infinite losses.
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— Evaluate the expected loss (Equation 2 or 3) on the “validation” trajectory, and record
the expected loss as £(¢). (The train/validation split is necessary to avoid over-fitting.)

¢ Find the ¢ with the minimum loss. Among the ¢’s with loss within 0.1% of this overall
minimum loss, choose the one with the smallest number of latent states to return.

Note that the number of possible encoders grows extremely quickly with |X| (> 105 for 10 states), so
we limit our examples to cases with |X'| = 10. We also use a uniform random behavioral policy, rather
than incorporating planning for exploration as in Lamb et al. (2022), in order to avoid repeatedly
searching for the optimal encoder.

One minor technical caveat is that, for the sake of efficient parallel computation, when measuring

the frequency of a transition (s, a) —@—> s’, we only consider spans s; — S¢1, for t € [0, T — Kpax — 1],
where K.y is the largest K considered in the experiment (e.g., Kyax = 7 for the first experiment
in Figure 4). This wastes a small number (up to Kyax — k) of possible samples from the trajectory.
However, this is negligible compared to the overall length of the trajectory T, and in any case we
would not expect this to bias us towards either AC-State or ACDF. (This approximation was also
used when computing one-step frequencies for ACDF.)

G.2 Additional Results
G.2.1 Success Rates for Correct Minimal Encoders

In the previous section, we noted that a returned encoder can either be (a) a minimal control-
endogenous latent representation, (b) a non-minimal but still correct control-endogenous latent
representation, or (¢) an incorrect encoder. In the results shown in the main text, we consider a
“success” as either case (a) or case (b). That is, we consider all correct encoders as successes, even if
they are not minimal-state. Here, in Figure 13, we present the results considering only minimal-state
encoders as successful. Interestingly, this only differed at all from the results shown in the main text
in two cases (the top and bottom row examples of Figure 4), so we only show results for these cases.
For the other two Ex-BMDPs, neither method ever returned a correct but non-minimal encoder.

Endogenous Dynamics T  |JExogenous Noise 7:|] AC-State Success Rate | ACDF Success Rate

L/R, Env. steps: 200 400 800 1600 3200 Env. steps: 200 400 800 1600 3200

L/R
o
(a) L

LA il = I A

RS

=.,2b
¥ u--—-

p:75 p:75 Env. steps: 400 800 1600

Figure 13: Results of numerical simulation experiments, where the “Success Rate” includes only
cases where the learned encoder is both correct and state-minimal. For the other two examples in
Figure 4, no correct but non-minimal encoders were returned, so the results are identical to those
shown in the main text.

G.2.2 Complete Results for the Deterministic Ex-BMDP Example (Second Row of
Figure 4)
In the example shown on the second row of Figure 4, we tested over a larger range of K than could

fit in the figure. The complete results are shown in Figure 14.
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Figure 14: Full results for the numerical simulation experiment shown in the second row of Figure 4.

H Deep RL Experiment Details

In this section, we describe the deep representation learning experiments we conducted, where the
final results are shown in Table 1.

H.1 Environments

We tested on two environments, both shown in Figure 15. The first “baseline” environment is taken
from the released code from Lamb et al. (2022), and is similar to the environment described in
Section 6.2 of that paper (specifically, it is similar the variant of the environment from that section
without “reset” actions). The baseline environment consists of nine copies of a four-room maze,
where the controllable agent navigates using four actions (up/down/left/right), in just one of the
nine mazes. The other eight mazes have other “agents” in them which take random actions. The
observation is a 11 x 99 image of all nine mazes. For this environment, we start at a random
configuration and run for a single trajectory of 5000 steps.

The second environment we tested is designed to be similar in format to the baseline environment,
but to specifically highlight the flaws of AC-State. This environment has a periodic transition
function, and an action space consisting of two possible actions. To accomplish the periodicity, in
this environment, each of the nine identical mazes consists of a track of 40 states, where in most
states, the agent simply moves to the next state regardless of action. However, in every fifth state,
there is an action which transports the agent to some other position in the track, in the pattern
shown in Figure 15. In each of these long-distance jumps, the agent either moves back or forward by
a multiple of 10 states. This gives the overall dynamics a periodicity of 10. The maximum witness
distance D’ of these dynamics is also 10. For data collection, we again collect 5000 transitions; here,
we do so as 25 trajectories of length 200 each. In each trajectory, we initialize the state at a random
configuration. (The reason for using multiple trajectories is that, because both the ego-agent and
the distractor agents have periodic dynamics with the same periodicity, a single episode will not
cover the full configuration space.)
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H.2 Architecture and Hyperparameters

In general, unless otherwise noted here, we use exactly the architecture and training hyperparam-
eter settings that are default in the released code of Lamb et al. (2022) for gridworld exploration
environments.

H.3 Training Schedule and Behavior Policy

We conducted our experiments in an “offline” setting: we collected all 5000 transitions for each
each environment under uniformly random actions. We then performed 30,000 training iterations,
evaluating after every 5000 steps. When evaluating, we evaluated using the version of ¢y from
the previous training steps which achieved the lowest training loss using a rolling average over 20
batches. We exclude the first 3000 training iterations when selecting the lowest-loss previous ¢g.

H.4 Implementation of the forward-dynamics loss

To implement the forward dynamics loss of ACDF (Equation 3), for the dynamics model g we use
a LeakyReLU MLP consisting of four layers of sizes [512 + 10,1024,1024, N] where the input is
the discrete-vector output of the VQ-VAE representing the encoded state (a vector of size 512),
concatenated with the action label. The output the the discrete index of the VQ-VAE code of the
next latent state. (The number of codes is a hyperparameter of AC-State which we vary.) Note that
because we treat the next-state as a discrete index, we do not backpropagate into the encoder of
og(x¢41), only into the encoder of ¢g(z;). This is to mitigate the “moving-target” issue mentioned at
the beginning of Appendix F. Also to mitigate this issue, we only use the forward prediction loss to
update the encoder ¢y every fifth training iteration: at other iterations, we update the parameters
of g alone (and separately update ¢ with the multistep-inverse loss).

H.5 Evaluation

In order to capture a real-world usability of the learned representations in planning, we measure
success based on the ability to perform open-loop planning to successfully reach a goal.

e We first infer a count-based tabular representation of the deterministic forward dynamics
T on the encoded states output by ¢y, by passing each observation of all transitions in the
dataset through the final learned ¢y, and inferring that the correct latent transition for a
given latent state and action is the one which occurs most often.

o Using this graph, we repeat the following test 1000 times:

— We first select two random observations x and z’, representing a start state and an end
state, from the observation space X if the environment.

— We record the ground-truth controllable-agent state for both observations, and com-
pute the learned latent states ¢p(z) and ¢p(z’). We then use our count-based tabular
representation of the learned latent transition function to plan (using Dijkstra’s algo-
rithm) a shortest path from ¢g(z) to ¢g(z"). This generates a sequence of actions that
should (ideally) navigate from z to '

— We execute this sequence of actions from x in an open-loop manner.

— We count the trial as a success if the ground-truth controllable-agent state after exe-
cuting these actions is equal to the ground-truth controllable-agent state of xz’.

o The overall success rate over the 1000 trials is recorded as a percentage. If it is at least 98%
(980/1000), the representation is considered to be successfully learned.
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Figure 15: The two high-dimensional environments we tested on. For both environments, we show
the image observations x € X as well as the states S* and deterministic state transitions 7™ in the
controllable latent dynamics (for readability, we do not show action labels). In these environments,
the controllable latent dynamics only represent the top maze in the image: the other mazes contain
agents which move randomly.

H.6 Results

For both environments and both methods, we ran a hyperparameter sweep over K, the number of
steps used in multistep-inverse, and N, the maximum number of latent states (i.e., the size of the
codebook of the VQ-VAE). For each hyperparameter setting, we ran on 10 seeds. We then evaluated
on the “best” version of the hyperparameters for each method for 20 additional seeds. Our final
results reflect the rate of successful representation learning at the 98% planning success threshold,
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at training step 30,000, as described above. Note that the final averages are over the 20 additional
seeds alone, to avoid multiple-comparison issues.

To select the “best” hyperparameter setting, we used the following criteria:

o We first used the percentage of successfully-learned representations out of the 10 seeds after
30,000 iterations, based on the 98%-planning success threshold for each seed.

e To break ties, we used the number successfully-learned representations over all 10 seeds and
all 6 evaluation times (every 5000 training steps) for each seed. This rewards configurations
which learn a successful encoder early, as well as those which may have arrived on successful
encoders by chance but then later found a lower-loss encoder for the loss function which was
incorrect.

e To break further ties, we used the percentage of all open-loop planning trials, over all
evaluation times and all seeds, on which the agent succeeded. Note, however, that this
is often a misleading statistic, because an incorrect representation of the environment’s
dynamics might still happen to wind up on the correct place with considerable frequency.

We report the full hyperparameter-sweep results over each of these statistics here (Tables 2-13).
We note that while both methods are able to consistently learn the controllable dynamics on the
baseline environment, only ACDF consistently learns the dynamics of the periodic environment. By
contrast, there is only a single hyperparameter configuration (K=1, N=120) where the lowest-loss
encoder under AC-State at the final training iteration was correct, and this was for only two out
of ten random seeds. (This result is robust to changes in the threshold planning accuracy to be
considered a correct representation: these two seeds were the only runs out of the hyperparameter
sweep where AC-State succeeded at the final training iteration for success thresholds as low as 75%.)

In the final results shown in the main text, we show that both methods succeeded on the baseline
environment on all 20 seeds, while ACDF succeeded on the periodic environment in 19/20 seeds®,
and AC-State only succeeded with one training seed out of 20 on this environment. This is a highly
statistically significant difference. Using the Clopper-Pearson method, the 99% CI for the ACDF
success rate on this environment is (.68 — 0.9997), while the 99% CI for AC-State is (.0003 — .32).
The final open-loop planning accuracies for each of the 20 evaluation seeds for each method and
each environment are reported in Tables 14 and 15.

N=68 | N=78 | N=88 | N=98 | N=108
3| 10.0% | 80.0% | 90.0% | 100.0% | 100.0%
5 1 10.0% | 80.0% | 90.0% | 100.0% | 100.0%
71 0.0% | 60.0% | 60.0% | 90.0% | 100.0%

Nﬁw

Table 2: AC-State, Baseline Environment, Final-Iteration Complete-Representation Success Rate

N=68 | N=78 | N=88 | N=98 | N=108
3.3% | 58.3% | 61.7% | 78.3% | 80.0%
33% | 61.7% | 71.7% | 76.7% | 73.3%
0.0% | 45.0% | 46.7% | 68.3% | 80.0%

=R
ﬂynw

Table 3: AC-State, Baseline Environment, All-Iterations Complete-Representation Success Rate

8For the remaining one seed, the open-loop navigation task succeeded in 97.5% of trials, falling just barely under
the 98% threshold we set to consider the run a success.
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N=68 | N=78 | N=88 | N=98 | N=108
68.8% | 85.8% | 88.4% | 91.5% | 91.2%
66.4% | 83.7% | 85.4% | 88.7% | 86.8%
60.0% | 73.7% | 78.4% | 85.7% | 88.4%

=~ =
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Table 4: AC-State, Baseline Environment, All-Tterations Path-Planning Success Rate

N=68 | N=78 | N=88 N=98 | N=108
=3 | 10.0% | 90.0% | 100.0% | 100.0% | 100.0%
5 | 40.0% | 90.0% | 100.0% | 100.0% | 100.0%
7 1 10.0% | 80.0% | 100.0% | 100.0% | 100.0%

Nﬁx

Table 5: ACDF, Baseline Environment, Final-Iteration Complete-Representation Success Rate

N=68 | N=78 | N=88 | N=98 | N=108
3| 6.7% | 78.3% | 83.3% | 81.7% | 83.3%
5116.7% | 61.7% | 76.7% | 80.0% | 76.7%
71 1.7% | 48.3% | 65.0% | 73.3% | 76.7%

Nﬁw

Table 6: ACDF, Baseline Environment, All-Tterations Complete-Representation Success Rate

N=68 | N=78 | N=88 | N=98 | N=108
72.1% | 87.5% | 88.0% | 88.3% | 88.7%
72.3% | 80.4% | 82.6% | 84.4% | 85.0%
65.0% | 76.1% | 77.9% | 81.3% | 82.4%

=~ =
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Table 7: ACDF, Baseline Environment, All-Tterations Path-Planning Success Rate

N=40 | N=80 | N=120
K=1 | 0.0% | 0.0% | 20.0%
K=5 | 0.0% | 0.0% 0.0%
K=10 | 0.0% | 0.0% 0.0%

Table 8: AC-State, Periodic Environment, Final-Iteration Complete-Representation Success Rate

N=40 | N=80 | N=120
=1 | 0.0% | 0.0% | 11.7%

:5 0.0% | 0.0% 1.7%

=10 | 0.0% | 0.0% | 0.0%

Table 9: AC-State, Periodic Environment, All-Tterations Complete-Representation Success Rate

N=40 | N=80 | N=120
K=1 | 15.3% | 28.8% | 44.3%
K=5 | 92% | 16.6% | 26.5%
K=10 | 4.7% | 7.9% | 15.6%

Table 10: AC-State, Periodic Environment, All-Iterations Path-Planning Success Rate

N=40 | N=80 | N=120
K=1 | 10.0% | 100.0% | 100.0%
K=5 | 0.0% 0.0% 0.0%
K=10 | 0.0% 0.0% 0.0%

Table 11: ACDF, Periodic Environment, Final-Iteration Complete-Representation Success Rate
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N=40 | N=80 | N=120
K=1 | 1.7% | 48.3% | 46.7%
K= 0.0% | 0.0% 0.0%
K=10 | 0.0% | 0.0% 0.0%

Table 12: ACDF, Periodic Environment, All-Tterations Complete-Representation Success Rate

N=40 | N=80 | N=120
K=1 | 54.8% | 65.5% | 65.9%
K=5 | 21% | 4.2% 4.4%
K=10 | 23% | 2.0% 1.9%

Table 13: ACDF, Periodic Environment, All-Tterations Path-Planning Success Rate

AC-State 100.0%, 100.0%, 100.0%, 100.0%, 100.0%, 100.0%, 100.0%, 100.0%, 100.0%,
K=1, N=108 | 100.0%, 100.0%, 100.0%, 100.0%, 99.9%, 99.9%, 99.9%, 99.8%, 99.8%, 99.7%, 99.5%
ACDF 100.0%, 100.0%, 100.0%, 100.0%, 100.0%, 100.0%, 100.0%, 100.0%, 100.0%,
K=1, N=108 | 100.0%, 100.0%, 100.0%, 100.0%, 99.9%, 99.9%, 99.9%, 99.9%, 99.9%, 99.9%, 99.8%
Table 14: Open-loop path planning accuracy for all 20 random seeds for AC-State and ACDF on
the baseline environment at final evaluation, after hyperparameter optimization. Values are sorted

in descending order of accuracy.

AC-State | 99.6%, 74.6%, 72.0%, 65.4%, 64.5%, 64.4%, 60.2%, 55.0%, 53.8%, 36.3%,
K=1, N=120 | 34.8%, 33.9%, 30.8%, 27.8%, 27.5%, 24.4%, 23.8%, 23.6%, 19.8%, 19.0%
ACDF 100.0%, 99.9%, 99.9%, 99.9%, 99.8%, 99.7%, 99.7%, 99.7%, 99.7%, 99.6%,
99.5%, 99.5%, 99.4%, 99.0%, 99.0%, 99.0%, 98.9%, 98.9%, 98.6%, 97.5%

K=1, N=80
Table 15: Open-loop path planning accuracy for all 20 random seeds for AC-State and ACDF on
the periodic environment at final evaluation, after hyperparameter optimization. Values are sorted

in descending order of accuracy.
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