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Abstract

Visual object tracking is key to many egocentric vision problems. However, the full
spectrum of challenges of egocentric tracking faced by an embodied Al is under-
represented in many existing datasets, which tend to focus on short, third-person
videos. Egocentric video has several distinguishing characteristics from those com-
monly found in past datasets: frequent large camera motions and hand interactions
with objects commonly lead to occlusions or objects exiting the frame, and object
appearance can change rapidly due to widely different points of view, scale, or
object states. Embodied tracking is also naturally long-term, and being able to con-
sistently (re-)associate objects to their appearances and disappearances over as long
as a lifetime is critical. Previous datasets under-emphasize this re-detection prob-
lem, and their “framed” nature has led to adoption of various spatiotemporal priors
that we find do not necessarily generalize to egocentric video. We thus introduce
EgoTracks, a new dataset for long-term egocentric visual object tracking. Sourced
from the Ego4D dataset, EgoTracks presents a significant challenge to recent state-
of-the-art single-object trackers, which we find score more poorly on our new
dataset than existing popular benchmarks, according to traditional tracking metrics.
We further show improvements that can be made to the STARK tracker to signifi-
cantly increase its performance on egocentric data, resulting in a baseline model we
call EgoSTARK. We publicly release our annotations and benchmark (https://
github.com/EG04D/episodic-memory/tree/main/EgoTracks), hoping our
dataset leads to further advancements in tracking.

1 Introduction

First-person or “egocentric” computer vision aims to capture the real-world perceptual problems
faced by an embodied Al; it has drawn strong recent interest as an underserved but highly relevant
domain of vision, with important applications ranging from robotics [63, 18] to augmented and
mixed reality [2, 65, 28]. Visual object tracking (VOT), long a fundamental problem in vision, is a
core component to many egocentric tasks, including tracking the progress of an action or activity,
(re-)association of objects in one’s surroundings, and predicting future states of the environment.
Yet, while the VOT field has made many significant advancements over the past decade, tracking in
egocentric video remains underexplored. This lack of attention is in large part due to the absence
of a large-scale egocentric tracking dataset for training and evaluation. While the community has
proposed a number of popular tracking datasets in recent years, including OTB [76], TrackingNet [57],
GOT-10k [32], and LaSOT [21], we find that the strong performance that state-of-the-art trackers
achieve on these benchmarks does not translate well to egocentric video, thus establishing a strong
need for such a tracking dataset.

We attribute this performance gap to the many unique aspects of egocentric views compared to the
more traditional third-person views of previous datasets. In contrast to intentionally “framed” video,
egocentric videos are often uncurated, meaning they tend to capture many attention shifts between
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Figure 1: A video from the proposed EgoTracks dataset, with yellow clip segments marking when
the object (blowtorch) is visible. Note the frequent disappearances and reappearances of the object
over an 8 minute video, with lengthy absences, necessitating re-detection to track accurately without
false positives. The egocentric nature of the video includes the camera-wearer interacting with the
object (Occurrence 2), resulting in significant hand occlusions and dramatic changes in pose.

activities, objects, or locations. Due to the first-person perspective, large head motions from the
camera wearer often result in objects repeatedly leaving and re-entering the field of view; similarly,
hand manipulations of objects [64] leads to frequent occlusions, rapid variations in scale and pose, and
potential changes in state or appearance. Furthermore, egocentric video tends to be long (sometimes
representing the entire life of an agent or individual), meaning the volume of the aforementioned
occlusions and transformations scales similarly. These characteristics all make tracking objects in
egocentric views dramatically more difficult than scenarios commonly considered in prior datasets,
and their absence represents an evaluation blindspot.

Head motions, locomotion, hand occlusions, and temporal length lead to several challenges. First,
frequent object disappearances and reappearances causes the problem of re-detection within ego-
centric tracking to become especially critical. Many previous tracking datasets primarily focus on
short-term tracking in third-person videos, providing limited ability to evaluate many of the chal-
lenges of long-term egocentric tracking due to low quantity and length of target object disappearances.
As a result, competent re-detection is not required for strong performance, leading many recent
short-term trackers to neglect it, instead predicting a bounding box for every frame, which may lead
to rampant false positives or tracking the wrong object. Additionally, the characteristics of short-term
third-person video have also induced designs relying on gradual changes in motion and appearance.
As we later show (Section 5.2), many of the motion, context, and scale priors made by previous
short-term tracking algorithms fail to transfer to egocentric video.

Notably, re-detection, occlusions, and longer-
term tracking have long been recognized as diffi- .
cult for VOT as a field, leading to recent bench- ( /\
mark construction efforts [51, 11,55, 68, 33, 70] ’
emphasizing these aspects. We argue that ego-
centric video provides a natural source for these
challenges at scale while also representing a
highly impactful application for tracking, there-
fore constituting a significant opportunity. We
thus present EgoTracks: a large-scale long-
term egocentric visual object tracking dataset wo
for training and evaluating long-term trackers. " 7 Object occurrences per track
Seeking a realistic challenge, we source videos
from Ego4D [28], a large-scale dataset consist-
ing of unscripted, in-the-wild egocentric videos
of daily-life activities. The result is a large-scale
dataset to evaluate the tracking and re-detection
ability of SOT models, with more than 22,028
tracks from 5708 average 6-minute videos. This constitutes the first large-scale dataset for visual ob-
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Figure 2: EgoTracks is an order of magnitude
larger than past long-term VOT datasets, with sig-
nificantly more tracks (circle area) and object dis-
appearances/appearances in longer videos.



ject tracking in egocentric videos in diverse settings, providing a new, significant challenge compared
with previous datasets.

We perform a thorough analysis of our new dataset and its new characteristics relative to prior
benchmarks, demonstrating its difficulty and the need for further research to develop trackers capable
of handling long-term egocentric vision. Our experiments reveal remaining open problems and
insights towards promising directions in egocentric tracking. Leveraging these intuitions, we propose
multiple simple yet effective changes, such as adjustment of spatiotemporal priors, egocentric data
finetuning, and combining multiple templates. We apply these proposed strategies on a state-of-the-art
(SOTA) STARK tracker [79], training a strong tracker dedicated to long-term egocentric tracking:
EgoSTARK. We hope Ego-STARK can serve as a strong baseline and facilitate future research.

We make the following contributions:

1. We present EgoTracks, the first large-scale long-term object tracking dataset with diverse
egocentric scenarios. We analyze its uniqueness in terms of evaluating the re-detection
performance of trackers.

2. We conduct comprehensive experiments to understand the performance of many state-of-the-
art trackers on the EgoTracks validation set and observe that due to the biases and evaluation
blindspots of existing third-person datasets, they tend to struggle.

3. We perform an analysis of what makes a good tracker for long-form egocentric video.
Applying these learnings to the STARK tracker [79], we produce a strong baseline we call
EgoSTARK, which achieves significant improvements (+15% F-score) on EgoTracks.

2 Related work
2.1 Visual object tracking datasets

Visual object tracking studies the joint spatial-temporal localization of objects in videos. From a
video and a predefined taxonomy, multiple object tracking (MOT) models simultaneously detect,
recognize, and track multiple objects. For example, MOT [54] tracks humans, KITTI [25, 50] tracks
pedestrians and cars, and TAO [15] tracks a large taxonomy of 833 categories. In contrast, single
object tracking (SOT) follows a single object via a provided initial template of the object, without
any detection or recognition. Thus, SOT is often taxonomy-free and operates on generic objects. The
community has constructed multiple popular benchmarks to study this problem, including OTB [76],
UAV [56], NfS [36], TC-128 [45], NUS-PRO [41], GOT-10k [32], VOT [38], and TrackingNet [57].

While these SOT datasets mainly consist of short videos (e.g. a few seconds), long-term tracking
has been increasingly of interest. Tracking objects in longer videos (several minutes or more) poses
unique challenges, e.g. significant transformations, displacements, disappearances, and reappearances.
On top of localizing the object when visible, the model also must produce no box when the object
is absent, and then re-localize the same object when it reappears. OxUVA [68] is one of the first to
benchmark longer videos (average 2 minutes), with 366 evaluation-only videos. LaSOT [21] scales
this to 1400 videos with more frequent object reappearances. Concurrently, VOT-LT [37] includes
frequent object disappearances and reappearances in 50 purposefully selected videos.

Our EgoTracks focuses on long-term SOT and presents multiple critical and unique attributes: 1)
significantly larger scale, with 5708 videos of an average 6 minutes (Figure 2); 2) more frequent
disappearances & reappearances (avg. 17.7 times) happening in natural, real-world scenarios; 3) data
sourced from egocentric videos shot in-the-wild, involving unique challenging situations, such as
large camera motions, diverse perspective changes, hand-object interactions, and frequent occlusions.

2.2 Single object tracking methodologies

Many modern approaches use convolutional neural networks (CNNs), either with Siamese net-
work [43, 71, 42] or correlation-filter based [13, 3, 8, 53, 4] architectures. With recent successes
in vision tasks like classification [17] and detection [5], Transformer architecture [69] for tracking
have also become popular. For example, TransT [6] uses attention-based feature fusion to combine
features of the object template and search image. More recently, several works utilize Transformers
as direct predictors to achieve a new state of the art, such as STARK [79], ToMP [52] and SBT [77].
These models tokenize frame features from a ResNet [30] encoder, and use a Transformer to predict
the bounding box and object presence score with the feature tokens. These methods are often devel-
oped on short-term SOT datasets and assume that the target object stays in the field of view with
minimum occlusions. On the other hand, long-term trackers [70, 33, 1 1] are designed to cope with



Table 1: Object tracking datasets comparison. In addition to larger scale than previous datasets,
the scenarios captured by EgoTracks represent a significantly harder challenge for SOTA trackers,
suggesting room for improved tracking methodology.

Dataset Video Hours Avg. Length (s) Ann. FPS Ann. Type Egocentric (sg%*
ImageNet-Vid [02] 15.6 10.6 25 mask No
YT-VOS [78] 5.8 4.6 5 mask No -/83.6 [31]
DAVIS 17 [61] 0.125 3 24 mask No -/186.3 [7]
TAO [15] 29.7 36.8 1 mask No
UVO [74] 2.8 10 30 mask No -/73.7 [58]
EPIC_VKIIS%C;I ENS [14] 36 12%* 0.9 mask Yes -/74.2 [58]
GOT-10k [32] 32.8 12.2 10 bbox No -/75.6 [9]
OxUVA [68] 144 141.2 1 bbox No
LaSOT [21] 31.92 82.1 30 bbox No 80.3/- [9]
TrackingNet [57] 125.1 14.7 28 bbox No 86/- [9]
TREK-150[19, 20] 0.45 10.81 60 bbox Yes -/50.5[19, 20]
EgoTracks (Ours) 602.9 367.9 5 bbox Yes 45/54.1

*: P: Precision, AO: average overlap (J-Score for mask-based datasets). **: Original video is 720s.

the problem of re-detecting objects in their reappearances. Designed to be aware of potential object
disappearances, these approaches search the whole image for its reappearance.

2.3 Tracking in egocentric videos

Multiple egocentric video datasets have been introduced in the past decades [12, 28, 39, 66, 60, 23],
offering a host of interesting challenges, many of which require associating objects across frames:
activity recognition [35, 44, 80, 75, 26], anticipation [22, 24, 27], video summarization [16, 39, 40,

], human-object interaction [ 14, 47], episodic memory [28], visual query [28], and camera-wearer
pose inference [34]. To tackle these challenges, tracking is leveraged in many methodologies [28, 14,

, 40, 47], yet few works have been dedicated to this fundamental problem on its own. [19, 20] have
started to recognize the challenges of egocentric object tracking and might be the most related work to
ours. The major difference, however, is the scale of the dataset: [19, 20] contain 150 tracks intended
only for evaluation, while EgoTracks is 100 larger (see Table 1), containing 20k tracks with training
and evaluation splits. Also, while past efforts have sourced videos from the kitchen-heavy EPIC-
KITCHEN [12], EgoTracks sources videos from Ego4D [28], which has more diverse scenarios.
EgoTracks provides a unique, large-scale testbed for developing tracking methods dedicated to
egocentric videos; our improved baseline EgoSTARK also serves as a potential plug-and-play module
to solve other tasks where object association is desired.

In egocentric video understanding, Ego4D [28] and EPIC-KITCHENS VISOR [14] are closely related.
Ego4D contains the largest collection of egocentric videos in-the-wild; EgoTracks is annotated on a
subset of Ego4D. In addition, Ego4D proposes many novel tasks, such as Episodic Memory, with
tracking identified as a core component. VISOR was introduced concurrently, annotating short-term
(12 sec on average) videos from EPIC-KITCHENS [12] with instance segmentation masks. We
believe EgoTracks offers multiple unique values complementary to EPIC-VISOR: long-term tracking
(6 min vs. 12 sec), significantly larger-scale (5708 video clips vs. 158), and more diversified video
sources (80+ scenes vs. kitchen-only; see Appendix A).

3 The EgoTracks dataset

We present EgoTracks: a large-scale long-term egocentric single object tracking dataset, consisting of
a total of 22028 tracks from 5708 videos. We follow the same data split as the Ego4D Visual Queries
(VQ) 2D benchmark.(See Supplementary for details).

3.1 Egod4D visual queries (VQ) benchmark

Ego4D [28] is a massive-scale egocentric video dataset, consisting of 3670 hours of diverse daily-life
activities of consenting participants in an in-the-wild format; the videos have personally identifiable
information removed and were screened for offensive content. The dataset is accompanied by multiple
benchmarks, but the most relevant task for our purposes is episodic memory’s 2D VQ task: Given
an egocentric video and a cropped image of an object, the goal is to localize when and where the
object was last seen in the video, as a series of 2D bounding boxes in consecutive frames. This task is
closely related to long-term tracking: finding an object in a video given a visual template is identical
to the re-detection problem in long-term tracking. Moreover, Ego4D’s baselines rely heavily on
tracking methods: Siam-RCNN [70] and KYS [4] for global and local tracking, respectively.
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Total number Percentage

All Tracks 17593 100%
is_active 3963 22.52%
is_transformed 1080 6.13%
is_recognizable 17557 99.79%
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Shortcomings. While highly related, the VQ dataset is not immediately suitable long-term tracking.
In particular, the VQ annotation guidelines were roughly the following: 1) identify three different
objects that appear multiple times in the video; 2) annotate a query template for each object, which
should contain the entire object without any motion blur; 3) annotate an occurrence of the object that
is temporally distant from the template. Thus, these annotations are not exhaustive over time (they
are quite sparse), limiting their applicability to tracking. On the other hand, the selection criteria
result in a strong set of candidate objects, which we leverage to build EgoTracks.

3.2 Annotating VQ for long-term tracking

We thus start with the VQ visual crop and response track, asking annotators to first identify the
object represented by the visual crop, the response track, and object name. From the video’s start,
we instruct the annotators to draw a bounding box around the object each time it appears. Because
annotators must go through each video in its entirety, which contain an average of ~1800 frames at 5
frames per second (FPS), this annotation task is labor-intensive, taking roughly 1 to 2 hours per track.
An important aspect of this annotation is its exhaustiveness: the entire video is densely annotated for
the target object, and any frame without a bounding box is considered as a negative. Being able to
reject negatives examples is an important component to re-detection in real-world settings, as false
positives can impact certain applications as much as false negatives.

Quality Assurance. All tracks are quality checked by expert annotators after the initial annotations.
To measure the annotation quality, we employ multi-review on a subset of the validation set. Three
independent reviewers are asked to annotate the same video. We find the overlaps between these
independent annotations are high (> 0.88 IoU). Further, since EgoTracks has a focus on re-detection,
we check the temporal overlap of object presence and find it to be consistent across annotators. In
total, the entire annotation effort represented roughly 86k worker-hours of effort.

3.3 Tracklet attributes

In addition to the bounding box annotations, we also label certain relevant attributes to allow for
different training strategies or deeper analysis of validation set performance. We annotate the
following three attributes per occurrence (see Figure 3 for examples and Table 2 for statistics):

* is_active: In Ego4D, the camera wearer often interacts with relevant objects with their
hands. Objects in the state of being handled pose a challenge for tracking algorithms due to
frequent occlusion and rapid changes in pose.

* is_transformed: Objects in Ego4D may undergo transformations, such as deformations
and state changes. Such instances require being able to quickly adapt to the tracked object
having a new appearance.

* is_recognizable: Due to occlusions, motion blur, scale, or other conditions, some
objects in Ego4D can be extremely difficult to recognize without additional context. We
thus annotate if the object is recognizable solely based on its appearance, without using
additional context information (e.g. other frames).
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Figure 4: Qualitative results of different trackers. EgoTracks presents significant challenges for all
trackers, due to drastic viewpoint changes, occlusions, changes in scale, head motion etc.

4 Analysis of state-of-the-art SOT trackers

We compare the performance of several off-the-shelf tracking models on EgoTracks’s validation set.
Identifying STARK [79] as the one with the best performance, we conduct further ablation studies
under different settings using STARK to further understand its behavior.

4.1 Evaluation protocols and metrics

Evaluation Protocols. We introduce several evaluation protocols for EgoTracks, consisting of
different combinations of the initial template, evaluated frames, and the temporal direction in which
the tracker is run. For the initial template, we consider two choices:

* Visual Crop Template (VCT): The visual crop images were specifically chosen to be
high-quality views of the target and served as our annotators’ references for identifying the
object throughout the videos. Thus, they make ideal candidates for initializing a tracker.

* Occurrence First Frame Template (OFFT): The tracker is initialized with the first frame

of each occurrence (see OO below). While this may result in a lower quality view of the
object, temporal proximity to subsequent frames means it may be closer in appearance.

Note that we exclude the template frame from the calculation of any evaluation metrics. We also
consider several choices for the evaluated frames and temporal direction:

* Video Start Forward (ﬁ): The tracker is evaluated on every frame of the video in causal
order, starting from the first frame. This represents a tracker’s ability to follow an object
through a long video.

* Visual Crop Forward/Backward (%): The tracker is run on the video twice, once starting
at the visual crop frame and running forward and time, and a second time running backwards.
This represents an alternative way of covering every frame in the video, but with closer
visual similarity between VCT initialization and the first frames encountered by the tracker.

* Occurrences Only Forward ((ﬁ): The tracker is only evaluated on the object occurrences,
when the object is visible. This simplifies the tracking task and allows us to dis-entangle the
challenge of re-detection from that of simply tracking in an egocentric clip.

We specify protocols by concatenating the appropriate descriptors. We primarily consider VCT—\K,
VCT-VC, VCT—(B, and OFFT-0OO (Table 3) in our experiments.



Table 4: EgoTracks performance comparison. Off-the-shelf, all trackers perform poorly, demon-
strating the new challenges of EgoTracks. Higher performance from tracking by detection methods +
Oracle imply that instance association, not detection, is one of the primary challenges.

Method AO F-score Precision Recall FPS
KYS [4] 16.09 13.09 12.50 13.74 20
DiMP [3] 16.45 11.84 10.31 13.91 43
GlobalTrack [33] 23.63 20.40 31.28 15.14 6
LTMU [11]F 29.33 27.46 37.28 21.74 13
ToMP [52] 30.93 20.95 19.63 2246 248
Siam-RCNN [70] T 37.48 35.38 52.80 26.67 4.7
MixFormer (MixViT-L, ConvMAE) [9, 10]  27.93 25.54 28.30 23.27 10
STARK [79] - Res50 35.99 30.48 34.70 27.17 418
STARK [79] - Res101 35.03 30.18 35.30 2635 31.7
Tracking by Detection T

Mask R-CNN [29]+Oracle 60.00 - - -

GGN [73]4Oracle 75.92 - - -
GGN+InstEmb 15.19 9.92 11.75 8.58

T: trackers with re-detection

Table 5: Comparing tracker initializations. (Left) Comparison of trackers initialized from the first
frame in each occurrence and tracking only that single occurrence (oracle re-detection). (Right)
STARK whole-video performance, starting from video start frame vs. the visual crop frame.

Method AO  Success Pre Preyorm

gYN?P[ [] | ;ig(z) g;‘% 2;%2 ;gg; Method AO  F-score Precision Recall
i . . 32.13 .

ToMP [57] 1517 4593 4174 1788 STARK - VCT-VS 3599 3048 34.70 27.17
STARK [79] 50.01 50.64  45.76 51.91 STARK - VCT—W 40.01  34.02 38.31 30.60

Metrics. We adopt common metrics in object tracking, including F-score, precision, and recall; details
can be found in [51]. Trackers are ranked mainly by the F-score. We additionally consider average
overlap (AO), success, precision, and normalized precision as short-term tracking metrics [67].

4.2 SOT trackers struggle on EgoTracks

We compare the performance of select trackers on EgoTracks with the VCT—\@ evaluation protocol.
Given the breadth of tracking algorithms, we do not aim to be exhaustive but select high-performing
representatives of different tracking principles. KYS [4] and DiMP [3] are two short-term tracking
algorithms that maintain an online target representation. ToMP [52], STARK [79] and MixFormer [9,

] are three examples of the SOTA short-term trackers based on Transformers. GlobalTrack [33] is a
global tracker that searches the entire search image for re-detection. LTMU [ | 1] is a high performance
long-term tracker that combines a global tracker (GlobalTrack) with a local tracker (DiMP). Siam
R-CNN [70] leverages dynamic programming to model a full path of history for long-term. The
performance of these trackers on EgoTracks are summarized in Table 4. AO in this table is equivalent
to recall at the probability threshold 0. Qualitative results are shown in Figure 4.

We highlight several observations. First, the object presence scores from most short-term trackers
are not very useful, as can be seen from the low precision of KYS (12.5), DiMP (13.91), and ToMP
(19.63), while long-term trackers like GlobalTrack, DiMP_LTMU and Siam R-CNN achieve higher
precisions at 31.28, 37.28 and 52.8. This is expected as long-term trackers are designed to place
more emphasis on high re-detection accuracy, though there clearly is still room for improvement.
STARK achieves the second highest precision at 34.70, which is an exception as it has a second
training stage to teach the model to classify whether the object is present. Second, more recent works
such as MixFormer and STARK achieve better F-score than previous short-term trackers. This could
be partially due to advances in training strategies, more data, and Transformer-based architectures.
Surprisingly, we found recent MixFormer [10] does not outperform STARK, despite achieving new
SOTA on its training dataset. This highlights a potential difficulty in generalization.

We also include results using the principle of Tracking by Detection [59, 1]: a detector proposes
100 bounding boxes, and we select the best using cosine similarity of box features. We observe that
an open-world detector GGN [73] trained on COCO [46] generalize reasonably well with oracle
matching, achieving 75.92 AO. However, the association problem is very challenging, bringing down
the AO to 15.19. Implementation details can be found in Appendix B.

4.3 Re-detection and diverse views are challenging

We perform additional EgoTracks experiments following alternative evaluation protocols to gain
further insights on tracker performance (Table 5). To decouple the re-detection problem from other



Table 6: OFFT-00 AO of standard Table 7: Performance of trackers finetuned on EgoTracks.

STARI‘( model [79] for each attribute. Method AO  F-score Precision Recall
Attribute True False ToMP 36.13  28.11 2901 27.26
is_active 49.65  55.73 Siam-RCNN 4567  41.41 s6.11  32.81
is_transformed  49.19 5531 STARK 4425 3820 4206  34.99

is_recognizable 55.52 46.65

Table 9: STARK with different context ratios.
Bold row is the default setting. CR: context

Table 8: Train/test-time hyperparameters comparison. ratio, SRR: search region ratio, SIS: search

Method AO  F-score Precision Recall N ) o N
STARK 3599 3048 3470 2717 image size (in image resolution).
Data STARK - ft on VQ 3894 3353 39.13 29.33 Method
STARK - ft on EgoTracks 4425  38.20 42.06 34.99 Setting CR SRR sis | AO  F-score Precision Recall
Augmentation | SIARK -fton VQ 38943353 3913 2933 Tx 25x 320 | 2822 2681 2868  25.06
STARK - ft + multiscale 48.44  41.92 42.65 41.30 2x  5x 320 | 3894  33.53 39.13 29.33
search_size = 320 3599 3048 3470 2717 SameSIS 3. 75 320 | 4470 3603 4028 3259
Search window search_size = 480 48.21 39.69 43.95 36.19 4x 10x 320 | 43.19 34.32 37.98 31.31
search_size = 640 5209  42.39 46.23 39.15 SameSRR X X 640 | 4150  31.09 3031 3191
search_size = 800 54.08 43.74 47.60 40.45 - 3x  5x 208 | 39.87 3536 41.54 30.79
2x  75x 480 | 4821  39.69 395 36.19
Same CR  2x  10x 640 | 5209 4239 46.23 39.15
2x  125x 800 | 54.08  43.74 4760 4045

egocentric aspects of EgoTracks, we evaluate with the OFFT-(% protocol, which ignores the
negative frames of the video, thus obviating the need for re-detection. Unsurprisingly, all trackers
do significantly better, emphasizing the challenging nature of re-detection in EgoTracks. We also

run experiments in the VCT—% setting, where the initial template is temporally adjacent to the first
tracked frames. Here we see a 3-4% improvement to AO, F-score, precision, and recall compared to

the VCT-\TS) protocol, illustrating that trackers like STARK are designed to expect gradual transitions
in appearance. Both these experiments illustrate that the re-detection problem is a significant challenge
for tracking and the need for better long-term benchmarks.

4.4 Attributes capture hard scenarios for tracking

We use the validation set tracklet attribute annotations described in Section 3.3 to further under-
stand performance on our evaluation set. For each attribute, we split the tracklets into two groups,
corresponding to the attribute being true and false. We then use a standard STARK tracker [79]

and report AO for each group of tracklets using the OFFT—(Y) evaluation protocol in Table 6. As
might be expected, we find that when objects are being actively used by the user or in the midst
of a transformation, AO tends to be lower, by roughly 6%, likely due to occlusions or changes in
appearance. Additionally, STARK tends to have a harder time when the object is hard to recognize in
the image, whether due to occlusions, blur, scale, or other conditions.

S Egocentric tracking design considerations

Observing that existing trackers do not perform well on EgoTracks, we perform a systematic explo-
ration of priors and other design choices for egocentric tracking. Though not specifically designed for
long-term tracking, Section 4 suggests STARK [79] to be the most competitive tracker on EgoTracks.
We focus on this tracker for additional analysis, suggesting improvements to egocentric performance.

5.1 Egocentric finetuning is essential

We first demonstrate how various trackers trained on third-person videos can significantly benefit
from finetuning on EgoTracks. As shown in Table 7, all methods gain improvement on F-score
ranging from 6% - 10%. In addition, as shown in Table 8, finetuning on the VQ response track subset
improves the F-score from 30.48% to 33.53%, while using the full EgoTracks annotation further
improves the F-score by 4.67% to 38.2%. This demonstrates that: 1) finetuning with egocentric data
helps close the exocentric-egocentric domain gap; 2) training on full EgoTracks provides further
gains, showing the value of our training set.

5.2 Third-person spatiotemporal priors fail

Modern SOTs find certain assumptions on object motion, appearance, and surroundings helpful on
past datasets, but some of these design choices translate poorly to long-term egocentric videos.

Search window size. An example is local search. Many trackers assume the tracked object appears
within a certain range of its previous location. Thus, for efficiency, these methods often search within
a local window of the next frame. This is reasonable in high FPS, smooth videos with relatively



slow motion, commonly in previous short-term tracking data, but in egocentric videos, the object’s
pixel coordinates can change rapidly (frequent large head motions), and re-detection becomes a key
problem. Therefore, we experiment with expanded search regions beyond what are common in past
methods. As we expand search size from 320 to 800, we see dramatic improvements (Table 8):
STARK is able to locate objects that were previously outside search window due to rapid movements.

Multiscale augmentations. The characteristics of egocentric video also affect common SOT as-
sumptions of object scale. Many trackers are trained with the assumption that an object’s scale is
consistent with the template image and between adjacent frames. However, large egocentric camera
motions, locomotion, and hand interactions with objects (e.g. bringing an object to one’s face, as in
eating) can translate to objects rapidly undergoing large changes in scale. We thus propose adding
scale augmentations during training, randomly resizing the search image by a factor of s € [0.5, 1.5].
While simple, we find this dramatically improves performance on EgoTracks, improving STARK’s
AO by nearly 10% and F-score by more than 8% (Table 8).

Context ratio. Past SOT works have found that including some background can be helpful for
template image feature extraction, with twice the size of the object being common. We experi-
ment with different context ratios to see if this rule of thumb transfers to egocentric videos. Be-
cause of the local window assumption, the sizes of the template and search images are related:

Search Image Size(SIS) _ Template Image Size __ . : e ]
Scarch Region Ratio(SRR) — Context Ratio(CR) — Object Scale. The template image size is set to a

fixed size 128 x 128. When changing the context ratio, we carefully control the other parameters for
a fair comparison. The results are shown in Table 9. Among all three parameters - CR, SRR, and
SIS, the search region size (determined by SRR and SIS) has the highest impact on the F-score. This
is expected because there are frequent re-detections, which require the tracker to search in a larger
area for the object, rather than just within the commonly used local window. Varying the CR has
mixed results so we adhere to the common practice of using a CR of 2.

6 Future directions

Based on our experiments in Table 4 and Table 5, we found that re-detection to be a key challenge of
long-term tracking, especially in egocentric video, where objects frequently go in and out of view, or
are exposed to high motion blur. We see a few promising directions for future works:

a) Stronger features for associating objects should significantly improve re-detection; the impact of
insufficiently discriminative feature embeddings can be clearly seen in the major gap in Tracking by
Detection performance between the Oracle and InstEmb methods at the bottom of Table 4. Geometric
keypoints, optical flow, or long-term trajectories [72] can also lead to large improvements here.

b) Leveraging spatial signals: camera trajectories can be estimated as additional signals to the tracker.
For example, if an object remains static during the window where it is out-of-view, knowledge of
camera location can help re-localize the position of this object.

¢) Global, multi-view object representations: Egocentric videos, with their diverse camera trajectories
and tendency to capture the camera wearer’s interactions with objects, often offer significantly richer
and more varied viewpoints of objects than traditional third-person tracking datasets. In the latter,
object appearances tend to be more constant, so modern tracking methods have thus far been able
to get away with using a single image template (optionally with an additional template from the
latest frame). With a need for more robustness to the different viewpoints and occlusions offered by
egocentric video, we believe that a challenging egocentric tracking dataset like EgoTracks represents
an opportunity to develop trackers with more global, view-variant object representations learned in
an online fashion. A simple version of this can be found in Section D of the supplementary material,
where we augmented EgoSTARK by fusing multiple templates; we found that such a strategy indeed
improved tracking results on EgoTracks.

7 Conclusion

We present EgoTracks, the first large-scale dataset for long-term egocentric visual object tracking in
diverse scenes. We conduct extensive experiments to understand the performance of state-of-the-art
trackers on this new dataset, and find that they struggle considerably, possibly in part due to overfitting
to some of the simpler characteristics of existing benchmarks. We thus propose several adaptations
for the egocentric domain, leading to a strong baseline that we call Ego-STARK, which has vastly



improved performance on EgoTracks. Lastly, we plan to organize a public benchmark challenge
using a held-out test set with a test server as a testbed for new tracking algorithms. By publicly
releasing this dataset and organizing the challenge, we hope to encourage advancements in the field
of long-term tracking and draw more attention to the challenges of long-term and egocentric videos.
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