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Abstract

We introduce the video detours problem for navigating
instructional videos. Given a source video and a natural
language query asking to alter the how-to video’s current
path of execution in a certain way, the goal is to find a re-
lated “detour video” that satisfies the requested alteration.
To address this challenge, we propose VidDetours, a novel
video-language approach that learns to retrieve the targeted
temporal segments from a large repository of how-to’s us-
ing video-and-text conditioned queries. Furthermore, we
devise a language-based pipeline that exploits how-to video
narration text to create weakly supervised training data.
We demonstrate our idea applied to the domain of how-to
cooking videos, where a user can detour from their current
recipe to find steps with alternate ingredients, tools, and
techniques. Validating on a ground truth annotated dataset
of 16K samples, we show our model’s significant improve-
ments over best available methods for video retrieval and
question answering, with recall rates exceeding the state of
the art by 35%.

1. Introduction

Instructional or “how-to” videos are a compelling
medium for people to share and learn new skills. From
everyday home fix-it projects, cooking, sports, to aspira-
tional goals like playing piano beautifully, there are so many
things that people of all ages and backgrounds want to learn
or do a bit better. Indeed, online how-to’s are among the
top few dominating categories of all content on YouTube,
alongside entertainment and music. Advances in computer
vision for keystep recognition [0, 21, 45, 55, 56, 90, 91],
procedural task understanding [11, 12, 89], and video sum-
marization [5, 60] have the potential to make such content
more searchable and accessible.

However, while today’s how-to content is a vast re-
source, it is nonetheless disconnected. Human learners ac-
cess how-to’s in doses of one video at a time, studying the
advice and visual demonstrations of one expert at a time.
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V, How to make Chicken Quesadillas

Query 9 : How to do this
without an electric grill?

ty = 126s

Response: V;
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Detour window: Ty

Figure 1. An example video detour. In the Chicken Quesadillas
recipe, the source video V; (top) shows the use of an electric grill
at time instant ¢s. A user watching this video does not have a grill
and asks a query Q “how to do this without an electric grill?”. In
response, the system identifies a detour video Vj and timepoint T}
showing a similar recipe but using a heating pan instead of a grill.

While there are thousands and thousands of videos address-
ing, for example, “how to repair a bike” or “how to make
a samosa”, any given video offers only a single execution
of a task using a fixed set of ingredients, tools, approach,
and assuming a certain skill level. When those criteria do
not align, users face a dilemma whether to improvise, risk-
ing “breaking” the final output, or to find and watch another
video hoping it better matches their constraints. Manually
synthesizing the information across videos is time consum-
ing if not prohibitively taxing.

What if the wealth of knowledge in online instructional
videos was not an array of isolated lessons, but instead an
interconnected network of information? What would it take
to transform a pile of videos into a how-to knowledge base?

Towards this vision, we explore how to intelligently nav-
igate between related how-to videos, conditioned on a natu-
ral language query. Suppose a user watching a given video
discovers they do not have the desired ingredients, tools,
or skill-level. They may ask, “can I do this step without
a wrench?” or “I am on a diet, can I skip adding cheese
here?” or “how could I prepare the mix from scratch in-
stead of using a pre-made one?” or “is there a simpler way
to do the corners?” and so on. Conditioned on the con-
tent watched so far in the source video, the goal is to iden-
tify a detour video—and a temporal segment within it—that
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would allow the user to continue their task with the adjust-
ment specified by their language query, then return to the
original source video and complete execution. See Figure 1.

At the core this requires new technical advances in multi-
modal video understanding. Standard text-to-video retrieval
models [17, 22, 50, 55, 56, 75, 88] are insufficient because
the query text alone may not reveal enough details about the
task (e.g., “can I do this step without an electric grill?”)
Similarly, existing video localization [47, 81, 84, 86] and
question answering [37, 38, 41, 64, 78, 79] methods do not
consider the viewing history of the source video, which is
essential to properly identify a detour. For example, an-
swering “how to do this step without a wrench?” requires
the model to understand which steps are already done and
which part of the target detour video shows the same effect
without using a wrench.

We introduce VidDetours: a video-language model that
benchmarks this new problem. Our approach formulates
the video navigation task in two parts: (a) retrieval of the
detour video (b) temporal localization of the relevant por-
tion of the detour video—both conditioned on the source
video and text query. Building on ideas from the video re-
trieval [50, 56, 75, 92] and localization [58, 84, 86] litera-
ture, we develop an architecture and training objective that
accounts for all the essential components of this task: gaug-
ing the relatedness of any two instructional videos; captur-
ing the interchangeability of their component steps; and in-
teractively indexing into the alternatives with language.

Since there are no existing datasets labeled for video
detours, we devise a framework leveraging large language
models (LLMs) to generate weakly-supervised training
data. Using HowTol00M [55], a large-scale instructional
video dataset of in-the-wild how-to’s accompanied by the
transcribed speech of the narrator, we automatically gen-
erate plausible user queries at targeted timepoints in train-
ing source videos together with their detour counterparts in
closely related videos. This procedure makes it possible to
obtain ample effective training data without manual anno-
tations. To rigorously evaluate the video detours, we intro-
duce a gold-standard test set comprised of manually labeled
data from 4K full-length videos and 16K human-generated
questions.

In extensive experiments, we validate our model and il-
lustrate the promise of the novel task. VidDetours strongly
outperforms state-of-the-art video-language and video re-
trieval methods. We will release our training and test anno-
tations to establish a formal benchmark for navigating in-
structional videos.

In short, ours is the first work to investigate personalized
query-based navigation of instructional videos. Our main
contributions are the innovative task definition, our video-
language model to address it, and the high quality eval set
and benchmark. These results help pave the way towards

an interconnected how-to video knowledge base that would
transcend the expertise of any one teacher, weaving together
the myriad of steps, tips, and strategies available in existing
large-scale video content.

2. Related Work

Learning from instructional videos. Several re-
cent video datasets like HowTolOOM [55], COIN [67],
CrossTask [93] are based on instructional videos and have
enabled research in procedure planning [11, 12, 89], task
graph learning [6, 21, 31, 90], and alignment detection
[5, 32]. The availability of large-scale instructional videos
on the internet also facilitates video representation learning
for action recognition [23, 29, 40, 43, 73], action anticipa-
tion [1, 24, 26, 28, 52], and object detection [3, 10]. All
the prior work either focuses on short-term representations
[14, 15, 50, 56, 75] or video-level understanding [6, 21].
To our knowledge, we are the first to establish a means to
navigate across instructional videos, which is essential for
holistic task understanding and optimal skill learning.

Vision and language learning. Videos often also con-
tain text—whether converted from narrations through au-
tomatic speech recognition (ASR) [55, 67, 93] or manually
annotated [30]. Using both text and video for representation
learning [4, 14, 15, 44, 56, 75] helps in multi-modal tasks
like retrieval [17, 22, 50, 75, 88], localization [47, 64, 75,
76, 81, 83, 84, 93], captioning [34, 42, 61, 71, 82], ques-
tion answering [37, 38, 41, 78, 79], and episodic memory
queries [30, 44, 64]. Most of these tasks focus on images
or clip-level understanding, typically a few seconds long.
Recent work [4, 7, 25, 30, 54, 62, 64] extends this further
for video-level understanding spanning minutes. None of
the existing methods or benchmarks answer text queries by
navigating between long videos, as we propose.

Interactive retrieval. Dialog-based retrieval has been
studied for fashion image retrieval [16, 33, 74] and
conversation-based e-commerce shopping [66, 87], where
a user wants a specific product and gives feedback on suc-
cessive retrievals. In Visual Dialog [13, 18, 19, 35, 57],
an agent is given an image and its caption and has to an-
swer questions about the image e.g. “what color is the
mug?” Recent work in composed image/video retrieval
[8, 9, 36, 48, 69, 70, 77] uses an image/clip with a modi-
fication text to retrieve an improved version, e.g. a fountain
image with text “at night” retrieves a clip of the fountain
at night. Similarly, StepDiff [59] generates the difference
between two clips in instructional videos.

All the previous work focuses on improving video or
image retrieval through dialog, and the inputs are image
or short-duration video. In contrast, we focus on action
demonstrations where the prompt can be about ingredients,
tools, or even step executions, e.g., “how to prepare the
mixture instead of using a pre-made mix?” which is cru-



Welcome back to
my kitchen
I'm gonna show
peanut butter cookie

We’re gonna add
some white chocolate chips

My cookies just
came out of the oven and they
smell so delicious

If you make this
recipe follow me on facebook

How to Make Peanut Butter Cookies

Step 1: [01:00 - 01:20]
Mix 1 cup of chunky peanut
butter with % cup of softened
butter and 1 large egg

Step 4: [01:56 - 02:12]
Use a fork to mix the dough
until it's crumbly.

Step 7: [03:30 - 03:40]
Bake the cookies until edges
are golden brown. Let them
cool for a few minutes

Add 1 cup of sugar, 1 cup of
smooth peanut butter, and 1/2
cup of chocolate chunks

Step 1: [01:00 - 01:20]
Mix 1 cup of chunky peanut
butter with %2 cup of softened
butter and 1 large egg

Vs
ty : 00:38
T, : [01:00 - 01:20]
Q : Can | use chunky
peanut butter here?
Vi

ts » 01:12
Ty : [01:42-01:51]

Q : How can | make the
cookies more crispy?

Step 7: [03:30 - 03:40]

Figure 2. Overview of the detours dataset (D%}) curation. Given unlabeled instructional videos for training (we use HowTo100M [55]),
we first input their narrations with timestamps to a language model (LLAMA?2 [68]) to obtain summaries of their steps. Next, we auto-
matically select pairs of similar summaries along with their timestamps and use a language model to generate weakly-supervised detours
annotation tuples (Vs, ts, Q, Vg, Tq). As an example, the source video here uses smooth peanut butter. A possible detour question is “can
I use chunky peanut butter here?” and the window at T} in the detour video (top right, orange) shows the use of crunchy peanut butter.

cial for a holistic task-level understanding of many actions
and dependencies amongst them. Furthermore, our setup
considers full instructional videos that typically span sev-
eral minutes, as opposed to static images and short clips.

3. Approach

In this section, we first define our detour task formulation
(Sec. 3.1). Next, we detail the dataset collection process
(Sec. 3.2) and our model architecture (Sec. 3.3). Finally,
we discuss implementation and training details (Sec. 3.4).

3.1. Video detour task formulation

We define a video detour as a mapping from a source
video V; at timestamp s to a response segment 1Ty =
(t5,t5) in a detour video V, based on a query text Q. This
is illustrated in Fig. 1, where after watching the source video
for some time (purple bar, top panel), a user issues a query
“how to do this without an electric grill?”, for which the
response is a segment in a different video showing the step
in a pan instead of a grill (green bar, bottom panel). By
construction, V; and V are related demonstrations from the
same high-level task, that differ slightly in their demonstra-
tion (e.g., two videos demonstrating how to make chicken
quesadillas).

Formally, we cast this as a video segment retrieval task
conditioned on both a source video and a query text. The
goal is to find functions Fr and Fy, such that

Vg = argmax Fr(V;|V5[1 : 5], Q) (1
Vi;eD
Ty = argmax Fr(T;|V5[1 : ts], Q, Va) 2)
T.

i

where V[l : t4] refers to a video watched from the begin-
ning, until time ¢4, and 7 refers to a temporal window (start
and end time) in video V/;.

Here, Fr is a retrieval mapping that finds the correct
full instructional video, typically minutes long, given the
source video segment and the text query, while F, is the
localization function that finds the start and end time in the
detour video.

3.2. Detour dataset generation

Our goal is to learn retrieval and localization functions to
find the correct detour segment given a source video and a
query, for which we require a training dataset with tuples of
the form (V, ts, Q, Vi, Ty). The detour queries can focus
on any aspect of the demonstration of the recipe: ingredi-
ents (e.g., “can I add eggs here?”), tools, (e.g., “how to do
this without an blender”) or steps (e.g., “how do I serve this
on a plate?”). Existing procedural video datasets only offer
a subset of the required information [2, 55, 67, 93]: they
provide narrations or keystep labels, but are missing inter-
relations between different procedural demonstrations and
thus cannot be used for detours training directly. Moreover,
collecting detour annotations at a large-scale may be im-
practical due to the amount of time required for annotators
to watch and parse long detour videos.

To address this, we propose an approach to automatically
create a training dataset DY} for our task using how-to video
narrations and language models. Subsequently, for rigorous
testing, we also manually collect ground truth test data D%
from human annotators.

Weakly-supervised training set Di7. We start with
a dataset of unlabeled instructional videos: D =
{(V4, Nl)}gl1 containing narrations N; in addition to the
videos V;. A narration is the spoken component of the
how-to video, where the expert describes their actions
(“now we mix for 3 minutes”) and gives other commen-
tary (“oh it looks great!”). We concentrate on the broad



domain of cooking due to its prominence in instructional
video datasets (~370K videos in HowTo100M [55]), well-
structured recipes, and strong interconnection between dif-
ferent instances.

We use the narrations to generate labels for our train-
ing dataset D¥;. Despite being noisy, narrations have been
used successively for weakly-supervised training labels for
video-language pretraining [50, 55, 56, 75] and keystep
recognition [6, 45, 90]. Here we explore their utility for
mining candidate detour pairs. We do this in two stages. See
Figure 2. First, we generate text summaries for the key steps
in each video. Specifically, we prompt LLAMA 2 [68], a
recent open source large language model, to summarize the
instructional videos using the timestamped narrations ;.
The prompt is of the form “Given the following narrations
from a video, what recipe is this, and summarize each step
along with its timestamps...” The exact text prompt is given
in the Supp. along with example outputs. We obtain the
summary of video V; as a tuple of the step start time, end
time, and text description. This process yields an interme-
diate summary dataset; see Figure 2 (second panel).

Next, we generate detour queries and time windows
given a pair of summaries. For this, we identify video
pairs that share an activity (and therefore have similar sum-
maries), as unrelated pairs are unlikely to yield a meaning-
ful detour query Q. Specifically, we sort summary pairs by
cosine similarity of their MPNet [65] sentence embeddings,
discarding dissimilar pairs (score < 0.75). With a video
pair in hand, we design a prompt for the LLM to generate
detour queries and time windows (ts, Q, Ty) of roughly the
form “Given video summaries with timestamps, suppose a
person is watching video A, identify a text prompt that a
user might issue to take a detour and watch video B, along
with the detour timestamps? Some examples of detours ...”.
See Supp. for full prompt details. Note that a source video
can have multiple valid queries and matching detour videos,
which our generation strategy allows.

The entire process yields a pair of videos and the de-
tour annotations (Vs,ts, Q, Vg, Ty) (Figure 2, right panel).
More examples are in Supp. While D% will naturally have
some noise due to language model errors and misaligned
or non-visual narrations [5, 32], we find them quite reason-
able (85% satisfactory) from manual inspection of a subset
of the data, and our dataset creation strategy diminishes the
noise. Most importantly, they are effective for training a de-
tour model, as our experiments testing on manually labeled
data will show.

Manually collected testing set D'5. While the weakly-
supervised data is sufficient for training, for reliable eval-
uation of our trained models and baselines, we manually
collect ground truth test data. Similar to DY, we iden-
tify a pair of similar videos, and ask the professional an-
notators to watch the videos completely, and then annotate

okay to skip the salt?

Okay,
Not
\ to add
irg, salt?

ere,wyg

this differently?|
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Figure 3. Visualization of most frequent bigrams of the queries
in the manually annotated test set. We see that most of the
queries have little or no context about the current recipe and the
step being executed, e.g. “how do I plate this differently?” or
“can I do this step using a spatula?”—emphasizing the need for
source video context, as we explore in the proposed model.

(ts, Q,Ty). Annotators are allowed to reject pairs for which
detours cannot be constructed (e.g., if they are too dissimi-
lar). Since there can be multiple detours possible for a given
pair of videos, we ask the annotators to identify at least three
detours. We ensure that the videos in the train and test set
are disjoint. The annotation process results in a high quality,
benchmark test set for our new task.

Figure 3 shows the diversity in queries that annotators
provide. We see a variety of questions arise about substitu-
tions of ingredients, tools, and steps. Further, we see con-
textual queries, e.g. “can I skip adding butter?” that do not
reveal much information about the recipe and the current
step, underscoring the need to reference the source video
when localizing a detour.

3.3. Detour retrieval and localization modules

Next, we describe our training framework to learn the
mapping functions Fr and F, using our generated detour
dataset. Our objective is to design a multimodal (video and
text) architecture that fuses the source video context with
the language query enabling Fr and F, to utilize both the
viewing history and the query. As we will see in the exper-
iments, this idea is more effective than late fusion of video
and query features [7, 63, 72]. For this, we leverage the
reasoning capabilities of large language models (LLM). In
short, we encode both videos and the detour query as a se-
quence of tokens to pass to the LLM, which aggregates mul-
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Figure 4. Overview of the proposed approach. The source video and the candidate detour video are converted to visual tokens by passing
through a video encoder f,, followed by a visual mapper f,.. We obtain a similar text token using standard tokenizer f,. The processed
tokens are then passed through a multimodal sequence encoder L. to obtain output features. Finally, we have specific task heads for

detour video retrieval and detour window localization.

timodal information from the inputs in its output encoding.
These encodings are finally used to retrieve detour videos
and detour segments using task specific heads. Our overall
framework is shown in Fig. 4 and each component is de-
scribed in detail below.

Tokenizing videos and detour queries. We begin by en-
coding the videos as a sequence of tokens compatible with
the LLM. We encode each video as spatio-temporal fea-
tures using a video encoder f, (e.g., InternVideo [72]), ex-
tracted at one feature per second [6, 75] Next, we use a low-
parameter visual mapper f,,, [27, 39, 46, 51, 85] to convert
the video features into visual tokens v = f,,, (f,(V')) that
are in the same embedding space as the text tokens, making
them compatible with language encoders. Finally, we en-
code the detour query into text tokens using a standard text
tokenizer (e.g. [20, 68]) ng = f,(Q). We now have both
visual and query tokens in the same space to feed into our
language models.

LLMs as multimodal sequence encoders. Next, we use
a LLAMA2 model as our multimodal sequence encoder
(Lse). LLMs are an ideal choice here, given our goal of
encoding dialogue-driven detours—the idea that a user is
watching the source video and pauses it to ask a query, fol-
lowed by a response from the LLM. Specifically, we ap-
pend source video tokens (until time t5) with the query to-
kens vi[1 : t5] | ng, followed by candidate response video
tokens. The multimodal encoder captures the cross-modal
interactions between the source video, query context and
the candidate video, resulting in an encoded output for the
candidate video O; = L (V[1 : ts] | ng | v;).

Detour retrieval and localization heads. Finally, we use
the updated multimodal encodings O; to score detour video
candidates and segments using two task heads fr and fr.
fris aclassifier that scores the relevancy of candidate video

V; given the viewing context and the user query, while f7
is a classifier that identifies the highest score time segment
T; inside the correct detour video Vy, given O,4. These two
heads are trained separately for each task.

For our video retrieval network F, we minimize the bi-
nary cross entropy loss fpcop between the prediction and
the ground truth label:

‘I/{lel%fBCE(]:R(‘/l“/é[l : tS]’ Q)7 ]1(‘/&) Vd))

We assign a positive label to the correct detour video Vy
and negative to other videos sampled from the dataset, i.e.
Vi # Vy. In particular, for every correct training instance,
we randomly sample an incorrect video from which to cu-
rate a negative sample—either from the same task (hard
negatives) or other tasks.

The localization network F, training objective is:

1
in — t3,t] te, t¢
705 [fer(t,ta) + for (], t3)],

where fcg is the cross-entropy loss. Similar to the video-
language grounding model VSLNet [84], this objective
minimizes the error in the distribution of the start and end
times across the video. At inference, we find the candidate
video V; and time duration 7} that maximizes the scores
from Fr and Fp, respectively (Sec. 3.1). Note that there
may be multiple plausible detour videos for a given source
and query (e.g., multiple videos can use a heating pan in-
stead of an electric grill); our scoring-based approach en-
sures other related (and valid) pairings can also score highly.

3.4. Implementation details

Dataset and statistics. Our training and test sets are
both derived from HowTolOOM [55] (average length 6.5



Method R@5 R@I10 R@50 MedR ]
Text-only 3.9 8.7 14.0 512
CLIP [63] 7.9 11.8 252 342
CLIP-Hitchhiker [7] 8.4 12.3 25.6 336
InternVideo [72] 9.7 13.2 27.2 313
Distant Supervision [45] 8.4 12.6 25.1 329
Multi-modal LLM [80] 59 10.5 32.1 139
CoVR [69] 43 9.2 153 473
Ours 17.6 27.8 62.4 30
Ours w/o hard-negatives 16.5 24.9 56.3 55
Ours w/ parser 13.9 21.6 50.0 81

Method R@l, R@1, R@l, Mean
IoU=0.3 IoU=0.5 IoU=0.7 R@I
Text-only 5.2 2.7 0.6 4.2
2D-TAN [86] 10.3 42 1.5 8.6
VSLNet [84] 11.8 5.8 1.7 9.4
UMT [47] 12.0 6.1 1.6 9.4
Distant Supervision [45] 10.6 4.0 1.5 8.3
Multi-modal LLM [80] 12.7 6.5 1.8 10.2
STALE [58] 12.1 6.1 1.7 9.6
Ours 16.7 7.7 2.8 12.8
Ours w/ parser 13.4 7.0 2.5 11.6

Table 1. Results for detour video retrieval (left) and detour window localization (right) tasks. Our method outperforms all prior methods

and baselines by a significant margin.

mins). We consider cooking tasks (i.e., recipes) contain-
ing 370K videos. We use the weakly-supervised automat-
ically curated dataset D% for training and validation. Fol-
lowing the steps described in Sec. 3.2, we obtain 586, 603
training and 18,308 validation detour annotation tuples
(Vssts, Q, Vi, Ty).

The manual annotation results in a large-scale
test dataset DY containing 16,207 detour instances
(Vs, ts, ©Q,Va, Ty). The test set is based on 3,873 unique
videos across 1,080 recipes/tasks, e.g. “how to make
chicken quesadillas” is one task and has multiple video
instances. We curate the test set so that there are 834 com-
mon tasks (14,450/16,207 annotations) with the training
data D having videos from those tasks. There are 246
additional novel recipes (1,757/16,307 annotations) that
do not appear in the training set. For retrieval evaluation,
the detour candidates are all videos in the dataset, i.e.
3,873 candidates per detour annotation. No video exists in
both the training and testing split.

Network architecture. We use InternVideo [72] as the
video feature extractor f,. The features are extracted at
one feature per second, following [32, 75]. f, is frozen
and f,., is a trainable linear layer, inspired by [46]. L
is a LLAMAZ2-13B-chat [68] language model. We try both
variants of keeping L. frozen and trainable; performance
is better if L, is trainable. Lastly, f,, is the LLAMA-2 tok-
enizer. The retrieval head f is a transformer classifier and
we take the CLS token of the output followed by a linear
layer to output the score. Finally, the localization head fr,
is the VSLNet [84] architecture. We remove the tokenizer
from VSLNet since the text input is already processed.

Training parameters. We train both networks on 8
nodes with 8 NVIDIA A100 GPUs for 5 epochs. The train-
ing time is 8 hours. We use AdamW [49] optimizer with
learning rate 3 x 105 and batch size of 16 per device. The
transformer classifier fr uses an input dimension of 4096
(consistent with the LLAMA?2 output dimension), 4 heads,
4 layers and 1024 dimensional feed-forward network. All
other parameters are defaults of the respective models.

4. Experiments

We show the results for the detour video retrieval (Sec.
4.1 and detour localization (Sec. 4.2) subtasks.

4.1. Detour video retrieval

First, we benchmark models on finding the correct detour
video given the source video and the query, from amongst
all videos in the test set (3,873 videos).

Baselines. We adapt state-of-the-art video retrieval
methods for detour retrieval. All the baselines embed text
and video in a shared space using an encoder ¢. We
find the detour video that has the most similar embed-
ding to a reference Vy = argmaxy, .p (¢(Vi), ¥(Vs, Q)),
where ¥ (V;, Q) computes the reference embedding from
the source and query videos, and () is cosine-similarity. We
evaluate three variants corresponding to different inputs:
 with Vy, Q: where (Vs Q) = 1/2[6(Vs) + 6(Q)).
 with V: where ¢(Vs, Q) = ¢(V5).

» with Q: where ¥(V;, Q) = ¢(Q).
These variants test whether individual embeddings (or sim-
ple combinations of them) are sufficient for detour retrieval.

* Text-only computes the similarity between summary and
query embeddings, ignoring visual cues. This baseline
evaluates the impact of text-bias in the automatically cu-
rated dataset.

e CLIP [63], InternVideo [72] are state-of-the-art vision-
language models used extensively for multi-modal tasks.
Since they take short video clips as input, the video rep-
resentation is the average of all short-term features.

» CLIP-Hitchhiker [7] is similar to CLIP [63] but uses a
weighted average of frame features, instead of uniformly
averaging for ¢(V;). The weights are the similarity score
between the frame and query features (eq. 1 in [7]). Note
that the source-only variant is not evaluated as query fea-
tures are needed to compute the weights.

* Distant Supervision [45] uses WikiHow as an external
knowledge base to map steps in the video with keysteps.
We replace the narrations with this keystep assignment
for the detour dataset generation.

* Multi-modal LLM [80] can be used to generate dense
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Figure 5. Visualization of our model’s predictions for the detour video retrieval and window localization tasks, including failure cases
(last row). For all the successful examples, our method ranks the detour video at top-1. Furthermore, in the detour window localization,
our method is able to predict the detour window with a high overlap (> 0.7 IoU). Our model is able to correctly use source video context
and nuanced queries like “how fo cut it in star shape?” (Example 6) and “can [ skip the onions?” (Example 3). Best viewed with zoom.

captions to replace the narrations. We use Vid2Seq [80]
to first densely annotate the videos and convert the task to
text-only video detours using those captions.

¢ CoVR [69] is a state-of-the-art method for composed
video retrieval. Following CoVR, we sample a frame
from the source video and use the user query as the mod-
ification text to obtain detour retrieval.

Note that we train [45, 69, 80] on the same detour dataset
as our model, whereas [7, 63, 72] are used in zero-shot set-
ting for its good retrieval capabilities in instructional videos.

Ablations. Similar to how we evaluate the baselines
with different inputs, we compare the performance of our
method (i.e. “with V, @) with ablations—“with V" and
“with Q”. Next, recall that we use a language model to
generate timestamps for both the summaries and the de-
tour timestamps (see Fig. 2 and Sec. 3.2), which can be
noisy. Instead, for this ablation, we parse the summaries
and queries and assign timestamps based on the similarity
score between the narrations and the summaries. The lan-
guage model does not handle timestamps for this “Ours w/
parser” baseline. Finally, we evaluate the retrieval perfor-
mance without sampling negatives from the same task, i.e.
no hard negatives in “Ours w/o hard negatives” baseline.

Metrics. Following standard retrieval evaluation [53, 55,
56, 75], we report recall@k for k € [5, 10, 50] and the me-
dian rank. Recall@Fk ranges in [0, 1], higher the better. The

median rank ranges between 1 and the size of the retrieval
candidate set (3, 873), the lower the better.

Results. Table | (left) reports the results with both in-
puts, i.e. “with Vy, Q” for all baselines on all metrics.
We also report medR for different inputs in Table 2 (left).
Our method outperforms all the baselines by a significant
margin. Our performance gain is 7.9% w.r.t. InternVideo
[72] at R@5 and the gap further increases to 35.2% for
R@50. Across all the different input combinations, Intern-
Video [72] “with Q” is the second best and attains a medR
of 138 — much lower than our medR of 30 (Tab. 2).

We attribute our large gain to three crucial factors: (a)
thanks to its tokens and long sequence length in the LLM,
our model is capable of long video understanding, unlike
CoVR [69], which samples a few frames from the video;
(b) appropriately using the source video context V, un-
like CLIP [63], CLIP-Hitchhiker [7], and InternVideo [72],
since our model is more than a standard text-to-video re-
trieval model; and (c) conditioning the retrieval on the query
text. Furthermore, we find that using narrations for gener-
ating a weakly-supervised training set is better than using
keysteps [45] or captions [80], which miss details typically
present in narrations.

Fig. 5 shows example detours inferred by our model. In
all the successful cases, our retrieval model ranks the cor-
rect detour video at top-1. It is evident that detour video re-



Method Vs ©Q MedR | Method Vs @ R@I
CLIP [63] v 314 2D-TAN[86] | v 55
v 191 v 8.0

v v 342 v v 8.6

CLIP-Hitch. [7] | v/ — VSLNet [84] v 6.1
v 186 v 8.5

v v 336 v v 9.4

InternVideo [72] | v/ 150 UMT [47] v 6.5
v 138 v 8.7

v v 313 v v 9.4

DistantSup. [45] | v/ 384  DistantSup. [45]| v/ 7.6
v 370 v 7.9

v v 329 v v 8.3

MLLM [80] v 189 MLLM [80] v 9.1
v 158 v 9.7

v v 139 v v 102

CoVR [69] v 388  STALE [58] v 6.9
v 401 v 8.8

v v 473 v v 9.6

Ours v 128 Ours v 8.9
v 116 v o112

v v 30 v v 128

Table 2. Comparison of our method with prior methods at differ-
ent input combinations for detour video retrieval (left) and detour
window localization (right). Our method outperforms all the prior
works for all input combinations. See Supp. for all metrics.

trieval is more challenging than conventional text-to-video-
retrieval because the detour query can have missing context,
e.g. “how do I add garnish after pouring?” does not reveal
the task in the video; the previous video context is needed
for the correct retrieval. The failure cases (bottom row)
show example errors in retrieval rank (left) and localization
(right). The performance trend is similar for common and
novel tasks of the dataset (see Supp.), reinforcing that train-
ing on a sufficiently large dataset with many recipes enables
good generalization.

4.2. Detour window localization

Next, we show results on detours window localization
where the task is to determine the correct window given the
query, the source video, and the ground-truth detour video.

Baselines. While there are no existing methods that use
previous minutes-long viewing history along with the query
to perform temporal localization, we use state-of-the-art lo-
calization methods as baselines and also strengthen them by
providing source video context, as described below.

e Text-only: Similar to the detours video retrieval, we have
a text-only baseline to evaluate the text-bias in the auto-
matically curated train set.

* 2D-TAN [86], VSLNet [84], UMT [47]: All these prior
models aim to localize text in videos. To apply them for
detour window localization, we train them to accept video
context as input, namely using a visual mapper f,,, simi-
lar to our approach—thus providing a late fusion of video
Vs context. These visual tokens are prepended to the text

token, same as our token sequence (see Fig. 4). This en-
hancement enables us to evaluate “with V" and “with V,
Q” in addition to the standard “with Q”

* STALE [58]: This is zero-shot temporal detection
method uses vision-language prompting. Same as above,
we evaluate this baseline at three combination on inputs.

The baselines in [47, 84, 86] are trained on our same
detour dataset for localization, whereas [58] is zero-shot.

Metrics. Following [30, 84, 86], we report recall@1
for ToU thresholds in [0.3,0.5,0.7]. We also report the
recall@1 at the average IoU. All the recall metrics range
in [0, 1], higher the better.

Results. Tab. 1 shows the results with greatest input con-
text (“with V, @), and Tab. 2 (right) compares against dif-
ferent input combinations. We outperform all the baselines
and ablations by a clear margin. Our mean recall@1 is 3.2%
higher than the second best performing method, STALE
[58]. The same trend is true for all IoU thresholds, with
higher thresholds having lower recall, as expected. Again,
the LLM-based parser is better for obtaining the times-
tamps, and using narrations is better than an external knowl-
edge base or captions.

Our gains can be attributed to our model design involv-
ing early fusion of previous viewing context and the query
features. The detour queries have less context than in a typ-
ical text localization task. For example, “can I skip adding
salt here?” requires a model to first understand the step be-
ing done in the source video, followed by interpreting the
query to localize a similar step without salt. Existing meth-
ods are incapable of capturing this multimodal dependency,
even if we strengthen them with late fusion. We also see
that our mean recall@1 performance is better than all other
methods at all input combinations, including ablations.

Fig. 5 also shows example detour localizations. We see
that our method is able to use the source video context and
the user query to localize the detour window. For exam-
ple, when a user asks “can I do this step with a steel plank
saver”, our model correctly localizes the use of a steel plank
saver to put the salmon of the grill in the target video.

5. Conclusion

We propose a novel task of finding detours for navigat-
ing instructional videos. Building on video and language
modeling, we develop a weakly-supervised training dataset
and a novel method to train a detours network. Our results
show how existing methods are insufficient to address this
problem. The dataset will be released to the community to
support research in navigating instructional videos.
Acknowledgements: UT Austin is supported in part by the IFML
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Detours for Navigating Instructional Videos

Supplementary Material

1. Supplementary video

We attach a supplementary video containing details about high-
level idea, overview of the problem, detour dataset visualizations
and some result visualizations.

2. Dataset visualization

We attach visualization pages that show the outputs from LLM
for (a) summary generation and (b) weakly-supervised detour
training data. Both these visualizations contain samples that are
automatically generated using narrations with LLAMA 2. Most
of the training samples are valid detour prompts with correct time
windows; with some noise due to imperfections in narrations as a
supervision and due to errors in LLAMA 2 generations. Finally,
we also have a visualization that shows the samples from (c) man-
ually collected testing data. These visualizations show the good
quality manual annotations that we have collected.

3. Detour dataset generation details

In this section, we present additional details about the detour
dataset generation (Sec. 3.2 in the main paper) process. We dis-
cuss the input prompt used to generate weakly-supervised detour
annotations in D% and resulting sample outputs (including failure
cases). Next, we detail the manually annotated dataset DS collec-
tion details and sample visualizations.

3.1. Weakly-supervised training set.

The first step involves generating summaries from given nar-
rations IV;. The narrations are obtained using ASR from narrated
videos and we use the sentencified version, provided in [32]. We
use the narrations along with the timestamp and provide the fol-
lowing prompt to LLAMA 2 [68]:

System: Help summarize the steps of this recipe whose
narrations with timestamps are given. Timestamp is given
in HH:MM:ss.

User: Given the narrations of a video, tell the recipe being
made in this video and list down the steps and start and end
timestamps in the video. Answer in this format: ‘Recipe:
Name of the recipe and brief detail Step 1: [HH:MM:ss -
HH:MM:ss] description of the step Step 2: [HH:MM:ss -
HH:MM:ss] description of the step and so on’. Here are
narrations with timestamps in HH:MM:ss format: <insert>

where <insert> is replaced by narrations with timestamps.
Some sample outputs are shown in Fig. 1 along with a row of
failure cases (bottom). We create an automated parser that ex-
tracts steps as a tuple of timestamps and text description. Many
of the videos do not contain meaningful narrations or have no nar-
rations, and hence the outputs from these prompts do not fit into
the desired output format. They are rejected automatically by the
parser. There are rare instances where even though the narrations

are meaningful, the outputs are incorrect, e.g. garbage output or
no output (bottom right, Fig. 1). Finally, there is a small fraction
of outputs (~3%) where the timestamps are incorrect or missing
altogether (bottom left, Fig. 1). To mitigate this, we make sure
steps’ coverage is at least 80% of the duration of the video. This
process results in a high-quality text summary dataset. The overall
process results in a summary dataset of 187K samples. Please also
see the attached summary visualization page. It contains parsed
summaries and we can observe the good quality summary genera-
tions using LLAMA 2 with only few failure cases.

Finally, we input two similar summaries into LLAMA 2 [68]
and generate detour instances. The process to filter similar sum-
maries is detailed in Sec. 3.2 (main paper). For every pair of
similar summaries, we use the following prompt:

System: Help understand why a user would pause watching
one video and take a detour to another cooking video.

User: There are two cooking videos A and B. The steps of
the recipe along with timestamps in HH:MM:ss format is
given. Suppose a person is watching video A, can you tell
me what the user would prompt to take a detour and watch
video B? The answer can be some extra/missing ingredients,
tools or procedural step. Some examples of such queries can
be ‘How to do this step without adding yeast?’, ‘Can I add
chilli powder here?’, ‘Can I do this step without blender?’,
‘Can you give a video that shows other way to roll a sushi?’
and so on. Also, tell the time when the user would stop
watching Video A and the time range in Video B and an-
swers the user query. Answer in this format: ‘Detour time
in Video A: HH:MM:ss, Detour time window in Video B:
[HH:MM:ss - HH:MM:ss], Detour text prompt: One sen-
tence question a user would prompt to take a detour’. Here
are the reciped: Video A: <insert> and Video B: <insert>

where we insert source and detour video narrations in
<insert>, respectively. Same as above, we create an automated
parser to convert the text outputs into dataset tuples. A small frac-
tion of outputs cannot be parsed by the automated parser due to
incorrect output format by LLAMA 2. We ignore these instances
since they are small in number in comparison to the successful
parse. Fig. 2 shows some output samples along with failure cases.
Please also see the attached visualization page for training data
samples that contains automatically annotated valid detour anno-
tations and some failure cases. We manually verify a subset of
the generations and observe good quality. Furthermore, we ob-
serve a strong correlation coefficient of > 0.85 between valida-
tion set (created automatically using narrations) and the manually
collected test set across all training runs for both detour video re-
trieval and detour window localization task.

This automatically generated data is used for training only—
never for ground truth evaluation of any model.



into small chunks.

Step 2: 00:55 - 01:01: Add cocoa powder or cacao
powder and peanut butter.

Step 3: 01:13 - 01:22: Microwave the bananas for 30
seconds to make them softer.

Step 4: 01:37 - 02:10: Blend the bananas, cocoa
powder, and peanut butter together.

Step 5: 02:17 - 02:25: Transfer the mixture into a bowl
and marvel at the fact that you just made delicious ice
cream out of bananas.

Step 6: 02:38 - 02:49: Add toppings such as a drizzle of
creamy peanut butter and a sprinkle of chocolate
granola.

. J

Some Failure Cases

Step 1: 00:48 - 00:55: Freeze bananas and split them\

~
You've got a great surprise for us, and it's a party

favorite that's perfect for a large family. You're going to
make pasta chicken lasagna, and it's so easy that
you're going to want to make it again and again. First,
you'll add two tablespoons of olive oil to a pan and heat
it on medium heat. Then, you'll chop up two medium-
sized chicken breasts and add them to the pan. Cook
them until they're browned and cooked through. Next,
you'll add a pound of penne pasta to the pan and cook it
until it's al dente. After that, you'll add a cup of freshly
grated mozzarella cheese and mix it all together. Finally,
you'll transfer the mixture to a baking dish and bake it in
the oven at 350 degrees Fahrenheit for 20-25 minutes,
or until the cheese is melted and bubbly. That's it! Your
delicious pasta chicken lasagna is ready to be enjoyed
by your family and friends.

/Step 1: 00:57 - 01:07: Beat the butter, oil, and sugars\

together until light and fluffy.

Step 2: 01:07 - 01:15: Add the eggs one at a time and
mix well. Add the milk and mix together.

Step 3: 01:15 - 01:33: Sift the dry ingredients together
and add them to the mixing bowl. Gently stir in the
grated courgettes and vanilla extract.

Step 7: 01:55 - 02:05: Check if the cake is ready by
touching it. If it springs back, remove it from the oven
and place it on a cooling rack to cool thoroughly.

Step 8: 02:05 - 02:11: Serve the cake with double
cream and berries from the hedgerow, such as

/Step 1: 00:46 - 00:52: Prepare the ingredients *

blackberries, red currants, or wild strawberries

Instructions unclear. Please provide actual instructions
you'd like me to follow. Il be happy to help with your
task

Please provide the actual text you want to read and I'll
be happy to assist you.

Chickpea pasta * Carrots * Onion * Potatoes * Water *
Spices (not specified)

Step 2: 01:29 - 01:45: Dice the carrots and onion into
small pieces

Step 3: 01:49 - 02:08: Peel and chop the potatoes into
medium to smaller pieces

Step 4: 02:08 - 02:26: Add the potatoes, carrots, and
onions to a pot of water. Boil until the vegetables are
tender

Step 5: 03:02 - 03:12: Blend the cooked potatoes,
carrots, onions, water and spices using a blender

Step 6: 03:12 - 03:25: Mix the blended mixture with the
chickpea pasta
v

:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:
00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:
00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:
00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:

Figure 1. Weakly-supervised summaries generated using narrations with LLAMA 2 [68]. While majority of the outputs contains step
details and timestamps in the desired format, a few outputs are incorrect (bottom).

4 N [
Detour Window: 00:42-01:04 Detour Window: 01:28-01:34
Detour Query: Can | add sugar to the | |Detour Query: How can | add chia
yogurt mixture? seeds to this recipe?

Betour Window: 00:35-01:06
Detour Query: Can | use a food
processor to shave Brussels sprouts
instead of a mandoline?

Detour Window: 01:15-01:32
Detour Query: Can | use beef stock
instead of vegetable stock?

Detour Window: 00:25-00:49
Detour Query: How to cut pasta into a
circle without a cutter?

Detour Window: 03:01-03:09
Detour Query: How do | make this
smoothie thicker?

Detour Window: 02:24-03:05
Detour Query: How can | thicken the
sauce for my stir-fry without using
Eornstarch?

Detour Window: 01:48-02:10
Detour Query: How do | get the
cheese to melt evenly?

. RN J J
Some Failure Cases
gz:gl‘:: m’;ﬂ;""' 00:35-01:06 Detour Window: Detour Window: 00:49-01:19 Detour Window: 00:16-00:43
Detour Query: How do | cool the Detour Query: Detour Query:
mixture down quickly?
- J - J J

The narrator says we can use
mandoline to cut the sprouts but

uses food processor instead. how to cool down the mixture.

Misalignment between narrator's
description and action of showing

Both the videos use honey and
not maple. The detour query is
incorrectly framed by LLAMA 2.

Both the videos use only knife to
cut the mangoes. None of them
use a mango splitter.

Figure 2. Weakly-supervised detour annotation sample for training and validation. It also contains a row of failure cases with reasons.

Please also see the attached visualization for more visualizations.

3.2. Manually collected testing set

We hire 24 professional annotators for manually generating
video detour instances. All of them are trained for a few days
on what constitutes a detour (along with examples), how to mark
the time instances ¢, and detour window 7, and what types of
samples to reject. The training was followed by a pilot collection

to evaluate their understanding. Finally, they annotate using a de-
signed interface shown in Fig. 3. We randomly sample a subset
and manually verify the annotations for quality control.

The resulting dataset consists of 3.9K source-detour video pairs
resulting in 16, 207 samples. Due to our annotator trainings and
quality control, the resulting dataset is of high-quality. Fig. 4



Procedural Video Detours Annotation

Watch Video 1 and Video 2 carefully and write down "detours" from Video 1 to Video 2. A detour is defined as pausing Video 1

Media

Video 1:

to seek additional information about ingredients/steps/tools etc. from another video (Video 2). For every "detour’, you need to

provide "Detour start time from Video 1", "Detour text prompt" and "Detour time window in Video 2". After every entry, there is
an option to add more annotations by clicking "Do you want to add more detour annotations?". Please answer in the desired
format and provide brief and precise text sentence for "Detour text prompts”. You need to provide at least five detour

examples (at most fifteen). Please see the

for detailed and

NOTE: You can increase the playback as per your convenience

Scratch Pad (only for note-taking)

Annotation #1

#1. Detour start time from Video 1 (mm:ss format)

#1. Detour text prompt

#1. Detour time window in Video 2 (Format: mm:ss - mm:ss)

Figure 3. Annotation interface for manual test dataset collection.

Words: 0
> 0:17/1:08

Video 2:

Words: 0

> 0:13/71:02

The interface reiterates important details in addition to a separate

document (top). There is a scratch for the annotators to take notes while watching the two videos on the right. Finally, each instance of
annotation contains a detour start time from the source video, a detour text prompt and finally a detour time window in the target video.

The interface supports up to 15 annotations but only three is required.

Detour Window: 00:49-00:55
Detour Query: Should i cover the
turkey burger with foil while cooking?

Detour Window: 00:07-01:43
Detour Query: Show me the process
of rinsing the rice in detail

4 N N - .

Detour Window: 01:10-01:29 Detour Window: 00:56-01:06 Detour Window: 02:24-03:08 g::gﬂ: g&';‘r’f,’-"éﬁnziofégﬁﬁo g
Detour Query: Can | use fresh Detour Query: How do | do this Detour Query: Show me how to finish L . .
coconut water? without a microwave safe tray? the cake differently glrgr?s:f’g rinstead of an immersion

- J VRN G J
s N N ~N ™

6etour Window: 02:01-02:03

Detour Query: Would it be fine to
have crushed walnuts as an alternative
&)r raisins and nuts?

Detour Window: 00:13-00:15
Detour Query: Can | skip slicing the
jalapeno peppers?

N J J L J J
4 N N [ 4 N
Detour Window: 02:51-02:54 Detour Window: 01:57-02:41 Detour Window: 00:37-00:57 Detour Window: 00:21-00:24

Detour Query: Can | add cheese Detour Query: How can | stuff the Detour Query: Is there other way to Detour Query: | do not want it to be
cubes? jalapenos? make milk froth? spicy, can | skip adding chili?

N J J N J

Figure 4. Manually collected detour annotation for testing. Please also see the attached visualization for more samples with videos that

showcases the good quality annotations that we collected.

shows representative examples. Please also see the attached visu-
alization of test data samples that shows the high-quality samples.
These manually created detours are used for evaluation.

4. Experimental results expanded

We expand on to the results in Sec. 4 (main paper) and show
the generalizability of our method (Sec. 4.1) and performance at
different input combinations (Sec. 4.2).

4.1. Generalizability to novel tasks

As discussed in Sec. 3.4, we have two splits of the test data —
common tasks containing video pairs from most frequent recipes
of HowTol0OM [55], and novel tasks consisting of video pairs
from least frequent recipes of the dataset. We do not include any
video pairs from novel tasks in the training set to evaluate the gen-
eralizability of our method.

Results. Tab. 1 contains the performance split for each testing
subset for both detour video retrieval and detour window localiza-
tion tasks. In the main paper, we showed only the performance on



Method Common Task Novel Task MedR |
MedR | MedR |

Text-only 508 524 512
CLIP [63] 348 310 342
CLIP-Hitchhiker [7] 339 305 336
InternVideo [72] 315 296 313
DistantSup. [45] 320 350 329
MLLM [80] 127 155 139
CoVR [69] 464 485 473
Ours 29 35 30
Ours w/o hard-negatives 49 63 55
Ours w/ parser 76 88 81

Method Common Task Novel Task Mean
Mean R@1 Mean R@1 R@1
Text-only 4.0 4.5 4.2
2D-TAN [86] 8.9 8.2 8.6
VSLNet [84] 9.2 9.8 9.4
UMT [47] 9.6 9.3 9.4
DistantSup. [45] 8.8 7.9 8.3
MLLM [80] 9.7 10.8 10.2
STALE [58] 9.7 9.5 9.6
Ours 13.3 12.3 12.8
Ours w/ parser 12.0 11.3 11.6

Table 1. Results for detour video retrieval (left) and detour window localization (right) tasks on common task and novel task splits. Our
method outperforms all prior methods and baselines by a significant margin even on novel tasks.

Method Vs @ R@5 R@10 R@50 MedR |
CLIP [63] v 9.6 13.2 26.9 314
v o112 16.4 32.0 191
v v 7.9 11.8 25.2 342
CLIP-Hitch. [7] v o — — — — —
v 113 17.7 332 186
v v 8.4 12.3 25.6 336
InternVideo [72] v 11.2 17.0 31.8 150
v 131 19.2 37.2 138
v v 9.7 13.2 27.2 313
DistantSup. [45] v 4.9 10.2 15.9 384
v 8.0 12.0 25.4 370
v v 8.4 12.6 25.1 329
MLLM [80] v 11.3 17.8 32.3 189
v 114 16.8 314 158
v v 59 10.5 32.1 139
CoVR [69] v 4.9 10.1 15.9 388
v 4.1 10.0 15.6 401
v v 43 9.2 15.3 473
Ours v 6.1 11.0 323 128
v 6.1 10.8 32.6 116
v v 176 27.8 62.4 30

Method Vs Q@ R@l, R@1, R@1, Mean
IoU=0.3 ToU=0.5 IoU=0.7 R@1
2D-TAN [86] v 8.9 32 0.9 5.5
v 10.0 3.8 1.2 8.0
v v 103 4.2 1.5 8.6
VSLNet [84] v 9.2 3.1 1.1 6.1
v 109 4.0 1.5 8.5
v v 118 5.8 1.7 94
UMT [47] v 9.7 3.5 1.2 6.5
v o112 54 1.7 8.7
v v 120 6.1 1.6 9.4
DistantSup. [45] v 9.8 3.7 1.2 7.6
v 10.0 3.8 1.2 7.9
v v 106 4.0 1.5 8.3
MLLM [80] v 12.2 6.0 1.5 9.1
v o123 6.2 1.7 9.7
v o127 6.5 1.8 10.2
STALE [58] v 10.0 3.8 1.2 6.9
v 116 5.5 1.5 8.8
v voo121 6.1 1.7 9.6
Ours v 12.0 59 1.5 8.9
v 146 6.9 2.2 11.2
v v 167 7.7 2.8 12.8

Table 2. Comparison of our method with prior methods at different input combinations for detour video retrieval (left) and detour window
localization (right) on all metrics. Our method outperforms all the prior works for all input combinations.

overall dataset for conciseness. We see that our method achieves
significant gains over the baselines for both the tasks. Moreover,
the performance drop in novel tasks is minimal compared to the
gain. This result shows that the learned model is able to general-
ize to detour in newer recipes without being explicitly trained on
them. We attribute this effect to the strong interconnected nature
of demonstrations in instructional videos, cooking in particular.
Some recipes like making pancake and making crepe will only dif-
fer at some steps and detour learned with making pancake should
transfer to making crepe.

4.2. Results at different input combinations

Tab. 2 contains an expanded version of Tab. 2 from the main
paper for all metrics. We showed performance only on one met-
ric for brevity. We see that for both the tasks, the previous source
video context and the query context is useful for the model. It
is also interesting to note that for state-of-the-art methods Intern-
Video [72] and CLIP [63], combining source video context di-
rectly with query features degrades the performance. This under-

scores the need for a smarter method to fuse the two contexts, as
we show in our method.
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