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Abstract

Log-concave sampling has witnessed remarkable algorithmic advances in recent years, but
the corresponding problem of proving lower bounds for this task has remained elusive, with
lower bounds previously known only in dimension one. In this work, we establish the following
query lower bounds: (1) sampling from strongly log-concave and log-smooth distributions in
dimension d ≥ 2 requires Ω(log κ) queries, which is sharp in any constant dimension, and (2)
sampling from Gaussians in dimension d (hence also from general log-concave and log-smooth

distributions in dimension d) requires Ω̃(min(
√
κ log d, d)) queries, which is nearly sharp for the

class of Gaussians. Here κ denotes the condition number of the target distribution. Our proofs
rely upon (1) a multiscale construction inspired by work on the Kakeya conjecture in geometric
measure theory, and (2) a novel reduction that demonstrates that block Krylov algorithms are
optimal for this problem, as well as connections to lower bound techniques based on Wishart
matrices developed in the matrix-vector query literature.
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1 Introduction

We study the problem of sampling from a target distribution on Rd given query access to its
unnormalized density. This is a fundamental algorithmic primitive arising in diverse fields, such
as Bayesian inference, numerical simulation, and randomized algorithms [RC04]. Recently, there
has been considerable progress in developing faster algorithms for this problem, particularly in the
case where the target distribution is log-concave. In large part, these results have been achieved by
exploiting the rich interplay between optimization and sampling [JKO98; Wib18], leading to novel
sampling schemes inpsired by classical optimization methods [Ber18; CLLMRS20; ZPFP20; LST21b;
MCCFBJ21], as well as new quantitative convergence guarantees for sampling [Dal17; DMM19].

In light of such results, many prior works (e.g., [CCBJ18; LST21a; CBL22]) have raised the
foundational question of whether the algorithmic upper bounds are tight. However, there is still a
dearth of lower bounds for log-concave sampling. This lies in stark contrast to the analogous setting
of convex optimization, in which the query complexity has been tightly characterized for a plethora
of function classes [NY83; Nes18]. Such lower bounds yield important insights into the limitations
of our existing algorithms and provide guidance towards identifying optimal ones.

Given the deep connections between the two fields, it is natural to ask why optimization lower
bounds cannot be converted into sampling lower bounds. One way to do so is to directly reduce from
optimization, as was done in [GLL22]. However, as we are interested in the intrinsic complexity of
sampling, we make the standard assumption that the mode of the target distribution is zero to remove
the optimization component of the sampling task, which rules out this approach. Another avenue is
to borrow the techniques used for optimization lower bounds, but there are several obstructions to
doing so. First, most optimization lower bounds hold against (classes of) deterministic algorithms
and proceed by constructing specific adversarial functions [Bub15; Nes18]. In contrast, lower
bounds for randomized algorithms are relatively recent and still not fully understood [WS17], which
poses a major challenge for sampling algorithms, since they are inherently randomized. Second,
whereas optimization constructions can employ local perturbations to hide the minima, sampling
constructions need to hide the bulk of the mass of the target distribution, making them surprisingly
delicate.

We now describe the problem in more detail. We consider the canonical setting in which target
distribution π on Rd is α-strongly log-concave and β-log-smooth, with its mode located at the
origin. Namely, we assume π ∝ exp(−V ), where the potential V : Rd → R is twice continuously
differentiable, α-strongly convex, β-smooth, and ∇V (0) = 0. We let κ := β/α denote the condition
number of π. We study algorithms in which the sampler is given query access to V and ∇V , and
the goal is to produce a sample whose law is close to π in total variation distance. The complexity
of the algorithm is measured by the number of queries made. Note that this oracle model captures
the majority of sampling algorithms used in practice, including the unadjusted Langevin algorithm,
Hamiltonian Monte Carlo, Metropolized random walks, and hit-and-run.

Despite the intense research activity centered on log-concave sampling, only a handful of works
address the lower bound question, and the majority of them are either algorithm-specific or pertain
to auxiliary problems such as estimation of the normalizing constant; see Section 1.2 for related
work. To the best of our knowledge, currently the only general log-concave sampling lower bound is
that of [CGLGR22], which establishes a sharp query lower bound of order Ω(log log κ) in dimension
one. However, that work leaves open the question of obtaining stronger lower bounds in higher
dimension, which is the more relevant case for applications. Even beyond the log-concave setting,
we are aware of only one other work that obtains query lower bounds for sampling: the recent result
of [CGLL23] is incomparable to the present work, as it considers a different setting, and we discuss
it further in Section 1.2. Overall, the lack of sampling lower bounds points to a lack of tools for
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addressing this problem and motivates the present work.

1.1 Our contributions

In this paper, we make significant progress on this problem by proving new lower bounds for
sampling which reach beyond the one-dimensional setting considered in [CGLGR22]. In fact, for
some settings of interest, our lower bounds match existing upper bounds up to constants, and we
therefore obtain some of the first tight complexity results for sampling from log-concave distributions
in dimension d > 1. We obtain lower bounds in two regimes:

Lower bounds in low dimension. Our first lower bound gives a tight characterization of the
complexity of log-sampling in any constant dimension d ≥ 2. We show:

Theorem 1 (informal, see Theorem 4). For any dimension d ≥ 2, any sampler for d-dimensional
log-concave distributions with condition number κ requires Ω(log κ) queries.

Note that this result is exponentially stronger than the Ω(log log κ) lower bound in the univariate
case [CGLGR22]. Moreover, when the dimension d is held fixed, we obtain a matching O(log κ)
algorithmic upper bound, based on folklore ideas from the classical literature on sampling from
convex bodies (Theorem 49). Together with the result of [CGLGR22] for d = 1, this settles the
complexity of log-concave sampling in constant dimension.

On a technical level, the lower bound is based on a novel construction inspired by work on the
Kakeya conjecture in geometric measure theory, which we believe may be of independent interest.
We give a detailed description of the construction in Section 3.

Lower bounds in high dimension. Our second set of lower bounds applies to the high-
dimensional setting and implies that when the dimension is sufficiently large, a polynomial dependence
on the condition number κ is unavoidable (in contrast to Theorem 1, which only gives a logarithmic
dependence on κ in low dimension). In fact, our lower bounds hold for the special case of sampling
from Gaussians, for which they are nearly tight. We first prove the following theorem.

Theorem 2 (informal, see Corollary 19). Any sampler for centered d-dimensional Gaussians with
condition number κ requires Ω(min(

√
κ, d)) queries.

We emphasize the fact that in our setting, the Gaussians are centered. Note that if the Gaussians
were allowed to have varying means, then one can deduce a sampling lower bound by reducing the
optimization task of minimizing a convex quadratic function x 7→ ⟨(x− x⋆),Σ

−1 (x− x⋆)⟩ to the
task of sampling from the corresponding Gaussian N (x⋆,Σ). However, as previously alluded to,
this does not address the inherent difficulty of the sampling problem.

The proof of Theorem 2 rests upon an elegant technique developed in the literature on the matrix-
vector query model (see Section 1.2) in which the conditioning properties and sharp characterizations
of the eigenvalue distribution of Wishart matrices are used to produce difficult lower bound instances
for various tasks. We adapt this method to our context by reducing the task of inverse trace
estimation to sampling (see Theorem 17).

As we show in Appendix B, the lower bound is nearly tight over the class of Gaussians, as it
is possible to sample from a Gaussian using O(min(

√
κ log d, d)) queries using the block Krylov

method. However, note that the lower bound from Theorem 2 does not match the block Krylov
upper bound, and the lower bound of Theorem 2 is vacuous when κ is constant. In particular,
it leaves open the possibility that the complexity of sampling from well-conditioned Gaussians is
dimension-free. While such dimension-free rates are possible in convex optimization, our next result
shows that the same is in fact not possible for log-concave sampling:
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Theorem 3. (informal, see Theorem 45) Let d be sufficiently large, and let κ ≤ d1/5−δ. Then, any
sampler for d-dimensional Gaussians with condition number κ requires Ωδ(

√
κ log d) queries.

In the regime for which Theorem 3 is valid, the lower bound matches the block Krylov upper
bound up to constant factors, and hence we settle the complexity of sampling from Gaussians in this
regime. Moreover, Theorems 2 and 3 together imply the first dimension-dependent lower bounds for
general log-concave sampling. We conjecture that Theorem 3 holds for all κ for which

√
κ log d ≤ d,

and we leave this question for future work.
Although Theorem 3 may appear to only be a mild improvement over Theorem 2, analyzing this

regime is quite delicate, and we believe that the tools based on Wishart matrices employed in the
proof of Theorem 2 may be insufficient to reach Theorem 3. Instead, we prove Theorem 3 by first
establishing sharp lower bounds on the performance of block Krylov algorithms for the sampling
task, and then providing a novel reduction (Lemma 39) which shows that block Krylov algorithms
are optimal for this task. This reduction is quite general, and as the block Krylov algorithm and the
matrix-vector query model are of wide interest in scientific computing and numerical linear algebra,
we believe that our reduction may be broadly useful for tackling other problems in this space.

We remark that a concise way of summarizing Theorems 2 and 3 if we do not care about lower
order terms is that sampling from Gaussians requires Ω̃(min(

√
κ log d, d)) queries, where we write

f = Ω̃(g) to mean f = Ω(g log−O(1)(g)).

1.2 Related work

There is a vast literature on from sampling log-concave (and non-log-concave) distributions, and a
full survey is beyond the scope of this paper. For a detailed exposition, see e.g. [Che22].

Lower bounds for log-concave sampling. As previously mentioned, the only unconditional
lower bound against log-concave sampling is by [CGLGR22] for the one-dimensional setting, where
the tight bound is Θ(log log κ). Other prior work on sampling lower bounds has fallen largely into
one of several categories. One line of work studies lower bounds against a specific class of algorithm
such as underdamped Langevin [CLW21] or MALA [CLACLR21; LST21a; WSC22]. However, these
lower bounds techniques are tailored to the restricted class of algorithms that they consider and are
not suitable for proving general query lower bounds. Another line of work considers lower bounds
against computing normalizing constants [RV08; GLL20]. The work [Tal19] also investigates the
computational complexity of sampling.

We mention two further lower bounds in different settings. The work of [CBL22] proves a lower
bound against stochastic gradient oracles, and the work of [GLL22] proves a lower bound on the
number of individual function value (i.e., zeroth-order) queries needed to sample from a density of
the form exp(−

∑
i∈I fi + µ ∥·∥2), where each fi is convex, Lipschitz, and whose domain is the unit

ball. In contrast, we consider deterministic, first-order oracle access. Moreover, their considerations
are somewhat orthogonal to ours: [CBL22] focuses more on the role of noise, whereas we consider
exact gradient access; and the lower bound of [GLL22] applies a direct reduction from optimization,
which is also not in the spirit of the present work (in particular, we explicitly set the mode of the
target distribution to zero).

Finally, we also mention the recent work [CGLL23], which proves query lower bounds for
non-log-concave sampling in a different metric (the Fisher information). This work is inspired by the
corresponding upper bounds of [BCESZ22] and can be viewed as lower bounds against local mixing.

Upper bounds for log-concave sampling. Starting with the seminal papers of [DT12; Dal17;
DM17], there has been a flurry of recent work on proving non-asymptotic guarantees for log-
concave sampling, with iteration complexities that scale polynomially in the condition number and
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dimension. This includes analyses for the classical Langevin dynamics [Wib18; DK19; DMM19;
VW19; BCESZ22; CELSZ22; AT23], mirror and proximal methods [Wib19; CLLMRS20; SR20;
ZPFP20; AC21; Jia21; LST21b; CCSW22; CE22; GV22; LTVW22; FYC23], the Metropolis-adjusted
Langevin algorithm (MALA) [DCWY18; CDWY20; LST20; CLACLR21; WSC22; AC23], and many
others [CCBJ18; SL19; DR20; DLLW21; MCCFBJ21].

Our upper bound for sampling from Gaussians (Theorem 52) is closely related to the use of the
conjugate gradient algorithm for sampling from Gaussians [NS22]. Also, our O(log κ) upper bound
algorithm is closely related to rounding procedures which have been previously used in the convex
body sampling literature (see, e.g., [LV06]).

Matrix-vector product query model. While matrix-vector queries have been studied in
scientific computing for decades (e.g., [BFG96]), they have only been studied in the theoretical
computer science literature recently, with a fully formalized model described in [SWYZ19]. The
most relevant works to ours are those that study the matrix-vector query complexity of spectral
properties, such as estimating top eigenvectors [SAR18; BHSW20], trace and matrix norms [Hut90;
WWZ14; RWZ20; DM21; MMMW21], the full eigenspectrum [CKSV18; BKM22], and low-rank
approximation [MM15; BCW22]. We remark that the non-adaptive matrix-vector product model is
closely related to sketching, which has enjoyed a large body of work (see, e.g., [Woo14] for a survey).

2 Technical overview

Here we summarize the main technical ideas used to prove our lower bounds. For details, see
Section 3 for Theorem 1, Section 4 for Theorem 2, and Section 5 for Theorem 3.

2.1 Geometric construction in low dimension

Theorem 1 is proved with a construction in dimension two. For convenience, in this section we use
radial coordinates to denote points in R2, so ω := (x, y) = (r, θ), where r ∈ R+ and θ ∈ [0, 2π). We
denote sectors of R2 enclosed by angles θ1 and θ2 as S(θ1, θ2) := {(r, θ) ∈ R2 : θ ∈ [θ1, θ2]}, and
denote bounded sectors as Sbdd(θ1, θ2, r) := {(r′, θ) ∈ R2 : θ ∈ [θ1, θ2], r

′ ≤ r}.
The argument is information-theoretic in nature. We will construct a family of strongly log-

concave and log-smooth distributions {π1, . . . , πm}, where each πb ∝ exp(−Vb), which satisfies two
key properties. First, different distributions πb and πb′ are well separated in total variation distance;
and second, if b is chosen uniformly at random from [m], then querying the potential (Vb(ω),∇Vb(ω))
at any ω ∈ R2 will reveal O(1) bits of information about b. The lower bound in Theorem 1 follows
readily from the existence of such a family, provided that m and κ are polynomially related. On the
one hand, because the distributions are well-separated in total variation, if we can sample well from
the distribution πb using queries, we can identify the index b with high probability. On the other
hand, because there are m distributions and every query reveals O(1) bits of information about b,
we need at least Ω(logm) = Ω(log κ) queries to identify b, which results in a Ω(log κ) query lower
bound for log-concave sampling.

How do we construct such a family? A first attempt is to consider distributions supported
on thin convex sets that have no overlap. For b = 1

κ ,
2
κ , . . . , 1, let πb = uniform(Zb), where

Zb = Sbdd(
π
2 b,

π
2 (b+

1
2κ), 1), and the size of the family is m = ⌊κ⌋. The potential Vb is the convex

indicator of Zb, i.e., it is 0 on Zb and +∞ outside. Morally, the distributions πb can be thought of
as having condition number κ.

This family does satisfy the two properties needed for the lower bound: different distributions
are certainly well-separated because they have disjoint supports; and when we query any potential
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Vb at a point ω ∈ R2, we always receive one bit of information: whether or not ω lies in the support
of πb. However, the distributions in this family are neither strongly log-concave nor log-smooth.
It is easy to make them strongly log-concave while still satisfying the desired properties: we can

adjust the distributions by adding the same quadratic function ∥·∥2
2 to all of the potentials Vb. But

it is much harder to make this family log-smooth.
One way to make this construction log-smooth is to let the potentials Vb grow slowly (linearly)

to infinity outside of the their zero sets Zb, which leads to a modified second attempt: for m = κΩ(1),

b = 1
m , . . . , 1, let πb have potential Vb = Ṽb +

∥·∥2
2κO(1) , where Zb = S(π2 b,

π
2 (b +

1
2m)), and Ṽb(ω) =

κ dist(ω,Zb). Note that the potentials Vb are in fact still not smooth at the boundaries of the sets
Zb, but this can be fixed by mollifying Vb. The distributions in this family will be well-separated,
because an Ω(1) fraction of the mass of πb will lie in Zb, and the sets Zb are disjoint for different b.
Unfortunately, this family no longer reveals O(1) bits per query: for any ω ∈ R2, we can identify b
with a single query to (Vb(ω),∇Vb(ω)), because either ω ∈ Zb, or ∇Vb(ω) reveals the direction of
Zb, and in both cases the index b itself is identified.

We can reduce the information revealed by queries by more carefully controlling the growth of
Ṽb, so that the further away a point ω lies from Zb, the fewer the number of bits will be revealed
by (Ṽb(ω),∇Ṽb(ω)). This motivates a third attempt at the construction. For m = 2N = κΩ(1),
b = 1

m , . . . , 1− 1
m , let b = 0.b1 . . . bN be the binary expansion of b, and let [b]k = 0.b1 . . . bk be the

truncation of b up to the k-th bit. For k = 1, . . . , N , let Zradial
k,b = S(π2 [b]k,

π
2 ([b]k + 2−k)), and let

ϕradial
k,b (x) = κO(1) 2−k dist(x,Zradial

k,b ). Finally, let V radial
b = ∥·∥2

2κO(1) + Ṽ radial
b , where

Ṽ radial
b = max

k=1,...,N
ϕradial
k,b .

The potentials V radial
b will again have to be mollified to be made smooth. It turns out that the

potentials Ṽ radial
b will grow fast enough outside Zradial

N,b such that the distributions will be well-
separated. It also turns out that queries indeed reveal O(1) bits of information on average. This can
be seen as follows: note that the sets Zradial

k,b are sectors such that Zradial
k,b ⊃ Zradial

k+1,b , and as k increases,

Zradial
k,b becomes thinner around the ray {θ = π

2 b}; also note that as k increases, the growth rate of

ϕradial
k,b outside its zero set Zradial

k,b is decreasing; these two properties imply that if we query a point

ω = (r, θ) that is far from the sector Zradial
i,b (in the sense that θ ̸∈ [π2 [b]i−100 ·2−i, π2 [b]i+100 ·2−i]),

then the value of Ṽ radial
b (ω) will not depend on any ϕradial

k,b for k > i, and hence querying Ṽ radial
b (ω)

will only reveal b up to the i-th bit. As a result, if b is chosen uniformly, then for a fixed query ω
with high probability we will have ω ̸∈ Zradial

k,b for any k = O(1), so the query will only reveal O(1)
bits of information about b.

Yet this construction fails because of the mollification step, which we have so far ignored.

To make the potentials Vb smooth, we will instead take Vb = χδ ∗ Ṽ radial
b + ∥·∥2

2κO(1) , where χδ is

supported on a ball of radius δ < 2−2N . We would hope that the potential χδ ∗ Ṽ radial
b still satisfies

the property that querying a point ω = (r, θ) that is far from Zradial
i,b only reveals b up to the

i-th bit. When r is not too close to the origin (say r > 100 · 2−i), this is indeed still true: if ω
satisfies θ ̸∈ [π2 [b]i − 200 · 2−i, π2 [b]i + 200 · 2−i], then the entire δ-neighbourhood of ω will satisfy

θ ̸∈ [π2 [b]i − 100 · 2−i, π2 [b]i + 100 · 2−i], so the value of Ṽ radial
b on the δ-neighbourhood of ω will not

depend on any ϕradial
k,b for k > i, hence the value of (χδ∗Ṽ radial

b )(ω) will also not reveal any information
of b beyond the i-th bit. But when ω is very close to the origin (r < δ), the δ-neighbourhood of ω
will intersect Zradial

N,b , which means that the value of (χδ ∗ Ṽ radial
b )(ω) will depend on ϕradial

k,b for all k
and hence on all bits of b. In other words, mollification leaks information around the origin. As a
result, if we query points δ-close to the origin, we will again identify b in a single query.
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The way to resolve the leakage at the origin is to create a branching structure, such that all Vb

are equal near the origin so that no information is leaked at small scales, and such that far away
from the origin Vb is small around the ray {θ = π

2 b} so that πb still concentrates around different
sectors. We keep the choices of m and b from the previous construction. The potentials will be

Vb = χδ ∗ Ṽb +
∥·∥2

2κO(1) , where Ṽb = maxk=1,...,N ϕk,b, and ϕk,b(ω) = κO(1) 2−k dist(ω,Zk,b). The zero

set Zk,b, instead of being a radial sector like Zradial
k,b , is now thickened adaptively.

We intuitively describe how to generate Zk,b. Each Zk,b will be a thickening of Zradial
k,b , by simply

including all points within some distance dk of Zradial
k,b . We define Z≤k,b :=

⋂
k′≤k Zk′,b: note that

each Z≤k,b is getting smaller as k increases, and Z≤N,b is the zero set of Ṽb.
Consider some radii r0 < r1 < r2 < . . . . To generate Z1,b, we thicken Zradial

1,b (corresponding
to the radial sector matching on the first bit), so that it contains Sbdd(0, π/2, r0) (corresponding
to the quarter-circle near the origin). This avoids leaking information near the origin, as every
x within radius r will be in Z1,b, which means ϕ1,b will also be 0. Indeed, we can thicken Zradial

1,b

just the right amount so that it contains Sbdd(0, π/2, r0). For the concrete example where N = 4,
and b = 0.1010, we show a description of Z1,b in Figure 1a: we shade Sbdd(0, π/2, r0) in dark blue,
Zradial
1,b = S(π/4, π/2) in medium blue, and the additional thickening required in light blue.
To generate Zk,b for k ≥ 2, we thicken a much thinner angular sector. This ensures that at large

radii, the arc of Zk,b is not too big. We will inductively thicken Zk,b by some amount dk just enough
to contain Zk−1,b ∩ Sbdd(0, π/2, rk−1). Consider one more example for k = 2 (again for N = 4, and
b = 0.1010), in Figure 1b. Note that Zradial

2,b is the sector S(π4 ,
3π
8 ) (shaded in medium blue), and the

thickened region (in light blue emanating from both sides of the sector) is just enough to capture
all of Z1,b that was within radius r1. However, for larger radii, Z2,b is much thinner than Z1,b. In
addition, if we know the first bit b1 = 1, then querying Vb anywhere in {r ≤ r1} will not reveal any
information about the second bit b2. This is because either we were in Z1,b which only depends on
b1 (in which case ϕ1,b = ϕ2,b = 0 as we thickened to make sure Z2,b ⊃ Z1,b ∩ Sbdd(0, π/2, r1)), or we
weren’t, in which case ϕ1,b grows much more quickly than ϕ2,b.

We can also continue this process inductively for k = 3, 4 (Figures 1c and 1d): we show Z≤k,b.
The intuition for why this prevents leaking of information near the origin is that even if k is large,
Zk,b in the smaller-radius regions is decided by Zk′,b for k

′ ≪ k, so we cannot learn any later bits.
The comparisons of Zradial

k,b and Z≤k,b for b = 0.1010 and for all k ≤ 4 are shown together in

Figure 1. The picture is not to scale, and the radial arcs represent the radii ri = 2ir0, for i = 0, . . . , 4.

The construction of Z≤k,b means that for k > 1, querying ϕk,b within {r ≤ 2k−1r0} will not reveal
the k-th bit, and so even querying the mollified χδ ∗ ϕk,b within {r ≤ 2k−2r0} will not reveal the
k-th bit, which stops information leaking near the origin.

Since Ṽb = maxk=1,...,N ϕk,b, the zero set of Ṽb coincides with Z≤N,b, and for the choice of
b = 0.1010, this is shown in the first panel of Figure 2. It turns out that each πb will concentrate
around the zero set of Ṽb, and the other panels of Figure 2 show these zero sets for seven different
values of b in the set { 1

16 , . . . ,
15
16} at larger scales. We can see that far out from the origin the zero

sets become well-separated, and hence the distributions are well-separated in total variation.
We already discussed how the thickening of Zk,b means that querying ϕk,b, and hence Ṽb, near

the origin will not reveal the higher bits of b. For query points ω = (r, θ) where r is large, the same
analysis on Ṽ radial

b tells us that Ṽb(x) (even after mollification) will reveal O(1) bits of information
about b when b is chosen uniformly. As mentioned earlier, such a family of distributions readily
leads to a sampling lower bound of Ω(logm), where m is the size of the family. Since we can choose
m = κΩ(1), this leads to the Ω(log κ) lower bound. Details of the proof can be found in Section 3.
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(a) k = 1 (b) k = 2 (c) k = 3 (d) k = 4

Figure 1: Comparison of Zradial
≤k,b (the sector in medium blue) with Zk,b (union of dark, medium, and

light blue), for k = 1, 2, 3, 4, and b = 0.1010. Dark blue represents the larger angular sectors closer
to the origin, and light blue represents the additional fattening from taking sumsets. Each Zk,b is
constructed by thickening Zradial

k,b enough (illustrated by the red arrows) such that no information
about the k-th bit is revealed close to the origin, but Zk,b continues to get thinner at large radii.

Figure 2: Zeros sets of Ṽb. The first panel shows the zero set for b = 0.1010. The other panels show
the zeros sets for different values of b at different scales. Note that far away from the origin the zero
sets become well-separated, which leads to the distributions being well-separated in total variation.
Note that if b, b′ match in the first ℓ bits, then they will agree up to the ℓ-th circle, as those circles
only depend on Z≤ℓ,b even for ℓ much less than K.

Connections to Kakeya constructions. The construction outlined above is related to Perron’s
construction [Per28] of Besicovich (Kakeya) sets known as Perron trees. Kakeya sets are sets with
area zero that contain the translation of a unit segment in any direction. While Kakeya sets over
finite fields have been investigated before in theoretical computer science, e.g., [SS08; Dvi09; Juk11],
our construction is inspired by Kakeya sets over continuous domains, namely R2. To our knowledge,
this is one of the first applications of these geometric ideas to theoretical computer science.

There are many similarities between our construction and that of Perron. Perron’s construction
proceeds by the method of sprouting. Sprouting is an iterative process in which, at each step,
one adds further and further smaller triangles to the pre-existing construction. The figure is then
rescaled in order to have height 1. The construction after n steps contains 2n triangles of small
aperture Ω(2−n), and has area O(n−1). We do a similar process in the definition of our sets Zk,b,
and indeed, ultimately our hard instance has a very similar tree-like structure.

While we were inspired by the construction of Perron trees, there are also key differences between
our hard instance and Perron’s construction. Indeed, in our setting, we need to minimize overlap (so
that the resulting distributions are well-separated) while simultaneously ensuring that information
is not leaked by queries. In contrast, Kakeya sets are explicitly designed to maximize overlap.
Secondly, the iterates of Perron trees are convex sets, not convex functions. One must turn these
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convex sets into convex functions somehow. This is additionally complicated by the fact that these
iterates are not nested. In our construction, we must take great care to create nested convex sets,
so that the resulting functions are convex and still maintain the structure of the sets.

2.2 Lower bounds for sampling from Gaussians

We now turn to our lower bounds against sampling from Gaussians. Recall that our goal is to
provide a lower bound on sampling from a Gaussian N (0,Σ), where Λ := Σ−1 has condition number
κ. Note that the corresponding potential is V (x) = 1

2 ⟨x,Λx⟩, and we are allowed zeroth-order and
first-order queries, which means for a query x, we receive x⊺Λx and Λx. Hence, adaptive queries
are equivalent to adaptive matrix-vector product computations with Λ.

The first observation we make is that we can reduce the problem of sampling from the Gaussian
to estimating the trace of Σ. This is because if X is a sample from a distribution which is close in
total variation distance to N (0,Σ), then ∥X∥22 ≈ tr(Σ) with high probability. Therefore, it suffices
to demonstrate a lower bound for the following problem: given matrix-vector product computations
with Λ, approximately compute tr(Λ−1).

2.2.1 Lower bound via Wishart matrices

For any d, let W ∈ Rd×d have the Wishart(d) distribution. That is, W = XX⊺, where X ∈ Rd×d

has i.i.d. N (0, 1/d) entries. We take W to be the precision matrix, Λ = W . Our first lower bound
shows that Ω(d) matrix-vector queries with W are necessary to estimate the trace of W−1 even
to constant multiplicative accuracy, with constant success probability (Theorem 18). Since the
condition number of W is Θ(d2) with high probability, we obtain one extreme of the claimed lower
bound Ω(min(

√
κ, d)). The general lower bound for all κ then follows from a padding argument.

This lower bound approach is inspired by [BHSW20], which proved a query lower bound for
estimating the minimum eigenvalue of W . Their approach relies on the fact that if we condition on
any sequence of (1−Ω(1)) d adaptive queries, the posterior distribution of the remaining eigenvalues
behaves similarly to the original distribution of the eigenvalues of W . In addition, while the smallest
eigenvalue of W is usually about 1/d2, its distribution has heavy tails: with probability Θ(

√
ε), the

smallest eigenvalue of W is below ε/d2. Consequently, even conditioned on d/2 adaptive queries, we
are unable to learn the minimum eigenvalue up to a constant factor with high probability.

In our setting, we instead wish to show that learning the trace of W−1 is hard. However,
the smallest eigenvalue of the Wishart matrix is so small that with high probability, tr(W−1) =
Θ(λmin(W )−1). While most of the time the trace is O(d2), with probability Θ(

√
ε) the posterior

distribution of the smallest eigenvalue of W after our adaptive queries may be ε/d2. Hence, we will
be unable to determine whether the trace is ≤ O(d2) or ≥ Ω(d2/ε) with high probability.

This lower bound technique is clean and nearly optimal, but as previously mentioned it is
vacuous (of constant order) when κ = O(1), whereas we expect the complexity of the problem to
increase as d → ∞. To tackle this setting, we introduce a second approach.

2.2.2 Lower bounds via reduction to block Krylov

Our second technique works in two parts. First, we show that for a specific hard distribution over
instances, any block Krylov-style algorithm requires Ω(min(

√
κ log d, d)) queries to estimate tr(Σ).

Then, we show a general purpose reduction which demonstrates that for this hard instance (and
indeed, any rotationally invariant instance), block Krylov methods are actually optimal.

Lower bound for block Krylov algorithms. Recall the block Krylov technique: the algorithm
chooses K i.i.d. random vectors v1, . . . , vK ∼ N (0, I), and computes Λjvk for all j ≤ T, k ≤ K. This

8



can be done using KT adaptive queries, by querying Λjvk to learn Λj+1vk. For our purposes, it
suffices to consider block Krylov algorithms with K = T and to prove a lower bound on the smallest
number K needed to successfully estimate tr(Σ), for Σ = Λ−1.

We will construct two diagonal matrices D,D′ with all eigenvalues between 1 and κ, such that
tr(D−1) and tr((D′)−1) are sufficiently different. In addition, if Λ,Λ′ are random rotations of D,D′,
respectively, then {Λjvk}j,k≤K and {(Λ′)jvk}j,k≤K are hard to distinguish for K ≤ c

√
κ log d for a

small constant c (Lemma 32). Thus, unless K ≥ Ω(
√
κ log d), we cannot estimate the trace.

To explain the intuition behind Lemma 32, we first consider what happens if we only have
{Λjv}j≤K for a single random vector v (i.e., power method). Letting λ1, . . . , λd be the eigenvalues of

Λ, we have Λjv =
∑d

i=1 λ
j
iαiui, where ui is the i-th eigenvector of Λ and v =

∑d
i=1 αiui. Intuitively,

the only information we obtain from these vectors are their pairwise inner products, since we could

have randomly rotated Λ. Therefore, the only information we have is ⟨Λjv,Λj′v⟩ =
∑d

i=1 λ
j+j′

i α2
i ,

which is the set {
∑d

i=1 λ
j
iα

2
i }j≤2K . Since v is random, we may think of all of the α2

i as 1 for simplicity,

and so we know {
∑d

i=1 λ
j
i}j≤2K . Our goal is to use this information to learn tr(Λ−1) =

∑d
i=1 λ

−1
i .

We connect this to the problem of estimating 1/x as a linear combination of 1, x, x2, . . . , xK , a
classic problem in approximation theory that is often tackled with Chebyshev polynomials. Indeed,
this relation to Chebyshev polynomials is the main tool in the analysis of essentially all Krylov
methods. In our setting, as we desire lower bounds, we apply the fact that Chebyshev polynomials
are optimal in generating certain approximations. More concretely, suppose that there are only K
distinct eigenvalues λ1, . . . , λK , with each λi having some multiplicity Ni. Since we want to show
that estimating tr(Λ−1) is hard, this amounts to showing that knowing

∑K
i=1Niλ

j
i for 0 ≤ j ≤ K

is insufficient to learn
∑K

i=1Ni/λi. We express this as a linear program (if we relax the Ni to be
reals), the dual of which precisely captures whether 1/x can be approximated well by a degree-K
polynomial at λ1, . . . , λK (Proposition 29). If we choose the λi to be the local extrema of a degree-K
Chebyshev polynomial, shifted so that λ1 = 1 and λK = κ, then it is known that one cannot estimate
1/x up to error d−Ω(1) at these points (which is needed for trace estimation), unless K ≥ Ω(

√
κ log d).

At a high level, this is the reason why we need Ω(
√
κ log d) iterations of the power method.

For general block Krylov algorithms, the algorithm obtains ⟨vℓ,Λj vk⟩, for 0 ≤ j ≤ K and 1 ≤
k, ℓ ≤ K. Now, the information that the algorithm sees is captured by the matrices {⟨vℓ,Λj vk⟩}k,ℓ≤K ,
for j = 1, . . . ,K. Here, we show that provided K is sufficiently small compared to d, we can find
choices of multiplicities N1, . . . , NK and N ′

1, . . . , N
′
K , such that the corresponding matrices D,D′

have significantly different traces (i.e.,
∑K

i=1(Ni −N ′
i)/λi is large) but the information from queries

is not enough to distinguish between Λ and Λ′, which we establish via a coupling argument.

Reduction to block Krylov algorithms. The argument outlined above shows block Krylov
algorithms with K = o(

√
κ log d) cannot distinguish between two families of randomly rotated

matrices with difference traces (Λ coming from D and Λ′ coming from D′), and hence cannot solve
the trace estimation task. Our next technical contribution is a reduction which allows us to simulate
the output of any adaptive algorithm with K queries on our hard instance, given only the responses
to a block Krylov algorithm. Thus, a lower bound against block Krylov methods translates into a
lower bound against any query algorithm. We now give a high-level description of the reduction.

Since we prove lower bounds based on randomized constructions, it suffices to consider adaptive
deterministic algorithms, i.e., each query vk is a deterministic function of the previous queries
and oracle outputs. The difficulty of proving such a lower bound against such an algorithm is
the adaptivity of the queries, which makes it difficult to reason about how much information the
algorithm has learned. However, since our lower bound construction for block Krylov algorithms is
rotationally invariant, intuitively the adaptivity does not help: the algorithm may as well query a
random direction which it has not yet explored.
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However, this intuition is not entirely correct: if the algorithm has previously queried a vector
v and received the information Λv, then it may useful to query Λv in order to receive the infor-
mation Λ2v, instead of querying a completely random new direction. Indeed, computing powers
v,Λv,Λ2v, . . . is precisely the essence of the power method, as discussed above. To account for this,
we move to the following stronger oracle model: if the algorithm has selected vectors v1, . . . , vk,
then at iteration k it receives all of the information (Λivj)i+j≤k for free. Now, there is provably no
benefit to querying vectors which lie in the span of the previous queries and oracle outputs.

Recall that our goal is to argue that an adaptive deterministic algorithm can be simulated by
an algorithm which simply makes i.i.d. Gaussian queries z1, z2, . . . , zK , in the following sense. In
the stronger oracle model, at iteration k, the adaptive algorithm has made queries (valg1 , . . . , valgk )

and received information (Λivalgj )i+j≤k and it picks a new vector vk+1 which lies orthogonal to its
received information. Suppose that using only the Gaussian queries z1, z2, . . . , zk, we have simulated
queries vsim1 , vsim2 , . . . , vsimk which are equivalent to the execution of the adaptive algorithm in the
sense that the law of the information (Λivsimj )i+j≤k is precisely the same as the law of the algorithm’s

information (Λivalgj )i+j≤k. Since the algorithm is deterministic, valgk is a function vk((Λ
ivalgj )i+j<k)

of algorithm’s accumulated information. Thus, in order to simulate the adaptive algorithm for one
more step, it is natural to consider taking vsimk := vk((Λ

ivsimj )i+j<k). However, we will be unable

to compute Λivsimk for any i ≥ 1, because the simulation must be based on the Gaussian queries
z1, z2, . . . , zk, whereas this definition of vsimk requires making queries at vsim1 , vsim2 , . . . , vsimk−1.

Thus far, we have not invoked the rotational invariance of Λ, which is crucial to the argument.
The key is that although we cannot directly take vk((Λ

ivsimj )i+j<k) to be our next simulated point,

we can rotate ṽk into vk((Λ
ivsimj )i+j<k) via a unitary matrix Uk; moreover, we can arrange that

Uk fixes all of the previous information (Λivsimj )i+j<k, because vk((Λ
ivsimj )i+j<k) lies orthogonal

to this information (recall, we can assume that each deterministic function vk(·) outputs a vector
orthogonal to its inputs, due to our choice of oracle model). The intuition is that due to the
rotational invariance of Λ, then conditioned on the data (Λivsimj )i+j<k, the distribution of Λ is

still rotationally invariant on the orthogonal subspace of the data; hence, Ukṽk = vk((Λ
ivsimj )i+j<k)

ought to have the same law as ṽk, i.e., querying the completely random direction ṽk is just as good
as querying according to what the adaptive algorithm specifies.

Unfortunately there are further difficulties to overcome with this approach. Namely, suppose
that we define each simulated point vsimk to be the output Ukṽk of a rotation matrix applied to
ṽk. We would like to take Uk such that Ukṽk = vk((Λ

ivsimj )i+j<k) but this is no longer computable

based on (Λiṽj)i+j<k. However, we note that Λivsimj = ΛiUj ṽj = UjΛ̃
iṽj where Λ̃ := U⊺

j ΛUj . This

shows that Λivsimj is computed from the query of ṽj , not on the original matrix Λ but on the

modified matrix Λ̃, together with the matrix Uj . Since we hope that Λ̃ has the same law as Λ,
then this is good enough for the purposes of simulating the adaptive algorithm. Actually, in order
for the induction to work out, it becomes clear that we need to define a sequence of matrices
Λ1,Λ2, . . . ,Λk, where each Λk is related to the previous Λk−1 via Λk = U⊺

kΛk−1Uk, and Uk is chosen
such that vsimk = Ukṽk = vk((Λ

i
k−1v

sim
j )i+j<k). Then, we must argue that the simulated sequence

vsim1 , vsim2 , . . . , vsimk has the same law as the algorithm’s sequence valg1 , valg2 , . . . , valgk .
This last step, however, turns out to be delicate. Indeed, although it is obvious that for a fixed

orthogonal matrix U ′, the law of Λ is the same as the law of (U ′)⊺ΛU ′, the rotation matrices Uk

we choose in the above argument are dependent on the previous queries and oracle outputs, and
are hence dependent on Λ itself. In the presence of such dependence, it is not obvious why the law
of Λk should be the same as the law of Λ, and to address this we prove a conditioning lemma in
Section 5.3.2. Once the conditioning lemma is proved, the remainder of the proof follows along the
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lines just described, and the details of the induction are carried out in Section 5.3.3.

3 A general sampling lower bound in dimension two

3.1 Overview

Our goal is to show the following theorem:

Theorem 4 (lower bound in dimension two). There is a universal constant ε0 > 0 such that the
following holds. The query complexity of sampling from the class of distributions π ∝ exp(−V )
on R2 such that V is 1-strongly convex, κ-smooth, and minimized at 0, with accuracy ε0 in total
variation distance, is at least Ω(log κ).

The strategy to do so will be to construct a finite family S of potentials in the given class which
satisfies the following two properties:

• The potentials are hard to identify via queries (in the sense of Definition 9 below), and
therefore any algorithm must query V at Ω(log κ) points in order to identify which V ∈ S the
algorithm is querying.

• The potentials are well-separated (in the sense of Definition 10 below), which loosely means
that they have mostly non-overlapping support and hence (by Proposition 11) a single sample
from π ∝ exp(−V ) suffices to identify V ∈ S with constant probability.

Before describing the potentials S in more detail, we note some basic definitions.

Definition 5. Given two functions f, g : Rd → R, the convolution f ∗ g is the function defined as
(f ∗ g)(x) :=

∫
Rd f(y) g(x− y) dy, for all x ∈ Rd.

Definition 6. For δ > 0, we define χδ to be the indicator function of the ball Bδ of radius δ around
the origin. By this, we mean χδ(x) = 1 if ∥x∥2 ≤ δ, and χδ(x) = 0 otherwise.

The family S of potentials will have cardinality κΩ(1), so that identification of the potential
requires Ω(log κ) bits of information. Actually, by rescaling the potentials, it suffices for each
potential V to be κ−O(1)-convex and κO(1)-smooth. Our eventual construction also satisfies the
following properties.

• Each V ∈ S is of the form V = Ṽ ∗ χδ + ∥·∥2/(2κO(1)), where Ṽ : R2 → R is a convex,
non-negative, and piecewise linear potential, and δ will have scale δ = κ−Θ(1).

• Each V ∈ S is zero in a small neighbourhood of a ray ℓ emanating from the origin, and grows
fast outside of this ray; hence, the potentials are well-separated.

• Suppose that ℓ, ℓ′ are the rays corresponding to two potentials V, V ′ ∈ S. At distances from
ℓ and ℓ′ that are much larger than the angle ∠(ℓ, ℓ′), the potentials V , V ′ are exactly equal.
This is the property makes the potentials hard to identify via queries.

Throughout the proof, we assume that κ is sufficiently large, κ ≥ Ω(1).

11



3.2 Definitions and the information-theoretic argument

Definition 7 (density and normalizing constant). Given a strictly convex function V : Rd → R, we
denote by PV the probability distribution with density Z−1 exp(−V ) w.r.t. Lebesgue measure, where
Z :=

∫
exp(−V ) is the normalizing constant. In an abuse of notation, we also use PV to refer to

the density itself.

Definition 8 (queries and extended oracle). For a fixed potential V , and given a query x ∈ Rd,
the extended oracle responds with V (Bδ(x1)), which consists of the value of V for all points in
the ball of radius δ centered at x. For a sequence of (possibly adaptive and randomized) queries
x1, . . . , xn and observations V (Bδ(x1)), . . . , V (Bδ(xn)), we denote the information from the i-th
query by ξi := {xi, V (Bδ(xi))}, and the information from all the queries by

ξ1:n := {ξ1, . . . , ξn} .

Note that the extended oracle in Definition 8 provides more information (the set of values of the
potential in some ball around the query point x) to the algorithm than our original first-order query
model, from which the algorithm only observes (V (x),∇V (x)) at the query x. A lower bound for
sampling in this stronger query model clearly implies a lower bound in the original query model. We
consider the stronger model out of technical convenience, as this notion is robust to the mollification
in the construction of the potentials.

Definition 9 (hard to identify via queries). A finite set S of potentials in Rd is called I-hard to
identify with queries at scale δ if the following holds: for V ∼ uniform(S), any sequence of queries
x1, . . . , xn to the extended oracle made by a deterministic adaptive algorithm satisfies

I(ξ1:n;V ) ≤ In ,

where I denotes the mutual information.

Definition 10 (well-separated set). A set S of potentials is well-separated if there is a family of
measurable sets (ΩV )V ∈S where the sets ΩV are disjoint, and a universal constant c > 0 such that

PV (ΩV ) ≥ c , for all V ∈ S .

The motivation for this definition is the following fact:

Proposition 11 (one sample identifies well-separated distributions). Let S be a well-separated set
of potentials and conditionally on V ∼ uniform(S), suppose that X is a sample from a probability
measure P̂V which is at most c

2 away from PV in total variation distance. Then,

P{X ∈ ΩV } ≥ c

2
.

Proof. By conditioning on V ,

P{X ∈ ΩV } = EP{X ∈ ΩV | V } = E P̂V (ΩV ) ≥ E
[
PV (ΩV )− ∥PV − P̂V ∥TV

]
≥ c

2
,

which is what we wanted to show.

This shows that the minimum-distance estimator

V̂ := argmin
V ∈S

inf
z∈ΩV

∥X − z∥ (3.1)

succeeds at estimating the randomly drawn V with constant probability. On the other hand, we
have Fano’s inequality from information theory.
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Theorem 12 (Fano’s inequality, [CT06, Theorem 2.10.1]). Suppose that S is a finite set and
V ∼ uniform(S). Suppose that V̂ is any estimator which is based on some data ξ. Then,

P{V̂ ̸= V } ≥ 1− I(ξ;V ) + log 2

log |S|
.

Fano’s inequality enables us to reduce Theorem 4 to the following proposition:

Proposition 13 (well-separated set which is hard to identify via queries). Let κ ≥ Ω(1). Then,
there is a set S of potentials such that:

1. All elements of S are κ−O(1)-convex and κO(1)-smooth, and have their minimum at zero.

2. S has cardinality κΩ(1).

3. S is well-separated with c = Ω(1).

4. S is hard to identify via queries at scale δ = κ−Θ(1), and with I = O(1).

Proof. [Proof of Theorem 4] Suppose that there is a sampling algorithm which, given any target
distribution π ∝ exp(−V ) on R2 such that V is 1-strongly convex, κ̄-smooth, and minimized at 0,
outputs a sample X whose law is ε0 close in total variation distance to π using n(κ̄) queries to the
extended oracle. Let S be the family in Proposition 13. By choosing ε0 = c/2 = Ω(1) and rescaling
the potentials accordingly, then Proposition 11 implies that the sampling algorithm can identify
V ∼ uniform(S) using n(κ̄) queries with constant probability, where κ̄ = κO(1). Namely, for the
estimator V̂ in (3.1),

P{V̂ = V } ≥ c

2
= Ω(1) . (3.2)

On the other hand, we can prove a lower bound for the error probability of any estimator
V̂ constructed using adaptive queries. First we assume that the estimator is deterministic given
previous queries. Because the set S is hard to identify, by Fano’s inequality (Theorem 12) we have

P{V̂ ̸= V } ≥ 1−
I(ξ1:n(κ̄);V ) + log 2

log |S|
≥ 1− In(κ̄) + log 2

log |S|
= 1−O

(n(κ̄)
log κ

)
, (3.3)

for all n(κ̄) ≤ c |S| = O(log κ). If the estimator is instead randomized, it depends on a random seed
ζ that is independent of V . In this case, the same argument as above conditional on ζ gives

P{V̂ ̸= V | ζ} ≥ 1− Ω
(n(κ̄)
log κ

)
.

Taking expectation over ζ, we see that (3.3) holds also for randomized algorithms. Combined with
(3.2), we see that n(κ̄) ≥ Ω(log κ) = Ω(log κ̄).

3.3 Reductions and properties of the construction

Recall from Section 3.1 that each V ∈ S is of the form V = Ṽ ∗ χδ + ∥·∥2/(2κO(1)). In this section,
we reduce the desired properties of S, namely that S is well-separated and hard to identify via
queries, to geometric properties of the potentials summarized in Proposition 14 below.

By increasing κ by a factor of at most two, which will not harm the final lower bound, we can
assume that κ = 2N for some positive integer N . We also set δ := κ−5. Let BN denote the set of
binary strengths of length N . For each b ∈ BN and ℓ ∈ [N ], we let [b]ℓ := 0.00b1 . . . bℓ in binary
representation, and set [b] := [b]N .
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Proposition 14 (geometric properties). There are functions Ṽb, for b ∈ BN , such that:

(P0) Ṽb is convex and κO(1)-smooth on average at scale δ = κ−5, i.e., Ṽb ∗ χδ is κO(1)-smooth, and
attains its minimum Vb(0) = 0 at zero.

(P1) The zero set Zb := {Ṽb = 0} contains the 103δ-neighborhood of the set

Z̃b := {(x, βx) ∈ R2 | x ≥ 0, [b]− 2−N ≤ β ≤ [b] + 2−N} , (3.4)

and is contained in the 1-neighbourhood of Z̃b.

(P2) Moreover, for all x, y ∈ R2,

Ṽb(x, y) ≥ κ4
(
dist((x, y), Z̃b)− 1

)
+
.

(P3) If b, b′ coincide in the first ℓ bits then Ṽb and Ṽb′ coincide in the set{
(x, y) ∈ R2

∣∣ x <
1

4
2−3N or |y − [b]ℓ x| > 100 · 2−ℓx

}
.

We check that these properties imply that Proposition 13 holds.

Proof. [Proof of Proposition 13] Let S be the collection of potentials Vb := Ṽb ∗ χδ + ∥·∥2/(2κ16)
for b ∈ BN , where {Ṽb : b ∈ BN} are the functions from Proposition 14. We now verify the four
properties of Proposition 13.

Proof of 1. By (P0), we know that Ṽb is convex, which implies that Ṽb ∗ χδ is also convex.
Therefore, Vb is κ

−16-strongly convex. In addition, by (P0), Ṽb ∗ χδ is κO(1)-smooth, which means
that Vb is κ

O(1) + κ−16 ≤ κO(1)-smooth.
Proof of 2. By construction, |S| = κ.
Proof of 3. We now show that S is c-separated. For any string b, recall the definition of Z̃b

from (3.4). Define the set

Ωb := {(x, βx) ∈ R2 | x ≥ 2−3N , [b]− 0.4 · 2−N ≤ β ≤ [b] + 0.4 · 2−N} .

It is clear that {Ωb : b ∈ BN} is a family of disjoint sets. By (P1) we know that the zero set Zb of
Ṽb contains a 103δ-neighborhood of Z̃b. Since Ωb ⊂ Z̃b, it follows that Ṽb ∗ χδ = 0 on Ωb.

Let Ω̃b := {(x, y) ∈ Ωb : ∥(x, y)∥ ≤ κ8}. Note that the full set of points (x, y) with ∥(x, y)∥ ≤ κ8

has volume πκ16, and Ωb is a sector of the plane with arc Θ(2−N ), minus a small set of points
(specifically, the points in the sector with x ≤ 2−3N , which also means y ≤ O(2−3N )). Therefore,
the volume of Ω̃b is Θ(κ16 · 2−N ) = Θ(κ15). In addition, all points (x, y) ∈ Ω̃b have Vb(x, y) =
−∥(x, y)∥2/(2κ16) ≥ −1/2. Hence,∫

Ωb

exp(−Vb) ≥
∫
Ω̃b

exp(−Vb) ≥ Ω(κ15) . (3.5)

Next, we bound the full integral of exp(−Vb) across Rd by splitting Rd into four regions
Rd = Z̃b ∪Ψ1,b ∪Ψ2,b ∪Ψ3,b, defined as follows:

• Ψ1,b := {(x, y) ∈ R2 \ Z̃b : dist((x, y), Z̃b) ≤ 2, ∥(x, y)∥ ≤ κ9}.

• Ψ2,b := {(x, y) ∈ R2 \ (Z̃b ∪Ψ1,b) : ∥(x, y)∥ ≤ κ9}.
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• Ψ3,b = R2 \ (Z̃b ∪Ψ1,b ∪Ψ2,b).

Note that all points Ψ3,b have norm at least κ9. To show that most of the mass of PVb
is concentrated

on Z̃b, we must show that the integrals over Ψ1,b, Ψ2,b, and Ψ3,b are small. In a nutshell, the integral
over Ψ1,b is small because the 2-neighborhood of Z̃b is small (relative to the size of Z̃b itself); the
integral over Ψ2,b is small because Ṽb increases rapidly outside Z̃b; and the integral over Ψ3,b is small
because the Gaussian part of Vb is small over this region.

On these four regions, we have the following bounds. First,
∫
R2 exp(−∥·∥2/(2κ16)) = 2πκ16.

Therefore, since the sector Z̃b has arc Θ(2−N ), by rotational symmetry∫
Z̃b

exp(−Vb) ≤
∫
Z̃b

exp
(
− ∥·∥2

2κ16
)
≤ O(2−N )

∫
R2

exp
(
− ∥·∥2

2κ16
)
≤ O(κ15) .

Note that Ψ1,b consists of two strips adjacent to Z̃b, where each strip has width 2 and length O(κ9),
together with a piece of area O(1) near the origin. Thus, vol(Ψ1,b) ≤ O(κ9), yielding∫

Ψ1,b

exp(−Vb) ≤ vol(Ψ1,b) ≤ O(κ9) .

Next, for (x, y) ∈ R2 such that dist((x, y), Z̃b) ≥ 3/2, by (P2) we have Ṽb(x, y) ≥ κ4. After
mollification at scale δ ≤ 1/2, we conclude that Ṽb ∗ χδ ≥ κ4 on Ψ2,b. In addition, Ψ2,b is contained
in the ball of radius κ9, so the volume of Ψ2,b is at most πκ18. Therefore,∫

Ψ2,b

exp(−Vb) ≤ πκ18 exp(−κ4) .

Finally, all points in Ψ3,b have ℓ2 norm at least κ9, so∫
Ψ3,b

exp(−Vb) ≤
∫∫

∥·∥≥κ9

exp
(
− ∥·∥2

2κ16
)
≤ O(κ8) exp

(
−Ω(κ2)

)
,

by standard Gaussian tail estimates. Therefore,∫
R2

exp(−Vb) ≤ O
(
κ15 + κ9 + exp

(
−Ω(κ4)

)
+ exp

(
−Ω(κ2)

))
≤ O(κ15) . (3.6)

Overall, (3.5) and (3.6) together imply that PVb
(Ωb) ≥ Ω(1), i.e., S is Ω(1)-well-separated.

Proof of 4. Finally, we show that S is hard to identify via queries at scale δ = κ−Θ(1) with
I = O(1). We consider b drawn uniformly at random from BN .

First, however, we need to extend (P3) to Vb (i.e., taking into account the mollification at scale
δ). We claim that if b, b′ coincide in the first ℓ bits, then Vb and Vb′ coincide in the set{

(x, y) ∈ R2
∣∣ x <

1

8
2−3N or |y − [b]ℓ x| > 200 · 2−ℓx

}
. (3.7)

In light of (P3), it suffices to show that if (x, y) lies in this set and ∥(x′, y′) − (x, y)∥ ≤ δ, then
x′ < 1

4 2
−3N or |y′ − [b]ℓ x

′| > 100 · 2−ℓ x′. In other words, the δ-neighborhood of (3.7) is contained
in the set in (P3). In the first case, x′ < 1

4 2
−3N follows if δ < 1

8 2
−3N , but since δ = κ−5 = 2−5N

this holds for large κ. In the second case,

|y′ − [b]ℓ x
′| ≥ |y − [b]ℓ x| − δ − [b]ℓ δ ≥ 200 · 2−ℓ x− 2δ .
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This is greater than 100 · 2−ℓ x provided that 2δ ≤ 100 · 2−ℓ x, but this follows because δ = 2−5N

and x ≥ 1
8 2

−3N (as we are in the negation of the first case). In fact, by replacing δ with 2δ, the
same argument shows that for all (x, y) lying in the set (3.7), we have Vb(Bδ(x, y)) = Vb′(Bδ(x, y)).
Note also that (3.7) shows that it is useless to query any points (x, y) with x < 1

8 2
−3N , so for the

remainder of the proof we assume that the algorithm does not do so.
We now move to a stronger oracle model. Namely, given a query point (x, y) ∈ R2, let ℓ

be the largest integer such that |y − [b]ℓ x| ≤ 200 · 2−ℓ x. Then, the oracle outputs ξ̂ := [b]ℓ+1,
i.e., the oracle reveals the first ℓ + 1 bits of b. To see that this new oracle is indeed stronger,
observe that we can simulate the previous oracle using the revealed bits [b]ℓ+1; namely, pick any
bit string b′ which is consistent, in the sense that [b′]ℓ+1 = [b]ℓ+1. Then, by the choice of ℓ, we
have |y − [b]ℓ+1 x| > 200 · 2−(ℓ+1) x, so that Vb(Bδ(x, y)) = Vb′(Bδ(x, y)), and hence we can output
Vb(Bδ(x, y)) given knowledge of [b]ℓ+1. It therefore suffices to bound the mutual information I(ξ̂1:n; b)
where ξ̂1:n denotes the output of the stronger oracle on a sequence of adaptive but deterministic
queries (x1, y1), . . . , (xn, yn).

We can then write

I(ξ̂1:n; b) =
n∑

i=1

I(ξ̂i; b | ξ̂1:i−1)

=
n∑

i=1

{H(ξ̂i | ξ̂1:i−1)−H(ξ̂i, | ξ̂1:i−1, b)}

≤
n∑

i=1

H(ξ̂i | ξ̂1:i−1) , (3.8)

where H(· | ·) denotes the conditional entropy. The first line follows from the chain rule for mutual
information, the second line follows from definition of mutual information, and third line follows from
non-negativity of conditional entropy. Thus, we are done if we can show that H(ξ̂i | ξ̂1:i−1) ≤ O(1),
for all i ≤ c |S|.

Conditionally on any particular realization of ξ̂1:i−1, let ℓ0 denote the number of bits of b revealed
thus far and let [b0]ℓ0 denote the revealed bits. Clearly the bit string b is uniformly distributed on
the set B′

N of bit strings b′ with [b′]ℓ0 = [b0]ℓ0 . Also, since we have assumed that the algorithm’s
queries are deterministic given the past history, the next query point (xi, yi) is deterministic. Then,
the conditional probability that ℓ ≥ ℓ0 bits are revealed by the next query is

P{200 · 2−ℓ xi < |yi − [b]ℓ xi| ≤ 200 · 2−(ℓ−1) xi | ξ̂1:i−1}

≤ P
{ yi
xi

− 200 · 2−(ℓ−1) ≤ [b]ℓ ≤
yi
xi

+ 200 · 2−(ℓ−1)
∣∣ ξ̂1:i−1

}
.

This is the probability that a uniformly chosen element of B′
N belongs to an interval of length

Θ(2−ℓ). Since there are 2N−ℓ0 elements of B′
N , and Θ(2N−ℓ) of them belong to any fixed interval of

length Θ(2−ℓ), we conclude that the above probability is O(2−(ℓ−ℓ0)).
We then have

H(ξ̂i | ξ̂1:i−1) ≤ E
∑
ℓ≥ℓ0

(ℓ− ℓ0)O(2−(ℓ−ℓ0)) ≤ O(1) ,

where the expectation is taken over ℓ0 (which depends on the realization of ξ̂1:i−1). Substituting the
above bound into (3.8), we conclude that I(ξ1:n; b) = O(n), which implies that S is indeed hard to
identify via queries.
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3.4 Construction of the distributions

This section contains the proof of Proposition 14.
For integers 1 ≤ k ≤ N , let [b]k be the number 0.00b1b2 . . . bk in binary representation, and let

[b]k := [b] := [b]N for k ≥ N . Define

ϕk,b(x, y) :=
(
|y − [b]k x| − (2−k x+ 2−(3N−k))

)
+
. (3.9)

Here, the term 2−(3N−k) essentially controls the thickness of the slab, and in particular, the slab
becomes thicker for larger k; this ensures that the maximum of the ϕk,b will be dominated by small
k far away. We also write ϕk := ϕk,b when b is clear from context. For x ≥ 0, the function ϕk

essentially measures the distance to the set

{(x, [b]k x+ ξk) ∈ R2 : x ≥ 0, |ξk| ≤ 2−k x+ 2−(3N−k)} .

Finally, we define the potential

Ṽb(x, y) := 27N max
k=1,...,N

2−kϕk(x, y) . (3.10)

Proof. [Proof of Proposition 14] We prove that the construction (3.10) satisfies each of the four
properties in turn.

Proof of Property (P0). The convexity of Ṽb follows because each ϕk is convex. To check that

Ṽb is κ
O(1)-smooth on average, using the compositionality of the maximum (i.e., max(a,max(b, c)) =

max(a, b, c)) we see that that Ṽb can be written as a maximum of affine functions, each of slope
κO(1); hence, Ṽb is κ

O(1)-Lipschitz. Differentiating under the integral,

∇(Ṽb ∗ χδ)(x, y) =

∫∫
Bδ

∇Ṽb(x+ u, y + v) du dv =

∫∫
∇Ṽb 1Bδ(x,y) ,

where the expression makes sense because Ṽb is Lipschitz and hence differentiable a.e. by Rademacher’s
theorem, and the absolute continuity of Ṽb ensures the validity of the fundamental theorem of
calculus. Then, by Hölder’s inequality,

∥∇(Ṽb ∗ χδ)(x, y)−∇(Ṽb ∗ χδ)(x
′, y′)∥ ≤

(
sup ∥∇Ṽb∥

)
∥1Bδ(x,y)−1Bδ(x′,y′)∥L1

≤ κO(1) vol
(
Bδ(x, y)△Bδ(x

′, y′)
)
.

By elementary considerations, the volume of the symmetric difference between the balls is bounded
by O(κO(1) ∥(x, y)− (x′, y′)∥), and therefore ∇(Ṽb ∗ χδ) is κ

O(1)-Lipschitz.
Finally, it is obvious that Ṽb ≥ 0 and Ṽb = 0 at the origin.
Proof of Property (P1). We only need to verify that any point (x, y) which is 103δ-close to Z̃b

satisfies Ṽb(x, y) = 0, as the second part of Property (P1) is automatically implied by Property (P2).
For such a point (x, y), there exists (x′, y′) such that

x′ ≥ 0 , |x′ − x| ∧ |y′ − y| ≤ 103δ , and |y′ − [b]x′| ≤ 2−Nx′ .

This also implies |y′ − [b]k x
′| ≤ 2−k x′ for all 1 ≤ k ≤ N , since |[b]k − [b]| ≤ 2−k − 2−N . Therefore,

for all 1 ≤ k ≤ N , |y − [b]k x| ≤ 2−k (x+ 103δ) + 2 · 103δ ≤ 2−kx+ 2−(3N−k), since δ = 2−5N . By
the definition (3.10) of Ṽb and the definition of ϕk in (3.9), it follows that Ṽb(x, y) = 0.
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Proof of Property (P2). We just need to check that

26NϕN (x, y) ≥ κ4
(
dist((x, y), Z̃b)− 1

)
+
,

or equivalently, 22NϕN (x, y) ≥ (dist((x, y), Z̃b)− 1)+. We first consider the case when x ≥ 0, and
we may assume that (x, y) ̸∈ Z̃b as otherwise the claim is obvious. If (x, y) has distance ∆ to its
closest point in Z̃b, then any y′ such that (x, y′) ∈ Z̃b must satisfy |y − y′| ≥ ∆. Applying this to
y′ = [b]x± 2−N x, we obtain

dist
(
(x, y), Z̃b

)
≤ |y − [b]x+ 2−Nx| ∧ |y − [b]x− 2−N x| = |y − [b]x| − 2−N x .

In turn, it implies that ϕN (x, y) ≥ (dist((x, y), Z̃b)− 2−(3N−k))+ ≥ (dist((x, y), Z̃b)− 1)+.
If x < 0, then dist((x, y), Z̃b) ≤ ∥(x, y)∥ ≤

√
2 max(|x|, |y|). Then, for N large,

22NϕN (x, y) = 22N
(
|y − [b]x| − 2−N x− 2−(3N−k)

)
+

= 2N−1/2
(
2N+1/2 |y − [b]x|+

√
2 |x| − 2−(2N−k)+1/2

)
+

≥ 2N−1/2
(
23/2max

(
0, |y| − 1

2
|x|

)
+
√
2 |x| − 1

)
+

≥ 2N−1/2
(√

2max(|x|, |y|)− 1
)
+
≥

(
dist((x, y), Z̃b)− 1

)
+
.

The first inequality follows because |y− [b]x| = ||y|− [b] sgn(y)x| ≥ |y|− 1
2 |x|+

1
2 |x|− [b] sgn(y)x ≥

|y| − 1
2 |x| and because N is sufficiently large.

Proof of Property (P3). The last property follows from Proposition 15 below, because if b, b′

agree on the first ℓ bits, then on the set in the statement of Property (P3),

Ṽb = 27N max
k=1,...,N

2−kϕk,b = 27N max
k=1,...,ℓ

2−kϕk,b = 27N max
k=1,...,ℓ

2−kϕk,b′ = 27N max
k=1,...,N

2−kϕk,b′ = Ṽb′ .

The second and fourth equalities invoke Proposition 15, and the third equality uses the fact that
ϕk,b only depends on b through [b]k. This completes the proof.

Proposition 15 (potentials agree if bits agree). Let Sℓ(b) be the set

Sℓ(b) :=
{
(x, y) ∈ R2 : x <

1

4
2−3N or |y − [b]ℓ x| ≥ 100 · 2−ℓx

}
.

Then, for x, y ∈ Sℓ(b),
max

k=1,...,N
2−kϕk(x, y) = max

k=1,...,ℓ
2−kϕk(x, y) .

In turn, Proposition 15 follows by induction from:

Proposition 16 (induction). If (x, y) ∈ Sℓ(b), and for some k > ℓ we have ϕk(x, y) > 0, then
ϕk(x, y) ≤ 2ϕk−1(x, y).

Proof. First, we may assume that x > 0. This is because if x ≤ 0,

ϕk−1(x, y) ≥ |y − [b]k x| − |[b]k−1 − [b]k| |x| − 2−(k−1) x− 2−(3N−k+1)

≥ |y − [b]k x|+ 2−kx− 2−(k−1)x− 2−(3N−k+1)

= |y − [b]k x| − 2−kx− 2−(3N−k+1)

≥ ϕk(x, y) ,

18



since we are assuming ϕk(x, y) > 0.
Now, since x > 0, we start by estimating

ϕk−1(x, y) ≥ |y − [b]k x| − |[b]k−1 − [b]k|x− 2−(k−1)x− 2−(3N−k+1)

≥ |y − [b]k x| − 3 · 2−kx− 2−(3N−k+1)

= ϕk(x, y)− 2 · 2−kx+ 2−(3N−k+1)

and
ϕk(x, y) = |y − [b]k x| − (2−kx+ 2−(3N−k)) .

First, suppose that x ≤ 1
4 2

−3N . Then, 2−(3N−k+1) ≥ 2 · 2−kx, so in fact ϕk−1(x, y) ≥ ϕk(x, y).
Alternatively, if x ≥ 1

4 2
−3N and |y − [b]ℓ x| ≥ 100 · 2−ℓx, then

2ϕk−1(x, y) ≥ 2 |y − [b]ℓ x| − 2 |[b]ℓ − [b]k−1|x− 4 · 2−kx− 2−(3N−k)

≥ 2 |y − [b]ℓ x| − 6 · 2−ℓx− 2−(3N−k) ,

ϕk(x, y) ≤ |y − [b]ℓ x|+ |[b]ℓ − [b]k|x− 2−kx− 2−(3N−k)

≤ |y − [b]ℓ x|+ 2−ℓx− 2−(3N−k) .

As a result, when |y − [b]ℓ x| ≥ 100 · 2−ℓx, we see that ϕk−1(x, y) ≥ 1
2 ϕk(x, y).

4 A lower bound for sampling from Gaussians via Wishart matrices

We define W ∼ Wishart(d) to mean W = XX⊺ where each entry of X ∈ Rd×d is N (0, 1d). We aim
to prove the following two theorems, which together imply a query complexity lower bound for
sampling from Gaussians.

Theorem 17 (reducing inverse trace estimation to sampling). Let δ > 0. There is a universal
constant c > 0 (depending only on δ) such that the following hold. Suppose that d ≥ c−1 and there
exists a query algorithm such that, for any Gaussian target distribution π := N (0,Σ) in Rd with
cd−2 Id ⪯ Σ−1 ⪯ c−1 Id, outputs a sample from a distribution π̂ such that either ∥π̂ − π∥TV ≤ c or√
cd−2W2(π̂, π) ≤ c, using n queries to π.
Then, given W ∼ Wishart(d), there exists an algorithm which makes at most c−1n matrix-vector

queries to W and outputs an estimator t̂r such that 1
2 tr(W

−1) ≤ t̂r ≤ 2 tr(W−1) with probability at
least 1− δ.

Theorem 18 (lower bound for inverse trace estimation). Let W ∼ Wishart(d) for d ≥ 2. For
any C > 0, there exists δ > 0 (depending only on C) such that any algorithm which makes n
matrix-vector queries to W and outputs an estimator t̂r such that C−1 tr(W−1) ≤ t̂r ≤ C tr(W−1)
with probability at least 1− δ must use n ≥ Ω(d) queries.

Remark. Suppose that we want to sample from a target distribution π which is α-strongly
log-concave. It is straightforward to check that total variation guarantees are invariant under
rescaling the target (replacing π with S#π, where S : Rd → Rd is the scaling map Sx := ζx for some
ζ > 0), whereas Wasserstein guarantees are not. Instead, the scale-invariant quantity is

√
αW2,

which is what appears in Theorem 17.

Consider the class of centered Gaussian distributions on Rd which are α-strongly log-concave
and β-log-smooth; let κ := β/α denote the condition number. Let CG,d(κ, d, ε) denote the query
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complexity of outputting a sample which is ε-close in the metric d to a target distribution in this
class, where d is one of the scale-invariant distances d ∈ {TV,

√
αW2}. Then, Theorems 17 and 18

(with C = 2 and δ, c being universal constants) show that for d ≥ c−1,

CG,d(c
−2d2, d, c) ≥ Ω(d) . (4.1)

By embedding the construction into higher dimensions, we obtain the following corollary.

Corollary 19 (query lower bound via Wishart matrices). For d ∈ {TV,
√
αW2}, there is a

universal constant c > 0 such that

CG,d(κ, d, c) ≥ Ω
(√

κ ∧ d
)
.

Proof. If κ ≥ c−2d2, then (4.1) yields

CG,d(κ, d, c) ≥ Ω(d) ≥ Ω
(√

κ ∧ d
)
.

Otherwise, if κ ≤ c−2d2, let d⋆ be the largest integer such that κ ≥ c−2d2⋆. Then, by embedding the
d⋆-dimensional construction into dimension d,

CG,d(κ, d, c) ≥ CG,d(κ, d⋆, c) ≥ Ω(d⋆) ≥ Ω
(√

κ ∧ d
)
,

which concludes the proof.

4.1 Reducing inverse trace estimation to sampling

In this section, we prove Theorem 17, which is based on the concentration of the squared norm of a
Gaussian. We recall the following identity:

Lemma 20 (concentration of the squared norm). Let Z ∼ N (0,Σ). Then,

var(∥Z∥2) = 2 ∥Σ∥2HS .

Proof. Note that since all quantities are rotationally invariant, we may assume without loss of
generality that Σ is diagonal. Then the equality claimed is just the variance of a non-homogenous
chi-squared random variable.

We now prove Theorem 17.

Proof. [Proof of Theorem 17] Let W ∼ Wishart(d) and let Σ := W−1. By Proposition 23, there
exists c > 0 (depending only on δ) such that with probability at least 1 − δ/3, it holds that

cd−2 Id ⪯ Σ−1 ⪯ c−1 Id .

We work on the event E that this holds.
Case 1: total variation distance. From Lemma 20 and Chebyshev’s inequality, we deduce

that if Z1, . . . , Zm
i.i.d.∼ N (0,Σ) and t̂r⋆ := m−1

∑m
i=1∥Zi∥2,

P
{∣∣t̂r⋆ − tr Σ

∣∣ ≥ 1

2
trΣ

}
≤ var t̂r⋆

(tr Σ)2/4
=

8

m
· tr(Σ

2)

tr(Σ)2
≤ 8

m
.
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Take m ≥ 48/δ so that this probability is at most δ/3. Conditionally on W , let π̂W denote the law of
the sample X of the algorithm when run on the target N (0,Σ). By running the sampling algorithm

m times, we can obtain i.i.d. samples X1, . . . , Xm
i.i.d.∼ π̂W . Then, for t̂r := m−1

∑m
i=1∥Xi∥2,

P
{∣∣t̂r− tr Σ

∣∣ ≥ 1

2
trΣ

}
≤ P(Ec) + P

{∣∣t̂r− tr Σ
∣∣ ≥ 1

2
trΣ, E

}
≤ δ

3
+ E

[
P
{∣∣t̂r⋆ − tr Σ

∣∣ ≥ 1

2
trΣ

∣∣ W}
1E

]
+ E

[
∥π̂⊗m

W −N (0,Σ)⊗m∥TV 1E
]

≤ δ

3
+

δ

3
+ cm .

If we choose c ≤ δ/(3m), then t̂r is an estimator of tr(W−1) with multiplicative error at most 2
which succeeds with probability at least 1 − δ. Note that both c and m depend only on δ.

Case 2: Wasserstein distance. Consider a coupling of X and Z such that, conditionally
on W , we have E[∥X − Z∥2 | W ] = E[W 2

2 (π̂W ,N (0,Σ)) | W ]. Let (X1, Z1), . . . , (Xm, Zm) be i.i.d.
copies of this coupling. Also, let E ′ denote the event that λmin(W

−1) ≥ c̄d2, where c̄ is a constant
depending only on δ, chosen so that P(E ′c) ≤ δ/3 using Proposition 23. Then, conditionally on W
in the event E ∩ E ′,

E
[
|t̂r− tr Σ|

∣∣ W ]
≤ E

[
|t̂r− t̂r⋆|

∣∣ W ]
+ E

[
|t̂r⋆ − tr Σ|

∣∣ W ]
≤ E

[
|t̂r− t̂r⋆|

∣∣ W ]
+

2 trΣ√
m

,

where we used Lemma 20. Using ∥x∥2 − ∥y∥2 = ⟨x− y, x+ y⟩, for any λ > 0,

E
[
|t̂r− t̂r⋆|

∣∣ W ]
≤ E

[
| ∥X∥2 − ∥Z∥2 |

∣∣ W ]
≤ E

[
∥X − Z∥2

∣∣ W ]
+ 2E

[
|⟨X − Z,Z⟩|

∣∣ W ]
≤ (1 + λ)E

[
∥X − Z∥2

∣∣ W ]
+

1

λ
E
[
∥Z∥2

∣∣ W ]
≤ (1 + λ) c3d2 +

trΣ

λ
≤ (1 + λ)

c3

c̄
tr Σ +

trΣ

λ
.

For the last line, recall that we are assuming E[W 2
2 (π̂W ,N (0,Σ)) | W ] ≤ c3d2. If we take λ = 18/δ,

m ≥ (36/δ)2, and if c is sufficiently small (depending only on δ), we obtain

E
[
|t̂r− tr Σ|

∣∣ W ]
≤ δ tr Σ

6
.

By Markov’s inequality,

P
{∣∣t̂r− tr Σ

∣∣ ≥ 1

2
trΣ

}
≤ P(Ec) + P(E ′c) + E

[
P
{∣∣t̂r− tr Σ

∣∣ ≥ 1

2
trΣ

∣∣ W}
1E∩E ′

]
≤ δ

3
+

δ

3
+

δ

3
≤ δ .

We conclude as before.

4.2 Lower bound for inverse trace estimation

In this section, we prove Theorem 18. The idea is that due to the heavy tails of λmin(W
−1) implied

by Proposition 23, with some small probability δ, tr(W−1) will be very large. An algorithm for
inverse trace estimation which succeeds with probability at least 1 − δ must be able to detect this
event, and we show that this requires making Ω(d) queries.

The key technical tools are the following propositions, due to [BHSW20].
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Proposition 21 ([BHSW20, Lemma 3.4]). Let W ∼ Wishart(d). Then, for any sequence of
n < d (possibly adaptive) queries v1, . . . , vn and responses w1 = Wv1, . . . , wn = Wvn, there exists
an orthogonal matrix V ∈ Rd×d and matrices Y1 ∈ Rn×n, Y2 ∈ R(d−n)×n that only depend on
v1, . . . , vn, w1, . . . , wn, such that VWV ⊺ has the block form

VWV ⊺ =

[
Y1Y

⊺
1 Y1Y

⊺
2

Y2Y
⊺
1 Y2Y

⊺
2 + W̃

]
.

Here, conditionally on v1, . . . , vn, w1, . . . , wn, the matrix W̃ has the Wishart(d− n) distribution.

Proposition 22 ([BHSW20, Lemma 3.5]). For any matrices Y1 ∈ Rn×n, Y2 ∈ R(d−n)×n, and any

symmetric matrix W̃ ∈ R(d−n)×(d−n), it holds that

λmin

([Y1Y ⊺
1 Y1Y

⊺
2

Y2Y
⊺
1 Y2Y

⊺
2 + W̃

])
≤ λmin(W̃ ) .

We are now ready to prove Theorem 18. Note that this result is very similar to that of [BHSW20],
except that we work with the inverse trace rather than the minimum eigenvalue.

Proof. [Proof of Theorem 18] Let δ > 0 be chosen later. We first argue that t̂r must not be too
large. Applying Proposition 24, we conclude that there is a universal constant C ′ > 0 such that
tr(W−1) ≤ C ′d2 with probability at least 1/2. Hence,

P
{
t̂r ≤ CC ′d2

}
≥ P

{
tr(W−1) ≤ C ′d2 and t̂r ≤ C tr(W−1)

}
≥ P{tr(W−1) ≤ C ′d2} − P{t̂r > C tr(W−1)} ≥ 1

2
− δ .

Next, suppose for the sake of contradiction that n ≤ d/2. Let Fn denote the σ-algebra generated
by the information available to the algorithm up to iteration n, that is, the queries v1, . . . , vn, the
responses w1, . . . , wn, and any external randomness used by the algorithm (which is independent of
W ). Applying Propositions 21 and 22,

P
{
t̂r < C−1 tr(W−1)

}
≥ P

{
t̂r ≤ CC ′d2 and λmax(W

−1) > C2C ′d2
}

≥ P
{
t̂r ≤ CC ′d2 and λmax(W̃

−1) > C2C ′ d2
}

= E
[
1{t̂r ≤ CC ′d2}P{λmax(W̃

−1) ≥ C2C ′d2 | Fn}
]
.

According to Proposition 21, conditionally on Fn, W̃ has the Wishart(d − n) distribution. By
applying Proposition 23,

P{λmax(W̃
−1) ≥ C2C ′d2 | Fn} ≥ P{λmax(W̃

−1) ≥ 4C2C ′ (d− n)2 | Fn}

= P
{
λmin(W̃ ) ≤ 1

4C2C ′ (d− n)2

∣∣∣ Fn

}
≳

1

C
√
C ′

.

Therefore,

P
{
t̂r < C−1 tr(W−1)

}
≳ P

{
t̂r ≤ CC ′d2

} 1

C
√
C ′

≥ 1/2− δ

C
√
C ′

,

which is larger than δ provided that δ is chosen sufficiently small (depending only on C). This
contradicts the success probability of the algorithm, and hence we deduce that n ≥ d/2.

22



4.3 Useful facts about Wishart matrices

We collect together useful facts about Wishart matrices which are used in the proofs.

Proposition 23 (extreme singular values of a Gaussian matrix). Let W ∼ Wishart(d). For any
x ∈ [0, 1],

P
{
λmin(W ) ≤ x

d2
}
≍

√
x .

Also, there is a universal constant C > 0 such that

P{λmax(W ) ≥ C (1 + t)} ≤ 2 exp(−dt) .

Proof. See, e.g., [Ede89, Theorem 5.1] and [Ver18, Theorem 4.4.5].

Proposition 24 (bound on the inverse trace). Let W ∼ Wishart(d). Then, for any δ > 0, with
probability at least 1− δ, it holds that tr(W−1) ≤ Cδd

2 where Cδ is a constant depending only on δ.

Proof. According to [Sza91, Theorem 1.2], there is a universal constant C > 0 such that for each
j = 1, . . . , d and α ≥ 0,

P
{ 1

λj(W )
≥ d2

α2j2

}
≤ (Cα)j

2

.

Let α < 1/C and let Eα := {1/λj(W ) ≥ d2/(α2j2) for some j = 1, . . . , d}. By the union bound,

P(Eα) ≤
d∑

j=1

(Cα)j
2

≲
1√

log(1/(Cα))
.

On the event Ec
α,

tr(W−1) ≤
d∑

j=1

d2

α2j2
=

π
2d2

6α2
,

which is the claimed result upon taking α sufficiently small.

Remark. The proof only shows that P{tr(W−1) ≥ ηd2} ≲ 1/
√
log η for η ≫ 1, which is not enough

to conclude that E tr(W−1) is finite. In fact, it holds that E tr(W−1) = ∞, which can already be
seen from Proposition 23.

5 A lower bound for sampling from Gaussians via reduction to
block Krylov

In this section, we prove Theorem 3. Our proof procedes in two parts: we first show a lower bound
against the block Krylov method, and then a reduction showing that an arbitrary adaptive algorithm
can be simulated via a block Krylov method.
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5.1 Preliminaries

We first record some important facts that we will use later on. Throughout, let K be an odd integer.
The following is a standard approximation-theoretic result:

Proposition 25 ([SV14, Proposition 2.4, rephrased]). Let TK be the degree-K Chebyshev polynomial,
and let 1 = β1 > · · · > βK+1 = −1 be the set of real values β such that TK(β) ∈ {−1, 1}. Then,
for any real degree-K polynomial p such that |p(βi)| ≤ 1 for all βi, we have |p(x)| ≤ |TK(x)| ≤
(|x|+

√
x2 − 1)

K
for all |x| > 1.

Let c0 > 0 be a constant to be chosen later. The above proposition immediately implies:

Corollary 26 (approximation error). Suppose that K ≤ c0
√
κ log d. Then, there exist κ = λ1 >

· · · > λK+2 = 1 (that only depend on K and κ) such that for any real degree-K polynomial P ,
max1≤i≤K+2 | 1λi

− P (λi)| ≥ d−2c0−O(1/
√
κ)/κ.

Proof. Set β1, . . . , βK+2 to be the solutions of TK+1 ∈ {−1, 1}, and for each 1 ≤ i ≤ K + 2,

set λi :=
(κ−1)

2 (βi + 1) + 1; by construction, κ = λ1 > · · · > λK+2 = 1. Given any polynomial
Q of degree at most K + 1, note that if |Q(λi)| ≤ 1 for all i, then the polynomial p given by
p(x) := Q(κ−1

2 (x+ 1) + 1) satisfies |p(βi)| ≤ 1 for all i. By Proposition 25, for x0 := −(1 + 2
κ−1),

|Q(0)| = |p(x0)| ≤
(
|x0|+

√
x20 − 1

)K+1 ≤
(
1 +

2√
κ
+O

(1
κ

))K+1

< exp
(( 2√

κ
+O

(1
κ

)) (
c0
√
κ log d+ 1

))
= d2c0+O(1/

√
κ) .

Next, for a degree-K polynomial P , consider Q(x) := d2c0+O(1/
√
κ) (1 − xP (x)). Note that Q

has degree K + 1 and |Q(0)| = d2c0+O(1/
√
κ), which implies that |Q(λi)| > 1 for some i, which in

turn shows that | 1λi
− P (λi)| ≥ d−2c0−O(1/

√
κ)/κ.

We also introduce random matrix ensembles that are used in the proof, together with basic facts
and properties.

Interestingly, as in the previous section, Wishart matrices are also useful for understanding block
Krylov algorithms, but for a completely different reason. This time, we will study inner products
between random vectors, which is also captured by a Wishart matrix. We denote by Wishart(K,N)
the law of the random matrix XX⊺ ∈ RK×K , where the entries of X ∈ RK×N are i.i.d. standard
Gaussians. Note that this is a different convention from the previous section, in which each entry of
X was i.i.d. N (0, 1d).

We also define the Gaussian orthogonal ensemble (GOE) of size K, denoted GOE(K). This is
the law of a random symmetric matrix G ∈ RK×K where each diagonal entry Gi,i is distributed
as N (0, 1), and each off-diagonal entry Gi,j = Gj,i is distributed as N (0, 12). Also, the entries
{Gi,j : 1 ≤ i ≤ K, j ≤ i} are independent.

A long line of work (see, e.g., [JL15; BDER16; BG18; RR19; BBH21; Mik22]) shows that when
N ≫ K3, the Wishart ensemble is well-approximated by a scaled and shifted GOE, a fact which we
shall invoke in the sequel.

Lemma 27 (equivalence of Wishart and GOE). Let W ∼ Wishart(K,N) be drawn from the Wishart
distribution, and let W0 be drawn from the distribution of symmetric matrices where the diagonal
and above-diagonal entries are mutually independent, each diagonal entry is drawn as N (N, 2N),
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and each above-diagonal entry is drawn as N (0, N). (Equivalently, we can write W0 = NI+
√
2N G,

where G ∼ GOE(K).) Then,

∥law(W )− law(W0)∥TV ≤ O
(K3/2

N1/2

)
.

Finally, we also require the following basic linear algebraic fact:

Proposition 28 (rotating the right singular vectors). Let V, V ′ ∈ RK×N be such that V V ⊺ =
(V ′)(V ′)⊺. Then, there exists an orthogonal matrix U ∈ RN×N such that V U = V ′.

5.2 Lower bound against block Krylov algorithms

We start with the following proposition, which will be useful in establishing the existence of matrices
with different inverse traces but which generate similar power method iterates.

Proposition 29 (polynomial approximation and duality). Suppose that K ≤ c0
√
κ log d. Then,

there exist κ = λ1 > λ2 > · · · > λK+2 = 1 and non-negative real numbers x1, . . . , xK+2;x
′
1, . . . , x

′
K+2,

such that:

1. For all 0 ≤ j ≤ K,
∑K+2

i=1 xiλ
j
i =

∑K+2
i=1 x′iλ

j
i .

2.
∑K+2

i=1 xi =
∑K+2

i=1 x′i = d.

3.
∑K+2

i=1 xi/λi −
∑K+2

i=1 x′i/λi ≥ 2d1−2c0−O(1/
√
κ)/κ.

Proof. If we fix the values of the λi to be the choices in Corollary 26, this becomes a linear
program in the variables {xi}K+2

i=1 , {x′i}
K+2
i=1 . By writing x = (x1, . . . , xK+2, x

′
1, . . . , x

′
K+2), our goal

is to maximize c⊺x over x ≥ 0 subject to Ax = b. In our case, we set

c :=



λ−1
1
...

λ−1
K+2

−λ−1
1
...

−λ−1
K+2


, A :=


1 · · · 1 1 · · · 1
1 · · · 1 −1 · · · −1
λ1 · · · λK+2 −λ1 · · · −λK+2
...

. . .
...

...
. . .

...
λK
1 · · · λK

K+2 −λK
1 · · · −λK

K+2

 , b =


2d
0
...
0

 .

We can consider the dual linear program, and by strong duality this maximization is equivalent
to minimizing b⊺y over y such that A⊺y ≥ c. By writing y = (z, y0, y1, . . . , yK), this means we wish
to minimize 2dz subject to z+(y0+y1λi+ · · ·+yKλK

i ) ≥ 1
λi

and z− (y0+y1λi+ · · ·+yKλK
i ) ≥ − 1

λi

for all 1 ≤ i ≤ K+2. Equivalently, we wish to minimize 2dz subject to the existence of a polynomial
P of degree at most K (with coefficients y0, . . . , yK) such that z ≥ | 1λi

− P (λi)| for all i ≤ K + 2.
The minimum for the dual linear program (and thus the maximum for the primal linear program),

is 2d infP∈PK
max1≤i≤K+2 | 1λi

− P (λi)|, where PK is the set of polynomials of degree at most K

with real coefficients. By Corollary 26, this quantity is at least 2d1−2c0−O(1/
√
κ)/κ.

We note that a slightly strengthened version of Proposition 29 holds. Let 0 < c1 < 1.

Corollary 30 (existence of good solutions). Proposition 29 holds, where we also ensure that each

xi and x′i is at least d
2 (K+2) and

|xi−x′
i|

xi
≤ 2c1

1−c1
, though the right-hand side of the third condition

becomes c1d
1−2c0−O(1/

√
κ)/κ.
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Proof. First, replace every xi with
1
2 (xi +

d
K+2) and x′i with

1
2 (x

′
i +

d
K+2). Then, we have that the

replaced xi, x
′
i are at least d

2 (K+2) , and the remaining statements in Proposition 29 hold, except the

third which has the right-hand side replaced with d1−2c0−O(1/
√
κ)/κ.

Next, replace every xi with x̃i :=
1+c1
2 xi +

1−c1
2 x′i, and every x′i with x̃′i :=

1+c1
2 x′i +

1−c1
2 xi. We

still have that every x̃i, x̃
′
i is at least

d
2 (K+2) , the first two conditions still hold, and the right-hand

side of third condition is now c1d
1−2c0−O(1/

√
κ)/κ. Finally, note that |x̃i − x̃′i| ≤ c1 |xi − x′i|, whereas

x̃i ≥ 1−c1
2 (xi + x′i). This implies that

|x̃i−x̃′
i|

x̃i
≤ 2c1

1−c1
.

We now have the necessary tools to prove our lower bound against block Krylov algorithms.
Before doing so, we establish that there exist diagonal matrices D,D′ which have substantially
different inverse traces, but block Krylov algorithms cannot distinguish between them. To prove
our actual lower bound, we show the same claim holds even if D,D′ are randomly rotated, and the
inverse trace difference is enough for a single sample to distinguish between them.

Lemma 31 (construction of diagonal matrices). Suppose that K ≤ c0
√
κ log d and K ≤ O(d).

Then, there exist diagonal matrices D,D′ ∈ Rd×d with all diagonal entries between 1 and κ with the
following properties.

1. | tr(D−1)− tr(D′−1)| ≥ c1d
1−2c0−O(1/

√
κ)/κ− 2 (K + 2).

2. Consider sampling K d-dimensional random vectors v(1), . . . , v(K) i.i.d.∼ N (0, Id). Then, the
distributions of {⟨v(k), Dj v(ℓ)⟩}j≤K+2; k,ℓ≤K and {⟨v(k), D′j v(ℓ)⟩}j≤K+2; k,ℓ≤K differ in total
variation distance by at most O(c1K

3 +K3/d1/2).

Proof. Choose {xi}K+2
i=1 , {x′i}

K+2
i=1 , and {λi}K=2

i=1 satisfying Corollary 30. Define integers {Ni}K+2
i=1

such that each Ni is either ⌊xi⌋ or ⌈xi⌉ and
∑K+2

i=1 Ni = d; define {N ′
i}

K+2
i=1 similarly in terms of

{x′i}
K+2
i=1 . We let D,D′ be diagonal matrices such that for all i, D has Ni diagonal entries equal

λi, and D′ has N ′
i diagonal entries equal to λi. Now, let v(1), . . . , v(K) ∈ Rd be K random vectors

drawn i.i.d. from N (0, Id) (and define v(1)′, . . . , v(K)′ similarly). For 1 ≤ i ≤ K + 2, we define v(k,i)

to be the projection of v(k) onto the dimensions corresponding to the diagonal entry λi for D. Note
that {v(k,i)}i≤K+2, k≤K are independent, and v(k,i) ∼ N (0, INi). Likewise, define {v(k,i)′}i≤K+2, k≤K

accordingly in terms of D′.
Note that tr(D−1)− tr(D′−1) =

∑K+2
i=1 Ni/λi −

∑K+2
i=1 N ′

i/λi. Since |Ni − xi|, |N ′
i − x′i| ≤ 1, and

since each λi ≥ 1, it implies

tr(D−1)− tr(D′−1) ≥ c1 d
1−2c0−O(1/

√
κ)

κ
− 2 (K + 2) .

Next, we let W (i) represent the K ×K matrix with entries W
(i)
k,ℓ = ⟨v(k,i), v(ℓ,i)⟩ and define W (i)′

similarly. Note that the matrices W (i),W (i)′ over all i are independent. In addition, W (i) has the
Wishart(K,Ni) distribution, and W (i)′ has the Wishart(K,N ′

i) distribution. In addition, for any

k, ℓ ≤ K and j ≤ T , we have that ⟨v(k), Dj v(ℓ)⟩ =
∑K+2

i=1 λj
iW

(i)
k,ℓ .

Now, we attempt to design a coupling between the matrices {W (i)}K+2
i=1 and {W (i)′}K+2

i=1 such
that W (i) −W (i)′ = (xi − x′i) IK for all i ≤ K + 2, with high probability. Note that this implies
our claim, due to Corollary 30. To design this coupling, first note that by Lemma 27, if we draw

Z(i) ∼ Ni IK +
√
2Ni GOE(K), then ∥law(W (i)) − law(Z(i))∥TV ≤ O(K3/2/N

1/2
i ), and a similar

statement holds if we define Z(i)′ and compare its law to that of W (i)′.
Note that the entries of Z(i) and Z(i)′ are independent (apart from the requirement of symmetry),

so we will attempt a coupling between the entries Z
(i)
k,ℓ and Z

(i)′
k,ℓ . For k < ℓ, since Z

(i)
k,ℓ ∼ N (0, Ni)
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and Z
(i)′
k,ℓ ∼ N (0, N ′

i), the total variation distance between their distributions is bounded up to a
constant, using Corollary 30, by∣∣N ′

i

Ni
− 1

∣∣ ≤ ∣∣x′i
xi

− 1
∣∣+ ∣∣N ′

i − x′i
Ni

∣∣+ ∣∣x′i (Ni − xi)

Nixi

∣∣ ≤ O
(
c1 +

K

d

)
under our assumptions. Therefore, we can couple Z

(i)
k,ℓ and Z

(i)′

k,ℓ such that they fail to coincide with

this probability. For k = ℓ, we have Z
(i)
k,k ∼ N (Ni, 2Ni) and Z

(i)′
k,k + xi − x′i ∼ N (N ′

i + xi − x′i, 2N
′
i).

The total variation distance between their distributions is bounded by a constant times

∣∣N ′
i

Ni
− 1

∣∣+ |N ′
i − x′i + xi −Ni|√

Ni
≤ O

(
c1 +

K1/2

d1/2
)
.

Therefore, we can couple the two random variables together so that Z
(i)
k,k = Z

(i)′
k,k + xi − x′i fails with

the above probability.
By a union bound, the coupling Z(i) = Z(i)′ + (xi − x′i) IK for all i fails with probability at most

O
(
K3

(
c1 +

K

d

)
+K2

(
c1 +

K1/2

d1/2
))

= O
(
c1K

3 +
K5/2

d1/2
)
.

We dropped the c1K
4/d term because of our assumption K ≤ O(d). Combining this with comparison

between the Wishart and GOE ensembles and another union bound, we obtain the result.

Finally, we are able to prove our main lower bound against block Krylov algorithms.

Lemma 32 (lower bound against block Krylov algorithms). Let κ,K,D,D′ be as in Lemma 31.
Then, let U be a uniformly random orthogonal matrix in Rd×d, and let Λ = U⊺DU and Λ′ = U⊺D′U .

Let v(1), . . . , v(K) i.i.d.∼ N (0, Id). Then, for any δ > 0, provided K ≤ Oδ(
√
κ log d) and κ ≤ d1/5−δ, the

distributions of {Λjv(k)}j≤(K+2)/2, k≤K and {Λ′jv(k)}j≤(K+2)/2; k≤K differ in total variation distance
by at most o(1). On the other hand, drawing a sample either from N (0,Λ−1) or N (0,Λ′−1) can,
with probability 1− o(1), distinguish between the two cases.

Proof. The following calculations are contingent on the values of the various parameters that
we will choose at the end of the proof. From Lemma 31, there is a coupling such that the
tuples {⟨v(k), Dj v(ℓ)⟩}j≤K+2, k,ℓ≤K and {⟨v(k)′, D′j v(ℓ)′⟩}j≤K+2, k,ℓ≤K are equal with high proba-
bility. In particular, it holds that ⟨Di v(k), Dj v(ℓ)⟩ = ⟨D′i v(k)′, D′j v(ℓ)′⟩ for all i, j ≤ (K + 2)/2
and k ≤ K with high probability. By Proposition 28, there is a unitary matrix U0 such that
D′j v(k)′ = U0D

j v(k) for all j ≤ (K + 2)/2 and all k ≤ K with high probability. Note then that
the tuples {U⊺DjU U⊺v(k)}j≤(K+2)/2, k≤K and {U⊺U⊺

0D
′jU0U U⊺U⊺

0 v
(k)′}j≤(K+2)/2, k≤K are equal

with high probability, and this is a coupling which witnesses the fact that the distributions of
{Λjv(k)}j≤(K+2)/2, k≤K and {Λ′jv(k)}j≤(K+2)/2, k≤K are at most O(c1K

3 +K3/d1/2) apart in total
variation distance.

Finally, we note that from a single sample it is easy to distinguish between N (0,Λ−1) and
N (0,Λ′−1). This is because if X ∼ N (0,Λ−1), then E[∥X∥2] = tr(Λ−1) = tr(D−1) =

∑K+2
i=1 Ni/λi,

but one checks that var(∥X∥2) = O(
∑K+2

i=1 Ni/λ
2
i ) ≤ O(d). Likewise, if X ′ ∼ N (0,Λ′−1), then we

have E[∥X ′∥2] =
∑K+2

i=1 N ′
i/λi but var(∥X ′∥2) = O(d). So, the difference in their expectations at

least c1d
1−2c0−O(1/

√
κ)/κ− 2 (K + 2), whereas the standard deviations are bounded by O(d1/2).

To finish the proof, we must choose the values of c0 and c1. We require the following conditions:

1. c1K
3 = o(1).
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2. K3/d1/2 = o(1).

3. d1/2 = o(c1d
1−2c0−O(1/

√
κ)/κ− 2 (K + 2)).

For the second condition, we can assume κ ≤ d1/3/ log4(d). To satisfy the first condition, we can set
c1 = 1/(κ3/2 log4(d)). Finally, if κ is sufficiently large and if c0 is chosen depending on δ, then the
third condition requires

√
κ log d+ d1/2 = o(d1−δ/κ5/2), and it suffices for κ ≤ d1/5−δ.

Remark. We did not attempt to optimize the exponent in the condition κ ≤ d1/5−δ. Indeed, by
using the chain rule for the KL divergence rather than a union bound in the proof of Lemma 31, we
believe that the total variation bound can be improved to O(c1K

3/2 +K5/2/d1/2), and a back-of-
the-envelope calculation suggests that this could improve the condition to κ ≤ d2/7−δ. Nevertheless,
this falls short of capturing the full regime

√
κ log d ≤ O(d), and we leave this as an open question.

5.3 Reduction to block Krylov algorithms

In this section, we show that in order to prove a lower bound for sampling from Gaussians against
any query algorithm, it suffices to prove a lower bound against block Krylov algorithms.

5.3.1 Setup

Let Λ = U⊺DU , where D is a (possibly random) diagonal matrix, U is a Haar-random orthogonal
matrix, and U and D are independent. We consider the following model, which is a strengthening
of the matrix-vector product model:

Definition 33 (extended oracle model). Given K ∈ N, for all k ∈ [K], the algorithm chooses
a new query point vk, and receives the information {Λivj}(i,j)∈Hk

, where Hk := {(i, j) : i + j ≤
k + 1, i ≥ 0, 1 ≤ j ≤ k} is a set of ordered pairs of nonnegative integers. We use the following
notation {Λivj}S for any set S to denote {Λivj}(i,j)∈S.

This is clearly a stronger oracle model than before, so a lower bound against algorithms in the
extended oracle model implies a lower bound against algorithms in the original matrix-vector model.

Definition 34 (adaptive deterministic algorithm). An adaptive deterministic algorithm A that
makes K extended oracle queries (see Definition 33) is given by a deterministic collection of functions

v1, v2(·), . . . , vK(·), where v1 is constant and each vk(·) is a function of k (k+1)
2 − 1 inputs. This

corresponds to a sequence of queries where the k-th query vk({Λivj}Hk−1
) is chosen adaptively based

on the information available to the algorithm at the start of iteration k. (Note that v1 has no inputs.)
When the choice of the inputs is clear from context, we may simply write vk = vk({Λivj}Hk−1

).

In the extended oracle model, the next lemma shows that we can assume that each vk is a unit
vector orthogonal to its inputs.

Lemma 35 (extended oracle and orthogonal queries). For k ∈ [2,K], let vk be as stated in
Definition 34 and let {Λivj}Hk−1

be as stated in Definition 33. Then, without loss of generality, we
may assume that vk is orthogonal to the subspace spanned by the vectors in {Λivj}Hk−1

.

Proof. Assume for sake of contradiction that this were not the case. Then, we can decompose
vk =

∑
(i,j)∈Hk−1

ci,jΛ
ivj + c⊥v⊥k where v⊥k is a unit vector orthogonal to {Λivj}Hk−1

and each

ci,j and c⊥ is a scalar. At the end of iteration k, the new information obtained by the algorithm
is {Λivj}i+j=k+1,j≤k. For all (i, j) ̸= (1, k), the new information does not depend on vk. Also,
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Λvk =
∑

(i,j)∈Hk−1
ci,jΛ

i+1vj + c⊥Λv⊥k , where each Λi+1vj is information obtained by the algorithm

at the end of iteration k + 1 regardless (due to our extended query model). Since (i+ 1, j) ∈ Hk if
(i, j) ∈ Hk−1, and since (1, k) ∈ Hk, this expression shows that the algorithm would receive the same
amount of information (or more, if c⊥ = 0) if it queries v⊥k instead of vk. Applying this reasoning
inductively proves the claim.

We compare to a block Krylov algorithm, which makes i.i.d. standard Gaussian queries z1, . . . , zK
and then receives {Λizj} for all i, j ≤ K. Recall that a block Krylov algorithm does not make
adaptive queries, so it is easier to prove lower bounds against block Krylov algorithms. Our goal is
to now show that block Krylov algorithms can simulate an adaptive deterministic algorithm.

5.3.2 Conditioning lemma

We start by proving a general conditioning lemma which will be invoked repeatedly in the reduction
to block Krylov algorithms. This lemma roughly shows that if the adaptive algorithm knows
{Λivj}Hk

, the posterior distribution of Λ given {Λivj}Hk
is indeed rotationally symmetric on the

orthogonal complement {Λivj}Hk
.

We will use the notation
d
= to denote that two random variables are equal in probability

distribution (possibly conditioned on other information).

Lemma 36 (conditioning lemma, preliminary version). Let U be a Haar-random orthogonal matrix,
and Λ = U⊺DU , where D is a (possibly random) positive diagonal matrix. Suppose that A is an
adaptive deterministic algorithm that generates extended oracle queries v1, . . . , vK , and after the
k-th query knows Λivj for all (i, j) ∈ Hk. For any integer m ≥ 1, let k be the integer such that
k(k+1)

2 ≤ m < (k+1)(k+2)
2 , i.e., m is at least the k-th triangular number but less than the (k + 1)-th

triangular number. Consider the order of vectors v1,Λv1, v2,Λ
2v1,Λv2, v3,Λ

3v1, . . . (this enumerates
Λivj in order of i+ j, breaking ties with smaller values of j first). Let Wm be the set of first m of
these vectors and Xk be the set {v1, . . . , vk}. Let V be a Haar-random orthogonal matrix fixing Wm

and acting on the orthogonal complement W⊥
m . Then, (Xk, U)

d
= (Xk, UV ).

Before proving this lemma, we note that since the algorithm is deterministic and D is fixed, Wm

and Xk are deterministic functions of Λ, and thus of U . Hence, we can write vk(U
′),Wm(U ′), Xk(U

′)
to be the vk,Wm, Xk that would have been generated if we started with Λ′ = (U ′)⊺DU ′. (If no
argument is given, vk,Wm, Xk are assumed to mean vk(U),Wm(U), Xk(U), respectively.) We note
the following proposition.

Proposition 37 (fixing the first m queries and responses). Suppose that V is any orthogonal matrix
fixing Wm(U). Then, Wm(U) = Wm(UV ).

Proof. We prove Wm′(U) = Wm′(UV ) for all m′ ≤ m. The base case of k = 1 is trivial, since v1 is
fixed. We now prove the induction step for m′.

If m′ ≤ m is a triangular number, m′ = k(k+1)
2 , then the m′-th vector in Wm is vk. But note

that vk(U) is a deterministic function of Wm′−1(U), and vk(UV ) is the same deterministic function
of Wm′−1(UV ). Hence, if the induction hypothesis holds for m′ − 1, it also holds for m.

If m′ ≤ m is not a triangular number, then the m′-th number in Wm(U) is Λivj for some
i ≥ 1. Likewise, the m′-th number in Wm(UV ) is V ⊺ΛiV vj(UV ). Since i ≥ 1, we know that

vj(U) = vj(UV ), by the induction hypothesis on j(j+1)
2 < m′. But, we know that V fixes Wm, which

means it fixes vj and Λivj . Thus, V
⊺ΛiV vj(UV ) = V ⊺ΛiV vj = Λivj .

We are now ready to prove Lemma 36.
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Proof. [Proof of Lemma 36] We prove this by induction on m. For the base case m = 1, U is
a random matrix and V is a random matrix that fixes v1. Note that v1 is chosen independently
of Λ (and thus of U), so U and V are independent. Even for any fixed V , the distribution

UV is a uniformly random orthogonal matrix, so overall U
d
= UV . Also, v1 is deterministic, so

(v1, U)
d
= (v1, UV ).

For the induction step, we split the proof into 2 cases. The proofs in both cases will be very
similar, but with minor differences.

Case 1: m is a triangular number. This means that the m-th vector added is vk, where
m = k(k+1)

2 . Let V1 be a random orthogonal matrix fixing Wm−1 and V2 be a random orthogonal

matrix fixing Wm. Our goal is then to show (Xk, U)
d
= (Xk, UV2).

To make this rigorous, we note an order of generating the random variables. First, we generate
U randomly: Wm and Xk are deterministic in terms of U . Next, we define V1 to be a random
rotation fixing Wm−1. Finally, we define V2 to be a random rotation fixing Wm, where V1, V2 are
conditionally independent on U .

First, we prove that (Xk, U)
d
= (Xk, UV1). Note that U

d
= UV1 by our inductive hypothesis. In

addition, since V1 fixes Wm−1(U), Wm−1(U) = Wm−1(UV1) by Proposition 37. Since m = k(k+1)
2 is

a triangular number, Xk(·) is a deterministic function of Wm−1(·), which means Xk(U) = Xk(UV1).

Hence, (Xk, U)
d
= (Xk(UV1), UV1) = (Xk, UV1).

Next, we prove that (Xk, UV2)
d
= (Xk, UV1V2). It suffices to prove that

(Xk, U, V2)
d
= (Xk, UV1, V2) .

To do so, we first show that V2 = f(U,R), where f is a deterministic function and R represents a
random orthogonal matrix over d− dim(Wm) dimensions that is independent of U . (Recall that
Wm is a deterministic function of U .) To define f(U,R), we consider some deterministic map that
sends each Wm to a set of d− dim(Wm) basis vectors in W⊥

m . We then define V2 = f(U,R) to act
on W⊥

m using R and the correspondence of basis vectors. Since Wm and Xk are deterministic in
terms of U , this means f(U,R) is well-defined. We will now show that

V2 = f(U,R) = f(UV1, R) and Xk = Xk(UV1) .

Since U
d
= UV1 by our inductive hypothesis,

(Xk, U, V2)
d
= (Xk(UV1), UV1, f(UV1, R)) = (Xk, UV1, V2) .

By Proposition 37, Wm−1(U) = Wm−1(UV1), and since Xk(·) is deterministic given Wm−1(·) for
m = k(k+1)

2 , Xk(U) = Xk(UV1). This implies Wm(U) = Wm(UV1), which means f(UV1, R) =
f(U,R), since f(·, R) only depends on Wm(·) and R. This completes the proof.

Next, we show that (Xk, UV1V2)
d
= (Xk, UV1). Since we chose the order with U being defined

first, we are allowed to condition on U . Since Xk is deterministic in terms of U , it suffices to show

that V1V2 | U
d
= V1 | U . Since Wm−1,Wm are also deterministic given U , note that V1 is a uniformly

random orthogonal matrix fixing Wm−1, and V2 is a random orthogonal matrix fixing Wm ⊃ Wm−1.
Since V1 and V2 are conditionally independent given U , this means V1V2 | U is a uniformly random

orthogonal matrix fixing Wm−1, so V1V2 | U
d
= V1 | U .
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In summary, we have that

(Xk, U)
d
= (Xk, UV1)

d
= (Xk, UV1V2)

d
= (Xk, UV2) .

Case 2: m is not a triangular number. Again, let V1 be a random orthogonal matrix
fixing Wm−1 and V2 be a random orthogonal matrix fixing Wm. Our goal is again to show that

(Xk, U)
d
= (Xk, UV2).

First, we again have (Xk, UV1)
d
= (Xk, U) by our inductive hypothesis.

Next, we show that (Xk, UV2)
d
= (Xk, UV2V1). It suffices to prove that

(Xk, U, V2)
d
= (Xk, UV1, V

⊺
1 V2V1) ,

since (UV1)(V
⊺
1 V2V1) = UV2V1. We recall the random variable R and use the same function

V2 = f(U,R). Since we have already shown that U
d
= UV1, this implies that (Xk, U, V2)

d
=

(Xk(UV1), UV1, f(UV1, R)). Since m is not triangular, Xk(·) is contained in Wm−1(·), so by Propo-
sition 37, Xk(U) = Xk(UV1). So, we have

(Xk, U, V2)
d
= (Xk(UV1), UV1, f(UV1, R)) = (Xk, UV1, f(UV1, R)) .

Now, if we fix U and V1, Wm−1(UV1) = Wm−1(U) by Proposition 37. However, since the m-th (i, j)
pair has i ≥ 1 when m is not triangular, the final vector in Wm(UV1) will be V ⊺

1 Λ
iV1vj = V ⊺

1 (Λ
ivj).

For fixed U, V1, f(U,R) is a random rotation fixing Wm−1 and Λivj , but f(UV1, R) is a random
rotation fixing Wm−1 and V ⊺

1 (Λ
ivj). Since V ⊺

1 fixes Wm−1 by how we defined V1, this means that
for fixed U, V1, f(U,R) is a random rotation fixing Wm but f(UV1, R) is a random rotation fixing
V ⊺
1 Wm. Therefore, conditioned on U, V1, f(UV1, R) has the same distribution as V ⊺

1 f(U,R)V1. Since
Xk is deterministic in terms of U , this means

(Xk, UV1, f(UV1, R)) | U, V1
d
= (Xk, UV1, V

⊺
1 f(U,R)V1) | U, V1 .

We can remove the conditioning to establish that (Xk, UV1, f(UV1, R))
d
= (Xk, UV1, V

⊺
1 f(U,R)V1) =

(Xk, UV1, V
⊺
1 V2V1), which completes the proof.

Next, we show that (Xk, UV2V1)
d
= (Xk, UV1). The proof is essentially the same as in the case

when m is triangular. We again condition on U , and we have that V2V1 | U
d
= V1 | U have the same

distribution as uniform orthogonal matrices fixing Wm−1(U). Since Xk is a deterministic function of

U , this means (Xk, UV2V1) | U
d
= (Xk, UV1) | U, and removing the conditioning finishes the proof.

In summary,

(Xk, U)
d
= (Xk, UV1)

d
= (Xk, UV2V1)

d
= (Xk, UV2) .

We now prove our main conditioning lemma, which will be a modification of Lemma 36.
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Lemma 38 (conditioning lemma). Let all notation be as in Lemma 36, and let V0 be a fixed
orthogonal matrix fixing Wm. Importantly, V0 is a deterministic function only depending on Wm

(and not directly on U). Then, (Xk, U)
d
= (Xk, UV0).

Proof. First, note that since V0 is a deterministic function of Wm, it is also a deterministic function
of U . We can write V0(·) as this function, and V0 = V0(U).

Now, Lemma 36 proves that (Xk, U)
d
= (Xk, UV ). Note that conditioned on U , V is a random

matrix fixing Wm and V0 is a fixed matrix fixing Wm, which means that V V0 | U
d
= V | U . Hence,

(Xk, UV )
d
= (Xk, UV V0). But from Proposition 37, Xk(UV ) = Xk(U) and Wm(UV ) = Wm(U),

which means that V0(·), which only depends on Wm(·), satisfies V0(UV ) = V0(U). Hence, because

U
d
= UV , we have (Xk, UV V0) = (Xk(UV ), UV · V0(UV ))

d
= (Xk(U), U · V0(U)) = (Xk, UV0).

In summary, we have that (Xk, U)
d
= (Xk, UV )

d
= (Xk, UV V0)

d
= (Xk, UV0), which completes

the proof.

5.3.3 From query algorithms to block Krylov algorithms

In this section, we carry out the high-level outline from Section 2.2.2. We aim to prove the following
result, which implies that any adaptive deterministic algorithm in the extended oracle model can be
simulated by rotating the output of a block Krylov algorithm.

Lemma 39 (reduction to block Krylov). Suppose Λ = U⊺DU , where U is a Haar-random
orthogonal matrix and D is a diagonal matrix drawn from some (possibly unknown) distribu-
tion. Let v1, v2(·), . . . , vK(·) be an adaptive deterministic algorithm that makes K orthonormal

queries, where K2 < d. Let valg1 , valg2 , . . . , valgK be recursively defined as follows: valg1 = v1, and

valgk = vk({Λivalgj }Hk−1
) for k ≥ 2. Let z1, . . . , zK be i.i.d. standard Gaussian vectors. Then, from

the collection {Λizj}HK
(without knowledge of D or Λ), we can construct a set of unit vectors

ṽ1, ṽ2, . . . , ṽK , and a set of rotation matrices U sim
1 , U sim

2 , . . . , U sim
K , where ṽk and U sim

k only depend
on {Λizj}Hk−1

and zk, and such that

{(U sim
1:K)⊺Λiṽj}HK

d
= {Λivalgj }HK

,

where U sim
1:K := U sim

1 · · ·U sim
K , and the equivalence in distribution is over the randomness of Λ and

{zi}i≤K . Moreover, {Λiṽj}HK
is deterministically determined by {Λizj}HK

.

Lemma 39 says that the knowledge of Λizj alone is sufficient to reconstruct the distribution of
any adaptive algorithm’s queries and responses. The proof of the lemma requires introducing a
hefty amount of notation, but we emphasize that it follows along the lines of Section 2.2.2.

First, we describe how to construct ṽk. Let ṽ1 =
z1

∥z1∥ , and for k ≥ 2, let ṽk be the unit vector

parallel to the component of zk that is orthogonal to the span of {Λizj}Hk−1
. (With probability 1,

this is well-defined.)
Because each ṽk is a linear combination of {Λizj}Hk−1

and zk, we can construct the set {Λiṽj}HK

from the set {Λizj}HK
.

We now construct the rotation matrices U sim
k . First, we define matrix-valued functions Uk(·), for

k = 1, . . . ,K, as follows.

Definition 40 (rotations fixing previous queries and responses). For 1 ≤ k ≤ K, the function
Uk(·) takes arguments {xi,j}Hk−1

, yk, zk, where the vectors yk and zk have unit norm and are both
orthogonal to the collection {xi,j}Hk−1

.
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To define U1(·): since H0 is empty, the first function U1 only takes arguments y1, z1, and is
such that U1(y1, z1) is a deterministic orthogonal matrix that satisfies U1(y1, z1)

⊺y1 = z1. Note that
U1(·) exists because y1 and z1 both have unit norm; for example, we can complete y1 and z1 to
orthonormal bases (y1, y2, . . . , yd), (z1, z2, . . . , zd) and take U1(y1, z1) =

∑d
i=1 yiz

⊺
i .

To define Uk(·): Uk({xi,j}Hk−1
, yk, zk) is a deterministic orthogonal matrix that satisfies

U⊺
kxi,j = xi,j , for all (i, j) ∈ Hk−1 ,

U⊺
k yk = zk .

(5.1)

Such a choice of Uk is always possible, because k2 < d, and because yk and zk are orthogonal to
xi,j; for example, we can start with the identity matrix on the subspace spanned by {xi,j}Hk−1

and
add to it a sum of outer products formed by completing yk and zk to two orthonormal bases of the
orthogonal complement.

Next, we describe how to construct U sim
k . We will define U sim

k along with an auxiliary sequence
{vsimk }k=1,2,...,K−1.

Definition 41 (simulated sequences). We let vsim1 = v1, and U sim
1 = U1(ṽ1, v

sim
1 ). For k ≥ 2, vsimk

and U sim
k are defined recursively as follows:

vsimk = vk
(
{(U sim

1:(k−1))
⊺Λiṽj}Hk−1

)
U sim
k = Uk

(
{(U sim

1:(k−1))
⊺Λiṽj}Hk−1

, (U sim
1:(k−1))

⊺ṽk, v
sim
k

)
.

Intuitively, one can think of vsimk as the kth vector the simulator thinks the algorithm is querying,
and U sim

k as a rotation that corresponds vsimk to the random unit vector known by block Krylov.

Proposition 42 (existence of rotations). Each U sim
k is well-defined.

Proof. To show that this choice of U sim
k is possible, we need to check that (U sim

1:(k−1))
⊺ṽk, v

sim
k both

have unit norm and are orthogonal to the subspace Sk spanned by (U sim
1:(k−1))

⊺Λiṽj for (i, j) ∈ Hk−1.

They both have unit norm because ṽk and vsimk are constructed to have unit norm, and inductively
we can assume U sim

1:(k−1) is orthogonal. Note that vsimk is orthogonal to Sk by our assumption on the

function vk(·), and (U sim
1:(k−1))

⊺ṽk is also orthogonal to Sk because

⟨(U sim
1:(k−1))

⊺Λiṽj , (U
sim
1:(k−1))

⊺ṽk⟩ = ⟨Λiṽj , ṽk⟩ = 0 ,

where the second line follows from the definition of ṽk.

We summarize some additional properties of vsimk and U sim
k in the following lemma.

Lemma 43 (properties of the simulated sequences). The variables U sim
k and vsimk for k = 1, . . . ,K

defined above satisfy the following properties:

(P1) vsimk depends only on {Λiṽj}Hk−1
, and U sim

k depends only on {Λiṽj}i+j≤k.

(P2) For any k ≥ j, we have

ṽj = U sim
1:k v

sim
j .

(P3) For k ≥ 2, vsimk satisfies

vsimk = vk
(
{(U sim

1:(k−1))
⊺ΛiU sim

1:(k−1)v
sim
j }Hk−1

)
.
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(P4) For k ≥ 2, U sim
k satisfies

U sim
k = Uk

(
{(U sim

1:(k−1))
⊺ΛiU sim

1:(k−1)v
sim
j }Hk−1

, (U sim
1:(k−1))

⊺ṽk, v
sim
k

)
.

Proof. (P1) is immediate from the definitions, since {(i, j) : i+ j ≤ k} = Hk−1 ∪ {(0, k)}.
To show (P2), note that the second property of the function Uk from (5.1) implies that

vsimj = (U sim
j )⊺(U sim

1:(j−1))
⊺ṽj = (U sim

1:j )
⊺ṽj .

This proves (P2) for k = j. To prove (P2) for k > j, we use induction on k. If (P2) holds for
k − 1 ≥ j, then

(U sim
1:k )

⊺ṽj = (U sim
k )⊺(U sim

1:(k−1))
⊺ṽj = (U sim

1:(k−1))
⊺ṽj = vsimj .

Above, the middle equality holds by the first property of (5.1), since U sim
k fixes (U sim

1:(k−1))
⊺ṽj because

j ≤ k − 1. The final equality holds by our inductive hypothesis. So, (P2) holds for k.
Finally, (P3) and (P4) then follow from (P2), since k − 1 ≥ j if j ∈ Hk−1.

We highlight the importance of (P2) for k = K, which roughly states that (U sim
1:K)⊺ actually

sends each block Krylov-generated vector ṽj to the simulated vector vsimj .
Before proving Lemma 39, we must make one more basic definition.

Definition 44 (queries and data). For k ≥ 2, given the matrix Λ and a set {vj}1≤j≤k−1, define Ck

as the function that satisfies Ck(Λ, {vj}1≤j≤k−1) = {Λivj}Hk−1
. In addition, define Dk = vk ◦ Ck.

We are now ready to prove Lemma 39. Although the proof is notationally burdensome, the
message is that we can show the equality of distributions inductively by repeatedly invoking the
conditioning lemma (Lemma 38), which is designed precisely for the present situation.

Proof. [Proof of Lemma 39] For 1 ≤ k ≤ K, let Λk := (U sim
1:k )

⊺ΛU sim
1:k . Since we can write

(U sim
1:k )

⊺Λiṽj = (U sim
1:k )

⊺Λi(U sim
1:k )v

sim
j = Λi

kv
sim
j for any k ≥ j by (P2) of Lemma 43, it suffices to

inductively prove that for all 1 ≤ k ≤ K,

(Λk, {vsimj }1≤j≤k)
d
= (Λ, {valgj }1≤j≤k) .

For the base case of k = 1, it suffices to show that (Λ1, v
sim
1 )

d
= (Λ, valg1 ). Note, however, that

vsim1 = valg1 = v1, and Λ1 = (U sim
1 )⊺Λ(U sim

1 ) = U1(ṽ1, v1)
⊺ΛU1(ṽ1, v1). Since v1 is a deterministic

vector, ṽ1 is independent of Λ, and the distribution of Λ is rotationally invariant, the claim follows.

For the inductive step, assume we know (Λk, {vsimj }1≤j≤k)
d
= (Λ, {valgj }1≤j≤k). Then, note that

valgk+1 = vk+1({Λivalgj }Hk
) and vsimk+1 = vk+1({Λi

kv
sim
j }Hk

). Thus, we have valgk+1 = Dk+1(Λ, {valgj }1≤j≤k)

and vsimk+1 = Dk+1(Λk, {vsimj }1≤j≤k). In addition, because U sim
k+1 fixes Λ

i
kv

sim
j for all (i, j) ∈ Hk by (P4),

we also have that Λi
k+1v

sim
j = Λi

kv
sim
j for all (i, j) ∈ Hk, which means vsimk+1 = Dk+1(Λk+1, {vsimj }1≤j≤k).

Therefore, it suffices to show

(Λk+1, {vsimj }1≤j≤k)
d
= (Λ, {valgj }1≤j≤k) , (5.2)

as this implies (Λk+1, {vsimj }1≤j≤k+1)
d
= (Λ, {valgj }1≤j≤k+1), which completes the inductive step.

Next, we show that U sim
k+1 sends ṽk+1 to a random unit vector orthogonal to the simulated queries

so far. Note that Λk+1 = (U sim
k+1)

⊺Λk(U
sim
k+1), where, by (P4),

U sim
k+1 = Uk+1({Λi

kv
sim
j }Hk

, (U sim
1:k )

⊺ṽk+1, v
sim
k+1) . (5.3)
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Note that ṽk+1 has the law of a random unit vector conditional on being orthogonal to {Λizj}Hk
, or

equivalently, it is a random unit vector orthogonal to {Λiṽj}Hk
. Since

(U sim
1:k )

⊺Λiṽj = (U sim
1:k )

⊺Λi(U sim
1:k )v

sim
j = Λi

kv
sim
j

for all (i, j) ∈ Hk (by (P2)), this means that (U sim
1:k )

⊺ṽk+1 is orthogonal to {Λi
kv

sim
j }Hk

. The random

direction of ṽk+1 has no dependence on {Λiṽj}Hk
apart from being orthogonal to them, which means

by (P1), (U sim
1:k )

⊺ṽk+1 is a uniformly random unit vector orthogonal to {Λi
kv

sim
j }Hk

.

Recalling that vsimk+1 = Dk+1(Λk, {vsimj }1≤j≤k), this means that we can rewrite (5.3) as

U sim
k+1 = Uk+1

(
{Λi

kv
sim
j }Hk

, v̂sim,Dk+1(Λk, {vsimj }1≤j≤k)
)
, (5.4)

where v̂sim is a random unit vector orthogonal to {Λi
kv

sim
j }Hk

. As a result, if we define

Ualg
k+1 := Uk+1

(
{Λivalgj }Hk

, v̂alg,Dk+1(Λ, {valgj }1≤j≤k)
)
, (5.5)

where v̂alg is a random unit vector orthogonal to {Λivalgj }Hk
, then

(Λk+1, {vsimj }1≤j≤k) =
(
(U sim

k+1)
⊺Λk(U

sim
k+1), {vsimj }1≤j≤k

)
d
=

(
(Ualg

k+1)
⊺Λ(Ualg

k+1), {v
alg
j }1≤j≤k

)
.

Above, the first equality follows by definition, and the second follows from our inductive hypothesis

that (Λk, {vsimj }1≤j≤k)
d
= (Λ, {valgj }1≤j≤k), along with (5.4) and (5.5).

We are now in a position to apply the conditioning lemma (Lemma 38). Note that Ualg
k+1 only

depends on {Λivalgj }Hk
(as well as some randomness in v̂alg, but the randomness is independent

of everything else given {Λivalgj }Hk
, so we can safely condition on it). Hence, we can apply the

conditioning lemma with Ualg
k+1, to obtain that

(Λk+1, {vsimj }1≤j≤k)
d
=

(
(Ualg

k+1)
⊺Λ(Ualg

k+1), {v
alg
j }1≤j≤k

) d
=

(
Λ, {valgj }1≤j≤k

)
,

which establishes (5.2) and thereby concludes the proof.

With the block Krylov reduction in hand, we can now establish our second lower bound for
sampling from Gaussians.

Theorem 45 (second lower bound for sampling from Gaussians). There is a universal constant
ϵ0 > 0 such that the query complexity of sampling from Gaussian distributions N (0,Σ) in Rd, where
the condition number κ of Σ satisfies κ ≤ d1/5−δ, with accuracy ϵ0 in total variation distance is at
least Ωδ(

√
κ log d).

Proof. Let U be a random orthogonal matrix, and let Λ = U⊺DU , Λ′ = U⊺D′U be as in Lemma
32. We first show that if κ ≤ d1/5−δ and c is a sufficiently small constant, no adaptive algorithm
that makes less than cδ

√
κ log d queries to the extended oracle can distinguish between Λ and Λ′,

with Ω(1) probability.
First we assume that the algorithm is deterministic, so its behavior is characterized by functions

v1, v2(·), . . . , vK(·), as in Lemma 39. The algorithm then proceeds to make queries valg1 , valg2 , . . . , valgK ,

where valgk = vk({Λivalgj }Hk−1
). Lemma 39 shows that the output of the algorithm {Λivalgj }HK

can

be entirely simulated by a block Krylov algorithm, which receives {Λizk}HK
, where z1, . . . , zK are
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i.i.d. standard Gaussians. Lemma 32 says that a block Krylov algorithm that makes K = cδ
√
κ log d

queries, where cδ is a small constant depending on δ and κ ≤ d1/5−δ, cannot distinguish between Λ
and Λ′ with Ω(1) advantage, which then implies the same for any deterministic algorithm.

If the algorithm is randomized, then it uses a random seed ξ that is independent of Λ and Λ′.
So conditional on the random seed, the algorithm will not be able to distinguish Λ and Λ′ with Ω(1)
advantage, so the overall probability that the randomized algorithm successfully distinguishes Λ
and Λ′ also cannot be Ω(1).

Finally, we note that a sample from N (0,Λ−1) versus N (0,Λ′−1) can distinguish between the
two cases. This means that even if we were able to draw a sample that was 1

3 -far in total variation
distance, we could output the correct answer with probability at least 2

3 . This implies that any
sampling algorithm must require at least Ωδ(

√
κ log d) queries to the extended oracle, and hence at

least same number of queries to the standard oracle.
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A Upper bound for log-concave sampling in constant dimension

In this section we give a simple proof that in constant dimension, one can approximately generate a
sample from a log-concave distribution with condition number κ, in O(log κ) queries. Our query
dependence also has a polylogarithmic dependence on 1

ε , if we wish to generate a sample that is
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ε-close in TV distance to the true distribution. (We do not attempt to optimize the dependence on
dimension d or the polylogarithmic dependence on 1

ε .)
Let V be a convex function that is 1-strongly convex and κ-smooth, such that V is minimized

at the origin and V (0) = 0. For any real value y ≥ 0, define BV (y) to be the set of points x such
that V (x) ≤ y.

First, we note the following basic facts that follow immediately from our convexity assumptions.

Proposition 46 (basic facts about log-concavity). 1. BV (y) is a convex body for any y > 0,
and contains 0.

2. BV (y) is contained in the ball of radius
√
2y and contains the ball of radius

√
2y/κ.

3. For any 0 < y < y′, BV (y
′) ⊂ y′

y BV (y).

Next, we show how to obtain a crude dO(1)-approximation for BV (1) using dO(1) log κ first-order
queries. The proof is essentially folklore and follows from the ellipsoid method.

Proposition 47 (ellipsoid method). Let B be a convex body that contains B(0, r) and is contained
in B(0, R), along with a membership and separation oracle. Using dO(1) log R

r adaptive queries to
the membership and separation oracle, we can find an ellipsoid E centered around some point z such
that E ⊂ B ⊂ E′, where E′ is E dilated by an O(d3/2) factor about z.

We can apply the above proposition to the convex body BV (1).

Corollary 48 (sublevel set approximation). Using dO(1) log κ adaptive queries to V and ∇V , we
can find an ellipsoid E centered around some point z such that E ⊂ BV (1) ⊂ E′, where E′ is E
dilated by an O(d3/2) factor about z.

Proof. It suffices to show that from a single first-order query at a point x, we can generate a
membership and separation oracle for BV (1). Indeed, the membership part is straightforward
as we just check whether V (x) ≤ 1 (which is equivalent to x ∈ BV (1)). The separation oracle
is also simple, and can be done using the gradient. Specifically, suppose that V (x) > 1; then,
V (x′) ≥ V (x) + ⟨∇V (x), x′ − x⟩, which means that every x′ with ⟨∇V (x), x′⟩ ≥ ⟨∇V (x), x⟩ is such
that V (x′) ≥ V (x) > 1, i.e., ∇V (x) is a separation oracle for BV (1) at x.

We are able to prove our sampling upper bound, using a rejection sampling approach.

Theorem 49 (upper bound for log-concave sampling). For any constant d ≥ 2 and any 1-strongly
convex and κ-smooth function V with minimum at 0, we can approximately sample from π ∝ exp(−V )
to total variation error at most ε using O(log κ+ logO(1)(1/ε)) adaptive queries to V and ∇V (here
we emphasize that the asymptotic notation treats d as constant).

Proof. Given V and any integer t ≥ 1, let pt be the probability that a sample from π lies in
tBV (1). The normalizing constant is Z ≥

∫
BV (1) exp(−V ) ≥ e−1 vol(BV (1)), but integral over

(t+ 1)BV (1)\tBV (1) is∫
(t+1)BV (1)\tBV (1)

exp(−V ) ≤ exp(−t) vol
(
(t+ 1)BV (1)

)
= exp(−t) (t+ 1)d vol

(
BV (1)

)
,

using Proposition 46 which implies that V (x) ≥ t for any x ̸∈ tBV (1). Therefore, the probability of
(t+ 1)BV (1)\tBV (1) under π is at most

π
(
(t+ 1)BV (1)\tBV (1)

)
≤ exp(−t) (t+ 1)d vol(BV (1))

e−1 vol(BV (1))
= exp(−(t− 1)) (t+ 1)d .
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By summing this quantity for all integers greater than t, the probability of the complement of
tBV (1) is at most

∑
u≥t exp(−(u− 1)) (u+ 1)d =

∑
u≥t exp(−u+ d log(u+ 1) + 1). Note that for

t ≥ Ω(d log d), this quantity is at most O(exp(−t/2)). Taking t = C (d log d+ log(1/ε)) for a large
constant C, we obtain π(Rd\tBV (1)) ≤ ε/2.

The algorithm now works as follows. We use Corollary 48 to find E ⊂ BV (1) ⊂ E′. We
pick a uniformly random point X in tE′ for t = C (d log d+ log(1/ε)). We then accept the point
X with probability exp(−V (X)), and if we reject we restart the procedure. First, note that
this algorithm, upon termination, samples exactly from π conditioned on tE′, which is at most
ε
2 away from π in total variation distance. In addition, each rejection sampling step succeeds
with probability at least vol(E)/(e vol(tE′)), since with probability vol(E)/ vol(tE′) we choose a
point in E in which case V (X) ≤ 1 so we accept with probability at least e−1. This is equal to
1/(tO(d3/2))d = d−O(d) t−d = d−O(d) (log 1

ε )
−d. So, after (d log 1

ε )
O(d) rounds of rejection sampling,

each of which only needs one query to V , we accept the sample with probability at least 1 − ε
2 ,

which means that overall we have generated a sample which is ε-close in distribution to π in total
variation distance.

The overall query complexity is a combination of finding E,E′ and then running the rejection
sampling, for a total complexity of dO(1) log κ + (d log 1

ε )
O(d). So, for any fixed dimension d and

error probability ε, the query complexity for log-concave sampling is O(log κ). In addition, the
dependence on the error probability is polylogarithmic for any fixed d.

Remark. We briefly note that the exponential dependence on d is not necessary: using more
sophisticated tools developed for sampling from convex bodies one should be able to obtain a
complexity of log(κ) (d log 1

ε )
O(1). However, we choose to not optimize the dimension dependence in

this result for the sake of simplicity, and since we are focused on the setting of d = O(1).

B Upper bound for sampling from Gaussians

Finally, we show a simple proof that, using only O(min(
√
κ log d, d)) gradient queries, one can

generate an approximate sample from a Gaussian N (0,Σ) in d dimensions. Note that the density
evaluated at x, up to an additive constant, equals −1

2 x
⊺Λx for Λ = Σ−1, which means that a

gradient query at x amounts to receiving the matrix-vector product Λx.
First, we require a well-known proposition from approximation theory.

Proposition 50 ([SV14, Theorem 3.3]). For any positive integer s and 0 < δ < 1, there exists a
polynomial ps,δ of degree ⌈

√
2s ln(2/δ)⌉ such that |ps,δ(x)− xs| ≤ δ for all x ∈ [−1, 1].

As a corollary, we have the following result.

Proposition 51 (polynomial approximation of inverse square root). For any κ ≥ 2 and δ < 1
2 , there

exists a polynomial qκ,δ of degree O(
√
κ log κ

δ ) such that |qκ,δ(x)− x−1/2| ≤ δ/
√
κ for all 1 ≤ x ≤ κ.

Proof. First, consider the function (1 + x)−1/2. For |x| ≤ 1− 1
κ < 1, we can use the Taylor series

to write

(1 + x)−1/2 = 1 +
∞∑
t=1

(12 − 1) (12 − 2) (12 − 3) · · · (12 − t)

t!
xt = 1 +

∞∑
i=1

ctx
t ,

where |ct| ≤ 1 for all t ≥ 1.
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Note that for |x| ≤ 1− 1
κ ,

∣∣∑
t>T ctx

t
∣∣ ≤ ∑

t>T |x|t ≤ |x|T
1−|x| . For T = O(κ log κ

δ ), we can bound

this by (1−1/κ)T

1/κ ≤ δ
2 . Therefore, for all such x,

∣∣∣(1 + x)−1/2 −
T∑
t=0

ctx
t
∣∣∣ ≤ δ

2
,

where we have set c0 := 1.
Next, using Proposition 50, we can replace each xt with pt,δ(x) where pt,δ is a polynomial of

degree O(
√
t log(t/δ)) such that |pt,δ(x)− xt| ≤ δ/(4t2) for all |x| ≤ 1. (We also let p0,δ simply be

the constant function 1.) Therefore,∣∣∣(1 + x)−1/2 −
T∑
t=0

ctpt,δ(x)
∣∣∣ ≤ δ

2
+

T∑
t=1

|ct|
δ

4t2
≤ δ .

In addition, the polynomial p̂ :=
∑T

t=0 ctpt,δ has degree at most O(
√
T log(T/δ)) = O(

√
κ log κ

δ ).

To finish, |p̂(x− 1)− x−1/2| ≤ δ
κ for all 1

κ ≤ x ≤ 1, which means that∣∣∣p̂(x
κ
− 1

) 1√
κ
− x−1/2

∣∣∣ ≤ δ√
κ

for all 1 ≤ x ≤ κ .

So, there exists a polynomial qκ,δ with qk,δ(x) = p̂(xκ − 1) 1√
κ
, such that qκ,δ has degree O(

√
κ log κ

δ )

and |qκ,δ(x)− x−1/2| ≤ δ/
√
κ for all 1 ≤ x ≤ κ.

We are now ready to prove our query complexity upper bound.

Theorem 52 (optimal algorithm for sampling from Gaussians). Let Λ = Σ−1 be an unknown
positive definite matrix with all eigenvalues between 1 and κ. Then, using O(min(

√
κ log d

ε , d))
adaptive matrix-vector queries to Λ, we can produce a sample from a distribution π̂ such that
KL(π̂ ∥ N (0,Σ)) ≤ ε2.

Proof. Choose X ∼ N (0, Id), define R = O(
√
κ log κ

δ ) be the degree of qκ,δ, and for simplicity

write q(x) := qκ,δ(x) :=
∑R

i=0 aix
i. The algorithm works as follows. Using the power method, we

compute X,ΛX,Λ2X, . . . ,ΛRX. We output Y =
∑R

i=0 ai Λ
iX. Note that Y ∼ N (0, Σ̂), where we

set Σ̂ := (
∑R

i=0 aiΛ
i)2. If λ1, . . . , λd denote the eigenvalues of Λ, then the eigenvalues of Σ̂ are

q(λ1)
2, . . . , q(λd)

2. The KL divergence is given by

KL
(
N (0, Σ̂)

∥∥ N (0,Σ)
)
≲

d∑
k=1

|q(λk)
2 λk − 1|2 ≲

d∑
k=1

|q(λk)λ
1/2
k − 1|2 ≲

d∑
k=1

λk |q(λk)− λ
−1/2
k |2

≲ dκ
δ2

κ
.

If we set δ ≍ ε/
√
d, then we obtain a KL divergence of at most ε2.

Finally, we can also learn Λ by querying Λei for each unit basis vector e1, . . . , ed. So, we can thus
learn Σ, and then generate a perfect random sample from N (0,Σ). Hence, the query complexity of
generating a sample from N (0,Σ) is at most O(min(

√
κ log κd

ε , d)) = O(min(
√
κ log d

ε , d)).

Remark. If π is an α-strongly log-concave distribution, then from Pinsker’s inequality and
Talagrand’s transport inequality,

max{∥µ− π∥2TV, αW 2
2 (µ, π)} ≲ KL(µ ∥ π) .

Hence, this algorithmic result for Gaussians complements the two lower bounds in Corollary 19.
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