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Abstract

We give a new framework for solving the fundamental problem of low-rank matrix completion,
i.e., approximating a rank-r matrix M ∈ Rm×n (where m ≥ n) from random observations.
First, we provide an algorithm which completes M on 99% of rows and columns under no
further assumptions on M from ≈ mr samples and using ≈ mr2 time. Then, assuming the
row and column spans of M satisfy additional regularity properties, we show how to boost this
partial completion guarantee to a full matrix completion algorithm by aggregating solutions to
regression problems involving the observations.

In the well-studied setting where M has incoherent row and column spans, our algorithms
complete M to high precision from mr2+o(1) observations in mr3+o(1) time (omitting logarithmic
factors in problem parameters), improving upon the prior state-of-the-art [JN15] which used
≈ mr5 samples and ≈ mr7 time. Under an assumption on the row and column spans of M we
introduce (which is satisfied by random subspaces with high probability), our sample complexity
improves to an almost information-theoretically optimal mr1+o(1), and our runtime improves to
mr2+o(1). Our runtimes have the appealing property of matching the best known runtime to
verify that a rank-r decomposition UV⊤ agrees with the sampled observations. We also provide
robust variants of our algorithms that, given random observations from M+N with ∥N∥F ≤ ∆,
complete M to Frobenius norm distance ≈ r1.5∆ in the same runtimes as the noiseless setting.
Prior noisy matrix completion algorithms [CP10] only guaranteed a distance of ≈

√
n∆.
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1 Introduction

Matrix completion is a fundamental and well-studied problem in both the theory and practice
of computer science, machine learning, operations research, and statistics. Broadly, the matrix
completion problem asks to recover a matrix M ∈ Rm×n from a small (i.e., sublinear) number of
randomly revealed, and potentially noisy, entries. This problem was originally studied in the context
of collaborative filtering [RS05] (see e.g., the Netflix challenge [SN07]) and has since found a myriad
of applications in diverse settings such as signal processing [LLR95, SY07], genetics [ND14], social
network analysis [MJGP19], and traffic engineering [GC12].

Structural assumptions. In the absence of additional assumptions, matrix completion is im-
possible. Unless there is structure among the entries of M, then all of M must be revealed for
recovery (as otherwise unrevealed entries can be arbitrary). Correspondingly, there has been a long
line of work developing algorithms for matrix completion under different structural assumptions on
M. Perhaps the most prevalent and natural assumption placed on M is that it is low-rank. This
assumption is well-motivated for the matrices arising in collaborative filtering or signal processing,
for example, as discussed in [CR12]. Furthermore, rank-r matrices M ∈ Rm×n can be represented
in O((m + n)r)-space simply by storing its rank-r factorization. Consequently, naïve parameter-
counting arguments suggest it may be possible to recover M using O((m+ n)r) observations.

However, the assumption that M is low-rank alone is insufficient to enable algorithms for matrix
completion that use o(mn) observations. If M has a single non-zero entry, then it has rank-1, and
yet Ω(mn) observations are required to recover the nonzero entry (and consequently M) with con-
stant probability. Correspondingly, works on low-rank matrix completion place different additional
structural assumptions that preclude such sparse obstacles to solving the problem.

The setting where M has incoherent row and column spans is particularly well-studied [CR12]. A
dimension-r subspace of Rd is µ-incoherent if no projection of a basis vector has squared norm more
than µr

d , i.e., the subspace is well-spread over coordinates; we use “incoherent subspace” without a
parameter to mean a Õ(1)-incoherent subspace.1 Letting UΣV⊤ be a singular value decomposition
(SVD) of M, and assuming U,V span incoherent subspaces (and an entrywise bound on UV⊤),
[Rec11] refined results of [CT10, CR12, KMO10], and demonstrated that there are polynomial-time
algorithms completing M from Õ((m+ n)r) observations.

The parameters used in the definition of incoherence are motivated by the fact that they are
satisfied with high probability by random rank-r matrices. Consequently, prior work showed that
matrix completion is information-theoretically possible so long as the structure of M is “suitably-
random.” However, it is perhaps unclear whether incoherence is the correct or best notion of
“suitably-random,” aside from the post-hoc justification that it allows for efficient matrix completion.

Performance of matrix completion algorithms. Despite a plethora of work on matrix com-
pletion when e.g., M has incoherent row and column spans (discussed below and in greater detail in
Section 1.2), many surprisingly fundamental algorithmic questions remain unresolved. A number of
key open problems relate to the runtime and robustness of existing matrix completion algorithms.

The aforementioned works of [CT10, CR12, Rec11] developed polynomial-time algorithms for
completing a rank-r matrix M ∈ Rm×n with Õ(1)-incoherent row and column spans from a near-
optimal number of observations. These algorithms were based on semidefinite programming (SDP)
for nuclear norm minimzation. The runtimes of state-of-the-art SDP solvers [JKL+20, HJS+22]
have a substantial polynomial overhead over the number of observations, inhibiting their practical

1Throughout Õ hides polylogarithmic factors in m,n, the inverse failure probability, and the relative accuracy.
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application. Motivated by this shortcoming, another line of work [KMO10, Har14, JN15, YPCC16]
developed iterative first-order methods, based on alternating minimization or gradient descent,
whose runtimes depend linearly on the dimension max(m,n). However, the state-of-the-art algo-
rithms with such runtime guarantees still incur fairly substantial overheads in problem parameters.
Prior to our work, the best runtime for incoherent low-rank matrix completion was by [JN15], whose
algorithm ran in time Õ((m+ n)r7).2 A contemporaneous work of [YPCC16] yielded an incompa-
rable runtime of Õ((m+ n)r4κ5), where κ is the multiplicative range of M’s singular values.

Another parameterization of the performance of matrix completion algorithms, which is rife with
open problems, is the degree to which they can handle noise in the observations. In the setting where
M is low-rank and has incoherent row and column spans, suppose that instead of observing random
entries of M, the observations we see are of M+N for a noise matrix N satisfying ∥N∥F ≤ ∆. We
are unaware of any information-theoretic barriers to recovering a matrix M̂ satisfying ∥M̂−M∥F =
O(∆) with no further assumptions. However, state-of-the-art polynomial-time algorithms are only
able to achieve a Frobenius norm recovery guarantee of O(

√
min(m,n)∆), which loses a dimension-

dependent factor. While other matrix completion algorithms in the literature also demonstrate
robustness to noise, their guarantees either require additional assumptions on the noise such as
sparsity, e.g., [CGJ17, YPCC16], or break down for large ∆, e.g., [KMO09, GAGG13, Har14, HW14].

These open problems regarding the complexity of matrix completion give rise to the following
key questions which motivate our work.

1. What type of matrix completion is possible when the only structure is a rank bound?

2. Are there alternative structural assumptions to incoherent subspaces which enable faster al-
gorithms, improved sample complexities, and better noise tolerance?

3. Under the well-studied structural assumption of incoherent subspaces, to what extent can we
improve upon the runtimes and error tolerance of existing matrix completion algorithms?

1.1 Our results

We provide a new algorithmic framework for matrix completion and technical tools that address
the shortcomings raised by each of Questions 1, 2, and 3. The cornerstone of our framework is a
new iterative method that answers Question 1 by obtaining (perhaps surprisingly) nontrivial matrix
completion guarantees with no structural assumptions beyond a rank bound. We believe this result
is of independent interest, and we state it first.

Partial matrix completion without structure. As already noted, fully completing low-rank M
from partial observations is impossible without further assumptions due to the possibility of sparse,
large entries. However, when M is low-rank, such entries are necessarily rare (see Lemma 6 for a
formal statement) and thus one could still hope to recover a large portion of M. We demonstrate
this in the following theorem (where MS,T denotes the submatrix indexed by S ⊆ [m], T ⊆ [n]).

Theorem 1 (informal, see Corollary 2). Let m ≥ n,3 let M ∈ Rm×n be rank-r, and let N ∈ Rm×n

satisfy ∥N∥F ≤ ∆. There is an algorithm which, given Õ(m1+o(1)r) random observations from
2A more recent work [CGJ17] claims an improved runtime over [JN15]. However, to obtain this result [CGJ17]

assumes a sublinear-time exact singular value decomposition subroutine (which does not currently exist), and it is
unclear how to recover the runtime claim of the paper without such an assumption [Che22].

3All of our results handle m ≤ n symmetrically via transposition, so we often assume m ≥ n for ease of exposition.
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M +N, runs in time Õ(m1+o(1)r2) and, with high probability, outputs a rank-rmo(1) factorization
of M̂ ∈ Rm×n so that there exist S ⊆ [m] and T ⊆ [n] with |S| ≥ 0.99m, |T | ≥ 0.99n, and∥∥∥∥[M− M̂

]
S,T

∥∥∥∥
F
≤ ∆.

In other words, on a very large subset of coordinates, Theorem 1 recovers M up to the optimal
error threshold up to constants. Additionally, since ≈ mr samples are information-theoretically
necessary to perform nontrivial (full) matrix completion [CT10], the sample complexity of Theorem 1
is almost-optimal. As a corollary, in the case when ∆ = 0, Theorem 1 shows that matrix completion
can be solved exactly on all but 1% of rows and columns (assuming a bounded bit complexity).

The runtime stated in Theorem 1 has the appealing property that it is what we call almost-
verification time. Consider the natural problem of verifying a rank-r factorization of M, that is the
problem of verifying that UV⊤ = M on mr observed entries given an explicit rank-r factorization
of M = UV⊤, for U ∈ Rm×r,V ∈ Rn×r. The best known running time for this problem is O(mr2)
(even when using fast multiplication). Up to subpolynomial factors, our runtime in Theorem 1
matches this natural bottleneck to improved runtimes for matrix completion.

The guarantees of Theorem 1 are to the best of our knowledge new, and seem particularly
striking in light of the long history of matrix completion algorithms. It is worth noting that there
has been work which broadly aims to complete a submatrix from observations. Perhaps the most
closely-related result is due to recent, similarly-titled work of [KHK22], which studies a different
notion of partial matrix completion. [KHK22] shows that if M is rank-r and has bounded entries,
and the distribution of observed entries is supported on a subset U ⊆ [m]× [n], then one can recover
M to constant average entrywise error on a subset of [m] × [n] with cardinality at least |U | (for a
suitable relaxed notion of average error). For instance, if the algorithm of [KHK22] is instantiated
for U = [m] × [n], then it outputs M̂ satisfying ∥M̂ −M∥2F ≤ ϵ∥M∥2F using O((m + n)rϵ−2)
observations. Notably, their complexity depends inverse-polynomially on the accuracy (and hence
inhibits exact completion). In contrast, our Theorem 1 achieves exact completion (albeit only on a
large submatrix), and works under the standard, i.i.d. observation model.

Matrix completion beyond incoherence. Equipped with our new partial matrix completion
subroutine, we turn to Question 2 and ask under what structural assumptions we can leverage it
to solve (full) matrix completion efficiently. Given the generality of our partial matrix completion
algorithm, it is natural to ask whether we can first run partial completion, and then recover the
matrix on the small subset of rows and columns on which our partial completion method fails.

When analyzing this iterative process of recovering rows and columns of the target matrix which
were dropped by our partial completion method, the standard structural assumption of incoherence
turns out to be a lossy notion of “suitably-random.” Instead, we define a new structural assumption
on subspaces which we call subspace regularity, that serves as a proxy for randomness.

Definition 1 (Regular subspace). We say a subspace V ⊆ Rd is (α, β)-regular if for all αd-sparse
v ∈ Rd, ∥ΠV⊥v∥2 ≥ β ∥v∥2.

Note that Definition 1 implies ∥ΠV v∥2 ≤ (1 − β2) ∥v∥2, a condition which bears resemblance
to incoherence (by bounding the relative weight of any small set of coordinates in the subspace).
Intuitively, Definition 1 imposes that the restriction of V to a sufficiently large set of coordinates is
still well-conditioned (made formal by Lemma 2). We prove that uniformly random subspaces are
(α, β)-regular for constant α, β, with exponentially small failure probability, in Appendix A. Sub-
space regularity is not directly comparable to incoherence without losing r factors in the parameter
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settings (see Fact 2), because a d × r basis matrix for an incoherent subspace can be entirely sup-
ported on an O(1r ) fraction of rows. However, Definition 1 is naturally compatible with our partial
matrix completion method: roughly speaking, we require that the non-dropped rows and columns
(e.g., (S, T ) in Theorem 1) are representative enough of the remaining matrix to recover dropped
subsets. This representativeness is captured by the conditioning requirement in Definition 1. Our
main (full) matrix completion result under subspace regularity is the following.

Theorem 2 (informal, see Corollary 3). Let m ≥ n, let M ∈ Rm×n be rank-r and have (Ω(1),Ω(1))-
regular row and column spans, and let N ∈ Rm×n satisfy ∥N∥F ≤ ∆. There is an algorithm which,
given Õ(mr1+o(1)) random observations from M + N, runs in time Õ(mr2+o(1)) and with high
probability outputs a rank-r factorization of M̂ ∈ Rm×n so that∥∥∥M̂−M

∥∥∥
F
= O

(
r1.5+o(1) ·∆

)
.

The sample complexity of Theorem 2 is optimal up to subpolynomial factors [CT10] in the
noiseless case (captured by our result by taking ∆ → 0); these subpolynomial factors arise due to
iterate rank blowup issues discussed in Section 1.3. Moreover, the algorithm of Theorem 2 runs
in almost-verification time for the number of observations. Finally, in the noisy case, ∆ > 0, the
overhead of Theorem 2’s recovery guarantee only scales with the rank r, as opposed to the prior
state-of-the-art [CR12] whose overhead scaled polynomially with the problem’s dimensionality.

Even under subspace regularity, the “fixing” step used to obtain Theorem 2 we briefly described
is quite technically involved. One of the main difficulties is that after running partial matrix com-
pletion, we do not necessarily know which rows and columns S, T have been completed. Our fixing
algorithm circumvents this issue by carefully finding a small set of rows and columns which approx-
imately span the row and column space of M in a well-conditioned fashion, satisfying a “represen-
tative” condition we state in Definition 6. We then show that we can use these representative rows
and columns, alongside held-out random observations of the matrix, to robustly recover the rows
and columns that were incorrectly completed by the partial completion algorithm. Putting these
pieces together yields a fixing algorithm which recovers the subsets our partial completion method is
inaccurate on, but increases error by a poly(r) factor. By carefully interleaving this fixing operation
with repeated applications of our partial completion iterative method, we geometrically decrease
the error of our overall algorithm. We give a detailed overview of our approach in Section 1.3.

Matrix completion with incoherence. Finally, we return to Question 3, i.e., matrix completion
under the well-studied assumption of incoherence. We demonstrate that a small modification of our
algorithm in Theorem 2 implies an analogous result under incoherence. In light of Fact 2 (which
converts a subspace incoherence bound into a regularity bound), this is immediate up to poly(r)
losses in the sample complexity and runtime. We give a tighter characterization of the lossiness
due to assuming incoherence by introducing Definition 4, which subsumes both subspace regularity
and incoherence. Leveraging this characterization, our techniques imply the following result for
incoherent matrix completion (losing a single r factor in runtime and samples over Theorem 2).

Corollary 1 (informal, see Corollary 4). Let m ≥ n, let M ∈ Rm×n be rank-r and have Õ(1)-
incoherent row and column spans, and let N ∈ Rm×n satisfy ∥N∥F ≤ ∆. There is an algorithm
which, given Õ(mr2+o(1)) random observations from M + N, runs in time Õ(mr3+o(1)) and with
high probability outputs a rank-r factorization of M̂ ∈ Rm×n so that∥∥∥M̂−M

∥∥∥
F
= O

(
r1.5+o(1) ·∆

)
.
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Even with this additional r factor overhead, our results compare favorably to existing work on
incoherent matrix completion. As mentioned previously, the state-of-the-art runtime for incoherent
matrix completion (with polylogarithmic dependence on problem conditioning) was Õ(mr7) [JN15],
which our Corollary 1 dramatically improves upon. While the sample complexity of Corollary 1 is
a factor of r larger than the sample complexity required by matrix completion algorithms based on
semidefinite programming, all incoherent matrix completion methods in the literature which run in
time nearly-linear in m = max(m,n) use Ω(mr2) observations (and often more), which we match up
to subpolynomial factors. Additionally, none of the existing polynomial-time algorithms (even the
slower semidefinite programming approaches!) were known to yield dimension-independent recovery
guarantees for noisy incoherent matrix completion. We summarize how Corollary 1 compares to
prior work on matrix completion under incoherence below.

Algorithm Sample complexity Runtime Recovery error
[Rec11] mr Ω(mω) N/A
[CP10] mr Ω(mω)

√
n∆

[HW14] mr9 mr13 ⋆

[SL16] mr7κ4 m2r6κ4 N/A
[JN15] mr5 mr7 N/A

[YPCC16] mr2κ4 mr4κ5 ⋆

Corollary 1 mr2+o(1) mr3+o(1) r1.5+o(1)∆

Figure 1: Comparison of algorithms for completing rank-r M ∈ Rm×n with Õ(1)-incoherent row
and column spans, assuming m ≥ n. We let ∆ upper bound the (Frobenius norm) noise level,
κ denote the multiplicative range of M’s singular values, and hide polylogarithmic factors. For
[Rec11, CP10], current SDP solvers with m constraints use Ω(mω) time [JKL+20, HJS+22]. We use
⋆ to mean additional assumptions are made on the noise beyond a Frobenius norm bound.

1.2 Related work

The literature on matrix completion is vast and a full survey is beyond our scope. For conciseness,
we only consider the most relevant work here. Much of the algorithmic work on matrix completion
falls into three categories, two of which we have already discussed in some depth. First, there is work
on solving matrix completion using SDPs such as nuclear norm minimization, e.g., [CT10, CP10,
CR12, Rec11, DC20]. These algorithms typically attain strong statistical guarantees, but have
superlinear runtimes in the problem dimensionality. Second, there is the line of work on formally
analyzing nonconvex methods such as alternating minimization, e.g., [KMO10, Har14, HW14, JN15,
ZWL15, SL16, CGJ17, ZW19]. While these achieve runtimes which are linear in the dimension of
the problem, all prior results incurred large polynomial factors of r or other problem parameters
in their runtime (and sometimes their sample complexity as well). We also remark that many of
these papers consider notions of robust matrix completion, but tend to consider the setting where
the noise matrix is sparse as opposed to norm-bounded, which is the setting we consider.

Finally, there is also the line of work on analyzing convex methods such as gradient descent
for matrix completion. In many of those works, the objective is to demonstrate the more qual-
itative result that the optimization landscape for matrix completion has no spurious local min-
ima [SQW15, DSRO15, GLM16, JKN16, ZDG18, ZCZ22]. Consequently, their quantitative guar-
antees tend to be somewhat loose compared to results using convex programming or nonconvex
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methods. Additionally, because these methods are based on gradient descent, they tend to have
runtimes which scale polynomially with the condition number of the underlying matrix. In contrast,
our algorithms run in time which is polylogarithmic in the condition number. One notable exception
is [ZCZ22]; however, this paper only proves local convergence results for their method.

1.3 Overview of approach

In this section, we overview the two main components of our matrix completion algorithms: our
iterative method for partial matrix completion (given in Section 3) and our recovery algorithm for
the missing row and column subsets which our iterative method fails to give guarantees on (given
in Section 4). Throughout this discussion we let M⋆ := Rn×n be a rank-r⋆ matrix which we wish
to recover to disambiguate from iterates denoted as M; we also let m = n for simplicity. We delay
discussion of the noise-robustness of our matrix completion algorithms to the end of the section.

1.3.1 Partial matrix completion

Short-flat decompositions. Our partial matrix completion algorithm is motivated by a recent
approach to sparse recovery developed in [KLL+22]. This approach iteratively makes progress
towards recovering a sparse target vector x⋆ by taking projected gradient steps. The key observation
of [KLL+22] is that in the sparse recovery setting, the gradient of the least-squares objective is
decomposable into an ℓ2-bounded component (the signal direction towards x⋆) and an ℓ∞-bounded
component (the noise), termed a “short-flat decomposition.” The algorithm of [KLL+22] carefully
used truncation onto the set of sparse vectors (which enjoys a bounded ℓ1-to-ℓ2 ratio), along with
the ℓ1-ℓ∞ Hölder’s inequality, to bound how much the flat noise component inhibits progress.

We now give a first attempt at executing this strategy for matrix completion, noting that the
set of low-rank matrices is a spectral analog of the set of sparse vectors. Let M ∈ Rn×n be a
current iterate, assume it is rank-r⋆ (for simplicity), and let Ω ⊆ [n] × [n] be a uniformly random
set of indices with |Ω| ≈ pn2, where p is the observation probability. Suppose we are promised
∥M−M⋆∥F ≤ 1. A natural descent step balancing the goals of making progress towards M⋆ and
maintaining that our iterate has low rank takes D ← [M⋆ −M]Ω to be the observed difference
matrix, lets G be the rank-O(r⋆) truncation of the SVD of D, and updates M′ ← M + η

pG for
an appropriate step size η > 0. If D sufficiently approximates M⋆ −M in the operator norm (up
to ≈ (r⋆)−

1
2 ), it is straightforward to adapt arguments of [KLL+22] to show that this step makes

substantial progress in decreasing distance to M⋆, e.g., ∥M′ −M⋆∥F ≤ 1
2 . The intuition for this

argument is that
1

p
D = M⋆ −M︸ ︷︷ ︸

:=X

+

(
1

p
[M⋆ −M]Ω − (M⋆ −M)

)
︸ ︷︷ ︸

:=Y

. (1.1)

In this decomposition, note that X is low-rank and exactly in the signal direction M⋆−M, so if we
could remove the influence of Y then the rank-2r⋆ truncation of X (indeed, even no truncation at
all) would exactly take us towards M⋆. Moreover, if we could bound the operator norm of the noise
component Y, then applying perturbation arguments such as Weyl’s theorem shows that Y cannot
affect the progress direction by too much after truncating D’s SVD. Furthermore, assuming the
random samples Ω are independently drawn,4 it is straightforward to see that Y is mean-zero, so
we can hope to control its operator norm using concentration bounds such as the matrix Bernstein
inequality. This argument parallels the strategy of [KLL+22], where we may think of X as the short
progress component and Y as the flat noise component (each in a singular value sense).

4We show how to lift this assumption by splitting samples and using them iteratively as holdouts in Lemma 1.
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Bounding the difference matrix. Unfortunately, without further assumptions, the operator
norm of Y may be too large. A hard example is when M⋆ = uu⊤ and M = vv⊤ where u, v have
entries in ±n− 1

2 differing in only one coordinate. In this example, a randomly sampled Y (after
debiasing via rescaling by the inverse sampling probability ≈ n, as in (1.1)) will have constant rank
and operator norm. A natural way to prove an operator norm bound on such a randomly sampled
matrix is via the matrix Bernstein inequality, which shows that we obtain the desired bounds if
the difference M −M⋆ has row and column norms bounded by ≈ n− 1

2 and entries bounded by
≈
√
r⋆ ·n−1 (see Lemma 7); these conditions fail in our hard example as it has one row and column

norm which is too large. Nevertheless, Markov’s inequality shows that in general, only a constant
fraction of rows and columns of the difference matrix can have norms which are too large; these
subsets can then be estimated from observations and dropped (carried out in Section 3.1).

This leaves the issue of large entries, a second obstacle for our matrix Bernstein argument. With
no assumptions on the row and column spans of M⋆, it is possible that M −M⋆ has a few large
entries missed by our random observations which can ruin our bound on Y. We first show that due
to the rank bound on M−M⋆, these large entries must be localized to small (unknown) subsets of
rows and columns (Lemma 6). We then introduce a new measure of progress (Definition 2) where we
say two matrices are close if their difference has small Frobenius norm on a large submatrix, which
allows us to exclude these small unknown subsets with large entries. Finally, we are able to prove
our iterative method makes progress in this modified notion of distance, and thus achieves partial
completion. We give a complete statement of the guarantees of our partial matrix completion method
in Proposition 1, and demonstrate how to use it recursively to obtain Theorem 1 in Section 3.3.

Mitigating rank blowup. One technical issue which arises in our partial completion method is
that, roughly speaking, the rank of our iterate M increases by a constant factor in each iteration.
Our earlier argument relied on a rank bound on M, so this rank blowup is problematic. If our
progress measure were ∥M−M⋆∥F (i.e., an exact distance bound), we could simply truncate the
SVD of M to project it onto the set of low-rank matrices, which affects our progress by a constant
factor. However, our guarantee is with respect to a modified notion of distance, so this does not hold.
Instead, we show that we can make substantially more progress by taking slightly more samples,
cutting the modified distance measure by a factor of ≈ exp(

√
log(r⋆)) = (r⋆)o(1) in each iteration,

so that in ≈
√
log(r⋆) iterations we have made a polynomial factor progress. This results in only a

(r⋆)o(1) factor blowup in the rank of our iterate, and we then apply our fixing procedure (discussed
next) to reduce the rank. For our self-contained partial completion result (Theorem 1), which is
performed in one shot without a fixing step, the corresponding overhead is a factor of no(1).

1.3.2 From partial completion to full completion

Finding a representative subset. Our distance measure in our partial completion algorithm
(see e.g., Theorem 1) allows for the subsets on which we make progress to be unknown, but this
causes issues when used for full completion. Indeed, our partial completion method made no as-
sumptions about the regularity of M⋆, but to recover dropped subsets (as well as subsets excluded
by our distance measure) we need to impose structural assumptions. For simplicity in the following
discussion, assume M⋆ has (Ω(1),Ω(1))-regular row and column spans for appropriate constants
(Definition 1). We also assume for simplicity that M, the output of our partial completion method,
satisfies [M]A,B = [M⋆]A,B for |A|, |B| ≥ 0.99n exactly, i.e., we have run the partial completion
method to high accuracy. Finally, we ignore the effect of explicitly dropped rows and columns, as
these can be recovered analogously to the (unknown) excluded subsets in our distance measure.

Our high-level strategy is to identify a set T of ≈ r⋆ columns of M, such that M = M⋆ exactly
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on these columns, and the column space of M⋆
:T spans the column space of M⋆

:T . We call such a
set T “representative” with respect to (M,M⋆), defined formally in Definition 6 (which includes
additional parameters when MA×B is only close to M⋆

A×B , rather than exactly equal). We begin
with a preprocessing phase in Section 4.1, where we drop any rows and columns upon which we
observe empirical errors. This guarantees that on the remaining submatrix, the difference matrix
M−M⋆ has at most 0.01r⋆

n nonzero entries per row or column (else they would have been dropped).
We next provide a structural fact that any rank-r⋆ matrix with such bounded row and column

sparsity must have all of its errors localized to a 1% × 1% submatrix (see Lemma 13 for a formal
statement which handles noise). In the noiseless case, this fact follows straightforwardly from a
Gram-Schmidt argument (Lemma 14). This implies that a majority of the remaining columns of M
and M⋆ (after preprocessing) are actually identical, and are thus valid to include in a representative
subset. We further develop a tester for verifying whether a given column j ∈ [n] should be included
in our representative subset, by drawing ≈ r⋆ random columns of our iterate M and checking
whether column M:j is contained in the span of these random columns. This test is motivated
by the observation that if M:j contains a sparse error (and hence should not be included), with
constant probability our random sample will dodge this error due to our preprocessing step, and
hence M:j will not be contained in its span. By repeating our tester a small number of times, we
can ensure the subset of columns we include is representative.

Regression with a representative subset. Once we have determined a representative subset
T , it suffices to use our regularity assumptions to argue that ≈ r⋆ random observations of any
column of M⋆ uniquely determine how it can be completed as a linear combination of M:T = M⋆

:T .
In the noiseless case, this means that we can simply solve roughly n regression problems in r⋆ × r⋆

matrices to fully complete the matrix. Our formal definition of a representative subset contains a
quantitative bound ensuring M⋆

:T spans the column space of M⋆ in a well-conditioned manner. This
allows for us to argue about the generalization error of our regression subroutines under noise.

We remark that if after our partial completion subroutine, we knew which row and column
subsets A,B our iterate was close to M⋆ on, we could directly skip to this regression step for
recovering poorly-behaved subsets. Handling the potential of sparse errors on unknown subsets of
our iterate in a noise-tolerant way constitutes the bulk of our technical development in Section 4.

1.3.3 Robust matrix completion

Finally, we discuss how our framework extends to the noisy setting in a natural way. In general,
our fixing step in Section 4 takes as input M with the guarantee that M is ∆̃-close to M⋆ on a
submatrix (see Definition 2), after excluding an α

2 -fraction of rows and columns explicitly dropped
by our iterative method, and an additional α

2 -fraction due to our distance measure (where α is
a subspace regularity parameter). Assuming ∆̃ is sufficiently larger than ∥N∥F, where we receive
observations from M⋆+N (i.e. N is the noise), our fixing step learns any excluded rows and columns
to a comparable distance to the average undropped row or column, and yields a standard distance
guarantee (rather than a partial one). However, this stronger standard distance guarantee comes
at the cost of a poly(r⋆) overhead over the initial distance promise ∆̃, and is stated formally in
Proposition 3. This overhead is due to lossiness when converting between operator norm distance
guarantees (which naturally arises in analyzing the generalization error of our regression step),
and Frobenius norm distance guarantees (which our iterative method yields). By ensuring that all
matrices encountered throughout are low-rank, this lossiness only has r⋆-dependent factors.

Our robust matrix completion results stated in Theorem 2 and Corollary 1 follow by applying
the guarantees of Proposition 1 (our partial matrix completion algorithm) and Proposition 3 (our
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fixing step) recursively. By running Proposition 1 for a small number of steps to control the blowup
of our iterate’s rank, and applying Proposition 3 to reduce the rank and recover dropped subsets,
we can make multiplicative distance progress towards our noise threshold ∆ ≥ ∥N∥F. The error
overhead incurred by our algorithms is then due to a final application of Proposition 3.

2 Preliminaries

General notation. Throughout [n] := {i ∈ N | i ≤ n}. When S ⊆ T and T is clear from context,
we let Sc := T \S. We say v ∈ Rd is s-sparse if it has at most s nonzero entries. Applied to a vector,
∥·∥p is the ℓp norm. The Frobenius, operator, and trace norms of a matrix are denoted ∥·∥F, ∥·∥op,
and ∥·∥tr and correspond to the 2-norm, ∞-norm, and 1-norm of the singular values of a matrix.
The all-zeroes and all-ones vectors of dimension d are denoted 0d and 1d.

Matrices. Matrices are denoted in boldface. We equip Rm×n with the inner product ⟨A,B⟩ :=
Tr(A⊤B). The d× d identity matrix is denoted Id, and the all-zero m×n matrix is denoted 0m×n.
The ordered singular values of M ∈ Rm×n with m ≥ n are denoted {σi(M)}i∈[n], where σ1 is largest
and σn is smallest; when M ∈ Rd×d is symmetric, we similarly define {λi(M)}i∈[d]. When i is larger
than the rank of M, σi(M) := 0. The number of nonzero entries of M is denoted nnz(M), and
the largest absolute value among its entries is denoted ∥M∥max. For τ ≥ 0, M ∈ Rm×n, we let
M≤τ be such that M≤τ

ij is the median of −τ ,τ , and Mij . We say M ∈ Rm×n is given as a rank-r
factorization if we have explicit access to U ∈ Rm×r, V ∈ Rn×r with M = UV⊤. For symmetric
positive semidefinite A,B ∈ Rd×d we use A ≈ϵ B to denote exp(−ϵ)B ⪯ A ⪯ exp(ϵ)B. When A
is symmetric positive definite we let κ(A) be the ratio of its largest and smallest eigenvalues. We
define Tmv(M) as the amount of time it takes to compute Mv for any v; note Tmv(M) = O(nnz(M)),
and if M ∈ Rm×n is given as a rank-r factorization then Tmv(M) = O((m+ n)r).

Submatrices. For M ∈ Rm×n and subsets S ⊆ [m], T ⊆ [n], the matrix MS,T denotes the |S|×|T |
submatrix of M restricted to rows S and columns T . When A = {i} for i ∈ [m], we abbreviate
this as Mi,B, and similarly define MA,j for j ∈ [n]. For M ∈ Rm×n we write MA: as shorthand for
MA,[n] and M:B for M[m],B . The ith row and jth column of M are similarly denoted Mi: and M:j .
When dimensions are clear, the matrix which is all-zeroes except for a one in the (i, j)th entry is Eij

and ei is the ith standard basis vector. We say that N is a γ-submatrix of M ∈ Rm×n if N = MS,T

for S ⊆ [m], T ⊆ [n] with |S| ≥ m − γmin(m,n) and |T | ≥ n − γmin(m,n). We say that M is
s-row column sparse (RCS) if each row and column of M has as most s nonzero entries. When
Ω ⊆ [m] × [n] is a set of index pairs, MΩ zeroes out all entries in M indexed by Ωc (we similarly
define vΩ for vectors v ∈ Rd and Ω ⊆ [d]).

Comparing matrices. We introduce two nonstandard notions of closeness between matrices.
These notions will be used primarily in stating the guarantees of our subroutines in Sections 3
and 4 respectively, to deal with subsets or sparse error patterns out of our control.

Definition 2 (Closeness on a submatrix). We say M,M′ ∈ Rm×n are ∆-close on a γ-submatrix if
there exist subsets A ⊆ [m], B ⊆ [n] satisfying |A| ≥ m− γmin(m,n), |B| ≥ n− γmin(m,n), and∥∥∥[M−M′]

A,B

∥∥∥
F
≤ ∆.

Definition 3 (Closeness away from an RCS matrix). We say M,M′ ∈ Rm×n are ∆-close away
from an s-RCS matrix if M−M′ = X+Y, for some ∥X∥F ≤ ∆, and s-RCS Y.
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We note that in Definition 2, the sets A, B are unknown; similarly, in Definition 3, the factor-
ization X, Y is unknown. Our analysis will only use these definitions as existential statements.

Observation model. For M ∈ Rm×n, we specialize the notation MΩ ← Op(M) to mean Ω ⊂
[m] × [n] contains each (i, j) ∈ [m] × [n] with probability p (sampled independently), and MΩ is
the sum of the observations MijEij for (i, j) ∈ Ω. When an algorithm requires the ability to query
M ∈ Rm×n with Op for various p (specified in the algorithm description), we list the input as
O[0,1](M), which also gives access to O[0,1](MS,T ) for S ⊆ [m], T ⊆ [n].

We note that this observation model (querying Op, possibly multiple times independently) is
compatible with the standard model in the literature (which only allows for a one-shot set of realized
observations), up to a small loss in parameters. This is made formal through the following lemma,
which shows how to simulate K draws from Op given one-time access to OKp.

Lemma 1. Let {pk}k∈[K] ∈ (0, 1) satisfy pk ≤ p ≤ 1
K for all k ∈ [K], and let M ∈ Rm×n. We can

simulate sequential access to Opk(M) for all k ∈ [K] with access to OKp(M).

Proof. The probability that the entry is revealed in any of the independent, sequential queries is

ptot := 1−
∏

k∈[K]

(1− pk) ≤ Kp.

The conclusion then follows from two observations. First, letting q ≥ p satisfy 1− (1− q)K = Kp,
if OKp reveals an entry we can efficiently simulate how many of K calls to Oq would have revealed
that entry conditioned on at least one call resulting in a reveal. Second, given access to Oq we can
simulate Opk for any pk ≤ q by rejecting a revealed entry with the appropriate probability.

In other words, Lemma 1 allows us to draw observations from a matrix a single time, and then
split the samples in a way that simulates multiple sequential accesses to the matrix.

Subspaces. For a subspace V ⊆ Rd of dimension r, we denote its orthogonal complement by V⊥.
We let ΠV ∈ Rd×d be the projection matrix onto V . We let BV ∈ Rd×r denote an arbitrary matrix
satisfying BV B

⊤
V = ΠV and B⊤

V BV = Ir. We say UΣV⊤ is the singular value decomposition
(SVD) of M if U,V have orthonormal columns and Σ is nonnegative and diagonal; when this is
not unique, we take an arbitrary SVD. We recall our definition of a regular subspace in Definition 1.
We will mainly use this definition through the following equivalence.

Lemma 2. Let V ⊆ Rd have dimension r, and let {bi}i∈[d] ⊂ Rr be rows of an (arbitrary) choice of
BV . V is (α, β)-regular if and only if for every S ⊆ [d] with |S| ≥ (1− α)d,

β2Ir ⪯
∑
i∈S

bib
⊤
i ⪯ Ir.

Proof. First observe that ∥ΠV v∥22 + ∥ΠV⊥v∥
2
2 = ∥v∥22 and ∥ΠV v∥22 = v⊤ΠV v = ∥BV v∥22 for all

v ∈ Rd. Consequently, V is (α, β) regular if and only if ∥
∑

i∈[d] bivi∥22 ≤ (1 − β2) ∥v∥22, for all
αd-sparse v ∈ Rd. This is equivalent to the condition that for all T ⊆ [d] with |T | ≤ αd and (not
necessarily sparse) v ∈ Rd, ∥

∑
i∈T bivi∥22 ≤ (1 − β2)

∑
i∈T v2i . Equivalently, for every T ⊆ [d] with

|T | ≤ αd, the matrix BT : must have operator norm ≤
√
1− β2, so

∑
i∈T bib

⊤
i ⪯ (1 − β2)Ir. Since∑

i∈S bib
⊤
i = Ir −

∑
i∈Sc bib

⊤
i and

∑
i∈[d] bib

⊤
i = Ir, the result follows.
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We also introduce a notion of a standard subspace in Definition 4, which is more compatible
with the aformentioned incoherence assumption in the matrix completion literature. This definition
is used to streamline the application of the tools from Section 4.

Definition 4 (Standard subspace). We say a subspace V ⊆ Rd of dimension r is (α, β, µ)-standard
if it is (α, β)-regular and there exists a subset S ⊆ [d] with |S| ≥ (1 − α

3 )d such that for all i ∈ S,

∥ΠV ei∥2 ≤
√

µr
d .

The following fact is immediate by Markov’s inequality, ∥ΠV ei∥2 = ∥BV ei∥2, and ∥BV ∥2F = r.

Fact 1. If a subspace V ⊆ Rd is (α, β)-regular, then it is (α, β, 3
α)-standard.

Thus, whenever we mention a subspace being (α, β, µ)-standard, we may assume µ ≤ 3
α . Finally,

for comparison to the matrix completion literature, we also give the definition of incoherence which
is typically used to parameterize algorithms.

Definition 5 (Incohererent subspace). We say a subspace V ⊆ Rd of dimension r is µ-incoherent
if ∥ΠV ei∥2 ≤

√
µr
d for all i ∈ [d].

The following is then immediate from the characterization in Lemma 2.

Fact 2. If a subspace V ⊆ Rd is µ-incoherent, it is ( 3
4µr ,

1
2 , µ)-standard.

Proof. Note that ∥
∑

i∈Sc bib
⊤
i ∥op ≤ |Sc|maxi∈Sc ∥bi∥22 and apply Weyl’s perturbation theorem.

We introduce the notion of a standard subspace primarily for technical convenience as it captures
the parameters of both subspace regularity and incoherence. We will prove a result (Theorem 3)
in terms of all of these parameters α, β, µ and then deduce our results for subspace regularity and
incoherence by combining Theorem 3 with Fact 1 and Fact 2 respectively.

Concentration. We use the following concentration inequalities and their scalar specializations.

Fact 3 (Matrix Chernoff, Theorem 5.1.1 [Tro15]). Let {Xi}i∈[n] be independent, d × d positive
semidefinite, matrix-valued random variables satisfying ∥Xi∥op ≤ R with probability 1 for all i ∈ [n],
and let X denote their sum. For any ϵ ∈ (0, 1),

Pr [λmin (X) ≤ (1− ϵ)λmin (EX)] ≤ d exp

(
−ϵ2λmin(EX)

3R

)
,

Pr [λmax (X) ≥ (1 + ϵ)λmax (EX)] ≤ d exp

(
−ϵ2λmax(EX)

3R

)
.

Fact 4 (Matrix Bernstein, Theorem 1.6.2 [Tro15]). Let {Xi}i∈[n] be independent, d1 × d2 matrix-
valued random variables satisfying EXi = 0d1×d2 and ∥Xi∥op ≤ R with probability 1 for all i ∈ [n],
let X denote their sum, and let

σ2 := max

∥∥∥∥∥∥
∑
i∈[n]

EXiX
⊤
i

∥∥∥∥∥∥
op

,

∥∥∥∥∥∥
∑
i∈[n]

EX⊤
i Xi

∥∥∥∥∥∥
op

 .

Then for all t ≥ 0, Pr[∥X∥op ≥ t] ≤ (d1 + d2) exp
(
− t2

2σ2+ 2
3
Rt

)
, so for all δ ∈ (0, 1),

Pr

[
∥X∥op ≥ max

(
2σ

√
log

(
d1 + d2

δ

)
,
4R

3
log

(
d1 + d2

δ

))]
≤ δ.
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3 Partial matrix completion

In this section, we give a novel subroutine for making partial progress towards a target low-rank
matrix M⋆ ∈ Rm×n (whose rank is denoted r⋆), from which we can query noisy observations.
In particular, the method we develop in this section only assumes the target matrix is low-rank,
without any requirement of subspace regularity in the vein of Definition 1. However, our guarantees
are with respect to a weaker notion of progress, which involves explicitly dropping or excluding a
small number of poorly-behaved rows and columns.

The main result of this section is the following Proposition 1, which gives a guarantee on Al-
gorithm 2 (which builds upon Algorithm 1, a preprocessing subroutine which we explain shortly).
Our Algorithm 2 takes as parameters γdrop and γadd, as well as a matrix M which is ∆-close to M⋆

on a γ-submatrix. It then explicitly drops roughly a γ fraction of rows and columns which it makes
no guarantees on, adds γadd to the submatrix parameter, and triples the rank of M. In return, it
cuts the distance on a (γ + γadd)-submatrix by a factor of ℓ.

Proposition 1. Let ∆ ≥ 0, γ, γadd, δ ∈ (0, 1), and ℓ ≥ 1. Let M̂ := M⋆ +N ∈ Rm×n for m ≥ n,
M⋆ which is rank-r⋆, and N satisfying ∥N∥F ≤

∆
20ℓ . If rank-r M ∈ Rm×n is ∆-close to M⋆ on a

γ-submatrix and given as a rank-r factorization, Algorithm 2 returns M̃ ∈ Rm×n as a rank-3(r+r⋆)
factorization and S ⊆ [m], T ⊆ [n] satisfying the following with probability ≥ 1− δ.

1. |S| ≥ m− γdropn, |T | ≥ (1− γdrop)n, for γdrop = max(400γ log(m), 105ℓ2(γ + γadd)).

2. M̃S,T is ∆
ℓ -close to M⋆

S,T on a (γ + γadd)-submatrix.

Algorithm 2 uses O(mnp(r+r⋆)) time and one call to Op(M̂) where for a sufficiently large constant,

p = O

(
(r + r⋆)ℓ2

n
· γ + γadd

γ2add
log2

(m
δ

))
.

In Section 3.1, we begin by analyzing Algorithm 1 (Filter), a preprocessing step for setting
aside roughly a γadd fraction of poorly-behaved rows and columns from empirical observations. In
Section 3.2, we then use the control that this preprocessing step affords over the remaining rows
and columns to analyze our main iterative step, Algorithm 2 (Descent), and prove Proposition 1.
Finally, to illustrate a typical use case of Proposition 1 for partial matrix completion (which reflects
its use in our final algorithm), we give a self-contained result in Section 3.3 only relying on recursive
use of Algorithm 1, without the use of subspace regularity assumptions.

3.1 Row and column removal

The first step is to remove some rows and columns whose norm in M̂−M is too large. This is useful
because we would like to use M̂ −M to guide the direction of our steps but we only have partial
observations of it. The rows and columns with large norms can ruin the spectral concentration
of the empirical observations, so removing them allows us to prove spectral closeness between the
empirical and true difference matrices. Before analyzing our removal algorithm, we state a simple
concentration inequality we will use in its proof about the error of empirical norm estimates.

Lemma 3. Let p, δ ∈ (0, 1), let v ∈ Rd have ∥v∥∞ ≤ τ and let ṽ ∈ Rd have each entry ṽi indepen-
dently set to vi with probability p, and 0 otherwise. Then with probability ≥ 1− δ,∣∣∣∣∥v∥22 − 1

p
∥ṽ∥22

∣∣∣∣ ≤ max

(
1

10
∥v∥22 ,

30τ2 log 2
δ

p

)
.
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Proof. By Fact 3 with (scalar) xi ← 1
p ṽ

2
i , so E

∑
i∈[d] xi = ∥v∥

2
2, with probability ≥ 1− δ,∣∣∣∣∥v∥22 − 1

p
∥ṽ∥22

∣∣∣∣ ≤ τ
√
p
∥v∥2

√
3 log

2

δ
.

The conclusion follows depending on which of 1√
10
∥v∥2 or τ√

p

√
30 log 2

δ is larger.

We are now ready to state and analyze our removal process, which for logarithmically many
iterations simply drops the largest rows and columns of the difference matrix, estimated from
empirical observations. Our analysis proceeds in two phases. The goal of the first phase is to
decrease the Frobenius norm of the true difference matrix until it is below a certain threshold,
which we argue we continually make progress by concentration of the empirical observations. The
second phase applies Markov’s inequality to bound the number of large rows and columns once the
Frobenius norm is below this threshold.

We remark that the assumed upper bound on τ in the following statement is for convenience
in simplifying logarithmic terms and is not saturated in our eventual parameter settings (whereas
the ρ bound reflects its eventual setting). Further, the parameter γadd will eventually be set to be
sufficiently small when iterating upon our algorithm, as it reflects the growth of the number of rows
and columns we do not make guarantees on. To build intuiton (following discussion in Section 1.3),
the reader may think of γ, γadd as small constants, τ ≈ ∆ ·

√
r

n , ρ ≈ ∆ · 1√
n
, and p ≈ r

n .

Lemma 4. Let ∆, τ, ρ ≥ 0 and γ, γadd, p, δ ∈ (0, 1). Assume M ∈ Rm×n is ∆-close to M̂ on a
γ-submatrix, and that m ≥ n. Finally, assume that

τ ≤ ∆n

γadd
, ρ ≥ 8∆√

200γn log( m
γadd

)
, p ≥ 60τ2 log

(
100m

δγadd

)
max

(
γn

∆2
,

5

ρ2

)
.

With probability ≥ 1− δ, Algorithm 1 returns S ⊆ [m], T ⊆ [n] satisfying the following.

• |S| ≥ m− γdropn, |T | ≥ (1− γdrop)n, for γdrop = 400γ log(m).

• For all i ∈ S,
∥∥∥[M− M̂]≤τ

i,T

∥∥∥
2
≤ ρ, and for all j ∈ T ,

∥∥∥[M− M̂]≤τ
S,j

∥∥∥
2
≤ ρ.

•
∥∥∥[M− M̂]≤τ

S,T

∥∥∥
F
≤ 2∆.

Proof. Throughout for convenience, we denote

D⋆
t :=

[
M− M̂

]≤τ

St×Tt

and Φt := ∥D⋆
t ∥

2
F .

Also, by applying Lemma 3 with δ ← δγadd
100m ≤

δ
(m+n)(tmax+1) , we assume throughout the proof (giving

the failure probability by a union bound) that for all iterations 0 ≤ t < tmax and all i ∈ St, j ∈ Tt,∣∣∣ri,t − ∥[D⋆
t ]i:∥

2
2

∣∣∣ ≤ max

(
1

10
∥[D⋆

t ]i:∥
2
2 ,

∆2

2γn

)
,∣∣∣∣cj,t − ∥∥∥[D⋆

t ]:j

∥∥∥2
2

∣∣∣∣ ≤ max

(
1

10

∥∥∥[D⋆
t ]:j

∥∥∥2
2
,

∆2

2γn

)
,

(3.1)
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as well as (corresponding to the last round of Algorithm 1), for all i ∈ Stmax and j ∈ Ttmax ,∣∣∣ri − ∥∥[D⋆
tmax

]
i:

∥∥2
2

∣∣∣ ≤ max

(
1

10

∥∥[D⋆
tmax

]
i:

∥∥2
2
,
ρ2

10

)
,∣∣∣∣cj − ∥∥∥[D⋆

tmax

]
:j

∥∥∥2
2

∣∣∣∣ ≤ max

(
1

10

∥∥∥[D⋆
tmax

]
:j

∥∥∥2
2
,
ρ2

10

)
.

(3.2)

By definition, Φ0 ≤ mnτ2, and Φt is nonincreasing. Next, consider an iteration t where Φt ≥ 4∆2.
By the closeness assumption, there are A⋆

t ⊆ St, B⋆
t ⊆ Tt with |A⋆

t |, |B⋆
t | ≤ γn, and∑

i∈A⋆
t

∥[D⋆
t ]i:∥

2
2 +

∑
j∈B⋆

t

∥[D⋆
t ]:j∥

2
2 ≥

3

4
∥D⋆

t ∥
2
F =

3

4
Φt.

Now if
∑

i∈A⋆
t
∥[D⋆

t ]i:∥
2
2 ≥

3
8Φt, by removing the γn largest rows by ri,t, (3.1) yields

Φt+1 ≤
(
1− 4

5
· 3
8

)
Φt + γn · ∆

2

γn
≤ 7

10
Φt +∆2 ≤ 0.95Φt.

Otherwise,
∑

j∈B⋆
t
∥[D⋆

t ]:j∥
2
2 ≥

3
8Φt, and so again Φt+1 ≤ 0.95Φt. Inducting, we thus have

Φtmax ≤ 4∆2.

Therefore, by Markov’s inequality there are at most γdropn
2 rows in Stmax and γdropn

2 columns in Ttmax

with norm more than 4∆√
γdropn

≤ ρ
2 in D⋆

tmax
. If a row i ∈ Stmax had norm more than ρ in D⋆

tmax
,

(3.2) ensures it will be removed, and a similar argument holds for columns. Finally, the number of
dropped rows and columns in the first tmax iterations is at most γdropn

2 by our parameter choices;
here we note that without loss of generality, γadd ≥ 1

m , so m
γadd
≤ m2. The last condition follows

since we showed Φtmax ≤ 4∆2 and then dropped entries.

Lemma 4 does not give control over entries where M̂ −M is large. However, below we show
that the entries where M̂−M is large must be contained in a small number of rows and columns.
We begin by observing a structural fact about entries from distinct rows and columns.

Lemma 5. Let M ∈ Rm×n be rank-r and let {(ik, jk)}k∈[K] ⊂ [m] × [n] be such that {ik}k∈[K] are
distinct and {jk}k∈[K] are distinct. Then

∑
k∈[K] |Mik,jk | ≤ ∥M∥tr.

Proof. Letting UΣV⊤ be an SVD of M where columns of U, V are {uℓ}ℓ∈[r], {vℓ}ℓ∈[r] respectively,

∑
k∈[K]

|Mik,jk | ≤
∑
k∈[K]

∑
ℓ∈[r]

|σℓ||uℓ|ik |vℓ|jk ≤
∑
ℓ∈[r]

|σℓ|

1

2

∑
k∈[K]

|uℓ|2ik +
1

2

∑
k∈[K]

|vℓ|2jk


≤
∑
ℓ∈[r]

|σℓ|

1

2

∑
i∈[m]

|uℓ|2i +
1

2

∑
j∈[n]

|vℓ|2j

 = ∥M∥tr .

Using Lemma 5, we can show that not too many distinct rows and columns of the difference
between a pair of low-rank matrices which are close on a submatrix can contain very large entries.
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Algorithm 1: Filter(O[0,1](M̂),M, τ, ρ,∆, γ, γadd, p, δ)

1 Input: O[0,1](M̂), M ∈ Rm×n, τ, ρ,∆ ≥ 0, γ, γadd, p, δ ∈ (0, 1)

2 S0 ← [m], T0 ← [n]

3 tmax ← ⌈20 log mnτ2

4∆2 ⌉
4 γdrop ← 400γ log(m)
5 for 0 ≤ t < tmax do
6 Dt ← Op([M− M̂]≤τ

St,Tt
)

7 for i ∈ St do ri,t ← 1
p ∥[Dt]i:∥22

8 for j ∈ Tt do cj,t ← 1
p∥[Dt]:j∥22

9 St+1 ← St \At where At ⊂ St corresponds to the γn indices i with largest ri,t
10 Tt+1 ← Tt \Bt where Bt ⊂ Tt corresponds to the γn indices j with largest ci,t
11 end
12 D← Op([M− M̂]≤τ

Stmax ,Ttmax
)

13 for i ∈ Stmax do ri ← 1
p ∥Di:∥22

14 for j ∈ Ttmax do cj ← 1
p ∥D:j∥22

15 S ← Stmax \A where A ⊂ Stmax corresponds to the γdropn
2 indices i with largest ri

16 T ← Ttmax \B where B ⊂ Ttmax corresponds to the γdropn
2 indices j with largest cj

17 return (S, T )

Lemma 6. Assume rank-r M ∈ Rm×n and rank-r⋆ M⋆ ∈ Rm×n are ∆-close on a γ-submatrix, and
m ≥ n. There are sets A ⊆ [m] and B ⊆ [n] such that ∥[M−M⋆]A,B∥max ≤ τ ,

|[m] \A| ≤ γn+
∆
√
r + r⋆

τ
and |[n] \B| ≤ γn+

∆
√
r + r⋆

τ
.

Proof. By assumption, there are A0 ⊆ [m], B0 ⊆ [n] with |A0| ≥ m − γn, |B0| ≥ (1 − γ)n and
∥[M−M⋆]A0,B0∥F ≤ ∆. Let {(ik, jk)}k∈[K] ⊂ A0×B0 be maximal such that {ik}k∈[K] and {jk}k∈[K]

contain no duplicates, and |[M−M⋆]ik,jk | ≥ τ for all k ∈ [K]. By Lemma 5,

Kτ ≤ ∥[M−M⋆]A0,B0∥tr ≤
√
r + r⋆ ∥[M−M⋆]A0,B0∥F ≤ ∆

√
r + r⋆.

So, K ≤ ∆
√
r+r⋆

τ and we may set A← A0 \ {ik}k∈[K] and B ← B0 \ {jk}k∈[K].

3.2 Proof of Proposition 1

We begin by introducing the tools we use to analyze our algorithm which proves Proposition 1. The
first is a guarantee on an approximate k-SVD procedure from [MM15].

Proposition 2 (Theorem 1, Theorem 6, [MM15]). Let M ∈ Rm×n, k ∈ [min(m,n)], and ϵ, δ ∈
(0, 1). There is an algorithm Power(M, k, ϵ, δ) which runs in time

O

(
(nnz(M)k + (m+ n)k2) ·

log m+n
δ

ϵ

)
and outputs U ∈ Rm×r with orthonormal columns such that, with probability ≥ 1− δ,∥∥∥(Im −UU⊤)M

∥∥∥
op
≤ (1 + ϵ)σk+1(M).
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The second is a bound on the operator norm error of revealing entries independently at random.

Lemma 7. Let M ∈ Rm×n, p, δ ∈ (0, 1), and suppose ∥M∥max ≤ τ and maxi∈[m] ∥Mi:∥2 ≤ ρ,
maxj∈[n] ∥M:j∥2 ≤ ρ. Let M̃ be obtained by including each (i, j) ∈ [d]× [d] in a set S with probability
p, and setting M̃ = 1

p

∑
(i,j)∈S MijEij. Then with probability ≥ 1− δ,

∥∥∥M− M̃
∥∥∥

op
≤ max

(
2ρ
√
p

√
log

(
m+ n

δ

)
,
4τ

3p
log

(
m+ n

δ

))
.

Proof. For all (i, j) ∈ [m]× [n], define the random matrix

X(i,j) :=

{(
1
p − 1

)
MijEij with probability p,

−MijEij with probability 1− p.

By definition, all EX(i,j) = 0m×n, and
∑

(i,j)∈[m]×[n]X(i,j) = M−M̃, so we may apply Fact 4. First
of all, clearly it suffices to choose R = τ

p . Further, we bound σ:

∑
(i,j)∈[m]×[n]

(
p

(
1

p
− 1

)2

+ 1− p

)
M2

ijEii =

(
1

p
− 1

) ∑
i∈[m]

∥Mi:∥22Eii ≤
ρ2

p

and a similar calculation for the other term shows σ = ρ√
p suffices. For t in the lemma statement,

Pr

[∥∥∥M− M̃
∥∥∥

op
≥ t

]
≤ (m+ n) exp

(
− t2

2ρ2

p + 2τt
3p

)
≤ δ.

The third is a bound on the Frobenius norm of a matrix which is close to an operator norm ball.

Lemma 8. Let A,B ∈ Rm×n satisfy ∥A∥op ≤ a and ∥B∥F ≤ b. If A+B is rank-r,

∥A+B∥F ≤
√
2(ra2 + b2).

Proof. Let the singular values of M := A+B be {σi}i∈[r]. By construction, the distance from M to
the set of m× n matrices with operator norm at most a is bounded by b, and this distance squared
is
∑

i∈[r] 1σi≥a(σi − a)2, so
∑

i∈[r] 1σi≥a(σi − a)2 ≤ b2. The conclusion then follows from

∥M∥2F =
∑
i∈[r]

σ2
i ≤

∑
i∈[r]

2(a2 + 1σi≥a(σi − a)2) ≤ 2(ra2 + b2).

The last is a simple fact on singular values of a perturbed low-rank matrix.

Lemma 9. If A ∈ Rm×n is rank-r and B ∈ Rm×n satisfies ∥B∥F ≤ b, σ2r+1(A+B) ≤ b√
r
.

Proof. Let V ⊆ Rm span the image of A, and let U ⊆ Rm be the top-r left singular vector space of
ΠV⊥B = ΠV⊥(A+B). Since ∥ΠV⊥B∥F ≤ b, the largest singular value of Π(U∪V )⊥(A+B) is ≤ b√

r
.

By the min-max principle for singular values, we have the claim (as U ∪ V has dimension-2r).
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Algorithm 2: Descent(O[0,1](M̂),M, r⋆,∆, γ, γadd, δ, ℓ)

1 Input: O[0,1](M̂) for M̂ = M⋆ +N ∈ Rm×n where M⋆ is rank-r⋆ and ∥N∥F ≤
∆
20ℓ ,

M ∈ Rm×n which is ∆-close to M⋆ on a γ-submatrix, given as a rank-r factorization
M = UV⊤, ∆ ≥ 0, γ, γadd, δ ∈ (0, 1), ℓ ≥ 1

2 (τ, ρ)←
(

∆
√
r+r⋆

γaddn
, ∆

20ℓ
√

(γ+γadd)n

)
3 (S, T )← Filter(O[0,1](M̂),M, τ, ρ, 1.1∆, γ, γadd,

120000(r+r⋆)ℓ2

n · γ+γadd
γ2
add

log( 300mδγadd
), δ3)

4 X← Oq([M̂−M]≤τ
S,T ) for q ← 15(r+r⋆)ℓ log 6m

δ
γaddn

5 Û← Power(X, 2(r + r⋆), 0.1, δ3) (see Proposition 2)
6 (U′,V′)← (U,V) with columns of Û, 1

qX
⊤Û appended respectively

7 return (U′,V′, S, T )

Now we assemble the pieces and prove Proposition 1, our main iterative method guarantee.
To a large extent, the proof strategy in Proposition 1 is patterned off the short-flat decomposition
analysis of the iterative method in [KLL+22]. Specifically, we show how to decompose the difference
matrix (on a large submatrix) into a Frobenius-norm bounded component and an operator-norm
bounded component, which allows us to bound the effect of the error on the submatrix via Lemma 8.
We restate the result here for convenience to the reader.

Proposition 1. Let ∆ ≥ 0, γ, γadd, δ ∈ (0, 1), and ℓ ≥ 1. Let M̂ := M⋆ +N ∈ Rm×n for m ≥ n,
M⋆ which is rank-r⋆, and N satisfying ∥N∥F ≤

∆
20ℓ . If rank-r M ∈ Rm×n is ∆-close to M⋆ on a

γ-submatrix and given as a rank-r factorization, Algorithm 2 returns M̃ ∈ Rm×n as a rank-3(r+r⋆)
factorization and S ⊆ [m], T ⊆ [n] satisfying the following with probability ≥ 1− δ.

1. |S| ≥ m− γdropn, |T | ≥ (1− γdrop)n, for γdrop = max(400γ log(m), 105ℓ2(γ + γadd)).

2. M̃S,T is ∆
ℓ -close to M⋆

S,T on a (γ + γadd)-submatrix.

Algorithm 2 uses O(mnp(r+r⋆)) time and one call to Op(M̂) where for a sufficiently large constant,

p = O

(
(r + r⋆)ℓ2

n
· γ + γadd

γ2add
log2

(m
δ

))
.

Proof. Throughout, we denote (in accordance with the guarantees of Lemma 4):

ρ :=
∆

20ℓ
√

(γ + γadd)n
, τ :=

∆
√
r + r⋆

γaddn
.

We also denote X′ := ÛÛ⊤X, and let

M̃ := M+
1

q
X′ = U′(V′)⊤

be the matrix whose low-rank factorization is the output of Algorithm 2. By the assumed bound
on N, M is 1.1∆-close to M̂ on a γ-submatrix, and hence we may apply Lemma 4 with the chosen
parameters. Further, since M is ∆-close to M⋆ on a γ-submatrix, Lemma 6 applied to [M−M⋆]S,T
produces A ⊆ S, B ⊆ T by deleting ≤ (γ + γadd)n rows and columns, so [M−M⋆]A,B is entrywise
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in [−τ, τ ]. We define M◦ to be equal to M⋆ on A × B and equal to M on (S × T ) \ (A × B), i.e.
(where rows and columns are permuted so A×B is on the top left)

M◦
S,T =

(
M⋆

A,B MA,T\B

MS\A,B MS\A,T\B

)
.

We will prove ∥[M◦ − M̃]S,T ∥F ≤ ∆
ℓ , and then the conclusion follows as M◦

S,T = M⋆
S,T except on

(γ+γadd)n rows and columns by Lemma 6, and S, T drop ≤ γdropn rows and columns by Lemma 4.
To begin, we summarize our strategy. We decompose [M◦ − M̃]S,T into three parts:[

M◦ − M̃
]
S,T

=

(
[M◦ −M]S,T −

[
M̂−M

]≤τ

S,T

)
+

([
M̂−M

]≤τ

S,T
− 1

q
XS,T

)
+

1

q

[
X−X′]

S,T
.

(3.3)

We will bound each of the terms in (3.3) (the first in Frobenius norm and the latter two in operator
norm), and then apply Lemma 8. First, we claim that for all (i, j) ∈ A×B,∣∣∣[M◦ −M]i,j − [M̂−M]≤τ

i,j

∣∣∣ ≤ ∣∣∣[M◦ −M]i,j − [M̂−M]i,j

∣∣∣ = ∣∣∣[M◦ − M̂]i,j

∣∣∣ .
This is because [M◦−M]A,B is entrywise in [−τ, τ ] by definition, so projecting an entry of [M̂−M]S,T
onto [−τ, τ ] only decreases the distance. Hence, we bound the first term of (3.3) in A×B and outside
separately: since [M◦ −M]S,T vanishes outside A×B,∥∥∥∥[M◦ −M]S,T −

[
M̂−M

]≤τ

S,T

∥∥∥∥
F
≤
∥∥∥∥[M◦ − M̂

]
A,B

∥∥∥∥
F

+

∥∥∥∥[M̂−M
]≤τ

S\A,T

∥∥∥∥
F
+

∥∥∥∥[M̂−M
]≤τ

S,T\B

∥∥∥∥
F

≤ ∥N∥F +
(√
|S \A|+

√
|T \B|

)
ρ

≤ 2
√
(γ + γadd)nρ+

∆

20ℓ
≤ ∆

10ℓ
.

(3.4)

Next, by Lemma 7, the entrywise bound on [M̂−M]≤τ and the row/column bounds on [M̂−M]S,T ,∥∥∥∥[M̂−M
]≤τ

S,T
− 1

q
XS,T

∥∥∥∥
op
≤ max

(
2ρ
√
q

√
log

(
3(m+ n)

δ

)
,
4τ

3q
log

(
3(m+ n)

δ

))

≤ ∆

10
√
r + r⋆ℓ

,

(3.5)

with probability ≥ 1− δ
3 . Finally, note that

1

q
XS,T = [M◦ −M]S,T +

([
M̂−M

]≤τ

S,T
− [M◦ −M]S,T

)
+

(
1

q
XS,T −

[
M̂−M

]≤τ

S,T

)
(3.6)

so it is the sum of a rank-(r + r⋆) matrix, a Frobenius norm bounded matrix (by (3.4)), and an
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operator norm bounded matrix (by (3.5)). Therefore,

σ2(r+r⋆)+1

(
1

q
XS,T

)
≤
∥∥∥∥[M̂−M

]≤τ

S,T
− 1

q
XS,T

∥∥∥∥
op

+ σ2(r+r⋆)+1

(
[M◦ −M]S,T +

([
M̂−M

]≤τ

S,T
− [M◦ −M]S,T

))
≤ ∆

10
√
r + r⋆ℓ

+
∆

10
√
r + r⋆ℓ

≤ ∆

5
√
r + r⋆ℓ

.

Above, the first inequality followed by Weyl’s perturbation theorem, and the second followed from
Lemma 9 and (3.4), (3.5). By Proposition 2 we then have that∥∥∥∥1q [X−X′]

S,T

∥∥∥∥
op
≤ 1.1∆

5
√
r + r⋆ℓ

, (3.7)

with probability ≥ 1− δ
3 . The decomposition (3.3) shows we can write [M◦−M̃]S,T as the sum of a

Frobenius norm bounded matrix (the contribution of (3.4)) and an operator norm bounded matrix
(the contributions of (3.5) and (3.7)). Further, since [M◦ − M̃]S,T = [M⋆ −M]A,B − 1

qX
′
S,T is the

sum of a rank-(r + r⋆) matrix and a rank-2(r + r⋆) matrix, it is rank 3(r + r⋆). Hence,∥∥∥∥[M◦ − M̃
]
S,T

∥∥∥∥
F
≤
√

6(r + r⋆) ·
(

1.1∆

5
√
r + r⋆ℓ

+
∆

10
√
r + r⋆ℓ

)
+
√
2 · ∆

10ℓ
≤ ∆

ℓ

follows by applying Lemma 8 with A = [M̂−M]≤τ
S,T −

1
qX

′
S,T and B = [M◦−M]S,T − [M̂−M]≤τ

S,T .
The failure probability comes from a union bound over Lemma 4, Lemma 7, and Proposition 2. We
use Lemma 1 to upper bound the reveal probability, since Line 3 requires O(log( m

γadd
)) calls to Oq′

for the specified q′, and Line 4 requires one call to Oq for q = O(q′).
Finally, we discuss runtime. The runtime of Lines 3 and 4 are bottlenecked by computing

O(mnp) entries of M̂ −M, where p is specified in the statement of Proposition 1; a Chernoff
bound implies the number of revealed entries will be within a constant factor of its expectation
within the failure probability budget. Since M is given as a rank-r factorization and entries of M̂
are given, this cost is O(mnp · r). The runtime cost of Power is specified by Proposition 2 to be
O(mnq · (r + r⋆) log m

δ ), where Tmv(X) = O(nnz(X)) = O(mnq), and this does not dominate. The
runtime cost of computing X⊤Û is O(mr2) using X = UV⊤ and also does not dominate.

3.3 Partial matrix completion via Descent

In this section, we give a simple recursive application of Descent to give a self-contained result
on partial matrix completion. For simplicity, we assume we have an upper bound on the largest
singular value of the target matrix M⋆; we will show how to lift this assumption in Section 5.

Corollary 2. Let M⋆ ∈ Rm×n be rank-r⋆, ∥M⋆∥op ≤ σ, m ≥ n, δ ∈ (0, 1), let M̂ = M⋆ +N for
∥N∥F ≤ ∆, and let ℓ ≥ 1. Algorithm 3 returns U ∈ Rm×r, V ∈ Rn×r, and (S, T ), for r = r⋆poly(ℓ),
such that [UV⊤]S,T is O(max(σ

√
r⋆ exp(− log2(ℓ)),∆))-close to M⋆ on an α-submatrix and |S| ≥

m − αn, |T | ≥ (1 − α)n, with probability ≥ 1 − δ. Algorithm 3 uses O(m(r⋆)2poly(ℓ)
α log3(mδ )) time

and one call to Op(M̂), where for a sufficiently large constant,

p = O

(
r⋆poly(ℓ)

αn
log3

(m
δ

))
.
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Algorithm 3: PartialMatrixCompletion(O[0,1](M̂), r⋆, σ,∆, α, δ, ℓ)

1 Input: O[0,1](M̂) for M̂ = M⋆ +N ∈ Rm×n where M⋆ is rank-r⋆ satisfying ∥M⋆∥op ≤ σ

and ∥N∥F ≤ ∆, α, δ ∈ (0, 1), ℓ ≥ 1

2 ∆̃←
√
r⋆σ

3 (U,V)← (0m×0,0n×0)
4 k ← 0
5 (S, T )← ([m], [n])
6 K ← ⌈log ℓ⌉
7 γadd ← α

max(800K2 log(m),2·105ℓ2K2)

8 while ∆̃ ≥ 20ℓ∆ and k ≤ K do
9 (U,V, S, T )← Descent(O[0,1](M̂S,T ), [UV⊤]S,T , r

⋆, ∆̃, γaddk, γadd,
δ
2K , ℓ)

10 ∆̃← ∆
ℓ

11 k ← k + 1

12 end
13 kfreeze ← k

14 while ∆̃ ≥ 20e∆ and k − kfreeze ≤ K do
15 (U,V, S, T )← Descent(O[0,1](M̂S,T ), [UV⊤]S,T , r

⋆, ∆̃, γaddk, γadd,
δ
2K , e)

16 ∆̃← ∆
e

17 k ← k + 1

18 end
19 return (U,V, S, T )

Proof. The failure probability follows by applying a union bound to the 2K calls to Descent. Next,
we claim that throughout the algorithm we maintain the invariant that ∆̃ is an overestimate on the
distance from [UV⊤]S,T to [M⋆]S,T on a γaddk-submatrix; this is clearly true at the beginning of the
algorithm, since ∥M⋆∥F ≤

√
r⋆ ∥M⋆∥op. Further, applying Proposition 1 shows that this invariant

is preserved in each iteration, which gives the closeness guarantee since ℓ−K ≤ exp(− log2(ℓ)). We
note that the role of the first phase (Lines 8 to 12) is to cut the initial distance estimate by a factor
ℓ−K , but is bottlenecked by the requirement that ∆̃ ≥ 20ℓ∆. To bring this overhead down to a
constant factor, we repeat the argument in Lines 14 to 18, but set ℓ = e.

By our parameter settings Proposition 1 drops ≤ αn
2K rows and columns in each iteration, giving

the lower bounds on |S|, |T |. Further, we can inductively apply Proposition 1 to maintain that the
rank r of our iterate is bounded by 32Kr⋆ = r⋆poly(ℓ), since the potential function r + r⋆ at most
triples each iteration. The bounds on the runtime and p then follow by using Proposition 1 2K
times; we recall that we can aggregate the observation probabilities using Lemma 1.

To briefly interpret Corollary 2, let α = 1
200 , in other words, consider the case where we are

willing to give up on recovering a small constant fraction of rows and columns. Further, suppose
σ
√
r⋆

∆ is polynomially bounded in m, i.e. our initial distance estimate is not too far off from our noise
level. By balancing terms via setting

ℓ = exp

√log

(
σ
√
r⋆

∆

) = exp
(
O
(√

log(m)
))

= mo(1),

we see that Corollary 2 yields partial matrix completion obtaining the desired noise level ∆ up to
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constant overhead, on at least 99% of rows and columns. This setting of ℓ also implies that the rank
of the iterates of Algorithm 3 is bounded by r⋆ ·mo(1) throughout. Further, assuming δ = poly(m−1)
for simplicity, the sample complexity of mnp = O(m1+o(1)r⋆) is almost information-theoretically
optimal, and the runtime of O(m1+o(1)(r⋆)2) is almost-verification time. In other words, by giving
up on recovering a subconstant fraction of rows and columns, we obtain almost-optimal matrix
completion on the remaining submatrix, without any subspace regularity assumptions.

4 Recovering dropped subsets

In this section, we provide the second key ingredient of our framework, an algorithm which recovers
rows and columns which were dropped by our iterative method in Section 3. The method of this
section takes as input M which satisfies submatrix closeness to our target rank-r⋆ M⋆, and returns
a rank-O(r⋆) factorization. This factorization has the appealing property that it satisfies standard
Frobenius norm closeness to M⋆ (without any dropped rows or columns), at a cost of a roughly
poly(r⋆) factor increase in the closeness bound. We now state the main export of this section,
parameterized by the notion of standard subspaces (Definition 4).

Proposition 3. Let M⋆ ∈ Rm×n be rank-r⋆ with (α, β, µ)-standard row and column spans, m ≥ n,
δ ∈ (0, 1) and let S ⊆ [m], T ⊆ [n] have |S| ≥ m − αn

9 , |T | ≥ m − αn
9 . Assume M ∈ Rm×n is

given as a rank-r factorization, r ≥ r⋆, MS,T is ( α
1800 log(m) ,∆)-close to M⋆

S,T on a γ-submatrix,

and M̂ = M⋆ +N for ∥M⋆∥op ≤ σ, ∥N∥F ≤
∆
20 . Algorithm 10 returns U ∈ Rm×r′ and V ∈ Rn×r′

satisfying ∥∥∥UV⊤ −M⋆
∥∥∥

F
≤

Cfixr
⋆
√

r⋆ log(r⋆)

β8
∆ and r′ ≤ 2r⋆, (4.1)

for a universal constant Cfix, with probability ≥ 1−δ. Algorithm 10 uses O(mr2µ2

αβ4 log2(mβδ ) log(
m(σ+∆)

∆βδ ))

time and one call to Op(M̂) where for a sufficiently large constant,

p = O

(
rµ log2(mβ ) log(

m
δ )

αβ2n

)
.

We prove Proposition 3 in a number of steps organized into subsections, summarized as follows.

1. In Section 4.1, we give an algorithm Sparsify which takes matrices which are close on a subma-
trix and drops a few more rows and columns, with the guarantee that the resulting submatrices
satisfy Definition 3, i.e., they are close away from an RCS matrix.

2. In Section 4.2, we give an algorithm Representative which takes as input a matrix which is
close to the target away from an RCS matrix. By repeatedly testing for regression error
of our iterate’s columns against itself, Representative learns a subset B of columns which are
representative of the difference between our iterate and the target, in the sense of Definition 6.

3. In Section 4.3, we first show that Definition 6 implies that the columns indexed by B can be
used to effectively approximate dropped rows and columns from observations. We then give
an algorithm Complete which learns a low-rank approximation of M⋆ to slightly higher error
using B.

4. We put all the pieces together to prove Proposition 3 in Section 4.4.
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4.1 Sparsifying errors

The output of the method of Section 3 is M̃ that is ∆-close to the true matrix M⋆ on a γ-submatrix
(up to dropped subsets). We begin with a postprocessing step which yields finer control over the
structure of M̃−M⋆. In particular, we drop some additional rows and columns so that the difference
M̃ −M⋆ is close away from an s-RCS matrix, for s ≈ n

r . The algorithm is Algorithm 4, and its
statement and analysis are similar to that of Algorithm 1.

We use the following concentration inequality to control the error of empirical estimates.

Lemma 10. Let p, δ ∈ (0, 1), τ > 0, v ∈ Rd, and let ṽ ∈ Rd have each entry ṽi independently set to
vi with probability p, and 0 otherwise. Then with probability ≥ 1− δ,∣∣∣∣|{i ∈ d | |vi| ≥ τ}| − 1

p
|{i ∈ d | |ṽi| ≥ τ}|

∣∣∣∣ ≤ max

(
1

10
|{i ∈ d | |vi| ≥ τ}| ,

30 log 2
δ

p

)
.

Proof. Let xi ∈ {0, 1} be a scalar random variable for all i ∈ [d] which is 1 if |vi| ≥ τ and let x̃i be
analogously defined for ṽ; clearly Ex̃i = pxi. Fact 3 shows that with probability ≥ 1− δ,∣∣∣∣∣∣

∑
i∈[d]

xi −
1

p

∑
i∈[d]

x̃i

∣∣∣∣∣∣ ≤
√∑

i∈[d] xi

p

√
3 log

2

δ
.

The conclusion follows depending on which of
√∑

i∈[d] xi√
10

or 1√
p

√
30 log 2

δ is larger.

We now use an analogous argument to that of Lemma 4 to analyze Algorithm 4.

Lemma 11. Let 0 ≤ τ ≤ ∆ and γ, γdrop, p, δ ∈ (0, 1), and s ∈ [n]. Assume M ∈ Rm×n is ∆-close
to M̂ on a γ-submatrix, and that m ≥ n. Finally define s := 16∆2

τ2γdropn
and assume

γdrop ≥ 200γ log(m), p ≥
20γdropnτ

2

∆2
log

(
100m

δ

)
.

With probability ≥ 1− δ, Algorithm 4 returns S ⊆ [m], T ⊆ [n] satisfying the following.

1. |S| ≥ m− γdropn, |T | ≥ (1− γdrop)n.

2. MS,T , M̂S,T are 2∆-close away from an s-RCS matrix.

Proof. Our first goal is to show that before the application of Filter, every row and column of
[M− M̂]S,T has at most s entries larger than τ in magnitude. We will denote

D⋆
t :=

[
M− M̂

]
St×Tt

and Φt :=
∣∣∣{(i, j) ∈ St × Tt

∣∣ | [D⋆
t ]ij | ≥ τ

}∣∣∣ .
In other words, Φt tracks the number of large entries in D⋆

t , and by definition Φ0 ≤ mn and Φt is
nonincreasing. We also denote the exact number of large entries per row and column by

r⋆i,t := |{j ∈ Tt | |[D⋆
t ]ij | ≥ τ}| for all i ∈ St,

c⋆j,t := |{i ∈ St | |[D⋆
t ]ij | ≥ τ}| for all j ∈ Tt.
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Also, as in the proof of Lemma 4, by applying Lemma 10 and a union bound over ≤ 40 log(m)
iterations (giving the failure probability with a union bound over the call to Filter succeeding), we
assume that for all 0 ≤ t < tmax and all i ∈ St, j ∈ Tt,∣∣ri,t − r⋆i,t

∣∣ ≤ max

(
1

10
r⋆i,t,

∆2

2τ2
· 1

γn

)
,

∣∣cj,t − c⋆j,t
∣∣ ≤ max

(
1

10
c⋆j,t,

∆2

2τ2
· 1

γn

)
,

as well as, for all i ∈ Stmax , j ∈ Ttmax ,∣∣ri − r⋆i,tmax

∣∣ ≤ max

(
1

10
r⋆i,tmax

,
s

10

)
,

∣∣cj − c⋆j,tmax

∣∣ ≤ max

(
1

10
c⋆j,tmax

,
s

10

)
.

We observe that two matrices which are ∆-close in Frobenius norm have at most ∆2

τ2
entries of the

difference with magnitude more than τ . Next, consider an iteration t where Φt ≥ 4∆2

τ2
. By an

analogous argument to Lemma 4, removing the γn largest rows and columns decreases the potential
by at least a 0.05 factor, so inducting shows that after tmax iterations,

Φtmax ≤
4∆2

τ2
.

Therefore by Markov’s inequality there are at most γdropn
4 rows in Stmax and γdropn

4 columns in Ttmax

with at least 16∆2

τ2γdropn
≤ s

2 entries larger than τ . In conclusion, if a row or column has more than s

entries larger than τ in the last iteration, it will be removed as claimed.
In the last iteration MS,T and M̂S,T are clearly still ∆-close on a γ-submatrix, since we only

dropped rows or columns. Filter ensures that by dropping γdropn
2 more rows and columns, the

difference matrix truncated at τ has Frobenius norm ≤ 2∆ (see the third guarantee of Lemma 4).
Hence, we can take X to be the truncated difference and Y to be the sparse errors in Definition 3.

4.2 Learning a representative subset

4.2.1 Structural properties

In this section, we collect several structural tools which will be helpful in the analysis of our testers.
We first provide simple spectral bounds on a randomly subsampled matrix.

Lemma 12. Let δ ∈ (0, 1) and let V ⊆ Rd be (α, β, µ)-standard of dimension r, let {bi}i∈[d] ⊂ Rr

be rows of an (arbitrary) choice of BV , and let S ⊂ [d] have |S| ≥ (1 − α
2 )d. Let T ⊆ S have each

element in S included with probability p ≥ 12µr
β2d

log(2rδ ). Then with probability ≥ 1− δ,

pβ2

2
Ir ⪯

∑
i∈T

bib
⊤
i ⪯ 2pIr.

Proof. By the assumption on the subspace V , there is a set A ⊂ S of size at most αd
3 such that

every row i ∈ R := S \A satisfies ∥bi∥2 ≤
√

µr
d . For all i ∈ R define a random matrix

Xi :=

{
bib

⊤
i with probability p,

0r×r otherwise.
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Algorithm 4: Sparsify(O[0,1](M̂),M, τ,∆, γ, γdrop, p, δ)

1 Input: O[0,1](M̂), M ∈ Rm×n, τ,∆ ≥ 0, γ, γdrop, p, δ ∈ (0, 1)

2 S0 ← [m], T0 ← [n]

3 tmax ← ⌈20 log mnτ2

4∆2 ⌉
4 for 0 ≤ t < tmax do
5 Dt ← Op([M− M̂]St,Tt)
6 for i ∈ St do ri,t ← 1

p |{j ∈ Tt | |[Dt]ij | ≥ τ}|
7 for j ∈ Tt do cj,t ← 1

p |{i ∈ St | |[Dt]ij | ≥ τ}|
8 St+1 ← St \At where At ⊂ St corresponds to the γn indices i with largest ri,t
9 Tt+1 ← Tt \Bt where Bt ⊂ Tt corresponds to the γn indices j with largest cj,t

10 end
11 D← Op([M− M̂]Stmax ,Ttmax

)
12 for i ∈ Stmax do ri ← 1

p |{j ∈ Ttmax | |Dij | ≥ τ}|
13 for j ∈ Ttmax do cj ← 1

p |{j ∈ Ttmax | |Dij | ≥ τ}|
14 S ← Stmax \A where A ⊂ Stmax corresponds to the γdropn

4 indices i with largest ri
15 T ← Ttmax \B where B ⊂ Ttmax corresponds to the γdropn

4 indices j with largest cj

16 return Filter(O[0,1](M̂S,T ),MS,T , τ,∞,∆, γ, γdrop, 1, p,
δ
2)

We recognize
∑

i∈R Xi ⪯
∑

i∈T bib
⊤
i (since it is restricted to a subset of the rows), and ∥Xi∥op ≤

µr
d

with probability 1 for all i ∈ R. Moreover, we have E
∑

i∈R Xi = p
∑

i∈R bib
⊤
i , and

pβ2Ir ⪯ p
∑
i∈R

bib
⊤
i ⪯ pIr,

by Lemma 2 since |R| ≥ (1− α)d. The conclusion follows by applying Fact 3 with ϵ = 1
2 .

We also use Proposition 4, an existential variant of Lemma 12 which does not impose a regularity
constraint, which can be viewed as a one-sided discrepancy statement potentially of independent
interest. We use this terminology because a random S of size dλ yields

∑
i∈S bib

⊤
i = λIr in expecta-

tion, and Proposition 4 matches this up to constant factors in the smallest eigenvalue (a one-sided
guarantee). We defer a proof of this claim to Appendix B.

Proposition 4. Let λ ∈ [5600rd , 1), let B ∈ Rd×r have orthonormal columns, and denote rows of B
by {bi}i∈[d] ⊂ Rr. There exists S ⊆ [d] with |S| ≤ dλ and

∑
i∈S

bib
⊤
i ⪰

λ

8
Ir.

By using Proposition 4, we show that removing a few columns from a pair of matrices which are
close away from a RCS matrix induces a submatrix on which they are truly close.

Lemma 13. Let M,M′ ∈ Rm×n and suppose M,M′ are ∆-close away from an s-RCS matrix.
Further, suppose M−M′ is rank-r. There is T ⊆ [n] with |T | ≥ n− 5600rs logm such that

∥∥[M−M′]
:T

∥∥
F ≤ ∆ ·

√
logm

13
.

24



Proof. Let D := M −M′ for notational convenience, and let D = X + Y be the decomposition
guaranteed by Definition 3. Partition [m] into sets {Sj}j∈[k] where k ≤ logm as follows. Let S1 be
the set of i ∈ [m] such that ∥Xi:∥2 ≤

2∆√
m

and for j > 1, let Sj be the set of i ∈ [m] with

2j−1 ∆√
m

< ∥Xi:∥2 ≤ 2j
∆√
m
.

Now for each j ∈ [k], consider an SVD of DSj : = UjΣjV
⊤
j and apply Proposition 4 to Uj with

λj =
5600r
|Sj | . We obtain Aj ⊆ Sj such that |Aj | ≤ 5600r and for all v ∈ Rn,

∥∥DAj :v
∥∥
2
≥
√

λj

8

∥∥DSj :v
∥∥
2
. (4.2)

Next recall D = X +Y where Y is s-RCS. For each i ∈ [m], let Ti ⊂ [n] be the set of entries on
which Yi: is supported. Let T = [n] \

⋃
i∈A1∪...∪Ak

Ti so |T | ≥ n− 5600rs logm. Now we can bound
D:T by applying (4.2):

∥D:T ∥2F =
∑
j∈[k]

∥∥DSj ,T

∥∥2
F ≤

∑
j∈[k]

8

λj

∥∥DAj ,T

∥∥2
F

≤
∑
j∈[k]

|Sj ||Aj |
700r

· 2
2j∆2

m
≤ ∆2k

175
≤ ∆2 logm

175
,

where in the second-to-last step, we used that |Sj | ≤ 4m
22j

by Markov’s inequality.

We note that Lemma 13 is a robust variant of a simpler claim, which says that a low-rank matrix
with a sparse nonzero pattern must have all of its entries localized to a small submatrix. We provide
a proof of this claim for convenience, as we believe it aids in building intuition for our method.

Lemma 14. Let D ∈ Rm×n be rank-r with m ≥ n, and suppose D is α
r -RCS for α ∈ (0, 1). There

are A ⊆ [m], B ⊆ [n] with |A| ≥ m− αn, |B| ≥ (1− α)n such that DA,B has no nonzero entries.

Proof. Consider an iterative process which takes any row of D with nonzero entries, and orthogonal-
izes all rows of D against it. The process terminates after r iterations as D is rank-r, and the union
of the supports of all rows used by the process grows by ≤ αn

r in each iteration. Hence, the support
of all rows is contained in a subset of size αn, and a symmetric argument holds for columns.

4.2.2 Basic testing

We next analyze properties of a simple algorithm, Test, which solves a regression problem attempting
to boundedly combine a set of columns of a matrix to approximate another column. For ease of
discussion, we focus on testing columns rather than rows, but a symmetric argument handles both.

Algorithm 5: Test(M, T, j, ϕ, τ )

1 Input: M ∈ Rm×n, T ⊆ [n], j ∈ [n], ϕ, τ ≥ 0

2 if minv∈RT ∥M:T v −M:j∥22 +
ϕ2

τ2
∥v∥22 ≤ 2ϕ2 then return “True”

3 else return “False”
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If Test returns “True” then we say it has passed, and otherwise we say it has failed. Intuitively,
Test simulates testing the value of the following constrained problem:

min
v∈RT

∥v∥2≤τ

∥M:T v −M:j∥2 ≤ ϕ,

but is easier to compute. We use the following helper claim, which follows from a calculation.

Fact 5. Let M ∈ Rm×n have SVD UΣV⊤ and have rank r, and let T ⊆ [n] satisfy V⊤
T :VT : ⪰ γ2Ir.

Then for some j ∈ [n], letting c ∈ RT be the vector such that M:T c = M:j, ∥c∥2 ≤
1
γ ∥Vj:∥2.

Fact 5 will be used to show the regression problems we encounter have bounded solutions.
Motivated by this, we next specify a set of properties that guarantee Test will pass, combining
regularity of a comparison matrix [M⋆]:T in the sense of Fact 5 with closeness of M, M⋆.

Definition 6. We say T ⊆ [n] is a (∆, γ)-representative subset with respect to a pair of matrices
M,M⋆ ∈ Rm×n if the following properties hold.

• ∥[M−M⋆]:T ∥F ≤ ∆.

• [V⋆]
⊤
T :[V⋆]T : ⪰ γ2Ir⋆ , where U⋆Σ⋆V

⊤
⋆ is an SVD of M⋆ which has rank r⋆.

Lemma 15. Let T ⊆ [n] contain a ( ϕ
2τ ,

θ
τ )-representative subset with respect to M,M⋆ ∈ Rm×n, for

some θ ≥ 0. Let j ∈ [n] satisfy ∥[V⋆]j:∥2 ≤ θ and ∥[M−M⋆]:j∥2 ≤
ϕ
2 , where U⋆Σ⋆V⋆ is an SVD

of M⋆. Then Test(M, T, j, ϕ, τ ) will pass.

Proof. By Fact 5 and the fact that T is a representative subset with parameter θ
τ , there is a vector

c ∈ RT with ∥c∥2 ≤ τ and M⋆
:T c = M⋆

:j . Using the other property of a representative subset shows

∥M:T c−M:j∥2 ≤ ∥M:T c−M⋆
:T c∥2 + ∥M

⋆
:T c−M:j∥2

≤ ∥[M−M⋆]:T ∥F ∥c∥2 + ∥[M−M⋆]:j∥2 ≤
ϕ

2τ
· τ +

ϕ

2
= ϕ.

It is then straightforward to check that c attains objective value 2ϕ2 as desired.

To complete our analysis of Test we further specify a set of properties that guarantees it will
fail. Intuitively our conditions impose that for a small set of coordinates (which cannot significantly
affect subspace regularity), the deviation from the underlying matrix M⋆ on a particular column
restricted to those coordinates is substantially larger than it should be.

Lemma 16. Let M,M⋆ ∈ Rm×n, m ≥ n, and R ⊂ S ⊆ [m], T ⊆ [n], j ∈ [n] satisfy the following.

1. ∥[M−M⋆]S,T ∥F ≤
ϕ
τ .

2.
∥∥[M−M⋆]S\R,j

∥∥
2
≤ ϕ.

3. ∥[M−M⋆]R,j∥2 ≥
7ϕ
β .

4. |S| ≥ m− αn
2 and |R| ≤ αn

2 .

Then if the column span of M⋆ is (α, β)-regular, Test(M, T, j, ϕ, τ ) will fail.
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Proof. Assume for contradiction that Test passes, and let v ∈ RT be the solution. This implies

∥v∥2 ≤
√
2τ, ∥M:T v −M:j∥2 ≤

√
2ϕ. (4.3)

We next observe that∥∥∥M⋆
S\R,T v −M⋆

S\R,j

∥∥∥
2
≤
∥∥∥M⋆

S\R,T v −MS\R,j

∥∥∥
2
+ ϕ

≤
∥∥[M−M⋆]S\R,T v

∥∥
2
+
∥∥MS\R,T v −MS\R,j

∥∥
2
+ ϕ ≤ 4ϕ,

where the first line used Item 2, and the second used Item 1, ∥·∥op ≤ ∥·∥F, the bounds in (4.3), and
1 + 2

√
2 ≤ 4. We further have∥∥M⋆

R,T v −M⋆
R,j

∥∥
2
≥ 7ϕ

β
−
∥∥M⋆

R,T v −MR,j

∥∥
2

≥ 7ϕ

β
− ∥[M−M⋆]R,T v∥2 − ∥MR,T v −MR,j∥2 ≥

4ϕ

β
,

where the first line used Item 3, and the second line followed similarly to the previous calculation.
Finally, note that the column span of M⋆

S: is a (α2 , β)-regular subspace by the size bound on S
from Item 4, and u := M⋆

S,T v −M⋆
S,j is an element of this subspace. However, we have proven∥∥uS\R∥∥2 ≤ β ∥u∥2 by combining the above displays, a contradiction to Lemma 2.

We now give a consequence of Lemma 16 that handles the case of a randomly chosen subset T .

Lemma 17. Let M,M⋆ ∈ Rm×n be ∆-close away from an s-RCS matrix, and let X + Y be the
decomposition in Definition 3. Let T ⊂ [n] have each element included independently with probability
p, and suppose

∥Y:j∥2 ≥
100

β

(
∥X:j∥2 + τ

√
p∆+ ϕ

)
,

for some j ∈ [n]. Finally suppose s ≤ αmin(m,n)
2 , and p ≤ α

1000s . Then with probability at least 0.9
over the randomness of T , Test(M, T, j, ϕ, τ ) fails.

Proof. For all k ∈ [n] let Sk be the support of the Y:k satisfying |Sk| ≤ s, and let S := [m]\
⋃

k∈T Sk.
We first condition on the following three events, each of which happens with probability at least
0.99 by Markov’s inequality, giving the failure probability via a union bound.

1. ∥X:T ∥F ≤ 10
√
p∆.

2. |T | ≤ 100pn.

3.
∥∥YS∩Sj ,j

∥∥
2
≥ 0.9 ∥Y:j∥2.

To see that the last event holds with probability 0.99, we used Markov’s inequality and

E

[∥∥∥YSj\S,j

∥∥∥2
2

]
= E

[∥∥∥Y⋃
k∈T Sk,j

∥∥∥2
2

]
≤ ps ∥Y:j∥22 ≤

1

1000
∥Y:j∥22 ,

because for each i ∈ Sj , at most s other columns of Y have i ∈ Sk by assumption. Under these
events, we now prove Test fails by applying Lemma 16 with parameters ϕ′, τ where

ϕ′ := 10τ
√
p∆+ ∥X:j∥2 + ϕ.
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We will use R = S ∩ Sj , so Item 4 of Lemma 16 follows from the assumed bound on s ≥ |R|, and
that |[m] \ S| ≤ 100pns ≤ αn

2 . Item 1 follows because [M −M⋆]S,T = XS,T (as YS,T is zero by
definition), and ∥XS,T ∥F ≤ ∥X:T ∥F ≤

ϕ′

τ . Item 2 follows because∥∥[M−M⋆]S\R,j

∥∥
2
=
∥∥XS\R,j

∥∥
2
≤ ∥X:j∥2 ≤ ϕ′.

Finally, Item 3 follows because∥∥∥[M−M⋆]S∩Sj ,j

∥∥∥
2
≥
∥∥YS∩Sj ,j

∥∥
2
− ∥X:j∥2 ≥

7ϕ′

β
.

We note that as ϕ ≤ ϕ′, Test failing with parameter ϕ′ implies Test with parameter ϕ also fails.

4.2.3 Finding a representative subset

In this section, we finally analyze our main algorithm, Representative, for finding a representative
subset of columns of an iterate M in the sense of Definition 6, assuming M is close to M⋆ away from
an RCS matrix. We showed in Lemma 15 that this ensures good regression error on completing
other columns of M. This property will be used with the representative subset we return in the
next Section 4.3 to complete our current matrix (including rows and columns we dropped).

Algorithm 6: Representative(M, ϕ, p)

1 Input: M ∈ Rm×n, ϕ ≥ 0, p ∈ (0, 1)
2 Sample B0 ⊆ [n] by independently including each k ∈ [n] with probability p
3 count← 0B0

4 tmax ← ⌈40 log(mn)⌉
5 τ ← 1√

40 log(r)

6 for t ∈ [tmax] do
7 Sample T ⊆ [n] by independently including each k ∈ [n] with probability p
8 for j ∈ B0 do
9 if Test(M, T, j, ϕ, τ ) then countj ← countj + 1

10 end
11 end
12 B ← B0 with all j ∈ B0 satisfying countj ≤ 1

2 tmax removed
13 return B

Lemma 18. Let M ∈ Rm×n be given as a rank-r factorization and ∆-close to M⋆ ∈ Rm×n away
from an s-RCS matrix, where M⋆ is rank-r⋆ with (α, β, µ)-standard row and column spans. If
m ≥ n, r ≥ r⋆, and

s ≤ min

(
αmin(m,n)

105r log(mn)
,

α

1000p

)
, ϕ = ∆

√
p logm, p ≥ 40µr⋆

β2n
log (r⋆) ,

then letting B ⊆ [n] be the subset output by Algorithm 6 with parameters (M, ϕ, p), B is a (∆̃, γ)-
representative subset with respect to M,M⋆ with probability at least 0.9, for

∆̃ := ∆ · 1000p
√

n

β2
, γ :=

√
pβ2

2
.
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Proof. Throughout we follow the parameter settings of τ and tmax in Algorithm 6. We begin by
proving the second condition in Definition 6. By Lemma 13 and the upper bound on s, there is a
subset Q ⊆ [n] with |Q| ≥ (1− α

10)n such that∥∥∥[M−M⋆]:Q

∥∥∥
F
≤ ∆ ·

√
logm

13
. (4.4)

Further, let U⋆Σ⋆V
⊤
⋆ be an SVD of M⋆, and let Q′ ⊆ Q be the indices j satisfying both

∥[M−M⋆]:j∥2 ≤ ∆ ·
√

logm

αn
≤ ϕ

2
,
∥∥∥[V⋆]j:

∥∥∥
2
≤ θ :=

√
2µr

n
.

By Markov’s inequality and the definition of a regular subspace, we have that |Q′| ≥ (1 − α
2 )n.

We next claim that every index in Q′ ∩ B0 will be included in B with probability at least 0.99. It
suffices to prove that the conditions of Lemma 15 are met with probability at least 0.9, and then
a Chernoff bound shows a majority of the tmax tests will pass with probability ≥ 1− 1

100n for each
j ∈ Q′ ∩B0. To see this, by Markov’s inequality and (4.4), with probability at least 0.99 we have∥∥∥[M−M⋆]:T∩Q

∥∥∥
F
≤ ∆

√
p logm ≤ ϕ

2τ
,

and by Lemma 12 with S ← Q, with probability at least 0.99,

[V⋆]
⊤
T∩Q: [V⋆]T∩Q: ⪰

pβ2

2
Ir⋆ ⪰

θ2

τ2
Ir⋆ .

Clearly T contains T ∩Q so the conditions of Lemma 15 are all met with probability 0.9. Therefore,
conditioning that B ⊇ Q′∩B0, and since B0 is independently sampled from Q′, applying Lemma 12
once more with S ← Q′ shows the first condition of Definition 6 is met with probability 0.95.

Now we verify the first of the desired conditions in Definition 6. Let M −M⋆ = X + Y be
the promised decomposition from Definition 3, and note that the given bound on s shows the
preconditions of Lemma 17 are met. Therefore for every j ∈ B, a Chernoff bound shows that with
probability 0.99, the contrapositive of Lemma 17 holds, i.e.

∥Y:j∥22 ≤
30000

β2

(
∥X:j∥22 + τ2p∆2 + ϕ2

)
≤ 30000

β2

(
∥X:j∥22 + 1.5ϕ2

)
,

where we used (a+ b+ c)2 ≤ 3(a2+ b2+ c2) and the lower bound on ϕ. Summing the above display
over j ∈ B and using ∥u+ v∥22 ≤ 2 ∥u∥22 + 2 ∥v∥22 with u← X:j and v ← Y:j , we have

∥[M−M⋆]:B∥
2
F ≤

90000pnϕ2

β2
+

60000pn

β2
∥X:B∥2F , (4.5)

since |B| ≤ |B0| ≤ 2pn with probability at least 0.99 by a Chernoff bound. Finally, the conclusion
follows since ∥X:B∥2F ≤ 30p∆2 with probability at least 0.97 by Markov’s inequality, and we union
bound over these two events and the prior failure probabilities.

4.3 Filling in the matrix

4.3.1 Completing columns with a representative subset

In this section, we show that given a representative subset of columns (in the setting of Lemma 18),
we can efficiently learn coefficients completing the rest of our iterate M as combinations of the
subset via observations from M⋆. We begin by proving several helper regularity bounds which will
allow us to argue that the regression problems we solve are well-conditioned with good probability.
Specifically, we analyze the regularity of a (truncated) span of our representative columns.
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Lemma 19. Let A ∈ Rm×n be rank-r with SVD UΣV⊤, and let B ∈ Rm×n satisfy ∥A−B∥F ≤ ∆.
For some θ ∈ (0, 1) let B′ be the matrix obtained by taking an SVD of B and dropping singular
values smaller than ∆

θ . Let U′Σ′(V′)⊤ be an SVD of B′. Then the following statements hold.

1. U′ has rank at most 2r.

2.
∥∥(Im −UU⊤)u

∥∥
2
≤ θ for all unit vectors u in the column span of U′.

3. ∥A−B′∥F ≤
4
√
r∆
θ .

Proof. To see the first claim, Lemma 9 (overloading the application with B← B−A) shows that
B has at most 2r singular values more than ∆√

r
, so B′ is rank at most 2r. We move onto the second

claim: let u ∈ Rm be in the column span of U′. We bound∥∥∥B⊤
(
Im −UU⊤

)
u
∥∥∥
2
≥
∥∥∥V′Σ′(U′)⊤

(
Im −UU⊤

)
u
∥∥∥
2

≥ ∆

θ

∥∥∥(U′)⊤
(
Im −UU⊤

)
u
∥∥∥
2

≥ ∆

θ
u⊤
(
Im −UU⊤

)
u =

∆

θ

∥∥∥(Im −UU⊤
)
u
∥∥∥2
2
,

where the first inequality followed since B′ = U′Σ′(V′)⊤ drops singular values from B, the second
used orthonormality of V′ and our lower bound on Σ′, the third used that u is contained in the
column span of U′, and the last used that Im −UU⊤ is a projector. On the other hand,∥∥∥B⊤

(
Im −UU⊤

)
u
∥∥∥
2
=
∥∥∥(A−B)⊤

(
Im −UU⊤

)
u
∥∥∥
2
≤ ∆

∥∥∥(Im −UU⊤
)
u
∥∥∥
2

where we used A = UU⊤A. The above two displays yield the second claim. To see the third,∥∥B′ −A
∥∥

op ≤
∥∥B′ −B

∥∥
op + ∥B−A∥F ≤

2∆

θ
.

Since B′ −A is rank at most 3r, the conclusion follows from ∥B′ −A∥F ≤
√
3r ∥B′ −A∥op.

Applying Lemma 19 then yields a regularity bound on a truncated SVD of our iterate.

Lemma 20. Let B ⊆ [n] be (∆̃, γ)-representative with respect to M,M⋆ ∈ Rm×n, and assume M⋆

is rank-r⋆ with SVD U⋆Σ⋆V
⊤
⋆ and (α, β, µ)-standard row and column spans. Let UΣV⊤ be an SVD

of M:B after dropping singular values smaller than 2∆̃
β . Then the following statements hold.

1. U has rank at most 2r⋆.

2. The column span of U is (α, β2 )-regular.

3. There is a matrix Y ∈ Rr×n, where U ∈ Rm×r, satisfying

∥UY −M⋆∥F ≤
8
√
r⋆∆̃

γβ
.

Proof. We are in the setting of Lemma 19 with A ← M⋆
:B, B ← M:B, and θ ← β

2 , so the first
claim follows. The second claim in Lemma 19 shows any unit u in the column span of U can be
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decomposed as u = v+w where v is the projection of u into the column space of U⋆ and ∥w∥2 ≤
β
2 .

Since v is in the column span of U⋆, Lemma 2 shows that for any S ⊆ [m] with |S| ≥ (1− α)m,

∥vS∥2 ≥ β ∥v∥2 =⇒ ∥uS∥2 ≥ ∥vS∥2 − ∥wS∥2 ≥ β − β

2
=

β

2
,

proving the desired regularity of the column span of U via Lemma 2. To see the last claim,
representativeness of B shows that by taking Z = [V⋆]B:([V⋆]

⊤
B:[V⋆]B:)

−1V⊤
⋆ ∈ R|B|×n,

∥Z∥op =
√
λ1(ZZ⊤) =

√
λ1

(
([V⋆]⊤B:[V⋆]B:)−1

)
≤ 1

γ
.

Further, this Z satisfies M⋆ = M⋆
:BZ. Hence for Y = ΣV⊤Z, we have the desired

∥UY −M⋆∥F =
∥∥∥(UΣV⊤ −M⋆

:B

)
Z
∥∥∥

F
≤ 1

γ

∥∥∥UΣV⊤ −M⋆
:B

∥∥∥
F
≤ 8
√
r⋆∆̃

γβ
.

Above we used the last claim of Lemma 19 and, for any A with |B| columns,

∥AZ∥2F =
〈
A⊤A,ZZ⊤

〉
≤ 1

γ2

〈
A⊤A, I|B|

〉
=

1

γ2
∥A∥2F .

We further require one helper claim on regression error from noisy observations.

Lemma 21. Let v = Uy + ξ for U ∈ Rm×r with orthonormal columns. Suppose U⊤
A:UA: ⪰ λ2Ir

for A ⊆ [m]. Then for c⋆ := argminc∈Rr ∥UA:c− vA:∥2, and any ĉ ∈ Rr with ∥ĉ− c⋆∥2 ≤ ∆,

∥Uĉ− v∥2 ≤ ∥ξ∥2 +
2

λ
∥ξA:∥2 +∆.

Proof. Because setting c = y attains error ∥ξA:∥2, we must have ∥XA:c
⋆ − vA:∥2 ≤ ∥ξA:∥2. The

conclusion follows from the assumption on A and the triangle inequality:

∥Uĉ− v∥2 ≤ ∥Uy − v∥2 + ∥U(c⋆ − y)∥2 + ∥U(c⋆ − ĉ)∥2

≤ ∥ξ∥2 +
1

λ
∥UA:(ĉ− y)∥2 +∆

≤ ∥ξ∥2 +
1

λ
∥UA:ĉ− vA:∥2 +

1

λ
∥UA:y − vA:∥2 +∆ ≤ ∥ξ∥2 +

2

λ
∥ξA:∥2 +∆.

Finally, we state a standard result on the runtime of well-conditioned linear regression.

Proposition 5 ([Nes83]). Let A ∈ Rd×r have full column rank, let b ∈ Rd, and let

x⋆ := arg min
x∈Rr
∥Ax− b∥22 .

There is an algorithm AGD(A, b, x0, N) which outputs x ∈ Rr in time O(Tmv(A) · N) satisfying
∥x− x⋆∥2 ≤ ∆, if

N ≥
√

κ(A⊤A) log

(
2κ(A⊤A) ∥x0 − x⋆∥22

∆2

)
.
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Algorithm 7: Complete(Op(M̂),M:B, r
⋆, B,∆, ∆̃, σ, α, β)

1 Input: Op(M̂) for p ∈ (0, 1) and M̂ = M⋆ +N ∈ Rm×n where M⋆ is rank-r⋆, ∥N∥F ≤ ∆,
M:B ∈ Rm×|B|, B ⊆ [n], ∆̃, σ ≥ 0, α, β ∈ (0, 1)

2 UΣV⊤ ← SVD of M:B with singular values smaller than 2∆̃
β dropped, for U ∈ Rm×r′

3 V̂← 0n×r′

4 if r′ > 2r⋆ then return (U, V̂)

5 R← {i ∈ [m] | ∥Ui:∥22 ≥
2r′

αn}
6 N ← ⌈ 4β log(3·10

5r⋆(∆2+∆̃2+σ2)n
pγ2β6∆2 )⌉

7 for j ∈ [n] do Sj ← Aj \R where Aj ⊆ [m] corresponds to revealed entries of M̂:j

8 for j ∈ [n] do V̂:j ← AGD(USj :, M̂Sj ,j , 0r′ , N) (see Proposition 5)
9 return (U, V̂)

We now analyze our subroutine for learning coefficients with respect to a representative subset.

Lemma 22. Following notation of Algorithm 7, suppose B is (∆̃, γ)-representative with respect
to M⋆,M ∈ Rm×n, M⋆ has (α, β)-regular row and column spans, ∥M⋆∥op ≤ σ, ∥N∥F ≤ ∆, and
p ≥ 500r⋆

αβ2n
log(n). Then with probability at least 0.9 over the randomness of Op(M̂),

∥∥∥UV̂⊤ −M⋆
∥∥∥

F
≤ 200

β2
·

(
∆+

√
r⋆∆̃

γ

)
and r′ ≤ 2r⋆.

Proof. By Lemma 20, whenever B is (∆̃, γ)-representative, the algorithm never terminates on Line 4,
and the column space of U is (α, β2 )-regular (and hence (α, β, 3

α)-standard). We condition on the
following two events, each of which holds with probability at least 0.95, giving the failure probability
by a union bound. First, by an application of Fact 3 analogous to its use in proving Lemma 12,
since |R| ≤ αn

2 , we have for all j ∈ [n] simultaneously,

pβ2

8
Ir′ ⪯

∑
i∈Sj

uiu
⊤
i ⪯ 2pIr′ . (4.6)

Second, let N′ = M⋆ −UY be the difference matrix from Lemma 20, so that M̂ = UY +N+N′

and N′ is independent of Op(M̂). We will condition on the following via Markov’s inequality:∑
j∈[n]

∥∥∥[N+N′]
Sj ,j

∥∥∥2
2
≤ 20p

∥∥N+N′∥∥2
F . (4.7)

Under these events, Lemma 20 also proves ∥N′∥F ≤
8
√
r⋆∆̃
γβ , and by orthonormality of U,

∥Y∥F = ∥UY∥F ≤ ∥M
⋆∥F +

∥∥N′∥∥
F ≤ σ

√
r⋆ +

8
√
r⋆∆̃

γβ
. (4.8)

Finally, for all j ∈ [n] we bound the error of AGD. Let c⋆j minimize ∥USj :c − M̂Sj ,j∥22, and for
simplicity let Aj := USj : and bj := M̂Sj ,j . By Lemma 21 with y ← Y:j and ξ ← [N+N′]:j ,∥∥Ajc

⋆
j − bj

∥∥2
2
≤ 2

∥∥∥[N+N′]
:j

∥∥∥2
2
+

64

pβ2

∥∥∥[N+N′]
Sj ,j

∥∥∥2
2
, (4.9)
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where we used the lower bound λ2 = pβ2

8 in (4.6). Further, by integrating the lower bound in (4.6),

∥∥c⋆j −YSj ,j

∥∥2
2
≤ 8

pβ2

∥∥Aj(c
⋆
j −YSj ,j)

∥∥2
2

=
8

pβ2

(∥∥AjYSj ,j − bj
∥∥2
2
−
∥∥Ajc

⋆
j − bj

∥∥2
2

)
≤ 8

pβ2

∥∥∥UY − M̂
∥∥∥2

F
≤ 8

pβ2

∥∥N+N′∥∥2
F ,

so plugging in (4.8) gives the crude bound

∥∥c⋆j∥∥22 ≤ 24

pβ2

∥∥N+N′∥∥2
F + 3σ2r⋆ +

192r⋆∆̃2

γ2β2
≤ 3300r⋆

pγ2β4

(
∆2 + ∆̃2 + σ2

)
. (4.10)

Therefore, by combining (4.9), (4.10), the condition number bound in (4.6), and Proposition 5,
running for N iterations yields ĉj := V̂:j satisfying ∥ĉj − c⋆j∥2 ≤ ∆√

2n
, so by Lemma 21 once more,

∥∥∥UV̂:j − M̂:j

∥∥∥2
2
≤ 3

∥∥∥[N+N′]
:j

∥∥∥2
2
+

96

pβ2

∥∥∥[N+N′]
Sj ,j

∥∥∥2
2
+

∆2

n
.

The conclusion follows by summing over all columns and using (4.7) which we conditioned on.

4.3.2 Geometric aggregation

In this section, we give an aggregation technique for boosting the constant error guarantees of earlier
sections. We begin with an approximation algorithm for the distance between low-rank matrices.

Algorithm 8: LowRankDist(U,V,W,Z, δ)

1 Input: U,W ∈ Rm×r, V,Z ∈ Rn×r, δ ∈ (0, 1)
2 d← ⌈1000 log m

δ ⌉
3 Sample Q ∈ Rd×m with independently random unit vector rows in Rm

4 D̃← 1√
d
(QUV⊤ −QWZ⊤)

5 return ∥D̃∥F

Lemma 23. Let M,M′ ∈ Rm×n be given as rank-r factorizations UV⊤, WZ⊤ respectively. For
any δ ∈ (0, 1), LowRankDist(U,V,W,Z) returns a value V such that with probability ≥ 1− δ,

|V −
∥∥M−M′∥∥

F | ≤ 0.1
∥∥M−M′∥∥

F .

The runtime of the algorithm is O((m+ n)r log m
δ ).

Proof. First, letting D := UV⊤ −WZ⊤, standard guarantees on Johnson-Lindenstrauss sketches
[DG03] guarantee that with probability at least 1− δ,∣∣∣∥D∥2F − ∥D̃∥2F∣∣∣ ≤ 0.1 ∥D∥2F =⇒

∣∣∣∥D∥F − ∥D̃∥F∣∣∣ ≤ 0.1 ∥D∥F ,

since multiplying by d−
1
2Q preserves all row norms of D up to a 0.1 factor with this probability.

Finally, we can explicitly compute D̃ and return its Frobenius norm in time O((m+ n)rd).
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Algorithm 9: Aggregate({Mi}i∈[k],∆, δ)

1 Input: {Mi}i∈[k] ⊂ Rm×n each given as rank-r factorizations {UiV
⊤
i }i∈[k], ∆ ≥ 0 such that

∥Mi −M⋆∥F ≤ ∆ for an unknown M⋆ ∈ Rm×n and at least 0.51k of the i ∈ [k], δ ∈ (0, 1)

2 for (i, j) ∈ [k]× [k] do dij ← LowRankDist(Ui,Vi,Uj ,Vj ,
δ
k2
)

3 for i ∈ [k] do
4 if dij ≤ 2.2∆ for at least 0.51k distinct j ∈ [k] then return i
5 end

Leveraging Lemma 23, we give our approximation-tolerant geometric aggregation technique.
The algorithm is identical to Algorithm 4 of [KLL+22] other than our use of approximate distance
computations, but we provide an analysis of this modification here for completeness.

Lemma 24. Under the input assumptions of Aggregate, with probability ≥ 1 − δ, an index i is
returned in time O((m+ n)rk2 log mk

δ ) satisfying

∥Mi −M⋆∥F ≤ 4∆. (4.11)

Proof. We condition on all calls to LowRankDist returning a pairwise distance up to 0.1 error, giving
the failure probability and runtime via an application of Lemma 23. To prove (4.11), let

T := {i ∈ [k] | ∥Mi −M⋆∥F ≤ ∆} .

Note that any i ∈ T passes the check on Line 4 by the triangle inequality, so the algorithm will
return. Further, any index i ∈ [k] with ∥Mi −M⋆∥F ≥ 4∆ will fail the check on Line 4 by the
triangle inequality, since its (approximate) distance to any i ∈ T is too large.

4.4 Proof of Proposition 3

We now put all the pieces together in Algorithm 10, and prove Proposition 3.

Proposition 3. Let M⋆ ∈ Rm×n be rank-r⋆ with (α, β, µ)-standard row and column spans, m ≥ n,
δ ∈ (0, 1) and let S ⊆ [m], T ⊆ [n] have |S| ≥ m − αn

9 , |T | ≥ m − αn
9 . Assume M ∈ Rm×n is

given as a rank-r factorization, r ≥ r⋆, MS,T is ( α
1800 log(m) ,∆)-close to M⋆

S,T on a γ-submatrix,

and M̂ = M⋆ +N for ∥M⋆∥op ≤ σ, ∥N∥F ≤
∆
20 . Algorithm 10 returns U ∈ Rm×r′ and V ∈ Rn×r′

satisfying ∥∥∥UV⊤ −M⋆
∥∥∥

F
≤

Cfixr
⋆
√

r⋆ log(r⋆)

β8
∆ and r′ ≤ 2r⋆, (4.1)

for a universal constant Cfix, with probability ≥ 1−δ. Algorithm 10 uses O(mr2µ2

αβ4 log2(mβδ ) log(
m(σ+∆)

∆βδ ))

time and one call to Op(M̂) where for a sufficiently large constant,

p = O

(
rµ log2(mβ ) log(

m
δ )

αβ2n

)
.

Proof. First, by applying Lemma 11 with γdrop = α
9 and ∆← 1.05∆ (to account for the error due

to N), with probability ≥ 1− δ
6 we have that |S′| ≥ m− αn

3 and |T ′| ≥ (1− α
3 )n, and that MS′,T ′

and M̂S′,T ′ are 2.2∆-close away from an s-RCS matrix (accounting for N again), for

s :=
αβ2n

15 · 104µr logm
.
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Algorithm 10: Fix(O[0,1](M̂),M, r⋆, σ, S, T,∆, α, β, µ, δ)

1 Input: O[0,1](M̂) for M̂ = M⋆ +N ∈ Rm×n where M⋆ is rank-r⋆, ∥M⋆∥op ≤ σ and
∥N∥F ≤

∆
20 , M ∈ Rm×n given as a rank-r factorization, S ⊆ [m], T ⊆ [n], ∆, µ ≥ 0,

α, β, δ ∈ (0, 1)

2 p← 4.8·105µr log(m) log( 600m
δ

)

αβ2n

3 (S′, T ′)← Sparsify(O[0,1](M̂S,T ),MS,T ,
120
√

15µr log(m)

αβn ∆, 1.05∆, α
1800 log(m) ,

α
9 , p,

δ
6)

4 K ← ⌈10 log 6
δ ⌉

5 for k ∈ [K] do
6 q ← 750µr⋆

β2n
log(n), q′ ← 750r⋆

αβ2n
log(n)

7 Bk ← Representative(MS′,T ′ , 14 log(m)
β
√
n
·∆, q)

8 (Uk,Vk)← Complete(Oq′(M̂S′:),MS′,B, r
⋆, B, ∆

20 ,
88000µr⋆ log(r⋆)

β3
√
n

·∆, σ, 2α3 , β)

9 end

10 k⋆ ← Aggregate({UkV
⊤
k }k∈[K],

108r⋆
√

log(r⋆)

β5 ∆, δ6)

11 (U,V)← (Uk⋆ ,Vk⋆)
12 for k ∈ [K] do

13 (Vk,Uk)← Complete(Oq′(M̂
⊤),VU⊤, r⋆, S′, ∆

20 ,
4·108r⋆

√
log(r⋆)

β5 ∆, σ, 2α3 , β)

14 end

15 k⋆ ← Aggregate({UkV
⊤
k }k∈[K],

1010r⋆
√

r⋆ log(r⋆)

β8 ∆, δ6)

16 return (Uk⋆ ,Vk⋆)

Condition on this event for the remainder of the proof. Next, consider one run k ∈ [K] of the loop
from Line 12 to Line 9. It is straightforward to check that for p ← 40µr⋆ log(r⋆)

β2n
and ϕ ← 14 log(m)

β
√
n

,
the preconditions of Lemma 18 are met because we have 2.2∆-closeness between MS′,T ′ and M⋆

S′,T ′

away from an s-RCS matrix, and M⋆
S′,T ′ has (2α3 , β, µ)-standard row and column spans. Therefore,

with probability ≥ 0.9, Bk is (∆̃, γ)-representative with respect to MS′,T ′ and M⋆
S′,T ′ for

∆̃ :=
88000µr⋆ log(r⋆)

β3
√
n

∆, γ :=

√
qβ2

2
.

Under this event, Lemma 22 shows Complete returns a rank-r′ factorization (Uk,Vk) satisfying∥∥∥UkV
⊤
k −M⋆

∥∥∥
F
≤

108r⋆
√

log(r⋆)

β5
∆,

with probability ≥ 0.9, and guarantees r′ ≤ 2r⋆. Therefore this occurs with probability ≥ 0.8 for
each independent run k ∈ [K]. A Chernoff bound shows the preconditions of Aggregate are met
with probability ≥ 1− δ

6 , and then with probability ≥ 1− δ
6 , Lemma 24 implies that on Line 11,∥∥∥UV⊤ −M⋆

S′:

∥∥∥
F
≤ ∆′ :=

4 · 108r⋆
√
log(r⋆)

β5
∆.

Next, note that S′ is a (∆′, β)-representative subset with respect to any extension of VU⊤ to Rn×m

and (M⋆)⊤, by subspace regularity and Lemma 2. An analogous argument to the above shows that
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with probability ≥ 1− δ
3 , applying Complete and Aggregate with the given parameters yields (4.1).

Union bounding over all these events, we have a failure probability of 1− 5δ
6 . We condition on one last

event with failure probability δ
6 via standard Chernoff bounds: that the total number of observed

entries in Sparsify, and the total number of sampled rows and columns in calls to Representative and
Complete, are within constant factors of their expectations.

Regarding the choice of p in the statement, note that the only subroutines which require ob-
servations are Sparsify and Complete, and our bound then follows from our parameter choices and
Lemma 1 (the dominant term is the O(log(mβ )) observation calls used by Sparsify). Finally, we
discuss runtime. There are four components to bound: Sparsify, Representative, Complete, and
Aggregate. The runtime bottleneck of Sparsify is computing O(pmn) observations O(log m

β ) times,
where each observation takes time O(r) to compute by our low-rank factorization. The runtime of
Representative is dominated by O(log(m)) calls to Test, and each call solves a regression problem in
a O(m) × O(nq) matrix, which is within the required budget. The cost of Complete is dominated
by running AGD for O( 1β log(m(∆+σ)

β∆ )) iterations for each column, and the total number of nonzero
entries among all regression matrices is O(mnr⋆q′), assuming r′ ≤ 2r⋆. We remark that in the
second application of Complete, we need to take an SVD of an n×Θ(m) matrix, but its row space
is given as an orthonormal basis, so we may apply Lemma 25 to perform this efficiently. Finally, by
an application of Lemma 24, the calls to Aggregate do not dominate the runtime.

Lemma 25. Let M = UV⊤ ∈ Rm×n be given as a rank-r factorization and suppose U ∈ Rm×r has
orthonormal columns and V ∈ Rn×r. We can compute an SVD of M in time O((m+ n)r2).

Proof. Let an SVD be ZΣW⊤. The right singular vectors W are an n×r matrix with orthonormal
columns corresponding to the nonzero eigenvalues of VV⊤, and we can compute these in the given
time by forming V⊤V, performing eigendecomposition, and multiplying by V. This also yields the
diagonal matrix Σ. We can then directly compute Z = UV⊤WΣ−1 within the allotted time.

5 Matrix completion algorithms

5.1 Estimating the operator norm

Our algorithms in Section 4, as well as computation of an initial distance bound, require an esti-
mate on ∥M⋆∥op. We give a simple algorithm for performing this estimation under a boundedness
assumption on the noise. We then justify that this noise boundedness assumption is without loss of
generality, up to a small overhead in our recovery guarantee.

Algorithm 11: EstimateOpNorm(O[0,1](M̂), p, δ)

1 Input: O[0,1](M̂), p, δ ∈ (0, 1)

2 T ← ⌈20 log 1
δ ⌉

3 for t ∈ [T ] do
4 st ←

√
32
pβ2

∥∥∥Op(M̂)
∥∥∥

F
5 end
6 return median({st}t∈[T ])
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Lemma 26. Assume M̂ = M⋆ +N where M⋆ ∈ Rm×n is rank-r⋆ with (α, β, µ)-standard row and
column spans, and m ≥ n. If ∥N∥F ≤

β
10 ∥M

⋆∥F and p ≥ 30µr⋆

β2n
log(n), Algorithm 11 returns a value

V such that with probability ≥ 1− δ, ∥M⋆∥op ≤ V ≤ 2
√
n ∥M⋆∥op.

Proof. Consider one independent run of the loop in Algorithm 11, and let Ω be the observed entries.
With probability at least 2

3 , by Markov’s inequality we have

∥NΩ∥2F ≤
pβ2

100
∥M⋆∥2F ,

where we used the assumption on ∥N∥F. Further, let Sj ⊆ [m] be the observed entries in column j
for all j ∈ [n], and let U⋆Σ⋆V

⊤
⋆ be an SVD of M⋆. With probability at least 1

15n for each j ∈ [n],
by an analogous argument to the lower bound in (4.6) (since adding outer products of rows can only
increase the smallest eigenvalue), we have that

∥∥[U⋆]Sj :v
∥∥2
2
≥ pβ2

8 ∥v∥
2
2 for all v ∈ Rr⋆ . Therefore,

by a union bound on this event over all j ∈ [n] we have with probability at least 14
15 ,

∥M⋆
Ω∥

2
F =

∑
j∈[n]

∥∥[M⋆]Sj ,j

∥∥2
2
≥ pβ2

8

∑
j∈[n]

∥∥M⋆
:j

∥∥2
2
=

pβ2

8
∥M⋆∥2F .

Combining the above two displays and taking a union bound implies that in each independent run,
with probability at least 3

5 , we have

32

pβ2

∥∥∥M̂Ω

∥∥∥2
F
≥ 32

pβ2

(
1

2
∥M⋆

Ω∥
2
F − 2 ∥N∥2F

)
≥ ∥M⋆∥2F ,

where we applied (a + b)2 ≥ 1
2a

2 − b2 entrywise to M̂ = M⋆ + N. Applying a Chernoff bound
then implies the median estimate over the runs satisfies the above display with probability ≥ 1− δ

2 ,
which gives the upper bound on ∥M⋆∥op ≤ ∥M⋆∥F ≤ V . For the lower bound,∥∥∥M̂Ω

∥∥∥2
F
≤ 2 ∥M⋆

Ω∥
2
F + 2 ∥NΩ∥2F ≤ 3 ∥M⋆∥2F ≤ 3r⋆ ∥M⋆∥2op ,

for each independent run with probability at least 3
5 by conditioning on the same event on N as

before. A similar Chernoff bound and 96r⋆

pβ2 ≤ 4n then yields the upper bound on V .

Remark 1. In the regime ∥N∥F ≥
β
10 ∥M

⋆∥F, the revealed matrix M̂ = M⋆+N can equivalently be
written as M̂ = 0m×n+(M⋆+N), where we treat 0m×n as the target low-rank matrix and (M⋆+N)
as the noise. This only increases the target noise level by a 11

β factor.

5.2 Main result

We are now ready to state our main meta-result for matrix completion.

Theorem 3. Let M⋆ ∈ Rm×n be rank-r⋆ with (α, β, µ)-row and column spans, m ≥ n, δ ∈ (0, 1),
and let M̂ = M⋆ +N for ∥N∥F ≤ ∆. Algorithm 12 returns U ∈ Rm×r⋆ and V ∈ Rn×r⋆ satisfying∥∥UV⊤ −M⋆

∥∥
F ≤

(r⋆)1.5+o(1)

β9 ∆, with probability ≥ 1− δ. Algorithm 12 uses

O

(
m(r⋆)2+o(1)µ2

αβ4+o(1)
·
(
log6

(
m

αβδ

)
log

(
m ∥M⋆∥op

∆βδ

)
+ log2.5

(
m

αβδ

)
log2

(
m ∥M⋆∥op

∆βδ

)))
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Algorithm 12: MatrixCompletion(O[0,1](M̂), r⋆, α, β, µ,∆, δ)

1 Input: O[0,1](M̂), r⋆ ∈ N, µ,∆ ≥ 0, α, β, δ ∈ (0, 1)

2 ∆← 11∆
β

3 σ ← EstimateOpNorm(M̂, 30µr
⋆

β2n
log(n), δ4)

4 ℓ← exp(
√

log(r⋆β−1))

5 K ← 1
log ℓ · log(2Cfixr

⋆
√

r⋆ log(r⋆)β−8)

6 ∆̃←
√
r⋆σ

7 (U,V)← (0m×0,0n×0)
8 k ← 0
9 (S, T )← ([m], [n])

10 N ← K log2(
∆̃

20ℓ∆)
11 γadd ← α

9·105 log( m
αβ

)ℓ2K2

12 while ∆̃ ≥ 20ℓ∆ do
13 (U,V, S, T )← Descent(O[0,1](M̂S,T ), [UV⊤]S,T , r

⋆, ∆̃, γaddk, γadd,
δ
4N , ℓ)

14 ∆̃← ∆
ℓ

15 k ← k + 1
16 if k = K then
17 (U,V)← Fix(O[0,1](M̂),UV⊤, r⋆, σ, S, T, ∆̃, α, β, µ, δ

4N )

18 ∆̃← Cfixr
⋆
√

r⋆ log(r⋆)∆̃
19 (S, T )← ([m], [n])
20 k ← 0

21 end
22 end
23 (U,V⊤)← top r⋆ components of an SVD of Fix(O[0,1](M̂),UV⊤, r⋆, σ, S, T, ∆̃, α, β, µ, δ4)

sorted by the corresponding singular value
24 return (U,V)

time and one call to Op(M̂) where for a sufficiently large constant,

p = O

(
(r⋆)1+o(1)µ

αβ2+o(1)n
· log6

(
m

αβδ

)
log

(
n ∥M⋆∥op

∆

))
.

Proof. By Remark 1 and the guarantees of Lemma 26, our estimate σ is an upper bound on ∥M⋆∥op
with probability at least 1− δ

4 ; we condition on this for the remainder of the proof. This also implies
that our initial estimate ∆̃ is a valid overestimate of

∥∥UV⊤ −M⋆
∥∥

F ≤
√
r⋆ ∥M⋆∥op at the beginning

of the algorithm. We next claim that throughout the algorithm, [UV⊤]S,T and M⋆
S,T are ∆̃-close on

a γaddk-submatrix. This invariant is preserved every time we call Descent (assuming it succeeds),
by Proposition 1. Further, our parameter settings imply the preconditions of Proposition 3 are met
whenever it is called: it is straightforward to check that the γdrop parameter in Proposition 1 is
bounded by α

9K , so that after K steps, at most an α
9 fraction of rows and columns are dropped, and

the submatrix parameter is at most γaddK ≤ α
1800 log(m) . Hence, every time we call Fix (assuming it

succeeds) the invariant is also preserved, by the guarantees of Proposition 3.
The above argument also shows that every time the loop in Lines 12 to 22 is executed, ∆̃ is
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decreased by a factor of ℓK · (Cfixr
⋆
√

r⋆ log(r⋆)) = 2, by combining the guarantees of Proposition 1
(K times) and Proposition 3 (once). This implies that the number of times the loop is executed is at
most N . By union bounding over all N calls to Descent and Fix, the last call to Fix, and the first call
to EstimateOpNorm, this gives the failure probability; we condition on all of these calls succeeding
for the remainder of the proof. When the algorithm exits the loop and before Fix is called for the
last time, the closeness parameter (on a submatrix) is bounded by 20ℓ∆, so the distance bound
follows from Proposition 3 and since we increased ∆ by a 1

β factor at the start of the algorithm.
Finally, we note that because the top-r⋆ truncation of the output’s SVD minimizes the projection
to rank-r⋆ matrices by Frobenius norm, the distance to M⋆ (which is rank-r⋆) can at most double.

Further, note that throughout the algorithm, we can inductively apply Proposition 1 to maintain
that the rank r of our iterate is bounded by 3k+1r⋆ = (r⋆)1+o(1)β−o(1), since the potential function
r + r⋆ at most triples each iteration, and whenever k is reset to 0, Proposition 3 guarantees that
r ≤ 2r⋆. The bounds on the runtime and p then follow by combining Propositions 1 and 3 (at most
N +1 times) with Lemma 26, where we apply Lemma 1 to aggregate the observation probabilities.
To handle the runtime of the final SVD and truncation, it suffices to use Lemma 25.

By combining Theorem 3 with Facts 1 and 2, we then obtain the following results.

Corollary 3. Let M⋆ ∈ Rm×n be rank-r⋆ with (Ω(1),Ω(1))-regular row and column spans, m ≥ n,
δ ∈ (0, 1), and let M̂ = M⋆ +N for ∥N∥F ≤ ∆. Algorithm 12 returns U ∈ Rm×r⋆ and V ∈ Rn×r⋆

satisfying
∥∥UV⊤ −M⋆

∥∥
F ≤ (r⋆)1.5+o(1)∆, with probability ≥ 1− δ. Algorithm 12 uses

O

(
m(r⋆)2+o(1) ·

(
log6

(m
δ

)
log

(
m ∥M⋆∥op

∆δ

)
+ log2.5

(m
δ

)
log2

(
m ∥M⋆∥op

∆δ

)))
time and one call to Op(M̂) where for a sufficiently large constant,

p = O

(
(r⋆)1+o(1)

n
· log6

(m
δ

)
log

(
n ∥M⋆∥op

∆

))
.

Corollary 4. Let M⋆ ∈ Rm×n be rank-r⋆ with µ-incoherent row and column spans, m ≥ n, δ ∈
(0, 1), and let M̂ = M⋆ + N for ∥N∥F ≤ ∆. Algorithm 12 returns U ∈ Rm×r⋆ and V ∈ Rn×r⋆

satisfying
∥∥UV⊤ −M⋆

∥∥
F ≤ (r⋆)1.5+o(1)∆, with probability ≥ 1− δ. Algorithm 12 uses

O

(
m(r⋆)3+o(1)µ3 ·

(
log6

(m
δ

)
log

(
m ∥M⋆∥op

∆δ

)
+ log2.5

(m
δ

)
log2

(
m ∥M⋆∥op

∆δ

)))
time and one call to Op(M̂) where for a sufficiently large constant,

p = O

(
(r⋆)2+o(1)µ2

n
· log6

(m
δ

)
log

(
n ∥M⋆∥op

∆

))
.
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A Regularity of random subspaces

In this section, we prove that uniformly random subspaces of Rd of dimension r are (Ω(1),Ω(1))-
regular with exponentially small failure probability, when d

r is at least a sufficiently large constant.
This latter condition is not typically restrictive, as the regime of interest in matrix completion is
where r = o(min(m,n)) (otherwise, it is information-theoretically necessary to reveal at least a
constant fraction of the matrix, limiting the runtime gains of matrix completion algorithms). Our
main helper tool is the following standard concentration bound on the spectra of Wishart matrices.

Lemma 27. Let G ∈ Rd×r have independent entries ∼ N (0, 1), and assume d
r is sufficiently large.

For a universal constant C, κ(G⊤G) ≤ 3 with probability ≥ 1 − exp(−Cd) (where recall κ(A)
denotes the condition number of a matrix A).

Proof. For shorthand let K := G⊤G ∈ Rr×r, where EK = dIr. Letting N be a maximal 0.1-net of
the unit ball in Rr, Lemma 1.18 of [RH17] shows |N | ≤ exp(4r). By Exercise 4.3.3 of [Ver16],

∥K− Ir∥op ≤ 1.25max
v∈N

∣∣∣v⊤ (K− Ir) v
∣∣∣ ,

so it suffices to prove that with the desired probability, we simultaneously have |v⊤Kv − d| ≤ 0.4d
for all v ∈ N . For any v ∈ N , v⊤Kv is a chi-squared random variable with d degrees of freedom, so

Pr[|v⊤Kv − d| > 0.4d] ≤ exp(−2Cd)

for C ≥ 1
80 , by Lemma 1 of [LM00]. The conclusion follows from a union bound for 4r ≤ Cd.

Corollary 5. Let V ⊆ Rd be a uniformly random subspace of dimension r, where d
r is sufficiently

large. For universal constants α and γ, V is (α, 13)-regular with probability ≥ 1− exp(−γd).

Proof. By the characterization in Lemma 2 (and following its notation), it suffices to prove that
for every S ⊂ [d] with |S| = ⌈(1 − α)d⌉, we have κ(

∑
i∈S bib

⊤
i ) ≤ 9, since taking larger S can only

improve the condition number. Let α be a sufficiently small constant such that(
d

d− ⌈(1− α)d⌉

)
≤ exp

(
Cd

3

)
,

which exists following the estimate
(
d
k

)
≤ ( edk )

k. By rotational symmetry, it suffices to consider
BV = K− 1

2G, following the notation of Lemma 2. In this case we further have∑
i∈S

bib
⊤
i = K− 1

2KSK
− 1

2 for KS := G⊤
S:GS:.

Finally, with probability at least 1 − (exp(−Cd) + exp(−Cd
3 )) ≥ 1 − exp(−γd) for an appropriate

constant γ, K and KS (for all |S| = ⌈(1−α)d⌉ simultaneously) satisfy the conclusion of Lemma 27.
Therefore, the claim follows from Lemma 28:

κ
(
K− 1

2KSK
− 1

2

)
≤ κ

(
K−1

)
κ (KS) = κ (K)κ (KS) ≤ 9.

Lemma 28. For any positive definite A,B ∈ Rd×d, κ(A
1
2BA

1
2 ) ≤ κ(A)κ(B).
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Proof. It suffices to take a ratio of the following bounds:

λ1

(
A

1
2BA

1
2

)
= max

∥u∥2=1
u⊤A

1
2BA

1
2u ≤ λ1(A) max

∥v∥2=1
v⊤Bv = λ1(A)λ1(B),

λd

(
A

1
2BA

1
2

)
= min

∥u∥2=1
u⊤A

1
2BA

1
2u ≥ λd(A) min

∥v∥2=1
v⊤Bv = λd(A)λd(B).

B One-sided matrix discrepancy bound

In this section, we prove Proposition 4, a one-sided matrix discrepancy bound. Our proof follows
from a straightforward application of the resolution of the Kadison-Singer conjecture from Marcus,
Spielman and Srivastava. In particular, we use the following result restated from [MSS15].

Proposition 6 (Specialization of Corollary 1.5, [MSS15]). For any t ∈ N and {ui}i∈[m] ⊂ Rr such
that

∑
i∈[m] uiu

⊤
i = Ir and ∥ui∥22 ≤ δ for all i ∈ [m], there is a partition {Sj}j∈[t] of [m] with∥∥∥∥∥∥

∑
i∈Sj

uiu
⊤
i

∥∥∥∥∥∥
op

≤
(

1√
t
+
√
δ

)2

=
1

t

(
1 +
√
δt
)2

for all j ∈ [t].

As a corollary of Proposition 6 we have the following result on splitting an approximation of a
multiple of the identity into two pieces; we will later apply this procedure recursively.

Corollary 6. For any {vi}i∈[m] ⊂ Rr and λ > 0 such that
∑

i∈[m] viv
⊤
i ≈ϵ λIr and ∥vi∥22 ≤ δ for all

i ∈ [m], and ϵ ∈ (0, 14), δ ∈ (0, λ
100), there exists a partition {S1, S2} of [m] such that for all j ∈ [2],∑

i∈Sj

uiu
⊤
i ≈ϵ+5

√
δ/λ

λ

2
Ir.

Proof. Let M :=
∑

i∈[m] viv
⊤
i and let ui = M− 1

2 vi. Note that

∑
i∈[m]

uiu
⊤
i = M− 1

2

∑
i∈[m]

viv
⊤
i

M− 1
2 = Ir,

and
∥ui∥22 = v⊤i M

−1vi ≤
1

λ
exp(ϵ) ∥vi∥22 ≤

δ

λ
exp(ϵ).

Applying Proposition 6 to {ui}i∈[m] with t = 2 yields a partition {S1, S2} of [d] such that∥∥∥∥∥∥
∑
i∈Sj

uiu
⊤
i

∥∥∥∥∥∥
op

≤ 1

2

(
1 +

√
2δ

λ
exp(ϵ)

)2

=
1

2

(
1 + 2

√
2δ

λ
exp(ϵ) +

2δ

λ
exp(ϵ)

)

≤ 1

2

(
1 +

√
12δ

λ

)
≤ 1

2
exp

(√
12δ

λ

)
, for all j ∈ [2], (B.1)
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where we used that 2
√

2 exp(14) + 2 exp(14) ·
1
10 ≤

√
12. Consequently, for all x ∈ Rr we have

x⊤

∑
i∈S1

uiu
⊤
i

x = ∥x∥22 − x⊤

∑
j∈S2

uju
⊤
j

x ≥ ∥x∥22

1−

∥∥∥∥∥∥
∑
j∈S2

uju
⊤
j

∥∥∥∥∥∥
op


≥ ∥x∥22

(
1− 1

2

(
1 +

√
12δ

λ

))
= ∥x∥22 ·

1

2

(
1−

√
12δ

λ

)
.

Using
√

12δ/λ ≤ 1
2 , 1− x ≥ exp(−x− x2) for all x ∈ [0, 12 ], and

√
12 + 1.2 ≤ 5 we have that

1−
√

12δ

λ
≥ exp

(
−
√

δ

λ

(
√
12 + 12

√
δ

λ

))
≥ exp

(
−4
√

δ

λ

)
.

Combining with (B.1) then yields
∑

i∈S1
uiu

⊤
i ≈5

√
δ/λ

1
2Ir. Since ui = M− 1

2 vi and M ≈ϵ Ir the
result follows for S1, and the result for S2 is symmetric.

Applying Corollary 6 repeatedly then yields the following result on splitting a decomposition of
the identity into smaller pieces, inspired by procedures described in [FM99, Sri13].

Corollary 7. For any k ∈ N and {ui}i∈[m] ∈ Rr such that
∑

i∈[m] uiu
⊤
i = Ir and ∥ui∥22 ≤ δ ≤ 1

1400·2k
for all i ∈ [m], there exists a partition {Sj}j∈[2k] of [m] such that∑

i∈Sj

uiu
⊤
i ≈13

√
δ2k

1

2k
Ir for all j ∈ [2ℓ].

Proof. We prove the result by induction to show that for all ℓ ∈ [k], under the given assumptions
we can find a partition {S(ℓ)

j }j∈[2ℓ] of [m] such that for all j ∈ [2ℓ],∑
i∈S(ℓ)

j

uiu
⊤
i ≈ϵℓ

1

2ℓ
Ir where ϵℓ :=

∑
i∈[ℓ−1]

5
√
δ2i.

This suffices to prove the result as

ϵℓ = 5
√
δ
∑

i∈[ℓ−1]

(√
2
)i

= 5
√
δ ·

((√
2
)ℓ − 1

√
2− 1

)
≤ 13

√
δ2ℓ.

The base case ℓ = 0 clearly holds as in this case 2ℓ = 1, ϵℓ = 0, and
∑

i∈[d] uiu
⊤
i = Ir. Next,

suppose that the claim holds for some ℓ ∈ [k − 1]. Since 2ℓ ≤ 1
2800δ and 13

√
2800−1 ≤ 1

4 we can
apply Corollary 6 2ℓ times, where in each application {vi}i∈[m] is set to the ui in some S

(ℓ)
j and λ

is set to 1
2ℓ

. The resulting sets partition [m] into 2ℓ+1 pieces that have the desired properties.

Leveraging Corollary 7 and a standard, natural splitting argument we prove our main result.

Proposition 4. Let λ ∈ [5600rd , 1), let B ∈ Rd×r have orthonormal columns, and denote rows of B
by {bi}i∈[d] ⊂ Rr. There exists S ⊆ [d] with |S| ≤ dλ and∑

i∈S
bib

⊤
i ⪰

λ

8
Ir.
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Proof. Let k ∈ N be such that 1
2k+1 ≤ λ

4 ≤
1
2k

, and let {ui}i∈[m] be formed by replacing every bi

with αi := ⌈∥bi∥22 ·
d
r ⌉ copies of 1√

αi
bi. Note that each ∥ui∥22 ≤ δ := r

d and

m =
∑
i∈[d]

αi ≤ d+
d

r

∑
i∈[d]

∥bi∥22 = 2d.

Now since δ ≤ λ
5600 ≤

1
1400·2k , we can apply Corollary 7 to the {ui}i∈[m], and let T ⊆ [m] be the

smallest cardinality set in the output partition. This set satisfies |T | ≤ 2d
2k
≤ dλ, and

λmin

(∑
i∈S

uiu
⊤
i

)
≥ exp

(
−13

√
r

d
· 2k
)

1

2k
≥ 1

2k+1
≥ λ

8
.

Finally, letting S ⊆ [d] consist of all indices of a bi associated with one of the ui indexed by T , we
have

∑
i∈[S] bib

⊤
i ⪰

∑
i∈T uiu

⊤
i and |S| ≤ |T | since bib

⊤
i is the sum of all associated uiu

⊤
i .
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