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A mathematical overview and some applications of gear
design

Elisabetta A. Matsumoto and Henry Segerman

Abstract. In this paper we give a brief overview of the geometry of involute
gears, from a mathematical more than an engineering perspective. We also
list some of the many variant geared mechanisms and discuss some of our 3D
printed mechanisms.

1. Introduction

Gears are some of the most ubiquitous mechanical parts. They transfer torque
between axles, often applying leverage as they do so, trading angular speed for
torque and vice versa. Engineering texts on gears include many details that are used
to characterize standardized commercial gears. In this paper, we aim to describe
the construction of gears from a purely geometric perspective.

(a) (b) (c)

Figure 1.1. Rolling circles. In each diagram the red curves have
equal length.

Consider two circles of radius r1 and r2 that rotate without slipping against
each other, as shown in Figure 1.1. The fundamental principle of gears is that as
the gears (or, for now, circles) rotate, the arc length swept out by the driving gear
(with radius r1, say) must be equal to the arc length swept out by the driven gear
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(with radius r2). For a circle of radius r that has rotated by angle θ radians, the
arc length travelled is s = rθ. Thus the angle that the driven gear rotates is

θ2 = (r1/r2)θ1
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Figure 1.2. Anatomy of a gear.

We list some engineering terms that describe different parts of a gear, shown
in Figure 1.2. These terms are not universally adopted, and other sources may
vary. A pair of gears is based on two curves rotating around fixed axles that roll
against each other without slipping. Such a curve, shown in red in the figure, is
called the pitch curve. For now, we will consider circular gears, but in Sections
4.1 through 4.8 we will look at gears with acircular pitch curves. The rest of the
terminology refers to the specifics of the gear teeth. The teeth are inscribed in a
curve called the addendum curve, shown in blue. The bases of the teeth lie along
the dedendum curve (sometimes called a base circle), shown in green. The distance
between addendum and dedendum curves is the tooth depth. Some gears have an
additional cutout between teeth for clearance, whose depth is called the cutout
depth. The most important measurement is the module m = R n

2π , the fraction of
the pitch curve of radius R from a gear with n teeth for each tooth.

2. Involute gears

2.1. Adding teeth to a gear. There are two main concerns when adding
teeth to a gear. First we need to make sure that the teeth mes together, and
second the gears should efficiently transfer torque from the driving gear to the
driven gear. Teeth meshing makes the two gears rotate in registry – so that their
respective pitch curves act as if they rotate without slipping. To ensure that the
teeth in our gears mesh, we must have the same number of teeth per unit arc length
on the two gears. So if our driving gear has n1 teeth, our driven gear must have
n2 = (r1/r2)n1 teeth. Of course both n1 and n2 must be integers. Frequently, gears
that have not been precisely machined will use trapezoidal shaped teeth. This
is practical for ensuring that teeth mesh, but the teeth won’t contact each other
smoothly, resulting in inefficient transmission of force.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

MATHEMATICAL OVERVIEW AND APPLICATIONS OF GEAR DESIGN 3

(a) Line of force (green) transmitted
by gear teeth at pressure angle α.

(b) Transmitting force along a line.

Figure 2.2. A pair of involutes based on circles of different radii
rotating against each other. The dot shows the point of contact
between the two curves.

2.3. Involutes. Almost all circular gears use involutes for the tooth flanks.
(See Figure 2.4 for the construction. For an excellent animated introduction to
involute gearing, see [1].) In physical gears this is critical for efficiency of torque
transmission between components: throughout the rotation, we want equal torque
to be transmitted from the driving gear to the driven gear.

For any pair of circles of radii r1 and r2 which form the base (or dedendum)
circles for a gear pair, there exists a line tangent to both along which force is
transmitted. In Figure 2.2b this line is drawn in green. As the red curve rotates
clockwise, it applies force to the blue curve along the green line, causing it to rotate
anticlockwise. As the gears rotate, the point of contact stays on the green line.
Moreover, the shared line of tangency between the curves (dashed line) is always
perpendicular to the line of contact. Together, these guarantee that the torque
remains constant throughout the entire rotation of the gear.

The angle α that the green line makes with the line connecting the axles of
the gears is called the pressure angle. See Figure 2.2a. (Most commercial gears
use a pressure angle of 20○, for its balance between force transmission and tooth
strength.)

The red and blue curves of Figure 2.2b are involutes. Figure 2.4 shows a
construction of an involute: we can think of it as the curve traced out by the end
of a piece of string as it is wrapped around another curve γ(t). The idea is to take
a line of length $ that is tangent to γ at t = t0 and draw a point. Then move (very
slightly) down the curve γ by arc length a (at point t = t1). Draw a point at the
end of the line of length $ − a along the tangent at the point γ(t1). Repeat this
process and connect the points. The result is an involute. If the curve γ is a circle
parametrized by γ(θ) = {r cos θ, r sin θ} then the shape of its involute is given by

(2.5) c(θ) = {r(cos θ + θ sin θ), r(sinθ − θ cos θ)}.
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Figure 2.4. Construction of an involute curve.

More generally, the equation for an involute c(t) to a curve γ(t) at the parameter
t = t0 is:

(2.6) ct0(t) = γ(t) − c(t)
∣c(t)∣ ∫

t

t0
∣c(s)∣ds.

2.7. Gear trains: module and pressure angle. The genius behind involute
teeth lies not only in their ability to transmit force, but in the manufacturing process
that machines them. In effect, gears are cut by other gears. The die used to cut
the teeth on a gear is called a rack . This is a “straightened out gear”. A rack can
be seen as the limit of an involute gear as the radius of the pitch circle approaches
infinity. The geometry of a rack is defined by the module m and the pressure angle
α. See Figure 2.8.

trough

crown

module

Figure 2.8. Schematic of a rack with pressure angle α.

In general, a pair of racks that are complementary (Figure 2.9a), can be used to
cut a pair of gears (Figure 2.9b) that will mesh together (Figure 2.9c). In practice,
gears are cut by racks that are self-complementary, where the tooth half-width
is half the module, meaning that the crown and trough lengths of the rack are
identical. Thus as long as two gears have pitch circles whose circumferences are
an integer number of times the module of the generating die, then those two gears
will mesh with each other. This technique can be used to make gear trains or other
networks of multiple gears of different sizes.
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(a)
Rack
pair

(b) Carving gears (c) Gear pair

Figure 2.9. Creating a pair of matching gears.

3. Traditional gear variants

Varying the construction given in Section 2 produces some closely related mech-
anisms. These variant contexts often require subtly different gear flank shapes to
maintain optimal torque transfer. Giving parametric descriptions of these shapes
can be difficult. In practice, engineers cut gears from dies to precisely match the
complementary geometry, and therefore don’t need parametric descriptions. We
will not worry too much about these details and here just give a catalogue of differ-
ent commonly used gear types.

3.1. Spur, helical, and herringbone gears. So far we have discussed es-
sentially two-dimensional mechanisms, living in a plane. In real-world applications,
the gears must be thickened up. The simplest way to thicken a planar gear is to
extrude it perpendicular to the plane of the gear. (Mathematically, one would say
that the three-dimensional shape is a product with an interval perpendicular to the
plane.) This produces spur gears . If we twist the planar gear as we extrude then
we get helical gears . If we glue two helical gears of opposite handedness together
we get a herringbone gear. Herringbone gears have the advantage that a meshing
pair tends to stay in position. See Figure 3.2.

Figure 3.2. From left to right: spur, helical, and herringbone gears.

3.3. Bevel gears. Spur, helical, and herringbone gears rotate around parallel
axles that are perpendicular to the plane in which the gears are constructed. Moving
the axes so that they meet at a point requires that the gears become bevel gears.
Although not mathematically perfect, a good approximation to the correct shape
for such a bevel gear can be formed by coning a planar involute gear to a point. (The
correct shape seems to be a spherical involute, which is constructed analogously to
a planar involute [11].) In our experience this approximation is good enough for
3D printed mechanisms. Figures 3.4 and 3.5 show two designs based on bevel gears
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(see [9] for a video). In Figure 3.4 the axles all meet at a single point at the center
of a cube. In Figure 3.5, the axles meet at the vertices of an octahedron.

(a) (b)

Figure 3.4. Gear cube by the authors.

(a) (b)

Figure 3.5. Brain gear by the authors.

We have also used bevel gears to stabilize Buckminster Fuller’s jitterbug mech-
anism, as shown in Figure 3.6. For more details, see [7].

3.7. Skew and worm gears. When the axles of a pair of meshing gears are
neither parallel nor meet in a point, the gears become skew gears . A common
mechanism of this kind is a worm drive, consisting of a worm (a skew gear similar
to a screw) driving a worm wheel . This gives a large reduction ratio. See Figure 3.8.

4. Acircular gears

Acircular (or non-circular) gears are used in many engineering applications.
Instead of having the pitch curve be a constant distance from the axle, acircular
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Figure 3.6. Geared jitterbugs by the authors. Videos on these
designs: [5,6]

Figure 3.8. Skew gears (left) and a worm drive (right).

gears have a pitch curve r(θ) whose radius varies with the angle around the axle.
The purpose of these gears is not to transmit torque with optimal efficiency but
instead to control the gear ratio (as in a continuous transmission) or to control an
additional motion (for example oscillations in a cam) [2].

4.1. Acircular pitch curves. We consider axles which are separated by a
fixed distance, a = r1 + r2. If we know the pitch curve of the driving gear r1(θ1)
then we can express r2 in terms of θ1. However, to make the driven gear, we need
to express r2 as a function of its own rotation coordinate, θ2. Since the arclength
swept out by each gear in time t must be the same, we end up with a relationship
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Figure 4.2. Geometry of an acircular gear pair.

between their radii and rotation rates, as illustrated in Figure 4.2:

(4.3) r1dθ1 = r2dθ2 = (a − r1(θ1))dθ2

If we assume that the driving gear with radius r1(θ1) rotates at a constant rate,
then we can integrate Equation 4.3 to obtain the rotation rate of the driven gear:

θ2 + c = ∫ r1(θ1)
a − r1(θ1)dθ1.

This then enables us to calculate the pitch curve of the driven gear r2(θ2).
One classical example of an acircular gear pair is a nautilus gear pair, where

the pitch curves are given by involutes of circles, as shown in Figure 2.2b.

4.4. Variable speed gears. For certain applications, we might not know the
shape of the pitch curve of our acircular gears, but we do know the desired (variable)
relative rotation rates between the two gears. That is, we require that the driven
gear must rotate by some prescribed angle θ2(θ1). An infinitesimal interpretation
of this condition is given in Figure 4.5. Integrating this, we obtain

∫ θ1

0

√
r1(s)2 + r′1(s)2ds = ∫ θ2

0

√
r2(t)2 + r′2(t)2dt.

This is unlikely to be analytically solvable. We give an iterative solution in [7].

Figure 4.5. Differential elements of an acircular gear pair.

We needed to use variable speed gearing in the design of the larger jitterbug in
Figure 3.6. This mechanism is based on a cuboctahedral shape. Each pair of bevel
gears consists of a gear at a corner of a square face of the cuboctahedron meeting a
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gear at a corner of a triangular face. To get to the open state the square rotates by
90 degrees while the triangle rotates by 120 degrees. However, the rotation speeds
of the two gears are not constant during this motion. For more details, again see
[7].

Note that both this construction and the construction given in Section 4.1 take
advantage of the fact that rolling without slipping means that the arclength swept
out by the two gears in a given time must be the same.

4.6. Cutting teeth on acircular gears. The process of adding teeth to
acircular gears is quite similar to that discussed in Section 2.7. Again, the profile
of the teeth is cut by a rack. The distance the rack travels as the gear rotates
must be the same as the arclength swept out by the pitch curve during the motion.
Additionally, the pitch curve in the rack must be tangent to the pitch curves of
both gears. See Figure 4.7a. The envelope of the rack during this motion forms
the shape of the teeth that need to be cut out. See Figure 4.7b. Since the pitch
curve of the rack is not always perpendicular to the line connecting the two axles,
the torque transmitted between the gears will not be constant during this motion.
However this will produce teeth that have at least one point of contact at all times
throughout the motion.

(a) The rack must be tangent to both
pitch curves during cutting.

(b) The tooth shapes are given by the
envelope of the rack as it sweeps along
each gear.

Figure 4.7. Cutting teeth of acircular gears with a rack.

4.8. Alien gears. Alien gears are based on a pair of circular pitch curves with
fixed radii r1 and r2. The (constant) rotation rates of the two gears are fixed by
the ratio of their radii, but we take the shape of the “teeth” of the first gear to be
some arbitrary shape, and must determine a corresponding shape for the second
gear. Conceptually, this can be achieved by carving the shape of the second gear
from a large block of material by rotating the gears against each other at their
constant rotation rates. This is similar to the situation in Section 4.6, but with the
rack replaced by the first gear. In more detail, we begin with an arbitrary shape,
S1 and two gear centers, shown in Figure 4.9a. We put ourselves in the frame of
reference of the generated gear. The combined motion of the two rotations has S1

roll around the second center, c2, as shown in Figure 4.9b. Figure 4.9c shows the
full collection of positions for S1 as it rolls around c2. Assuming that the union of
all of these positions has a hole in the middle containing c2, we take S2 to be the
shape of the hole.
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(a) A strangely shaped gear. (b) Rolling the gear around.

(c) The full sweep.

(d) (e) (f) (g)

Figure 4.9. Carving alien gears.

In Figures 4.9d to 4.9g we show the resulting gear shapes rotating against each
other. Depending on the choice of shape S1, torque transfer will likely not be
optimal – indeed, the driving gear may not even force the driven gear to turn, and
so the gears may slip against each other.

Remark 4.1. We made Figure 4.9 using a Rhino-Grasshopper script by Arkuo
Zheng. Rather than continuously sweeping S1 around c2, this uses a finite collection
of positions for S1. It also smooths the shape of the hole in the center of Figure 4.9c
to produce the gear shown in Figures 4.9d to 4.9g. For simple shapes and if we
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don’t need much precision, this is good enough. Various approaches to computing
continuous sweeps have been proposed. See [3, Section 2] for an overview of work
in this area.

5. Applications

In this section, we describe some of our projects in 3D printed geared mecha-
nisms.

5.1. Odd numbers of gears. Images of gears are often used in graphic design
to give a sense of parts working together for a shared goal. In graphic design, the
gears do not need to actually work – in particular it is surprisingly common to see
a design with an odd number of spur gears meshing in a loop. Adjacent spur gears
rotate in opposite directions, so an odd number of these arranged in a loop is frozen
in place.

An interesting challenge then is to construct a loop with an odd number of
(necessarily) non-spur gears. Our first solution was Triple gear, see Figure 5.2a.
Here the three rings rotate around skew axes, so are skew gears. Unusually, some
of the gearing surfaces face in towards the axle of the gear. See [15] for more details.
A significantly simpler solution uses three helical gears, as shown in Figure 5.2b.

(a) Triple gear by Saul Schleimer and
the second author. Videos on this de-
sign: [12,14]

(b) Triple helix by Saul Schleimer and
the second author. Video on this de-
sign: [16]

Figure 5.2.

5.3. Sliding racks. Racks allow a mechanism to convert the traditional ro-
tational movement of a gear into translation. Mechanisms with gears and racks
are usually designed to avoid parts sliding against each other. Sometimes however,
sliding is the only way to achieve a desired outcome. Figure 5.4 shows some of our
mechanisms that use racks sliding against each other. The first of these, Borromean
racks , was also inspired by the odd-gear challenge.

5.5. Gripping gears. Another challenge we set ourselves was to make a pair
of gears that mesh and rotate together, be unable to separate, but have no axles
attached to an outer frame. Our gripping gears (joint work with Will Segerman)
give a solution to this. See Figure 5.6.
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(a) Borromean racks (b) Tetrahedral racks (c) Five axis racks

Figure 5.4. Rack designs. The first two designs here are by
Saul Schleimer and the second author, the third is by the authors.
Videos on these designs: [4,13,17]

Figure 5.6. Gripping gears . Video on this design: [10]

Arms extending from each gear terminate in pegs which fit into grooves on the
other gear. While a peg is in a groove, it restricts the movement of the two gears
relative to each other. With enough such pegs and grooves, the two gears should
be restricted to only be able to rotate around each other in the desired way.

Figure 5.7 shows a schematic diagram of two pegs in their corresponding grooves.
The shape of the groove is an epitrochoid : the curve traced by a point attached to
a circle as it rolls around a second, fixed circle. See Figure 5.8.

If trapped between two parallel planes, the two gears shown in Figure 5.7,
remain connected together for most of the desired motion. However, there is a
configuration in which the two parts can be slid apart. In Figure 5.7, if we slide
the gear on the left further to the left and slightly up, then it can be disentangled
from the gear on the right. Even worse, if the two gears are allowed to twist out of
the plane then the pegs disengage and they can be untangled easily. To keep the
parts together even when twisting is allowed, we make each part from two offset
copies of the gear, sandwiched around two interleaving extra layers. The two copies
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Figure 5.7. Gripping gears schematic diagram.

(a) (b) (c)

Figure 5.8. Three frames of an animation: the white circle rolls
around the outside of the grey circle. The end of an arm attached to
the white circle traces out an epitrochoid in the frame of reference
of the grey circle.

protect each other’s “blind spots” for planar disengagement, while the interleaving
extra layers prevent twisting out of plane. This then adds enough constraints to
allow only the desired motion.

In fact, there are enough constraints that we can remove some material and still
have the mechanism work. In Figure 5.9 we have tunneled holes through some of the
involute interfaces between the two gears. This makes the gear movement slightly
less smooth but otherwise has little effect, and allows a solid rod (in Figure 5.9b a
screwdriver) to pass between the two gears.

5.10. Braiding gears. One of our motivations in designing gripping gears
was as a precursor to gears that would mesh and hold together for some part of
their motion, but then disengage at some point. Our braiding gears achieve this.

In Figure 5.11a, three identical gears are arranged in a line, with the outer
two gears meshing only with the center gear. In Figure 5.11b and Figure 5.11c
the outer two gears rotate around below the center gear, until in Figure 5.11d they
meet, and the configuration has three-fold rotational symmetry. (In fact, it has
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(a) (b)

Figure 5.9. Gripping gears with holes. Video on this design: [8]

(a)

(b) (c) (d)

Figure 5.11. Braiding gears . Video on this design: [18]

dihedral symmetry.) Thus, we may move away from this symmetric state in three
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different ways, each resulting in a different gear becoming the center gear in the
line configuration. The video [18] shows this motion.

(a) (b)

Figure 5.12. Braiding gears schematic diagram.

Figure 5.12a shows the upper side of two gears in the line configuration. Note
that here they are translates of each other, and that their engaged pegs are in
epicycloid grooves, just as for gripping gears. Rotating the left gear by π/3 anti-
clockwise and rotating the right gear by π/3 clockwise results in Figure 5.12b. The
grooves in use here are made from two parts, meeting at a corner. The first part
is a subarc of the standard epicycloid from the gripping gear design: a peg moves
along this part as we rotate the gears from their positions in Figure 5.12a to those
in Figure 5.12b. The second part is determined by the motion of the two gears
that become outermost as we move from the three-fold symmetric configuration in
Figure 5.11d back to that in Figure 5.11a: it is the path followed by a peg on one
of those two gears as it moves relative to the other gear.

Figure 5.13. Four levels.

These grooves and the corresponding pegs then allow the motion shown in
Figure 5.11. However, as shown in Figure 5.13, the design has parts extending
beyond and above the grooves and pegs. Moving from bottom to top, there are a
total of four “levels” to the design: level zero has the grooves in it, level one are
the arms below which the pegs hang. Levels two and three are there to solve the
following problem.
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Since the configuration in Figure 5.11d has three-fold symmetry, we can break
the symmetry in three different ways. In particular, since the lower right gear could
become the central gear, it is possible for the lower left gear to detach from the
upper gear. If the lower right gear were not there to “catch” the lower left gear,
then it would detach from the other two gears, and the mechanism would fall apart.

Thus, it is necessary that when in the line configuration, if one of the two outer
gears rotates down then the other must also rotate down. In other words, if one
outer gear rotates counterclockwise, then the other must rotate clockwise. This is
the purpose of levels two and three – on the two outer gears these levels interfere
with each other, forcing the outer gears to stay in phase.

We would have preferred if the two outer gears smoothly geared into each other.
Unfortunately there is a lot of traffic moving around at the different levels as the
mechanism moves, which restricts the size and shape of the upper level arms, and
seems to preclude the possibility of perfectly smooth motion.

As in the gripping gears, the gears shown in Figure 5.12 can be slid apart at
particular points of their motion. Again, we solve this problem by bolting together
two copies of the design, back to back. Here, the extra arms introduced on levels
two and three have the side benefit of preventing twisting motions, and so the
interleaving layers are not needed.
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