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Abstract

Al-based frameworks for protein engineering use
self-supervised learning (SSL) to obtain repre-
sentations for downstream mutation effect pre-
dictions. The most common training objective
for these methods is wildtype accuracy: given a
sequence or structure where a wildtype residue
has been masked, predict the missing amino acid.
Wildtype accuracy, however, does not align with
the primary goal of protein engineering, which is
to suggest a mutation rather than to identify what
already appears in nature.

Here we present Evolutionary Ranking (Evo-
Rank), a training objective that incorporates evo-
lutionary information derived from multiple se-
quence alignments (MSAs) to learn more diverse
protein representations. EvoRank corresponds to
ranking amino-acid likelihoods in the probability
distribution induced by an MSA. This objective
forces models to learn the underlying evolutionary
dynamics of a protein.

Across a variety of phenotypes and datasets, we
demonstrate that EvoRank leads to dramatic im-
provements in zero-shot performance and can
compete with models fine-tuned on experimen-
tal data. This is particularly important in protein
engineering, where it is expensive to obtain data
for fine-tuning.

1. Introduction

The success of AlphaFold (Jumper et al., 2021) has inspired
a new era of deep-learning frameworks for protein design
and engineering. Large protein language models (e.g., ESM
(Rives et al., 2019a; Meier et al., 2021a)), structure gen-
erative models (e.g., RFDiffusion (Watson et al., 2023),
NeuralPLexer (Qiao et al., 2023)) and structure-based self-
supervised models (Sumida et al., 2024; Diaz et al., 2023;
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Lu et al., 2022) can accelerate the development of biotech-
nology with applications in identifying disease-causing vari-
ants (Braunisch et al., 2021; Kouba et al., 2023; Scherer
et al., 2021) and enzyme engineering for biomanufactur-
ing. Due to the prohibitive cost of generating experimental
data, self-supervised learning (SSL) has become the pri-
mary technique used by the community to generate protein
representations (e.g., Riesselman et al., 2018a; Rives et al.,
2019a; Meier et al., 2021a; Dauparas et al., 2022; Bepler &
Berger, 2019; d’Oelsnitz et al., 2023; Notin et al., 2022; Hsu
et al., 2022). These methods rely on masking followed by
predicting the wildtype (WT) amino acids in extant proteins
as the SSL training objective. For example, given as input a
protein sequence and masked residue, models can be trained
to predict what amino acid has been masked. The loss in
WT-mask SSL is typically defined to be the cross entropy
between a model’s prediction and the one-hot encoding of
the masked wildtype amino acid(s). This wildtype accuracy
metric, also known as recovery ratio, is then reported as a
proxy for the quality of the learned representations.

For machine learning-guided protein engineering (MLPE),
practitioners desire models that suggest mutations to a pro-
tein away from wildtype, as opposed to models that merely
predict wildtype. To address this disparity, several ap-
proaches have been proposed. Structure-based methods
often adjust the temperature of the logits (Ingraham et al.,
2019; Dauparas et al., 2022; Sumida et al., 2024) to bias
away from wildtype. Sequence-based methods require large
protein databases and incorporate MSAs as additional inputs
to mitigate the existence of unique wildtype signatures (Rao
et al., 2021a; Notin et al., 2022).

A more serious and often overlooked issue, however, is that
improved wildtype accuracy may not correlate with down-
stream mutation effect performance. We sharply illustrate
this phenomenon in Table 1 where we train a structure-
based model to increasing levels of wildtype accuracy and
show that its downstream performance on thermodynamic
stability prediction begins to decrease beyond a wildtype
accuracy threshold.

Additionally, current frameworks using either sequence or
structure modalities can achieve greater than 90% wildtype
accuracy (e.g., Rives et al., 2019a; Meier et al., 2021a; Lin
et al., 2023; Diaz et al., 2023), forcing the practitioner to
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make ad-hoc decisions about the optimal choice of wild-
type accuracy for downstream applications. Developing a
self-supervised learning objective that acts as an effective
proxy for mutation effect prediction remains a critical open
problem.

Loss Metrics MutComputeXGT ESM2  ProteinMPNN
WTmask WTAcc | 17% 29% 43% 68% 79% 92% | 94% 48%
Pearson | 0.14 0.21 030 034 030 0.24 | 025 0.31
EvoRank EvoRank | 0.24 021 0.17 0.5 0.13 0.12 - -
Pearson | 030 036 045 048 051 050 | 0.25 0.31

Table 1. We train the MutComputeXGT architecture with WT
masking SSL for different iterations and evaluate the WT recovery
ratio and zero-shot folding free energy change Pearson correlation
on held out validation FireProtDB (Stourac et al., 2021). Sequence
similarity of all proteins in our training set is less than 50% of
proteins in the validation set to prevent overfitting. We also report
additional SSL frameworks (ESM2 and ProteinMPNN) for com-
parison. Regardless of the wildtype recovery ratio, the pearson
correlation does not surpass 0.4; performance peaks and then be-
gins to decrease after 68% WT accuracy checkpoint. Note that
improvements in the EvoRank objective are more consistent with
Pearson correlation.

Our main contribution is a new self-supervised training
objective, EvoRank, that incorporates evolutionary informa-
tion from multiple sequence alignments (MSAs) in order
to address the limitations of WT-mask SSL. To emulate
the mutation setting, EvoRank uses a ranking objective to
force a model to learn fine-grained information about the
MSA-induced distribution of amino acids at a particular
location. We show that after initializing a model’s wild-
type predictions with an approximate MSA distribution,
EvoRank results in dramatic empirical improvements for
zero-shot performance across a variety of commonly studied
benchmarks. Additionally, since MSAs are incorporated
into the loss, they are only needed during training and not
inference time, in contrast to models that require an MSA
as an additional input (Notin et al., 2022). Further, empiri-
cal improvements on the EvoRank loss are correlated with
improvements in downstream mutation effect prediction
(see Table 1), leading to a reliable benchmark for protein
representation learning.

2. Related Works

Multiple Sequence Alignments (MSAs) A multiple se-
quence alignment (MSA) is an established tool used to iden-
tify the evolutionary relationship between genes and can
be generated for DNA, RNA, and protein sequences. For
a particular protein, an MSA represents the genetic vari-
ation observed in extant homologous sequences present
in a database, such as UniProt (Consortium, 2015), and
capture evolutionary and structural constraints for a partic-
ular protein family (Thompson et al., 1994; 1997). This
makes MSAs a rich source of biological information for
computational biologist and recently for training machine

learning models. For example, Alphafold2 demonstrates
that the information within a protein’s MSA is sufficient
to predict its 3D structure with near experimental accuracy.
Additionally, AlphaFold-Multimer demonstrates that using
paired-MSA information improves protein-protein interac-
tion predictions, resulting in significant improvements for
predicting of protein complexes (Evans et al., 2021).

Sequence-based machine learning frameworks have used
MSA information to predict mutational effects and protein
fitness. Representative methods, i.e., EVmutation (Hopf
et al., 2017), DeepSequence (Riesselman et al., 2018b),
MSA Transformer (Rao et al., 2021b), use MSA informa-
tion to model the evolutionary sequence density with potts
models, variational auto-encoders, and transformer, respec-
tively. Biswas et al. (2021); Rives et al. (2021); Barrat-
Charlaix et al. (2016) consider a semi-supervised manner
which adopts a joint training on MSAs and labeled data for
the prediction of protein’s fitness.In this paper, instead of
using MSA information to construct model inputs or for
reconstruction, we incorporate MSA information into the
training loss in order to learn protein representations with
improved understanding of the mutational landscape. In
practice, we achieve this by formulating the training loss
to prioritize learning the rank order of the position specific
amino acid distribution. Additionally, this paradigm shift
on the application of MSA information has the benefit of
only requiring MSA information at train time and not at
inference time.

Protein Language and Structure Models. Protein rep-
resentation learning borrows various insights from self-
supervision research in the natural language processing
community (Liu et al., 2019; Yang et al., 2019). The main
goal of protein representation learning is to extract bio-
logical and functional knowledge of proteins from large
unlabeled data to enable zero-shot generalization and/or
rapid adaptation to various protein-related tasks. To learn
amino acid-level representations from sequence, the com-
munity has used methods such as auto-encoding (Shuai
et al., 2021), auto-regressive (Rives et al., 2019b; Meier
et al., 2021b; Elnaggar et al., 2020; Riesselman et al., 2019),
skip-gram language model (Kimothi et al., 2016), mask pre-
diction (Vig et al., 2020; Brandes et al., 2022) or amino acid
contrastive learning objectives (Lu et al., 2020), similarity
metric learning (Bepler & Berger, 2019; Alley et al., 2019),
etc. The most renown protein language models (pLMs) are
the evolutionary-scale models (ESMs) (Rives et al., 2019a;
Meier et al., 2021a) with ESM2 being the most recent and
underpins ESMFold, a sequence-based structure prediction
framework (Lin et al., 2023).

For protein structures, 3DCNNs (Townshend et al., 2020;
Shroff et al., 2020), GNNs (Townshend et al., 2020; Dau-
paras et al., 2022), and graph-transformers (Diaz et al., 2023)
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architectures have been developed to learn residue-level
representations using the local chemical environment (mi-
croenvironment) or the protein backbone as input. These
frameworks primarily use masking to obtain their represen-
tations but other pre-training task, such as structure con-
trastive learning (Moon et al., 2023), distance/angle pre-
diction (Chen et al., 2023a), and denoising (Watson et al.,
2023) have been proposed. Several structure-based frame-
works have experimentally designed proteins. The microen-
vironment framework MutCompute (Shroff et al., 2020;
d’Oelsnitz et al., 2023) has demonstrated the ability to guide
the engineering of several functionally diverse enzymes
(Lu et al., 2022; Paik et al., 2021; d’Oelsnitz et al., 2023).
Inverse Folding frameworks, such as ESM-IF (Hsu et al.,
2022) and ProteinMPNN (Dauparas et al., 2022), use the
protein backbone to conditionally design novel sequences
for de novo binder design (Watson et al., 2023) and enzyme
engineering (Sumida et al., 2024). More works (Chen et al.,
2023b; Gligorijevi¢ et al., 2021; Zheng et al., 2023; Zhang
et al., 2023) focus on the effective knowledge integration
between sequence and structure data. Due to the prohibitive
cost of training a pLM and the added complexity of decod-
ing an entire protein sequence during inverse folding, we
focus on initially validating our EvoRank loss using the
microenvironment modality.

3. Methods

This section introduces the main method. We start with
introducing the widetype (WT) based mask prediction for
self-supervised representation on proteins (Section 3.1). We
then propose our two novel techniques: 1) a MSA-based soft
label to introduce evolution information into the learning
(Section 3.2); and 2) a EvoRank loss that allows us to extra
evolution information more efficiently and robustly with a
learning-to-rank idea (Section 3.3).

3.1. Self-Supervised Learning via WT-mask prediction

We are given a protein set P = { P}, where the representa-
tion P = (A, V) of each protein consists of both its amino
acid sequence A and atoms information V. The sequence
A = (aj, -+ ,an) contains m amino acids, where a; is
the one-hot representation of the 20 amino acid types. The
V = {v;}}_, represents all the atoms contained in the
protein, where each v; contains the information of the j-th
atom, including its 3D coordinates, atom type, partial charge
and solvent accessible surface, etc.

WT-Mask Prediction In the WT-mask prediction task
(Torng & Altman, 2017), we mask an amino acid a;, and
learn a neural network to predict a; back based on the mi-
croenvironment surrounding a;. The learned network can
then provide useful representation of the protein for down-
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Figure 1. Overview for generating a position specific empirical
amino acid distribution. From this, we generate the MSA soft
labels and the rank label.

stream tasks. Specifically, Denote by C,(a;) be the a-
carbon atom of amino acid a;, and Atom(a;) all the atoms
contained in amino acid a;. We take the microenvironment
of a; to be the atoms within 204 distance with Cq(a;),
excluding all atoms in Atom(a;), that is,

Viresk = {v: v € V\ Atom(ay), Dist(C/,v) < 204},

We train a neural network y = f(x), that takes a micro-
environment r = ijaSk as input and output the logits on
the 20 amino acid types. We want to train to model to make
Fsk) ~ a;:

mfin Z Z:D(aj7 Softmax(f(V;naSk))),

PeP j

where D denotes the loss function. A typical choice is the
KL divergence, which corresponds to the cross entropy loss.

Zero-shot Mutation Effect Prediction Once f is trained,
it provides a useful representation of the protein. We then
leverage it to conduct zero-shot mutation effect prediction
by taking the log ratio on the top of f output logits.

3.2. Evolution Information via MSA-based Soft Labels

As described in the introduction, we desire a self-supervised
learning procedure that (1) discourages low-entropy dis-
tributions skewed towards wildtype and (2) incorporates
meaningful evolutionary and biochemistry from the input
protein structure. Since Multiple sequence alignment (MSA)
provides a powerful tool for capturing evolutionary relations
between sequences, we propose to incoporate MSA informa-
tion into the self-supervised learning with an MSA soft-label
loss (equation 2), where the wildtype one-hot encoded label
is replaced with a distribution computed from a protein’s
MSA, as shown in Figure 1.

Formally, instead of training network f to predict the one-
hot vector of the wildtype amino acid, we predict the fol-
lowing soft label based on the following pdf derived from
the MSA of the protein:

Py O o Y

P’ EMSA(P)

5(¢ = Amino(P’, 7)), (1)
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where /£ is one of the 20 amino acids, ¢ is the delta function,
MSA(P) denotes the set of sequences that are best aligned
with P via multiple sequence alignment on UniRef50 (Con-
sortium, 2015). and Amino(P’, j) denotes the amino acid
type of protein P’ at location j. We refer to this distribution
as the empirical amino acid distribution.

We define the MSA soft-label training loss as follows:

min D) DA, Softmax(f(V*K))).  (2)

PeP j

Although KL divergence has been the canonical choice, it
is known to suffer from mode collapse. We experimented
with taking D(+; -) within a richer family of a-divergences.
By applying different o values, we can adjust the sensitivity
to multimodal distributions present in MSAs and find a
better trade-off between over/under estimates of the top
ranked amino acid (which is often wildtype). When we
apply reverse KL divergence or o = 0.5 divergence (Table
2), we observe marginally improved rank order but overall
lower coefficients for the top-5 amino acids. This suggests
the need for designing better loss functions.

Divergence Label | Top-5 Top-10 20

KL Div WT 0.54 038 0.28
KL Div MSA | 0.60 052 034
Reverse KL Div MSA | 0.54 0.56  0.40
Alpha Div (a = 0.5) | MSA | 0.57 0.53 040

Table 2. Spearman correlation coefficient for amino acids at the
same local chemical environment in the test dataset for the mask
prediction task. Here, ‘Top-5’ indicates the amino acids with
the top-5 probability score based on the empirical amino acid
distribution.

3.3. EvoRank: A New Rank-based Learning Objective

To further improve the performance of the self-supervised
model, we reformulate the training task to correspond more
directly to mutation prediction and train with a ranking loss.
Rather than predicting the wildtype amino acid type a; or

Transformer
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ea ]

Transformer
[

Figure 2. The MutRank architecture, where the rank score is op-
timized by (3). In the regression head, the hidden representation
of the microenvironment is used to contextualize the “from” and
“to” amino acid embeddings using a Siamese network. The rank
hidden representation is generated by subtracting the contextual-
ized amino acid embeddings, which is then decoded into the rank
score.

soft label pMSA

777, we set up a model to take as input a pair
of “positive” and “negative” amino acid types a™ and a~,
and output their relative likelihood in the empirical amino
acid distribution. More precisely, we define a rank label of

aj w.r.t. (@™, a™) as the following

pySA(a™)

1
ri(at,a”) = VSR (o) T VA 7)—5,
p; a p; a

3

where p?ASA(a) denotes the probability assigned on a ac-

cording to p}'5*, and § to ensure neutral predictions are
made when p?ASA(aJF) = ?/ISA(CL*). The rank label rep-
resents the relative likelihood between with respect to two
amino acids to be evolutionarily observed at a particular

microenvironment, as demonstrated in Figure 2.

We train a model f (V]‘-"“"‘Sk, a™,a™) to predict the rank label
r;(a™,a™) via the following loss:

m}n Z Z ZD(rj(a+,a_), f(V]r-naSk,a+,a_)),

at,a- PEP j
(4)

where the a™, a™ are summed on all the amino acid types
and D(z,y) = ||x — y||. We refer to the loss in (4) as the
EvoRank loss or EvoRank training objective.

In practice, we first initialize the parameters by training
using the MSA soft-label loss (equation (2)) and then apply
the EvoRank loss to further improve performance. Similar
ideas are used in the recommendation system literature (e.g.,
Cao et al., 2007; Aggarwal et al., 2016; Liu et al., 2009),
where parameters are initialized from a model trained with
a standard prediction loss and then trained further using a
ranking loss.

Model Architecture The microenvironment-based model
used here is based on previous work by Diaz et al. (2023).
Briefly, the model uses a graph transformer backbone to pro-
cess an input microenvironment, in which V2% for amino
acid a; is the input and each atom in this set is represented
by its 3D coordinates, atom type, partial charge and solvent
accessible surface area. After transforming the atomic rep-
resentations into a continuous latent space using embedding
layers, we process the hidden representations for each atom
with graph transformer blocks, where the attention bias is
based on the atom-wise Euclidean distance. We refer the
readers to (Diaz et al., 2023) for more details on the graph
transformer backbone architecture.

The regression head accepts two amino acid embedding vec-
tors and the hidden representation of the microenvironment
as input. As shown in Figure 2, we use Siamese network
architecture to contextualize each amino acid type to the
masked microenvironment, and a MLP to decode a rank-
ing prediction between the two contextualized amino acid
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embeddings. We refer the readers to (Diaz et al., 2023) for
more details on the regression head architecture.

4. Experimental Results

For our experiments, we retrained a SOTA structure model
(Diaz et al., 2023) using both the MSA soft-label loss and
the EvoRank loss as described in Section 4.2. We name the
MutComputXGT structure model trained with EvoRank loss
as MutRank. We refer to the resulting model as MutRank.
‘We did not retrain ProteinMPNN, another SOTA structure
model, as it is unclear how to incorporate the loss with its
encoder/decoder architecture. We lack the computational
resources to retrain ESM2, a billion parameter SOTA se-
quence model.

We empirically evaluate MutRank on the most commonly
studied point mutation phenotype prediction benchmarks
in protein engineering: thermodynamic stability (AAG)
and binding free energy. Additionally, we evaluate on two
solubility DMS datasets.

For zero-shot mutation prediction of any phenotype, we
directly regress the model’s prediction for the rank label
(equation 3) with the true change in phenotype. For clas-
sification we predict whether the change was positive or
negative and report AUC. We also fine-tuned MutRank us-
ing the cDNA dataset (Diaz et al., 2023) and applied this
model to thermostability prediction (cDNA is specific to
thermostability). Since EvoRank is only used during self-
supervised learning, the supervised fine-tuning method is
identical to the one described in (Diaz et al., 2023).

We compare the predictions of MutRank to self-supervised
models trained with different modalities, e.g., structure-
based (MutComputeXGT), sequence-based (ESM2) and
inverse folding (ProteinMPNN) models. Our results show
that EvoRank leads to large improvements across the board
for zero-shot prediction. In fact, our zero-shot predictions
are competitive even with models that have been fine-tuned
on phenotype-specific datasets. For thermodynamic stabil-
ity, supervised fine-tuning MutRank gives a more modest
improvement compared to SOTA fine-tuned models.

4.1. Datasets

For the self-supervised training, we use the same proce-
dure as MutComputeX (d’Oelsnitz et al., 2023). Briefly,
this dataset consists of a 90:10 split of 2,569,256 micro-
environments sampled from 22,759 protein sequences clus-
tered at 50% sequence similarity and having a structure
resolution of at least 3A from the RCSB (November 2021).
Our test data for the folding free energy changes and binding
free energy changes are proposed in Diaz et al. (2023); Gong
et al. (2023) and we refer the readers to these works for de-
tails. These datasets are curated from literature datasets and

incorporate additional policies (e.g., below 30% sequence
similarity between training and test sets) for better quality.

For mutation effect prediction tasks, we use the experimen-
tal structure files from RCSB and AlphaFold structures if
the protein lacks an experimental structure. Due to the pro-
hibitive cost of generating experimental data, no phenotype
has sufficient experimental data to properly benchmark ML
frameworks and evaluate generalization. Thus, we explore
datasets for several phenotypes. To date, the most character-
ized mutation effect phenotype is thermodynamic stability
of folding (AAG) with several established datasets reserved
for evaluation of computational tools: S-Sym, S669, T2837,
Gp1, Myoglobin, and P53. Recently, a cDNA-display pro-
telysis technique enabled the multiplex characterization of
single domain mini-proteins to provide the first exhaustive,
systematically generated training set for machine learning
(Tsuboyama et al., 2023). However, this dataset used prote-
olytic stability as proxy for thermodynamic stability and the
technique does not generalize to full-length functional pro-
teins. For evaluating against the binding free energy changes
of point mutations, we used SKEMPIv2 (Jankauskaité et al.,
2019) and AB-Bind (Sirin et al., 2016) for protein-protein
interface and PlatinumDB for protein-ligand interface (Pires
et al., 2015). For the activity, we used an anti-CRISPR
protein (AOA247D711) (Stadelmann et al., 2021) and an
amidase (Wrenbeck et al., 2017). These datasets are curated
from the literature, thus, different techniques—with differ-
ent biases—were used for data collection. Thus, we filtered
mutational data for the techniques that provide high quality
measurements: SPR, ITC, FL, IASP, SFFL. To evaluate
a non-thermodynamic phenotype, we evaluate against the
solubility change deep mutational scanning (DMS) datasets
of levoglucosan kinase and TEM1-$-lactamase (Klesmith
et al., 2017). To obtain these solubility change measure-
ments, a yeast surface display readout was used not of their
wildtype sequences but rather for a chimeric variants with
a N-terminus Aga2p domain and a C-terminus epitope tag.
Thus, solubility change results should be interpreted with
caution since the input sequence and structure used to gener-
ate predictions are for the native proteins and not chimeras.

4.2. Training

We train the self-supervised model with AdamW optimizer,
with 512 batch size, 5 x 107° learning rate, 107° weight
decay. We first train the mask prediction model with MSA
soft label loss in equation (1) for 100K iterations, and then
train with the EvoRank defined in equation (4), for an addi-
tional 100K iterations. Training the model typically requires
approximately two day GPU days using an A100. We gener-
ate MSAs with JackHMMer (Remmert et al., 2012) against
UniRef90, using the default configuration of AlphaFold2.
For the supervised fine-tuning, we train with AdamW opti-
mizer and backbone learning rate 10~° and regression head
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- T2837 S669 S-Sym Myolobin FireProtDB Gp1 T2837 Reverse
# Mutations 2837 669 342 134 1764 935 2837

Metric pt AUCtT | pt AUC?T | pt AUC?T | pt AUC?T | pt AUC?T | pt AUCT| pt AUCT
RaSP* (Blaabjerg et al., 2023) 058 061 039 069 |[064 073 |068 075 |056 071 |072 066 | 0.23 0.59
ThermoMPNN* (Dieckhaus et al., 2023) 055 078 | 039 0.68 |066 082 |058 077 |057 075 |0.65 078 | 043 0.71
Prostata-IFML (Diaz et al., 2023) 053 075 | 049 076 |055 075 | 054 067 - - 0.66 082 | 052 075
Stability Oracle (Diaz et al., 2023) 059 081 | 052 074 |072 087 | 068 081 |061 079 |071 082 |059 081
ESM2* (Lin et al., 2023) 028 0.60 |004 050 |026 056 |0.15 057 |025 057 |025 063 | 028 0.60
ProteinMPNN* (Dauparas et al., 2022) 036 070 | 025 059 |032 064 |035 066 |031 070 |035 067 |036 070
MutComputeXGT (Diaz et al., 2023) 034 068 | 027 057 |038 072 |037 072 |030 069 |034 066 |034 0.68
MutComputeXGT w/ MSA soft-label (Ours) | 0.37  0.70 | 030 059 | 048 075 | 045 075 | 036 0.71 0.41 0.69 | 0.37 0.70
MutRank (Ours) 051 078 | 040 0.67 | 062 084 | 068 084 |051 077 |0.62 077 | 051 0.78
SSL Improvement 1 42%  11% | 48% 14% | 63% 17% |83% 17% | 65% 10% | 77% 15% | 42% 11%
Supervised Fine-Tuning Gap | 14% 4% 23% 9% 14% 3% 0% -4% 16% 3% 13% 3% 14% 4%

Table 3. Zero-shot results of multiple methods on multiple thermodynamic stability (AAG) datasets. p equals the Pearson correlation
coefficient and AUC is the area under the receiver operating characteristic. The first block reports the performance of frameworks fine-
tuned using experimental AAG datasets. The second block reports the performance of self-supervised models common in the literature.
The third block reports the performance of two models trained in this work. The first is trained only using the MSA soft-label loss and the
second is MutRank, trained with both the MSA soft-label loss and the EvoRank loss (see Section 4.2). ‘SSL Improvement’ compares
MutRank with respect to the best zero-shot model in the second block. ‘Supervised Fine-Tuning Gap’ compares MutRank with respect
to the best supervised AAG model in the first block. * denotes that we compute the metrics using the official checkpoint.

Dataset Phenotype # Mut MutComputeXGT MutRank ESM2 Stability Oracle
Pearson Spearman AUC | Pearson Spearman AUC | Pearson Spearman AUC | Pearson Spearman AUC
levoglucosan kinase | ASolubility 7195 0.26 0.30 0.61 0.29 0.34 0.64 0.27 0.32 0.62 0.32 0.34 0.63
TEM1-$-Lactamase | ASolubility 4345 0.16 0.21 0.60 0.22 0.26 0.64 0.08 0.18 0.61 0.10 0.16 0.60
AcrlIA4 Activity 1653 0.36 0.34 0.65 0.59 0.53 0.75 0.06 0.06 0.56 0.48 0.40 0.69
Amidase Activity 6227 0.38 0.39 0.66 0.64 0.64 0.83 0.56 0.56 0.78 0.48 0.46 0.75
Deiminase Activity 5689 0.26 0.26 0.63 0.41 0.42 0.73 0.38 0.39 0.70 0.24 0.24 0.63
SKEMPI-V2 Protein-Protein AAGhing 4102 0.28 0.26 0.62 0.42 0.42 0.69 0.23 0.19 0.57 0.39 0.39 0.67
5487 Protein-Protein AAGying 487 0.24 0.25 0.58 0.38 0.38 0.67 0.01 0.01 0.48 0.38 0.38 0.70
PlatinumDB Protein-Ligand AAGling 925 0.05 0.01 0.48 0.28 0.28 0.64 0.03 0.06 0.51 0.26 0.26 0.64
ABBind Antibody-Antigen AAGyina | 309 0.36 0.42 0.73 0.41 0.46 0.74 -0.07 -0.05 0.60 0.38 0.42 0.72

Table 4. We show that MutRank improves zero-shot performance for solubility and binding free energy phenotypes. In comparison with
both sequence and structure-based models trained using wildtype accuracy, training a structure-based model with EvoRank leads to greatly
improved zero-shot performance. Stability Oracle is initialized with MutComputeXGT weights and fine-tune for AAG prediction.

learning rate 5 x 10~°. We tune it with 500 iterations on
the curated cDNA dataset generated by Diaz et al. (2023).

Evaluation Metrics and Baselines We assess the model’s
performance using a comprehensive set of evaluation met-
rics encompassing both regression and classification aspects.
The regression metrics include Spearman correlation co-
efficient, Pearson correlation coefficient, and Root Mean
Squared Error (RMSE). For classification evaluation, we
employ AUROC (Area Under the Receiver Operating Char-
acteristic curve). This dual approach ensures a thorough
and nuanced evaluation of the model’s capabilities across
different dimensions of prediction tasks. To comparison
with results in the literature, we report the Spearman corre-
lation on different DMS datasets. To establish baselines, we
incorporate a range of self-supervised and supervised meth-
ods. As a representative self-supervised method, we employ
the extensively used ESM2 models. The default baseline
is set with the 650M-parameter ESM?2 model, and we pro-
vide results for other scales of ESM2 models and alternative
protein language models. We first evaluate different model
performance first on different AAG datasets, since these
datasets have high-quality labels. Then, we further compare
models on more phenotype datasets, to examine whether

our model can generalize to different settings.

4.3. Results

Zero-shot thermodynamic stability evaluations In Ta-
ble 3 and Figure 3 report the zero-shot Pearson correlation
coefficient (p) and area under the ROC curve (AUC) per-
formance of various machine learning frameworks across
multiple AAG datasets: T2837 (Diaz et al., 2023), S-
Sym (Li et al., 2020), S669 (Pancotti et al., 2022), Fire-
ProtDB (Stourac et al., 2021), G51 (Nisthal et al., 2019),
and Myoglobin (Li et al., 2020). Our results validate the im-
pact prioritizing rank order during self-supervised training
has on zero-shot AAG predictions. First, our results on the
MSA-based soft labels with a divergence already outper-
forms literature self-supervised baselines for both Pearson
correlation and AUC. Then, by reformulating the training
objective with EvoRank we improve over the previous best
literature zero-shot model by a significant margin—on aver-
age we improve the Pearson correlation and AUC across
the six datasets by ~64% and ~14%, respectively. Direct
comparison with its WT-masked predecessor, MutCompu-
teXGT, MutRank results in a 66% and 16% improvement
in Pearson correlation and AUC, respectively. Notably, com-
pared to the well-known self-supervised methods ESM2 and
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# Proteins | # Mut (K) Fine-Tune MutComputeXGT w/ WT-Mask | Fine-Tuned MutComputeXGT w/ EvoRank
Pearson Spearman AUC RMSE Pearson Spearman AUC RMSE

10 11K 0.50 0.52 0.73 1.92 0.58 0.60 0.78 1.73

50 54K 0.55 0.58 0.77 1.78 0.59 0.61 0.80 1.66

116 117K 0.59 0.62 0.81 1.64 0.61 0.63 0.81 1.62

Table 5. The performance of fine-tuned models on the T2837 dataset trained varying training dataset size. The learning rate and number
of iterations are tuned for each SSL pretraining task in order to maximize performance. We fine-tune the model on subsets of the cDNA

dataset (Diaz et al., 2023) and test the model performance on T2837. *#Mut’ denotes number of mutations in the training data.

ProteinMPNN, MutRank achieves on average a Pearson
correlation improvements of ~288% and ~72% across the
six AAG datasets, respectively. These results demonstrate
the effectiveness of MutRank representations for AAG
mutation effect prediction.

Next, we compared to the structure-based frameworks RaSP
(Blaabjerg et al., 2023) and ThermoMPNN (Dieckhaus et al.,
2023)) and the sequence-based framework Prostata-IFML
(Diaz et al., 2023). Although these frameworks are explicitly
fine-tuned on large scale cDNA AAG dataset, our zero-shot
results are competitive. Compared to the SOTA-supervised
framework, Stability Oracle, our zero-shot Pearson correla-
tion and AUC are only ~13% and ~3% lower on average
across the six datasets. Overall, our results demonstrate how
the EvoRank loss significantly narrows the gap between su-
pervised fine-tuned framework and zero-shot representation
for AAG mutation effect prediction.

Zero-shot evaluation on multiple phenotypes To further
characterize the generalization capability of MutRank rep-
resentations, we evaluate performance on binding free en-
ergy change datasets and four DMS datasets: two for solu-
bility and two for activity (Table 4). Unlike folding stabil-
ity, which has seen significant increases in available public
data (Tsuboyama et al., 2023), binding free energy change
datasets are scarce, filled with mutation type and label bi-
ases, and suffer from noisy labels. These challenges makes
developing supervised frameworks challenging for these
phenotypes and underlines the importance of zero-shot self-
supervised models. For the binding free energy datasets,
we use the protein-protein interface binding AAG datasets
SKEMPIv2 (Jankauskaité et al., 2019), AB-Bind (Sirin et al.,
2016), S487 (Geng et al., 2019) and the protein-ligand inter-
face binding AAG dataset PlatinumDB (Pires et al., 2015).
For the solubility and activity datasets, we used Deep Mu-
tational Scanning (DMS) datasets, which leverage a high
throughput screen or next-generation sequencing as a proxy
for function. For solubility, we use the DMS datasets for
for levoglucosan kinase (uniprot id:B3VI55) and TEM1-3-
Lactamase (uniprot id: P62593) from Klesmith et al. (2017).
For activity evaluation, we use the DMS datasets for the
aliphatic hydrolase (uniprot id: P11436), the Anti-CRISPR
protein AcrlIA4 (uniprot id: AOA247D711), and Porpho-

bilinogen deaminase (uniprot id: P0O8397). We compare
against two WT-mask SSL frameworks, MutComputeXGT
and ESM2, and one supervised fine-tune framework, Stabil-
ity Oracle. Comparison between just the literature methods
on the binding AAG datasets demonstrate that ESM2 did
the worst and Stability Oracle did the best across all met-
rics (Pearson and Spearman correlation and AUC). These
results are expected since binding free energy (interactions
between proteins) is fundamentally related to folding free
energy (interactions within a protein). ESM?2 is unable to
see the binding partner (protein or ligand) and must rely
purely on the single sequence representation. This most
likely explains ESM2 bad performance on AcrlIA4 since it
illicits its anti-CRISPR activity through binding inhibition.

Remarkably, MutRank outperforms MutcomputeXGT
across all datasets for all metrics. This demonstrates that the
EvoRank loss improve zero-shot generalization across all
phenotypes compared to its WT-masked predecessor. Ad-
ditionally, MutRank outperforms ESM2 on all datasets for
all metrics even though it is a much smaller model trained
on only ~23K proteins compared to UniRef50. Surpris-
ingly, MutRank’s zero-shot performance surpasses or ties
Stability Oracle performance on nearly all metrics for bind-
ing AAG datasets (except S487 AUC). Furthermore, it
significantly outperforms Stability Oracle on the TEM1-/3-
Lactamase solubility dataset and the three activity datasets.
Stability Oracle performance on the TEM1-3-Lactamase
dataset is lower than it’s pretrained representation, Mut-
ComputeXGT. This finding highlighting the superior phe-
notype generalization of EvoRank loss and demonstrating
how supervised fine-tuning can improve the performance
on one phenotype at the expense of others. Finally, we high-
light MutRank’s substantial improvement on the protein-
ligand interface binding AAG dataset, PlatinumDB: com-
pared to MutComputeXGT: MutRank improves the Pear-
son correlation and AUC from 0.05 and 0.48 (indicating
a random classifier) to 0.28 and 0.64. We conclude that
for the activity, solubility and binding free energy pheno-
types, MutRank representations significantly improves the
zero-shot generalization over the WT-mask representations
of MutComputeXGT. However, additional evaluations are
needed to better understand its generalization across pheno-
types for diverse proteins.
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Impact on supervised fine-tuning One of the most im-
portant applications of representation learning is to enable
transfer learning to domains with limited labeled datasets.
Thus, to evaluate the impact of the MutRank represen-
tations against the WT-mask representations, we conduct
a comparative analysis on supervised fine-tuning for ther-
modynamic stability using the Stability Oracle framework.
Table 5 provides a comprehensive comparison between fine-
tuned WT-mask representations (Stability Oracle) and fine-
tuned MutRank representations. To achieve optimal perfor-
mance, WT-mask representations and MutRank represen-
tations are fine-tuned with 3000 (same as Stability Oracle)
and 500 iterations, respectively. The evaluation metrics in-
clude Pearson correlation, Spearman correlation, AUC, and
RMSE on the T2837 folding free energy (AAG) phenotype.
Our results demonstrate that both models reach approxi-
mately the same performance on T2837 from training on
the cDNA dataset, with EvoRank loss pretraining having a
marginal improvement. Interestingly, EvoRank loss impact
is most apparent when there is significantly less fine-tuning
data available. When fine-tuned with ~9% of the proteins
(10 proteins and 11K mutations) in the cDNA dataset, Evo-
Rank loss pretraining outperforms WT-mask pretraining by
16%, 15%, 7% for Pearson and Spearman correlation and
AUC, respectively, and required 6 x fewer training iterations.
Furthermore, EvoRank loss pretrained model’s Pearson and
Spearman correlation and AUC metrics are only 2%, 3%,
and 4% lower than Stability Oracle, respectively. While the
corresponding WT-mask pretrained model’s Pearson and
Spearman correlation and AUC metrics are 15%, 16%, and
10% lower than Stability Oracle, respectively. These gaps
are less drastic when 43% of the proteins (50 proteins and
54K mutations) are used for supervised fine-tuning since
the EvoRank loss pretrained model has nearly reached the
ceiling of the cDNA dataset. Thus, we conclude that the
supervised fine-tuning of the MutRank representations can
significantly improve the generalization capacity of smaller
training sets and simultaneously accelerate training time.

— ESM2 ProteinMPNN —— MutComputeXGT w/ MSA MutRank

S-Sy 669

Myolal! Sireprot

T28 teinG

AUC

Figure 3. We visually show the model performance on different
datasets. We refer readers to Table 3 for exact numbers and more
comparisons with supervised trained models.

Pearson Correlation

Method Pearson Spearman AUROC RMSE
cDNA MSA 0.15 0.13 0.62 2.17
ESM2 0.37 0.37 0.65 5.48
MutComputeXGT 0.38 0.38 0.64 1.89
MutRank 0.45 0.46 0.71 1.09

Table 6. We demonstrate that our method get better generalization
compared to naive MSA on the cDNA117K dataset.

Generalizing beyond the MSA distribution While our
model is trained with MSA information, the MSA informa-
tion itself can also directly serve as a predictor for mutation
effects. In the literature, MSAs are often used to create a
sequence profile (Liithy et al., 1994) or position-specific
scoring matrix (PSSM) (Jones, 1999), which can be used to
predict the impact of a mutation by assessing the deviation
from the expected amino acid at a specific position.

We evaluate if EvoRank representations outperforms these
naive MSA baselines using the large cDNA dataset (~ 117K
mutations from 116 single domain proteins) provided in
Diaz et al. (2023). For these 116 proteins, the average and
std of their MSA depth is 3.9K+0.6K sequences. To cal-
culate naive predictions from a protein’s MSA, we use the
log-odds of the empirical amino acid distribution at a posi-
tion (Figure 1): log(pto/Pfrom ). Furthermore, we provide
MutComputeXGT and ESM2 as a baselines for compar-
ison. As demonstrated in Table 6, our method not only
outperforms ESM2 but also significantly improves upon the
naive MSA predictions derived from the cDNA MSAs: for
Pearson correlation, our method achieves 0.45, surpassing
MSA’s 0.15, ESM2’s 0.37, and MutComputeXGT’s 0.38.
These results demonstrate that the MutRank representa-
tions capture residue specific variability beyond what is
present in a protein’s MSA.

5. Conclusion

We propose EvoRank training objective aimed at improving
the protein representations obtained from self-supervised
learning for zero-shot mutation effect prediction tasks. Evo-
Rank reformulates the learning task to better emulate a
mutation by replacing the 20-class classification head with
a regression head trained to learn the ranking of amino
acids within the MSA distribution at a particular position.
To evaluate EvoRank, we trained a structure-based graph
transformer with the EvoRank loss and observe perfor-
mance improvements in all downstream single point mu-
tation effect prediction tasks compared to the WT-mask
predecessor. When compared to the most renown sequence-
based (ESM2) and structure-based (ProteinMPNN) frame-
works, EvoRank demonstrates superior zero-shot perfor-
mance across all evaluated benchmarks. From our results,
we conclude that the EvoRank training objective produces
protein representation with an enriched understanding of
the complex mutational landscape of proteins.
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Broader Impact

In this paper, we present the EvoRank training loss and
demonstrate its ability to learn representations that better
model a protein’s mutational landscape. Models trained
with EvoRank are better suited for machine learning-guided
protein engineering and will drastically accelerate the de-
velopment of protein-based biotechnologies. Protein-based
biotechnologies will have a profound impact on the sustain-
able procurement of agricultural and chemical commodities,
pharmaceuticals, and food ingredients. We would like to
highlight that the mutational understanding present in the
representations learned with the EvoRank loss can help with
the identification of synthetic sequences for pathogen com-
ponents. This issue will become more prevalent with the
rise of machine learning guided de novo protein design.
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A. Additional Experiments

Loss T2837 | S487
pMA A(a+)

pySA(a’JJr)_;'_p;\/ISA(af) - 05 051 038

CLMAP {log{p}™*(a™)/p}™*(a™)},£5} | 052 | 0.38

CLMAP{[p}34(a™) /p}3*(a7))?, £5} 0.50 | 0.37

Table 7. We demonstrate the model Pearson correlation coefficient with different rank score loss. The first block shows the loss as the
default setting. The second block displays the loss with other formulations.

Dataset Phenotype EvoRank w/ Classification Head EvoRank w/ Joint Heads EvoRank w/ Regression Head
Pearson Spearman AUC RMSE | Pearson Spearman AUC RMSE | Pearson Spearman AUC RMSE
T2837 AAG 0.47 0.49 0.76 1.78 0.51 0.53 0.77 1.76 0.51 0.53 078 170
levoglucosan kinase | A Solubility 0.28 0.34 0.62 1.40 0.30 0.34 0.65 1.37 0.29 0.34 0.64 1.39
5487 Protein-Protein AAGling 0.36 0..35 0.65 1.35 0.37 0.37 0.67 1.36 0.38 0.38 0.67 1.26
platinumDB Protein-Ligand AAGying 0.25 0.24 0.61 1.58 0.27 0.27 0.65 1.58 0.28 0.28 0.64 153
ABBind Antibody-Antigen AAGling 0.39 0.45 0.72 1.48 0.41 0.46 0.72 1.57 0.41 0.46 074 142

Table 8. We illustrate that MutRank without additional regression head can still generate good results on the test sets. The numbers
reported are averaged over three trials.

Head architecture ablations In our approach, to train with the EvoRank loss, we replace the classification head with a
regression head. This head contextualize the embedding vectors for the two amino acids with the hidden representation for a
particular microenvironment in order to compute a residue specific rank score. Alternatively, we can use the EvoRank loss
with the original classification head by calculating the rank score from the logits. In this ablation study, shown in Table 8,
we observe that introducing the additional regression head generally results in a modest performance improvement ranging
from 1% to 4% across 5 datasets. More importantly, these results demonstrate the superior zero-shot generalization of the
EvoRank representations over the WT-mask baseline regardless of the head architecture.

Exploring different loss formulation Training with EvoRank loss is a two-stage procedure. Initially, we train the
backbone using MSA-based soft labels with the a-divergence loss and subsequently fine-tune with the EvoRank loss. 1) We
evaluate the impact of jointly training with a-divergence loss and EvoRank (Table 8, middle column). Our results indicate
that the linear combination of the a-divergence and EvoRank losses with 0.4 and 0.6 coefficients, respectively, provides the
best performance. However, these results match our previous performance. 2) We then evaluate different ways to compute
the rank score for a residue from the MSA distribution, and benchmark on the T2837 and S487 datasets. As demonstrated
in Table 7, all rank score formulations converge to similar performance on T2837 and S487. Thus, the exact formulation
for computing the rank score has an insignificant impact on performance and further demonstrates the robustness of the
EvoRank loss.

Dataset #Mut | MutRank-2M  MutRank-8M MutRank-24M  MutRank-48M
T2837 2837 0.48 0.51 0.51 0.51
levoglucosan kinase | 9011 0.27 0.29 0.29 0.28
Gpl 935 0.58 0.62 0.62 0.62
S487 487 0.36 0.38 0.40 0.40
PlatinumDB 925 0.25 0.28 0.28 0.26

Table 9. We demonstrate the model Pearson correlation coefficient with different model sizes. All the results are averaged over three
trials.

Model size ablations The machine learning community has empirically demonstrated the benefits of increasing model
size (Dehghani et al., 2023; Chowdhery et al., 2023). This too has been demonstrated by protein language models (Elnaggar
et al., 2021; Rives et al., 2019a; Lin et al., 2023). However, to the best of our knowledge no study has explored the impact of
model size for protein structure-based machine learning frameworks. We conducted a comprehensive analysis ranging the
parameters from ~2M to ~48M. The results, presented in Table 9, demonstrate marginal to no improvements from scaling
the model parameters. For example, the smallest model (~2M) exhibit diminished performance compared to the largest
(~48M) model but the average performance improvement across 4 datasets is only ~6%. But the same analysis between the
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(~8M) and (~48M) models results in an average performance decrease of 1.25%. Further experiments, such as scaling the
dataset beyond ~20K proteins, are required to confirm if structure-based ML frameworks trained with EvoRank loss will
benefit from model scaling. All experiments reported in this work are from the 8M parameter model.
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