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Abstract
In the well-studied agnostic model of learning, the goal of a learner– given examples from an

arbitrary joint distribution on Rd⇥ {±1}– is to output a hypothesis that is competitive (to within ✏)
of the best fitting concept from some class. In order to escape strong hardness results for learning
even simple concept classes in this model, we introduce a smoothed analysis framework where we
require a learner to compete only with the best classifier that is robust to small random Gaussian
perturbation.

This subtle change allows us to give a wide array of learning results for any concept that (1)
depends on a low-dimensional subspace (aka multi-index model) and (2) has a bounded Gaussian
surface area. This class includes functions of halfspaces and (low-dimensional) convex sets, cases
that are only known to be learnable in non-smoothed settings with respect to highly structured
distributions such as Gaussians.

Perhaps surprisingly, our analysis also yields new results for traditional non-smoothed frame-
works such as learning with margin. In particular, we obtain the first algorithm for agnostically
learning intersections of k-halfspaces in time kpoly(

log k
✏� ) where � is the margin parameter. Before

our work, the best-known runtime was exponential in k (Arriaga and Vempala, 1999a).
Keywords: PAC Learning; Agnostic Learning; Margin; Halfspace; Geometric Concepts; Gaussian
Surface Area

1. Introduction

In the (agnostic) PAC learning model Valiant (1984a,b); Haussler (1992); Kearns et al. (1994),
a learner is given access to random labeled examples and has to compute a classifier that per-
forms approximately as well as the best classifier in a target concept class. More precisely, for
an instance distribution D over Rd ⇥ {±1} and a concept class F , the optimal error is defined as
opt = inff2F Pr(x,y)⇠D[f(x) 6= y]. Without assumptions about the feature distribution and/or
the label generating process, learning is known to be computationally hard Kharitonov (1993);
Guruswami and Raghavendra (2006); Dachman-Soled et al. (2008); Khot and Saket (2008); Feld-
man et al. (2009); Klivans and Sherstov (2009); Diakonikolas et al. (2011); Feldman et al. (2011);
Daniely and Vardi (2021). In particular, even learning halfspaces (linear classifiers) is intractable
without assumptions Kalai et al. (2005); Guruswami and Raghavendra (2006); Feldman (2006);
Daniely (2016).

In order to bypass these hardness results, a body of research has focused on beyond worst
case learning. The most common approaches are: (1) making distributional assumptions about the
underlying feature distribution, e.g., that it is Gaussian or uniform on the hypercube Linial et al.
(1993); Long (2003); Kalai et al. (2008); Klivans et al. (2008); Gopalan et al. (2008); Diakonikolas
et al. (2021); Kalai et al. (2009), or (2) assuming that the labels are not generated adversarially
Awasthi et al. (2015, 2016, 2017); Diakonikolas et al. (2019a, 2020); Chen et al. (2020); Zhang
et al. (2020); Diakonikolas et al. (2022).
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Our Smoothed Learning Model In this work, we depart from those paradigms, and instead of
explicitly imposing structure on the feature or the label distributions we relax the notion of optimal-
ity. Inspired by the seminal works Spielman and Teng (2004); Spielman (2005) on the smoothed-
complexity of algorithms, we require the learner to compete against the minimum possible error
over classifiers that have been translated by a small Gaussian perturbation. Formally, we have the
following definition:

Definition 1 (Smoothed Agnostic Learning) Fix ✏,� > 0 and � 2 (0, 1). Let F be a class
of Boolean concepts and let D be a class of distributions over Rd. Let D be a distribution over
(x, y) 2 Rd ⇥ {±1} such that its x-marginalDx 2 D. We say that the algorithmA learns F in the
�-smoothed setting if, after receiving i.i.d. samples fromD,A outputs a hypothesis h : Rd ! {±1}
such that, with probability at least 1� �, it holds Pr(x,y)⇠D[h(x) 6= y]  opt� + ✏, where

opt� = inf
f2F

E
z⇠N

h
Pr

(x,y)⇠D

[f(x+ �z) 6= y]
i
. (1)

We observe that by taking � = 0 in Definition 1 we recover the standard definition of agnostic
learning. On the other extreme as � ! 1, every concept is evaluated on a random input unrelated
to the label y and the error essentially does not depend on the concept f . The smoothed agnostic
learning of Definition 1 is therefore an interpolation between the case where the instance distribution
D and the optimal classifier can be arbitrarily coupled (which corresponds to agnostic learning and
� = 0) and completely decoupled (when � = 1). This decoupling allows us to avoid worst-case
concepts that can encode complexity-theoretic primitives.

Learning Concepts with Low Intrinsic Dimension We focus on the general class of concepts
with low intrinsic dimension, i.e., that implicitly depend on few relevant directions (these are also
known as linear or subspace juntas Vempala and Xiao (2011); De et al. (2019, 2021)). More pre-
cisely, a concept f is of low intrinsic dimension if there exists an — unknown to the learner —
subspace V of dimension at most k such that f only depends on the projection of x onto V ,
i.e., f(x) = f(projV x) for all x. We will also use the term “low-dimensional” for such con-
cepts. Perhaps the most well-studied low-dimensional concept class is that of halfspaces or linear
threshold functions Rosenblatt (1962); Minsky and Papert (1988), where k = 1. Another popular
low-dimensional class that has been extensively studied is intersections of k halfspaces Blum and
Kannan (1993); Arriaga and Vempala (1999a); Klivans and Servedio (2004); Klivans et al. (2008);
Vempala (2010). More broadly, in Definition 2 we define a general class of low dimensional con-
cepts with “well-behaved” decision boundary that includes the previous mentioned classes (and
more) as special cases. Essentially all efficient algorithms in prior work for learning such concepts
(in fact even for learning halfspaces) rely on strong assumptions, such as Gaussians (Kalai et al.,
2008; Klivans et al., 2008). We investigate whether it is possible to design efficient learning al-
gorithms in the smoothed setting of Definition 2 for natural concept classes while weakening the
distributional assumptions that have been used so far in the literature:

Can we relax the strong distributional assumptions (such as Gaussianity) required by previous
works and still obtain comparable efficient algorithms in the smoothed setting?

We answer the above question positively and show that efficient smoothed learning is possible
assuming only that the feature distribution is concentrated (e.g., bounded or sub-gaussian). In par-
ticular, our results in the smoothed setting establish learnability under discrete distributions that are
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SMOOTHED ANALYSIS FOR AGNOSTIC LEARNING

commonly used in hardness constructions in the standard agnostic setting (see, e.g., Daniely and
Vardi (2021)). At the same time, we show that our smoothed learning model improves and general-
izes prior models such as learning with margin. In fact, for standard non-smoothed settings such as
learning intersections of k-halfspaces with margin, we are able to obtain significant improvements
over the prior works as corollaries of our smoothed learning results.

1.1. Our Results

In this section we present our main contributions and discuss the connections of the smoothed
learning model of Definition 1 with other models.

Measure of Complexity: Gaussian Surface Area As mentioned above, we require that the con-
cept class is low-dimensional, i.e., that it depends on few relevant directions. Moreover, we assume
that it has bounded Gaussian Surface Area (GSA). The GSA of a boolean function f , denoted from
now on as �(f), is defined to be the surface area of its decision boundary weighted by the Gaussian
density, see Definition 19 for a formal definition. In the context of learning theory, GSA was first
used in Klivans et al. (2008) where it was shown that concepts with bounded GSA admit efficient
learning algorithms under Gaussian marginals. Since then, GSA has played a significant role as a
complexity measure in learning theory and related fields; see, e.g., Kane (2011); Neeman (2014);
Kontonis et al. (2019); De et al. (2021).

Definition 2 (Low-Dimensional, Bounded Surface Area Concepts) For k 2 N and � > 0, a
concept f : Rd 7! {±1} belongs in the class F(k,�) if:

1. There exists a subspace U of dimension at most k such that f(x) = f(projU (x)).

2. The Gaussian Surface Area of f , �(f) is at most �.

3. For every t 2 Rd and r > 0, the function f(rx+ t) 2 F(k,�).

Remark 3 (1) While we are using GSA as a complexity measure, we stress that we do not assume
that the x-marginal distribution is Gaussian. (2) The invariance under scaling and translation (the
third property of Definition 2) is a mild technical assumption that is satisfied by all classes that we
have discussed so far (halfspaces and functions of halfspaces, ptfs, etc.), see also Lemma 20.

We note that halfspaces belong in F(1, O(1)), intersections of k halfspaces in F(k,O(
p
log k)),

and k-dimensional polynomial threshold functions of degree ` in F(k,O(`)). Moreover, Defini-
tion 2 also contains non-parametric classes: for example, F(k,O(k1/4)) includes all convex bodies
in k dimensions, see Lemma 20. We remark that low-dimensional functions similar to those in
Definition 2 are also referred to (usually when the functions are real-valued) as Multi-index Models
(MiMs) — a common modeling assumption to avoid the curse of dimensionality in statistics Fried-
man et al. (1981); Huber (1985); Li (1991); Hall and Li (1993); Xia et al. (2002); Xia (2008).

1.1.1. MAIN RESULTS: SMOOTHED AGNOSTIC LEARNING UNDER CONCENTRATION

We show that we can efficiently learn assuming only concentration properties for the x-marginal.
More precisely, we assume that the distribution has sub-gaussian tails, i.e., for every unit direction
v it holds Prx⇠Dx [|v · x| � t]  exp(�⌦(t2)).
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Theorem 4 (Sub-Gaussian – Informal, see also Theorem 17) Let D be a distribution on Rd ⇥
{±1} with sub-gaussian x-marginal. There exists an algorithm that learns the class F(k,�) in the
�-smoothed setting with N = dpoly(

k�
�✏

) log(1
�
) samples and poly(d,N) runtime.

We remark that our result works even under weaker tail assumptions: in particular it suffices that
the tails are strictly sub-exponential, see Definition 15 and Theorem 17.

We observe that the runtime of Theorem 4 for learning a single halfspace (where k = 1) in the
smoothed setting qualitatively matches the best known runtime for agnostic learning under Gaussian
marginals. For concepts with bounded Gaussian surface area, in Klivans et al. (2008), under the
assumption that the x-marginal is Gaussian, an algorithm with dpoly(�/✏) runtime is given. When
the intrinsic dimension k = O(1), our results in the smoothed setting achieve the same runtime
and only require sub-gaussian tails. By a simple reduction to learning parities on the hypercube,
see Theorem 68, we obtain a Statistical Query (SQ) lower bound of d⌦(min(k,�)) for learning over
sub-gaussian marginals, showing that in some cases the exponential dependency on the surface area
or the intrinsic dimension to learn F(k,�) is unavoidable.

Our second result shows that we can significantly improve the runtime when the marginals are
bounded. Bounded marginals is a common assumption especially since it is often used together with
geometric margins assumptions. At a high-level, in our smoothed learning setting having bounded
kxk2 means that the ratio kxk2/� is more well behaved in the sense that the adversary (who picks x
cannot overpower the smoothing noise � (see Definition 1). Observe that if the adversary is allowed
to select x with arbitrarily large norm, the effect of Gaussian noise in Definition 1 is negligible and
we return to the standard agnostic setting.

Theorem 5 (Bounded – Informal, see also Theorem 18) Let D be a distribution on Rd ⇥ {±1}
with x-marginal bounded in the unit ball. There exists an algorithm that learns the class F(k,�) in
the �-smoothed setting with N = kpoly(

�
✏�

) log(1
�
) samples and poly(d,N) runtime.

Using our theorem and bounds on the Gaussian surface area we readily obtain corollaries for
specific classes. For example, we learn efficiently intersections of k-halfspaces with kpoly(log k/(�✏))

samples and arbitrary k-dimensional convex bodies with kpoly(k/(�✏)) samples.

1.1.2. APPLICATIONS

In this section we present several applications of our general smoothed learning results in standard
agnostic learning settings that have been considered in the literature. In many cases we obtain
significant improvements over the best-known results.

Agnostic Learning with Margin Our smoothed learning model is related to margin-based learn-
ing (originally defined in Ben-David and Simon (2000)) because, at a high-level, it incentivizes the
adversary not to place points very close to the decision boundary to create non-trivial instances. In
(agnostic) learning of a class C with �-margin the feature distribution is typically assumed to be
bounded and the goal is to compute a classifier with error

Pr
(x,y)⇠D

[h(x) 6= y]  inf
f2C

Pr
(x,y)⇠D

h
sup

kuk2�

1{f(x+ u) 6= y}
i

| {z }
margin-opt

�

+✏ . (2)
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We show that for any concept class with intrinsic dimension k, for � = ⌦(�/
p

k log(1/✏)), it holds
opt�  margin-opt

�
+✏. Therefore, any learning algorithm for the smoothed learning setting can be

directly used to learn in the �-margin setting. For the special case of intersections of k-halfspaces
we show that the gap between margin-opt

�
and opt� is ✏ by choosing � = ⌦(�/

p
log k log(1/✏)).

Using this fact and Theorem 5 we obtain the following corollary.

Corollary 6 (Intersections of k-halfspaces with �-margin) LetD be a distribution onRd⇥{±1}
whose x-marginal is bounded in the unit ball and let C be the class of intersections of k-halfspaces.
There exists an algorithm that draws N = kpoly(log k/�✏) log(1

�
) samples, runs in poly(d,N) time

and computes a hypothesis h such that, with probability at least 1 � �, it holds Pr(x,y)⇠D[h(x) 6=
y]  margin-opt� + ✏.

We remark that, prior to our work, the best known runtime for learning intersections of k-
halfspaces with �-margin in the agnostic setting from Arriaga and Vempala (1999b) was exponential
in the number of halfspaces that is kpoly(

k

�✏
). Quasi-polynomial results similar to that of Corollary 6

were only known in the noiseless setting Klivans and Servedio (2004). Beyond intersections of
halfspaces with �-margin, we obtain new results for other classes such as polynomial threshold
functions and general convex sets, see Section B.2 for more details.

Agnostic Learning under Smoothed Distributions We conclude with some applications of our
framework to the (different) scenario where the marginal distribution itself is smoothed. For ex-
ample, in Kane et al. (2013) sub-Gaussian marginals are smoothed by additive Gaussian noise; i.e.,
for some sub-Gaussian distribution D a sample from the smoothed distribution D⌧ is generated as
x + ⌧z for x ⇠ D and z ⇠ N . We remind the reader that our smoothed learning model of Def-
inition 1 does not try to make the x-marginal more benign by a Gaussian convolution as is done
in smoothed distribution learning settings Kalai and Teng (2008); Kalai et al. (2009); Kane et al.
(2013). In our model, the learner observes i.i.d. examples from the original marginal Dx and not
from the convolution Dx + �N . Perhaps surprisingly, we show that Theorem 4 can be used to
significantly improve the results of Kane et al. (2013) and other results for learning with smoothed
marginals:

Corollary 7 (Informal, see also Theorem 36) Let D⌧ be a smoothed sub-Gaussian distribution.
There exists an algorithm that agnostically learns the class F(k,�) with N = dpoly(

k�
⌧✏

) log(1
�
)

samples and poly(d,N) runtime.

We remark that Corollary 7 (i) generalizes the results of Kane et al. (2013) to any class of k-
dimensional concepts with bounded surface area and (ii) yields an exponential improvement over
Kane et al. (2013) where the runtime is doubly exponenential in k, i.e., dlog log(k/(⌧/✏))

eO(k)poly(1/(⌧✏)).

Agnostic Learning under Anti-concentration Finally, another important direction considered
in the literature is making structural assumptions such as anti-concentration over the feature dis-
tribution. In particular, in Gollakota et al. (2023) apart from sub-gaussian tails the distribution is
assumed to satisfy anti-concentration over slabs, i.e., for any unit vector v and interval I it holds
that Prx⇠Dx [v · x 2 I]  O(|I|), where |I| is the length of the interval. In Gollakota et al. (2023)
an algorithm for learning any function of a constant number of halfspaces is given with runtime
dpoly(1/✏). Using Theorem 4 we are able obtain efficient algorithms for agnostic learning under
concentration and anti-concentration for functions of any number of halfspaces.

5



Corollary 8 (Informal, see also Theorem 33) Let D be a distribution on Rd ⇥ {±1} whose x-
marginal is sub-Gaussian and anti-concentrated. There exists an algorithm that agnostically learns
arbitrary functions of k halfspaces with N = dpoly(

k

✏
) log(1

�
) samples and poly(d,N) runtime.

1.2. Technical Overview

Our main plan is to use low-degree polynomials that can be efficiently optimized via L1-regression,
similar to the works of Kalai et al. (2005); Klivans et al. (2008). In general, in the agnostic setting,
one has to construct a polynomial p(x) that achieves almost optimal L1 error with the label y. To
do this, we have to prove that for every concept f in the class, there exists a low-degree polynomial
p such that Ex⇠Dx [|p(x)� f(x)|]  ✏.

In the distribution-specific setting, i.e., when x comes from the Gaussian or the uniform on the
hypercube, it is known that such a polynomial of degree poly(�/✏) exists Klivans et al. (2008).
However, without assumptions onD, low-degree polynomial approximations of f do not exist even
when the f is a simple concept such as a linear threshold function.

Polynomial Approximation in the Low-Dimensional Space Our high-level plan is to treat the
smoothed learning setting as a non-worst-case approximation setting and show that given some f ,
with high probability over the smoothing z, the translated concept x 7! f(x+ �z) will have a low-
degree polynomial approximation. For simplicity, in this sketch, we will assume that � = 1. The
general case can be found in the full proof; see Section 3.1 and also Remark 10. We will construct
a family of polynomials pz(x) such that their expected L1 error over the smoothing z is small:

E
z⇠N

h
E

x⇠Dx

[|pz(x)� f(x+ z)|]
i
 ✏ .

We observe that since every f(x) depends only on a k-dimensional space U , the projection of
the input x down to U is just a linear transformation that does not affect the degree of polynomial
approximation. Therefore, from now on, we may assume x lies in the k-dimensional space U and
construct our polynomial approximation there.

Duality Between Input and Smoothing Parameter Our first step is to think of the smoothing
random variable as the actual input to the function and treat x as a fixed parameter. Therefore,
as a function of z, we now have to approximate the translated function fx(z) = f(x + z). Even
though z is not available to the learner, when we think of fx(z) as a function of the Gaussian
noise random variable, we can utilize strong approximation results known under the Gaussian. In
particular, we can replace the boolean function fx(z) by its smooth approximation given by the
Ornstein-Uhlenbeck operator defined as T⇢fx(z) = Es⇠N [fx(

p
1� ⇢2 · z+ ⇢ s)].

Using the fact that the concept class of Definition 2 is closed under translation, we have that,
since �(f)  �, the GSA of the translated concept fx(z) as a function of z is also at most �. Using
this fact and a result from Ledoux and Pisier (see Lemma 12) that bounds the L1 approximation
error of the Ornstein-Uhlenbeck noise operator, we obtain that with ⇢ = poly(✏/�) it holds that

E
z⇠N

[|T⇢fx(z)� fx(z)|]  ✏ .

So far, we replaced fx with T⇢fx, but have we made progress? We observe that T⇢fx(z) =

Es⇠N [f(x+
p

1� ⇢2z+ ⇢s)]. The variable x, which is supposed to be input of the polynomial, is
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SMOOTHED ANALYSIS FOR AGNOSTIC LEARNING

still in the function f . Without distributional assumptions on Dx the degree to approximate f can
be arbitrarily large.

From Approximating f(·) to Approximating Density Ratios To avoid approximating the con-
cept f , we observe that we can express the Ornstein-Uhlenbeck operator as follows:

T⇢fx(z) = E
s⇠N (x/⇢,I)

⇥
f(
p
1� ⇢2z+ ⇢s)

⇤
= E

s⇠Q


f(
p
1� ⇢2z+ ⇢s) · N (s;x/⇢, I)

Q(s)

�
,

where Q(s) is a distribution that we carefully design. We have managed to decouple the variable
x from the function f(·), and now the task is to create a polynomial approximation of the density
ratio N (s;x/⇢,I)

Q(s) , which — at the very least — is a continuous function of x. For this to be possible,
we need that the ratio of densities has a bounded L1 norm with respect to x ⇠ Dx. When x is
bounded, we can simply select Q to be the standard Gaussian; see Proposition 9. For sub-Gaussian
(or strictly sub-exponential) marginals, we select a distribution Q with heavier (exponential) tails
than Dx. For this overview, we focus on the case of bounded marginals and refer to Section 3.2 for
the more general result.

We observe that the approximating function has to be polynomial in x but can be an arbitrary
function of z and s. Therefore, we select a weighted combination of polynomials (that is still a
polynomial in x but not a polynomial in z):

pz(x) = E
s⇠Q

[f(
p
1� ⇢2z+ ⇢s) q(x, s)] .

To bound the L1 distance of T⇢fx(z) and pz(x), since f is boolean and, in particular, bounded, it
suffices to show that the polynomial q(x, s) approximates the ratio of normals N (s;x/⇢, I)/N (s).
We construct an explicit polynomial approximation of this ratio using the Taylor expansion of the
exponential function and show that a degree roughly poly(log(1/✏)/⇢) suffices; see Lemma 14. By
our choice of ⇢, we conclude that the degree of the family of polynomials pz that we construct is at
most poly(�/✏).

Dimension Reduction and Polynomial Regression Having constructed polynomial approxima-
tions with high probability over the smoothing random variable z, we can use the standard L1

polynomial regression algorithm; see Kalai et al. (2008); Klivans et al. (2008). For the case of
bounded marginals, we show that we can also perform a dimension-reduction preprocessing step by
a random projection. Even though the class of concepts of Definition 2 is non-parametric, we show
that under bounded GSA, it is possible to reduce the dimension to poly(k�/✏); see Section 3.3.

2. Preliminaries and Notation

Notation We use small boldface characters for vectors and capital bold characters for matrices.
We use [d] to denote the set {1, 2, . . . , d}. For a vector x 2 Rd and i 2 [d], xi denotes the i-

th coordinate of x, and kxk2 :=
qP

d

i=1 x
2
i
the `2 norm of x. We use x · y :=

P
n

i=1 xiyi as
the inner product between them. We use {E} to denote the indicator function of some event E.
We use Ex⇠D[f(x)] for the expectation of f(x) according to the distribution D and PrD[E] for
the probability of event E under D. For simplicity, we may omit the distribution when it is clear
from the context. For µ 2 Rd,⌃ 2 Rd⇥d, we denote by N (µ,⌃) the d-dimensional Gaussian
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distribution with mean µ and covariance ⌃. We simply use N for the standard normal distribution.
In cases where the dimension is not clear from the context we shall use Nk to denote the standard
normal on k-dimensions. For (x, y) distributed according to D, we denote Dx to be the marginal
distribution of x.

3. Smoothed Agnostic Learning under Concentration

In this section, we present our algorithms for smoothed learning under bounded and (strictly)
sub-exponential marginals. The polynomial approximation results are in Section 3.1 for bounded
marginals and in Section 3.2 for strictly sub-exponential marginals. In Section 3.3 we present our
algorithmic results and the dimension-reduction process for learning under bounded-marginals.

3.1. Polynomial Approximation: Bounded Marginals

In this section we present and prove our main polynomial approximation result for bounded marginals
showing that, in expectation over the noise variable z, there exists some polynomial pz(x) that ap-
proximates the translated concept function f(x + z). The proof of Proposition 9 is split into two
steps. Similar to our discussion in Section 1.2, we first fix x and try to approximate fx(z). The first
step is to replace f by its smoothed version T⇢fx (see Definition 11) and show that it is close to fx.
The second step, see Lemma 13, is to construct a polynomial approximation of T⇢fx (similar to the
way we constructed polynomial approximations to the Hermite coefficients of fx in Section 1.2).

Proposition 9 (Polynomial Approximation of Random Translations) Fix ✏ > 0 and sufficiently
large universal constant C > 0. Let D be a distribution on Rd such that all points x in the support
of D have kxk2  R. Let f 2 F(k,�). There exists a family of polynomials pz parameterized by
z of degree at most C(�/✏)4R2 log(1/✏) such that Ez⇠N Ex⇠D

⇥
|pz(x) � f(x + z)|

⇤
is at most ✏,

and every coefficient of pz is bounded by dC
�
(�/✏)4R2 log(1/✏)

�2
.

Remark 10 We remark that in Proposition 9 we have assumed that � = 1 to simplify notation. Us-
ing the fact that the surface area bound of the concepts of Definition 2 is invariant under translation
and positive scaling, we can apply Proposition 9 with R0 = R/� for the function x 7! f(�(x

�
+ z))

and obtain a polynomial of degree eO((�/✏)4(R/�)2). See also Theorem 43.

Proof We use the following Gaussian noise operator to transform f(·) into a smooth function that
is easier to approximate.

Definition 11 (Ornstein-Uhlenbeck Noise Operator) Let k 2 N and ⇢ 2 [0, 1]. We define the
Ornstein-Uhlenbeck operator T⇢ : {Rd ! R} ! {Rd ! R} that maps f : Rd ! R to the function
T⇢f : Rd ! R with T⇢f(x) = Ez⇠N [f(

p
1� ⇢2 · x+ ⇢ · z)] .

We will use the following result showing that under the assumption that some function g has
bounded GSA, the Ornstein-Uhlenbeck operator T⇢g yields a good approximation to g in L1.

Lemma 12 (Pisier (1986); Ledoux (1994)) Let ⇢ 2 [0, 1] and consider a function f : Rd !
{±1}. It holds Ez [|T⇢f(z)� f(z)|]  2

p
⇡⇢ · �(f).

8



SMOOTHED ANALYSIS FOR AGNOSTIC LEARNING

Let fx be the translated function defined as fx(z) = f(x + z). From Lemma 12, we have
Ez⇠N [|T⇢fx(z)� f(z+ x)|]  2

p
⇡⇢ · �.

Choosing ⇢ = O(✏2/�2) makes this error at most ✏/2. We now approximate T⇢fx using a
polynomial. To do this we prove the following result. We provide a proof sketch here, and refer to
the Supplementary Material for the details and the formal statement, see Lemma 37.

Lemma 13 (Approximating the Ornstein-Uhlenbeck Smoothed Concept T⇢fx(·)) Let D be a
distribution on Rd with every point x in the support of D having kxk2 at most R. Let f : Rd !
{±1} and fx : Rd ! R be defined as fx(z) = f(x+z). Then, for any ✏ > 0, there exist polynomials
pz parameterized by z for degree at most O((R/⇢)2 log(1/✏)), such that Ex⇠D Ez⇠N

⇥
|pz(x) �

T⇢fx(z)|
⇤
 ✏.

Before we prove Lemma 13 we use it to conclude the proof of Proposition 9. From Lemma 13, we
get a polynomial pz of degree C(�/✏)4R2 log(1/✏) such that Ex⇠D Ez⇠N

⇥
|T⇢fx(z) � pz(x)|

⇤


✏/2whereC is a large universal constant. The coefficients of pz are bounded by dC
�
(�/✏)4R2 log(1/✏)

�2
.

By a triangle inequality, we get Ex⇠D Ez⇠Nk

⇥
|pz(x)� f(z+ x)|

⇤
 ✏.

Sketch of the Proof of Lemma 13 We observe that T⇢fx(z) = Es⇠N [f(x +
p
1� ⇢2z + ⇢s)]

has the variable x inside f . Recall that our goal is to construct a polynomial in x and, since we have
no control over f (which can possibly be very hard to approximate pointwise with a polynomial),
we decouple f and x in the expression of T⇢fx by writing the function as an expectation over a
Gaussian centered at x/⇢.

T⇢fx(z) = E
s⇠N

⇥
f(x+

p
1� ⇢2z+ ⇢s)

⇤
= E

s⇠N (x/⇢,I)

⇥
f(
p
1� ⇢2z+ ⇢s)

⇤
,

Next, we can recenter the expectation around zero and express the Ornstein-Uhlenbeck operator as
follows:

T⇢fx(z) = E
s⇠N


f(
p
1� ⇢2z+ ⇢s) · N (s;x/⇢, I)

N(s;0, I)

�
= E

s⇠N


f(
p
1� ⇢2z+ ⇢s) · e�

kxk22
2⇢2

+(x/⇢)·s
�
.

To construct our polynomial, we now approximate e
� kxk22

2⇢2
+(x/⇢)·s using the 1-dimensional Tay-

lor expansion of the exponential function q(x, s) = qm
�
�kxk22

2⇢2 + (x/⇢) · s
�
where qm(t) = 1 +

P
m�1
i=1

t
i

i! is the degreem� 1 Taylor approximation of ex. Thus, our final polynomial pz(x) is

pz(x) = E
s⇠N

⇥
f(
p
1� ⇢2z+ ⇢s) · q(x, s)

⇤
. (3)

Let �(x) be defined as the error term Ez⇠N [|pz(x)� T⇢(fx(z))|]. We have that

�(x) = E
z⇠N

h
E

s⇠N

⇥
|f(

p
1� ⇢2z+ ⇢s)| ·

��q(x, s)� e
� kxk22

2⇢2
+(x/⇢)·s��

ii

 E
s⇠N

h��q(x, s)� e
� kxk22

2⇢2
+(x/⇢)·s��

i
, (4)

where for the inequality we used the fact that |f(x)| = 1 for all x. We now observe that when
s ⇠ N the random variable �kxk22/(2⇢2) + (x/⇢) · s is distributed as N (�↵2/2,↵2), where

9



↵ = �kxk22/⇢2. Therefore, we have reduced the original polynomial approximation problem to
showing that the Taylor expansion of the exponential function converges fast in L1 to ex with re-
spect to N (�↵2/2,↵2). The proof of the following lemma is technical and can be found in the
Supplementary Materical (see Lemma 37). Here we give a heuristic argument.

Lemma 14 (Approximation of ex with respect to N (�↵2/2,↵2)) Fix ↵ > 0 and sufficiently
large universal constantC > 0. Let p be the polynomial p(x) =

P
m�1
i=0

x
i

i! withm = C↵2 log(1/✏).
We have that Ex⇠N (�↵2/2,↵2)[|ex � p(x)|]  ✏.

Proof [Sketch] We first observe that since the Gaussian has mean �↵2/2 and variance ↵2 using
the strong concentration of the Gaussian (whose tail decays faster than the exponential growth
of ex and its Taylor expansion, see Lemma 37 for more details) we may assume that we only
have to approximate the exponential function in the interval [�↵2/2� O(↵

p
log(1/✏)),�↵2/2 +

O(↵
p

log(1/✏))]. By Taylor’s theorem we have that for any interval [a, b] it holds that |p(x)�ex| 
ebmax(|a|, |b|)m/m!. Therefore, we have that by picking degreem = O(↵2 log(1/✏))we can make
the error of the Taylor expansion at most ✏.

Using Lemma 14 with ↵ = kx/⇢k2 we obtain that with degreeO((R/⇢)2 log(1/✏)) the L1 error
of the polynomial q(x, s) in Equation (4) is at most ✏. To bound the coefficients of the polynomial
pz(x) we use the fact that f(x) is boolean (and therefore bounded) and the fact that the input of the
Taylor expansion in q(x, s) is bounded. For the full proof, see the Supplementary Material.

3.2. Polynomial Approximation: Strictly Sub-Exponential Marginals

In this section we prove our polynomial approximation for the more general class of Strictly Sub-
Exponential distributions, defined as follows.

Definition 15 (Strictly Sub-exponential Distributions) A distribution D on Rd is (↵,�)-strictly
sub-exponential for ↵,� > 0 if for all kvk2 = 1, Prx⇠D[|x · v| > t]  2 · e�(t/�)1+↵ .

Our main goal in this section is to prove the following polynomial approximation result which is a
generalization of Proposition 9. We refer to Lemma 50 in the appendix for the formal statement.

Proposition 16 (Polynomial Approximation: Strictly Sub-Exponential Marginals) Let C be a
large universal constant. Let D be a distribution on Rk that is (↵,�)-strictly subexponential.
Let f : Rk 7! {±1} be a boolean function in F(k,�). Then there exist polynomials pz of de-
gree at most

�
C�k�2 log(1/✏)/✏2

�64(1+1/↵)3 , parameterized by z whose (expected) L1 error is
Ez⇠Nk

Eu⇠D

⇥
|pz(u)� f(z+ u)|

⇤
 ✏.

The main proof idea is similar to that of Proposition 9. However, there are significantly more tech-
nical hurdles in constructing the approximating polynomial for this case and we will only highlight
some of the main differences and refer to the Supplementary Material for the full proof. Similar to
the proof of Proposition 9, by using the result of Ledoux and Pisier Lemma 12 we obtain that it suf-
fices to approximate the function T⇢fx(z) with some polynomial pz(x). Since f is low-dimensional
(see Definition 2) we can write f(x) = f(UTUx) for some k ⇥ d projection matrix U. Since the
polynomial regression algorithm is able to learn this linear transformation, from now on we assume
that f is an explicit k dimensional function f(u) : Rk 7! {±1}. We will show that there exists a

10
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polynomial of degree at most (C�k log(1/✏)/⇢)64(1+1/↵)3 that approximates T⇢fu(z). Similar to
the proof of Proposition 9, the first step is to re-write the expression of T⇢fu(z) so that u does not
appear inside the target function f . We observe that for any distribution Q we have

T⇢fu(z) = E
s⇠Q


f(
p
1� ⇢2z+ ⇢s) · N (s;u/⇢, I)

Q(s)

�

= e
� kuk22

2⇢2 E
s⇠Q


f(
p
1� ⇢2z+ ⇢s) · e�

ksk22
2 �logQ(s)e(u/⇢)·s

�
.

We observe that we can no longer take Q to be a Gaussian (like we did in Proposition 9) because
when u has weaker tails than the normal density the Eu⇠D[

�N (s;u/⇢,I)
Q(s)

�2
] = +1. To avoid this we

take Q to be the distribution on Rk with probability distribution function Q(s) / e�ksk1 which has
exponential tails. We show, see Lemma 53 in Supplementary Material, that Ex⇠Q[(

N (x;u,I)
Q(x) )2] 

CkeCkuk1 . Beyond working with the exponential reweighting function, another technical com-
plication is that we now have to carefully create a polynomial approximation over a strictly sub-
exponential distribution for the function e�ksk22 , see Lemma 52 in Supplementary Material. To do
this we use a tighter polynomial approximation using Chebyshev polynomials.

3.3. Efficient Algorithms for Learning under Concentration

Given the polynomial approximation construction of the previous sections one can directly run L1

polynomial regression to minimizeE(x,y)⇠D[|p(x)�y|] similar to Kalai et al. (2008). We now state
our main theorem for strictly sub-exponential distributions.

Theorem 17 Let k 2 Z+ and ✏, �,� 2 (0, 1). Let D be a distribution on Rd ⇥ {±1} such that
the marginal distribution is (↵,�)-strictly subexponential. There exists an algorithm that draws
N = dpoly((k��/(�✏))

(1+1/↵)3 )) samples, runs in time poly(d,N), and computes a hypothesis h(x)
such that, with probability at least 1� �, it holds Pr(x,y)⇠D[y 6= h(x)]  opt� + ✏.

In the case of bounded marginals, we can significantly reduce the runtime of the algorithm by
performing a dimension reduction via a random Gaussian projection similar to the works of Arriaga
and Vempala (1999a) and Klivans and Servedio (2004). We show that when the x-marginal of
the distribution is bounded then we can perform a random projection to reduce dimension down
to poly(k�/✏) for the class of concepts of Definition 2. Assuming that f 2 F(k,�) we have
that there exists a k ⇥ d matrix U such that f(x) = f(UTUx). Let A be the random projection
matrix. It suffices to show that concept f(Ax) is close in L1 to the original concept f(x). We
once again use the fact that we can exchange the order of expectation so that we are able to use
the properties of the random Gaussian smoothing. We show, see Lemma 46 in the Supplementary
Material, that for every f 2 F(k,�) it holds thatEz⇠N

⇥
|f(u+z)�f(v+z)|

⇤
 O(� ·ku�vk2).

Therefore, we obtain that a random projection down to poly(k�/✏) dimensions will imply that
Ex⇠Dx Ez⇠N [[f(Ax + z) � f(x + z)|]  ✏. By performing polynomial regression in the low-
dimensional space we obtain the following improved runtime for bounded x-marginals.

Theorem 18 Let k 2 Z+ and ✏, �,� 2 (0, 1). Let D be a distribution on Rd ⇥ {±1} whose x-

marginal is bounded in the unit ball. There is an algorithm that drawsN = kÕ
�
(�/✏)4(1/�2)

�
log(1

�
)

samples, runs in time poly(d,N), and computes a hypothesis h(x) such that, with probability at
least 1� �, it holds Pr(x,y)⇠D[y 6= h(x)]  opt� + ✏ .
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4. Applications and Connections with Other Models

In this section, we show connections between our model of smoothed learning and three important
models that have been previously studied: (1) learning with margin, (2) learning under smoothed
distributions and (3) learning with concentration and anti-concentration. We briefly discuss (1) and
(2) and defer (3) and other details to the Supplementary Material, see Section B.

Learning with Margin We show that any algorithm for smoothed agnostic learning can be di-
rectly used to learn in the agnostic setting with margin. For the formal definition of agnostic learn-
ing with �-margin we refer to Equation (2) and Definition 22. We denote by @�f all points that
are in distance at most � from the decision boundary. We observe (see Lemma 25) that opt� is not
much larger than margin-opt

�
, as long we have that for any x /2 @� it holds that the value of f is

unlikely to change by the random perturbation:

opt�  margin-opt
�
+ sup

x/2@�f
Pr
z⇠N

[f(x+ �z) 6= f(x)] .

For any boolean concept f , we show (see Lemma 26) that as long as � is smaller than �p
k log(1/✏)

it

holds that supx/2@�f Prz⇠N [f(x+�z) 6= f(x)]  ✏. While this holds in full generality, for specific
concept classes we are able to provide better bounds. In particular, for intersections of k halfspaces
we show, see Lemma 27, that picking � = �/

p
log k/✏ suffices. Therefore, using Theorem 43 we

readily obtain the agnostic learning result for intersections of k-halfspaces of Corollary 6.

Agnostic Learning with Distributional Assumptions As mentioned, our smoothed agnostic
model generalizes agnostic learning with distributional assumptions. We denote by opt the stan-
dard optimal agnostic error under a distribution D. We see (see Lemma 30 in the Supplementary
Material) that opt�  opt+Prx⇠Dx,z⇠N [f(x+�z) 6= f(x)] . For the case of distribution smooth-
ing we have that the smoothed distribution D⌧ is the convolution of Dx +N (0, ⌧2I). In that case
we have that Ex⇠Dx,z⇠N [f(x+ ⌧z1 + �z2) 6= f(x+ ⌧z1)]  O(��

p
k

⌧
) . Therefore, by choosing

� = O(✏⌧/(�
p
k), we obtain that the gap between opt� and opt is at most ✏. For this value of �,

we are able to recover the strong results of Corollary 7 which yields an exponential improvement
over the prior work Kane et al. (2013).

5. Conclusion and Open Problems

In this work we introduce a new beyond worst-case model for agnostic learning and show that it
is possible to obtain efficient algorithms with runtime that were previously known only under very
strong distributional assumptions, e.g., Gaussianity. Moreover, we show that our framework and re-
sults generalize over several settings considered in the literature — often improving the best known
results significantly (e.g., for the fundamental problem of learning intersections of k halfspaces with
margin). There are many interesting open questions in smoothed agnostic learning: Can we improve
the runtime of Theorem 4 and remove or make milder the exponential dependency on the intrinsic
dimension k? Is it possible to generalize the result beyond (strictly) sub-exponential tails? It seems
that when the adversary is left completely unrestricted to pick instances with arbitrarily large norm
kxk, the effect of Gaussian smoothing of Definition 1 is negligible. What are the weakest assump-
tions on the x-marginal that enable learnability?

12
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