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A B S T R A C T   

In this paper, we examine continuous authentication for IoT devices using real-time biometrics of 
a person’s electrocardiogram (ECG) and electromyography (EMG). ECG is mainly used as a 
biometric identi昀椀er because it has speci昀椀c features such as mathematical, morphological, and 
wavelet characteristics. EMG is a bio-signal de昀椀ning a hand gesture of a person. Our authenti-
cation system would require no human interaction as it will have a continuous authentication 
schema. As soon as the user leaves a speci昀椀c perimeter, the session will be killed by the system. In 
this paper, we propose a challenging and integrated methodology for developing, prototyping, 
and evaluating a continuous authentication scheme to ensure that currently insecure IoT net-
works are improved to have a high level of security with two layers of biometric security with 
continuous authentication to perform authentication in an automated manner. We used the 
dataset from PhysioNet for ECG, which contains samples of around 12 K for 298 people. We also 
used the EMG dataset available on the geostatic python library containing 150 K samples. In this 
experiment, we concluded that it is viable to use our continuous authentication for IoT devices 
with the lowest performance consumption and power consumption. The experimentation also 
demonstrates that the training model on two bio-signals helps obtain higher accuracy on 
continuous authentication within an average of 99.6%-99.99%. Our authentication schema can 
be implemented and integrated on any IoT device with having at least one wireless frequency that 
can receive and send a signal to the sender/authenticator.   

1. Introduction 

It is expected in the near future that there will be exponential growth in the number of Internet of Things (IoT) users. Our everyday 
lives are being revolutionized by ambient intelligence and massively linked IoT devices ranging from smartphones and wearables to 
robotics, autonomous cars, and thermostats. Authentication is essential to ensure a safe interface between these devices and consumers 
[1]. 

Most backscattering devices are used in the context of continuous authentication for IoT devices. Backscatter systems conduct 
passive communication by re昀氀ecting ambient signals, which can enable low power consumption, low cost, and ubiquitous connectivity 
for smart devices in serving diverse applications and use cases [2]. It also offers a viable low-power technique for linking 
Internet-of-Things (IoT) devices in order to achieve ubiquitous computing [2]. Currently, continuous authentications are more likely to 
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be RFID-based and for IoT devices. RFID-based authentication is similar to backscattering in which an RFID tag without a battery (or 
any domestic power source) receives energy through the transmission of an RFID reader and sends a reply with the same energy. An 
intruder or hacker can capture this authentication for the purpose of impersonating anyone; furthermore, this session could be used for 
his/her (intruder or hacker) bene昀椀t. 

Electrocardiography (ECG) is the process of creating an electrocardiogram, which is a recording of the electrical activity of the 
heart. It is a heart electrogram, which is a graph of voltage against the time of the electrical activity of the heart recorded using 
electrodes that are inserted on the skin or by using an ECG sensor. For normal person with no heart diseases, the repetitive heart pattern 
or sequence of heartbeats can be represented in as a waveform, which has a cyclical repetition of 昀椀ve 昀椀ducial points represented by P, 
Q, R, S, and T. The 昀椀rst waveform is the P wave, which represents the depolarization of myocardial cells in the atria. The Q, R, and S 
waveforms are usually referred to as the QRS complex, which corresponds to atrial repolarization and ventricular depolarization [3]. 

Electromyography (EMG) is a method for measuring and recording electrical activity in skeletal muscles. EMG is conducted with an 
electromyograph to create a record called an electromyogram. When muscle cells are electrically or neurologically engaged, an 
electromyograph monitors the electrical potential created by these cells. The signals may be studied to detect anomalies and activation 
levels as well as to study the biomechanics of human or animal movement. A needle is used to measure EMG which is called as needle 
EMG is a type of electrodiagnostic medical procedure used by neurologists. A surface EMG is a non-medical method used by numerous 
experts, including physiotherapists, kinesiologists, and biomedical engineers, to measure muscle activity. In computer science, EMG is 
used as middleware in gesture recognition to allow physical activity to serve as an input to a computer in form of graph, as a kind of 
human-computer interaction. 

To improve the security of digital information, a biometric authentication approach based on electrocardiographic (ECG) and 
electromyographic (EMG) pattern recognition is gaining popularity for a variety of applications. When compared to other biometric 
traits, such as 昀椀ngerprints and faces, ECG signals offer various bene昀椀ts, including increased security, easier collection, liveness 
detection, and health information. This identi昀椀cation technique is divided into two parts: classi昀椀cation and matching tasks. Support 
Vector Machines (SVMs), autoencoders, convolution neural networks, and SoftMax classi昀椀ers are examples of traditional classi昀椀ers 
that primarily focus on the categorization of labels. However, training a static classi昀椀er with matching tasks for large ECG-based 
authentication systems, where the test samples are often unknown persons, is clearly not appropriate. The similarity of the ECG or 
EMG signals of a unique user is one type of authorization challenge. Another option is to handle the matching problem as if it were a 
one-class classi昀椀cation task. For example, [4] utilizes a one-class SVM classi昀椀er for matching. However, developing a one-class SVM 
model for a large training set is dif昀椀cult. 

Our work contributes a novel continuous authentication schema that does not requires an additional interface and can run in the 
background with a minimal impact on performance from the IoT, indirectly helping IoT devices reduce power consumption. Our 
Continuous Authentication (CA) schema can be implemented with any IoT device which has at least one wireless frequency and the 
ability to receive signals from the sender. This signal will be used to authenticate a legitimate person primarily by their heartbeat. If the 
authentication accuracy falls below the threshold, our CA schema will automatically authenticate that person with a hand movement 
without that person’s having the knowledge that they are being authenticated with EMG. This CA schema requires training data from 
the legitimate person for the ML model before they are authenticated by the schema. Our authentication schema protects against 
session hijacking as it is a continuous and as it is very hard to replicate a person’s heartbeat. While ECG authentication has been 
explored before, our novelty lies in the integration of electromyography (EMG) as a biometric identi昀椀er, speci昀椀cally capturing hand 
gestures. By combining our Fine tuning of ECG CNN model & alteration of CNN layer, we have achieved an average accuracy of 99% 
for 295 patient’s ECG dataset. We have also conducted experiments with EMG dataset from the geostatic Python library, demonstrating 
the viability and effectiveness of our continuous authentication approach with high accuracy, low computation complexity and low 
power consumption. Further, increasing reliance on machine learning models in various domains necessitates a thorough evaluation of 
their robustness against adversarial attacks. Impersonation attacks, wherein an unauthorised user attempts to impersonate a legitimate 
user, pose a signi昀椀cant threat to the security of these models. Therefore, evaluating the model’s ability to differentiate between 
genuine users and intruders becomes paramount. 

This paper begins by explaining the approach used for CA in IoT with existing real-time ECG and EMG CA. Further, using example 
[5], we will pick the CNN model architecture while also making some alterations to it in accordance with our experiment. We will do 
the same following our experiment with different machine learning models and their results for both ECG and EMG authentication. 
Once the methodology is completed, this paper presents our results and model robustness against impersonation attack. Finally, this 
paper will be described lessons learned from the experiment, future work required, and conclusion. 

2. Background 

2.1. Continuous authentication 

Almost all cyber-physical systems rely on user authentication. Traditionally, authentication was done quietly at the start of a 
session using something the user knows, such as a password or pattern; something the user has, such as a pin; something performed by 
the user, such as scanning a 昀椀ngerprint or recording a voice; or a combination of these [6]. As a result, one-time authentication is 
vulnerable to session imposters, credential-stuf昀椀ng, and password-spraying. Session imposters are attackers trying to take over sessions 
that have been open for longer than the users have been using them. Credential stuf昀椀ng and password spraying are when attackers take 
advantage of similar log-in information by gathering credentials leaked from other services or making authorization attempts based on 
commonly used passwords. Existing one-time authentication techniques are inadequate as a result of the following. 
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i) IoT cannot provide an interface (e.g., the keyboard, 昀椀ngerprinting sensor, camera) to perform authentications.  
ii) One-time authentication is not safe for long-term sessions as it is highly vulnerable to session hijacking.  

iii) It is highly annoying for the user if the device continues to request authentication. 

To overcome the limitations of one-time authentication, continuous authentication is a reliable approach to make sure that a 
benign user is in communication with the edge device. Continuous authentication (CA) is an approach to authenticate users in real- 
time when the user is around an edge device. For example, a biometric 昀椀ngerprint is a CA. While there are several wearable bio-
metric authentication solutions, continuous authentication is a dif昀椀cult challenge. A continuous authentication system would have to 
run in the background without interfering with the user’s daily activities. For example, the user should not be requested to submit a 
昀椀ngerprint at regular intervals, and the system should not log real users out in the middle of a session [7]. Some examples of CA are 
represented in the following:  

" Physical movement. Sensors can be used to track a user’s distinct way of moving, for instance, how a person walks while holding a 
phone or certain hand positions and actions when carrying or using a device. 

Table 1 
Existing continuous authentication approach on IOT.  

Author Method Approach Metrics Limitation 
M. Shahzad 

et al., 
2017 
[11] 

developed a Wi-Fi-based human 
authentication system, called 
Wi昀椀U, which recognizes users 
based on their gait. 

Wi昀椀U entirely use Wi-Fi devices to 
capture gait patterns. WiFiU 
consists of two Wi-Fi devices: one 
for continuously sending signals, 
which can be a router, and one for 
continuously receiving signals, 
which can be a laptop. 

recognition accuracies, 
perimeter covered, gait 
instances 

Top most accuracy reached was 
93% for one person among 3 
candidate and the lowest 
accuracy was 79.3%. 

Y. Liang, 
et al., 
2020 
[1] 

the nature of CA in IoT applications, 
highlight the key behavioral 
signals, and summarize the extant 
solutions from an AI perspective. 

Keystroke, Touchscreen Dynamics, 
Eye movement, walking gait, body 
gesture. 

N/A This framework requires high 
computation power with an 
additional cost of storage and 
temporary memory(RAM). 

H. Alamleh 
et al., 
2020 
[12] 

They can calculate their location 
using any of the previously 
mentioned technology (Wi-Fi, 
Bluetooth, cellular signals, GPS 
satellites, etc.). 

Location generated by mobile 
devices can be utilized for the 
purpose of continuous 
authentication. 

Number attempts, number of 
successful authentications 
attempts, termination of 
session, max time and average 
time. 

This method can be easily 
impersonate by intruder as it is 
vulnerable to session hijacking 
due to its non-liveness. 

A. Badhib 
et al., 
2021 
[13] 

research proposes a fast and secure 
device-to-device continuous 
authentication protocol that relies 
on devices’ features 

Devices feature such as token, 
battery, and location are used for 
CA and mitigates DoS attacks using 
shadow IDs and emergency keys. 

Communication cost, total 
bits, packet transfers. Number 
of continuous authentications 

Non-liveness feature results in 
replication of such features 
resulting in false authentication. 

S. Hathal 
et.al., 
2017 
[14] 

Lightweight authentication scheme 
using Timed Ef昀椀cient Stream Loss- 
Tolerant Authentication scheme 

The design of a secure broadcast 
authentication. 

Veri昀椀ed signals, expected 
packet size, false positive rate. 

RFID authentication can be used 
by intruder to sniff RFID packets 
and 昀椀nd out secret key for future 
authentication. 

D. Crouse, 
2015 
[15] 

Work on a face-based continuous 
authentication system that is 
inconspicuous in operation 

Facial orientation adjustment 
improves face recognition accuracy 
and the ef昀椀cacy of the prototype 
continuous authentication system. 

Accuracy, false-positive rate, 
session numbers and 
performance. 

Face-based continuous 
authentication requires external 
environmental factors to get 
good accuracy. 

H. Feng, 
2017 
[17] 

VAuth, the 昀椀rst solution that allows 
continuous authentication for voice 
assistants. 

VAuth is intended to be used in 
commonly used wearable devices 
such as eyeglasses, earphones/ 
buds, and necklaces, where it 
records the user’s body-surface 
vibrations and compares them to 
the speech signal received by the 
voice assistant’s microphone. 

Accuracy, false-positive rate, 
true-positive rate, distance 
and speech(db) 

Speech-based continuous 
authentication usually get 
disrupted due to noise coming 
from external environment 
resulting in low accuracy. 

Y. Zhang, 
2018 
[16] 

Eye movement to continually verify 
the present wearer of the VR 
headset to better safeguard genuine 
users of VR headsets (or head 
mounted displays in general) 
against attacks. 

Researchers created a prototype 
device that allows them to apply 
visual stimuli to the wearer while 
also recording the wearer’s eye 
movements. They leverage implicit 
visual cues to elicit eye movements 
from headset wearers while being 
unobtrusive to their typical 
activities. This allows them to 
continually authenticate the user 
without the wearer being aware of 
the authentication taking place in 
the background. 

Accuracy, false-positive rate, 
true-positive rate, equal error 
rate. 

The approach cannot be used for 
IOT authentication as it needs 
external device to wear on head 
and accuracy cannot be high 
using eye movement.  
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" Facial recognition. While facial recognition is commonly used for authentication (such as accessing a mobile phone), it may also be 
used to continually authenticate individuals.  

" User behavior patterns such as interactive gestures, how a user writes or taps, 昀椀nger pressure, how long a user presses a key on a 
keyboard, or how they swipe or use a mouse may be continually observed. Exceptions to the norm can then be noted or 昀氀agged. 

" Voice authentication. For continuous authentication, patterns in voice (such as variations in pitch and frequency) can be moni-
tored. Out-of-the-ordinary characteristics can be observed by continuously comparing input speech to a control dialog used as a 
reference. 

2.2. Biometric authentication 

Biometric, which incorporates the real user’s distinct liveliness or body-related characteristic (e.g., facial recognition, 昀椀ngerprint 
or palm scan, retina or iris scan, voice recognition). Traditional authentication can use different combinations of these key aspects, 
resulting in multi-factor authentication. Performing continuous authentication relies on continuous data processing by a risk engine 
which applies the appropriate degree of authentication throughout the session. Continuous authentication may also be one of the key 
aspects of traditional authentication, for example, a credit card gateway using the location of user while performing a transaction. 

2.3. IoT devices 

The Internet of Things (IoT) is a new communication paradigm that aspires to link many types of devices to the Internet in order to 
collect data generated by sensors; remotely control appliances and equipment; monitor surroundings, cars, and buildings; and so on 
[8]. The quantity and diversity of IoT devices has signi昀椀cantly increased in recent years, with over 30.9 billion IoT expected to be 
linked to the Internet by 2025 [9]. With expected growth, researching the integration of IoT devices, CA, and Backscatter technology is 
needed to achieve CA with IoT devices with low power consumption and higher throughput. 

3. Related work and limitation 

CA has been investigated extensively. Several of the earliest contributions was made in 1995, offering an examination of a user’s 
typing patterns on an IBM PC keyboard. Years later, in 2000, the use of a webcam on a desktop computer was demonstrated to be able 
to perform continuous facial analysis on participants. Further, neural network models were used to analyze users’ typing behavioral 
patterns on a desktop PC in 2006 [10]. 

Fig. 1. Classi昀椀cation of continuous authentication.  
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3.1. CA for IoT devices 

The existing CA approach in IoT from Table 1 is done with the help of Bluetooth, IoT, Behavioral gait, and many more. With 
Bluetooth, an IoT can recognize an authentic device within a range of speci昀椀c area and can give access to the master node which is the 
device that is connected with master node [11]. For example: an apple watch connected with a device such as laptop automatically, 
doesn’t require any authentication as long as it is connected with master node(laptop). For example, Bluetooth function poses a se-
curity risk. Assume an attacker, maybe acting as a friend, steals the user’s watch and gains physical access to her computer. This may 
happen if the two are at a lunch meeting and the user goes away from the table to get something from the buffet but leaves her watch 
and computer behind. If the attacker is wearing the watch and the user unlocks her phone while away from the table but within 
Bluetooth range of the watch, the watch also unlocks. The attacker can then use the watch to open the user’s Laptop without guessing 
her password [11] and is vulnerable to bluesnar昀椀ng. With RFID, a person can unlock door or can operate any machine as long as the 
RFID is closer to the operator node. With Behavioral gait, an operator node can decide with the help of arti昀椀cial intelligence if a person 
is legit or intruder. With combination of different feature such as location, Bluetooth id, tokens, etc. can also be used for continuous 
authentication on IoT. But all of this has its own limitation which is presented in the Table 1. 

Table 1 describes the realm of continuous authentication (CA) systems, several approaches have been explored. M. Shahzad et al., 
2017 [11], developed Wi昀椀U, a Wi-Fi-based system that identi昀椀es users based on their gait. Despite achieving recognition accuracies of 
up to 93%. The system is vulnerable to impersonation and session hijacking. Y. Liang et al., 2020 [1], focused on IoT applications and 
summarized existing AI-based solutions for CA. However, their framework requires signi昀椀cant computation power and incurs addi-
tional costs of storage. H. Alamleh et al., 2020 [12], proposed a method based on mobile device location, but its susceptibility to session 
hijacking raises concerns. A. Badhib et al., 2021 [13], introduced a device-to-device protocol relying on device features, but the 
non-liveness characteristic can lead to false authentication. S. Hathal et al., 2017 [14], presented a lightweight authentication scheme, 
yet it is vulnerable to RFID packet snif昀椀ng. D. Crouse, 2015 [15], worked on face-based CA, but external environmental factors impact 
its accuracy. H. Feng, 2017 [17], developed VAuth for voice assistants, but external noise affects its speech-based authentication 
accuracy. Lastly, Y. Zhang, 2018 [16], explored eye movement authentication for VR headsets, but its limited applicability to IoT and 
reliance on external devices pose challenges. 

Fig. 1, represents the current state of art on continuous authentication approaches to perform continuous authentication on IoT 
devices. Despite efforts, the 昀椀rst proposal for IoT-based CA did not arise until 2009 [18]. Now in 2021, CA was developed with the help 
of ECG to achieve excellent ef昀椀ciency in terms of accuracy on 昀椀nding uniqueness. 

3.1.1. ML-based related work 
An example of continuous authentication, which can be implemented with the help of facial recognition, speech processing, 

昀椀ngerprinting and further ML (Machine Learning) approach, can be implemented to identify the authenticate person. Nonetheless, 
continuous authentication is still subject to environmental factors. Facial recognition is limited by a lack of memory and processing 
capacity, as well as, an uncontrolled ambient environment. Inadequate lighting or background noise also prevents the device from 
completing ef昀椀cient facial recognition. During phone calls the voice is analyzed for ongoing authentication. However, speech-based 
veri昀椀cation remains in the background, with substantial processing expenses, battery power consumption, and storage. Fingerprint 
scanning also involves the purchase of expensive sensors that the average user does not possess [19]. 

The existing CA were made with respect to performance, time, and complexity; however, none of them were made with the concern 
of power consumption, low complexity in authentication, and lower PC con昀椀guration in regards to experiments. In order to achieve CA 

Fig. 2. Authentication work昀氀ow ECG and EMG signals.  
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Table 2 
Authentication performed via ECG or EMG on IoT Devices using ML.  

Authors Method Pre-condition Database ECG 
\EMG 
or Both 

Metrics Limitation 

Barros, A., 2019 [21] Investigated performance of Naive Bayes 
(NB), Support Vector Machine (SMV), 
Multilayer Perception (MLP), and 
Random Forest (RF) using ECG signal. 

Processed about 60 min of ECG collected 
data for each driver (total of 14). 3 s as a 
time slot, they have about 1200 instances 
with 9 features each 

Database used is Physio 
Net. 

ECG Accuracy, Sensitivity, 
Speci昀椀city. 

Done with 14 drivers which means 
less subjects or a smaller number of 
samples. 

Conor S., 2021 [6] Novel algorithm which uses QRS 
detection, weighted averaging, Discrete 
Cosine Transform (DCT), and a Support 
Vector Machine (SVM) 

The signals need to be recorded at highest 
possible sample rate that is 512 Hz. 

Database was recorded 
using the MAXIMECG 
MONITOR with around 
18 people and is not open 
source. 

ECG Balanced Accuracy Rate 
(BAR), Length of signal, False 
Positive Rate, Trained Rank 
Pruning (TRP) which 
alternates between low rank 
approximation and training. 

Done with less subjects, so it will 
affect accuracy when taking more 
subjects. 

Guoxin W., 2020 
[22] 

Because the weights in convolution layers 
are 昀氀oatingpoint values, CNN-based 
algorithms offer outstanding accuracy but 
tremendous complexity. To address this 
issue, they substituted binary weights and 
estimated weights for the original 
weights. 

There are 549 records in the database from 
290 different subjects. One to 昀椀ve 
recordings are assigned to each subject. 
Each record contains 15 signals that are 
measured at highest sample rate frequency 
with different recorders(leads). Each signal 
is digitized at 1000 samples per second 
with a 16-bit resolution throughout a 
16.384 mV range. 

Database used is 
Physionet PTB ECG 
database 

ECG Authentication Accuracy, 
Time Complexity, CPU cycles 
of different weight variants. 

CNN output determination is based on 
convolution computations necessitate 
several 昀氀oating-point multiplications, 
which have an impact on 
performance. 

Donida L., 2019 [5] Deep-ECG uses a deep CNN to extract key 
characteristics from one or more leads 
and compares biometric templates by 
computing simple and quick distance 
functions, resulting in exceptional 
accuracy for identi昀椀cation, veri昀椀cation, 
and periodic re-authentication. 

1500 samples per user (500 samples per 
lead), acquired with different distance each 
varying from dataset from all the databases 
with different time span. 

They used many different 
databases including E- 
HOL-03–0202–003 [5] 
and PTB ECG database 
which is from Physionet 

ECG Accuracy, Performance, 
Computation time needed to 
train. 

Needs high performance speci昀椀cation 
where the research was done in the 
following PC with 3.5 GHz Intel (R) 
Core (TM) i7–7800X CPU, RAM 32 
GB, GPU NVIDIA TITAN X (Pascal) 
with 12 GB of memory. Computation 
time needed to train model was 9 h 
and 10 min. 

P. Chandrakar, 2021 
[23] 

Scheme uses the captured ECG signal 
from a smart IoT device. The signal is 
then used to extract different ECG 
complexes. 

The user characteristics such as the QRS 
complex, P peak, T peak, etc. A feature 
vector is derived after pre-processing of the 
signal. 

Dataset [24] ECG TP (True Positive), TN (True 
Negative), FP (False Positive) 
and FN (False Negative) 

Requires high computation cost for 
extra feature extracted from ECG 
signal. Large amount of feature also 
affects in lower accuracy when done 
with large amount of subjects. 

(continued on next page) 
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Table 2 (continued ) 
Authors Method Pre-condition Database ECG 

\EMG 
or Both 

Metrics Limitation 

Q. Li, Z. Luo, 2021 
[25] 

Multi-channel sEMG signals acquired 
from the user hand gesture are converted 
into sEMG images which are used as the 
input for deep anomaly detection model 
(WHICH HAS CNN in it) to classify the 
user as client or imposter. 

Three methods to generate images from the 
sEMG data: sEMG map, instantaneous 
sEMG image and difference sEMG image 
(recorded EMG) 

Recorded EMG data EMG Area under the ROC Curve 
(AUC), Accuracy 

This CNN model requires high 
computation cost which indirectly 
affects power consumption. 

Yamaba, H., 2020 
[26] 

Using Support Vector Machine (SVM) it 
produces signi昀椀cant accuracy with less 
computation power and the method 
proposed uses series of gestures used for 
authentication. 

Recording EMG with highest Mhz to 
decrease noise signal using Myo armband 
and labelled it. 

Myo: Gesture control 
armband [26] 

EMG FRR, FAR, Accidental success 
rate. 

Recorded signal with highest possible 
megahertz which is the only reason of 
good accuracy in SVM Model. 

Y. Wang, 2022[43] They employed four classi昀椀ers—random 
forest (RF), k nearest-neighbors (k NN), 
multilayer perceptron (MLP), and radial 
basis function-based SVM (RBF-SVM)— 

and 昀椀vefold cross-validation and grid 
search [27] to optimize their parameters. 

To analyze ECG, they use 54 healthy people 
(no heart disease) aged 19–35. They got 30 
min of ECG data with 200 instances of QRS 
complexes meaning 54×200=10,800 
samples. 

Dataset used was 
recorded. 

ECG Accuracy, Attack success rate, 
FPR, confusion matrix 

Model accuracy was calculated with 
54 participants which can result in 
high FPR in accuracy with huge 
number of users. 

D. Progonov, 2022 
[28] 

Their study examines heartbeat signal 
authentication on modern smartwatches. 
Discrete and Continuous Wavelet 
Transforms were used to extend heartbeat 
signal features for reliable user 
authentication in various usage contexts. 

They used ECG & Photoplethysmogram 
(PPG) sensor to record ECG in different 
actins like resting, sitting, walking, 
standing. 

Dataset was manually 
recorded. 

ECG Error levels, False rejection 
rate and False acceptance rate, 
Accuracy for R 昀椀ducial point in 
different actions. 

Their model attained the highest False 
acceptance rate was 23% and False 
rejection rate was 2% which means 
that this authentication has lower rate 
of unauthorizing user and blocking 
authorized user.  
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Table 3 
Continuous authentication done via ECG or EMG on Non-IoT devices using ML.  

Author Method Pre-condition Database ECG/EMG or 
Both 

Metrics 

Belgacem N., 
2015 
[30] 

Optimum-Patch Forest (OPF) classi昀椀er with 
autocorrelation (AC) and Fast Fourier Transform (FFT) for 
human authentication 

PTB-database for ECG and RECORDED EMG 
Used 5 Physionet’s databases 

Physionet’s 
database 

Both 
(Extracted ECG 
from EMG) 

False Rejection Rate and False Acceptance Rate 
(Accuracy&Error rate) 

S. A. Raurale, 
2021 
[31] 

LDA projection based Multi-layer Perceptron (MLP) and 
the Radial Basis Function (RBF) neural network classi昀椀er 

The dataset by Raurale et al. [37] which 
includes EMG recordings from ten subjects of 
27 ± 4 years is considered. 

Signals were 
recorded 

EMG False Rejection Rate and False Acceptance Rate 
Accuracy, Equal Error Rate 

A. M. H. 
Wong, 
2020 
[32] 

TensorFlow Keras has been used to process the data to 
authenticate the hand gestures. The neural network is a 
Keras Sequantial model which consists of three hidden 
layers with 30, 20, and 10 nodes respectively, and the 
epoch size used is 15. 

7 participants to record their hand gesture(3 
males and 4 females,age19–29, 50 rythms) 

Signals were 
recorded 

EMG Confusion Matrix(True Label, Predicted Label), 
False Rejection Rate and False Acceptance Rate 

Hammad, M., 
2019 
[33] 

12-layer CNN to authenticate the ECG signals Introduced a new database, which is suitable 
for training and validating authentication 
systems. 

MWM-HIT 
database 

ECG average accuracy, sensitivity and positive 
predictivity 

Pławiak, P., 
2020 
[34] 

used ResNet to extract the local features from raw ECGs and 
summarized the local-feature series by other network 
components such as attention mechanism 

ECG signals obtained from two ECG databases 
(Physikalisch-Technische Bundesanstalt 
[PTB] and Check Your Bio-signals Here 
initiative [CYBHi]) for authentication. 

Physionet’s 
database 

ECG accuracy, precision, recall, F1-score, and equal 
error rate, which are related to false positive, false 
negative, true positive, and true negative rates to 
evaluate the performance. 

L. Lu, 2020 
[35] 

Alternative EMG-based personal identi昀椀cation approach 
which uses CWT and CNN is proposed. collected data is 
transformed into two-dimensional graphics by CWT. 
Finally, the CNN algorithm is adopted to classify the 
experimented subjects. 

MYO armband from Thalmic Labs [26] is used 
to acquire EMG signal. It is a complete wireless 
motion and EMG sensing platform 

Recorded Signals 
with Myo 
armband 

EMG Identi昀椀cation Accuracy, True Positive Rate and 
False Positive Rate under different thresholds of 
the model  
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in IoT, IIOT, and MIOT devices, we should consider power consumption as it is the most important consideration while maintaining 
performance, time, and complexity in any device. Table 2 represents the best ML approach for ECG authentication which aligns with 
the current motive of continuous authentication of IoT devices with ECG authentication. 

3.1.1.1. ECG/EMG-based related work. There are two types of machine learning approaches used for IoT ECG authentication .  

(1) Algorithms Based on handcrafted Features [20]: Handcrafted feature extraction is divided into two types: 昀椀ducial and 
non-昀椀ducial. Algorithms based on 昀椀ducial characteristics extract from a single ECG beat, or segment the distinctive local at-
tributes of ECG beats such as temporal or amplitude onset, peak (minimum or maximum), and offset. Fiducial properties include 
the P, Q, R, S, and T peak waves, the time difference between the peaks of the Q and T waves, and the QT interval. In the 
literature, several subsets of these 昀椀ducial traits have been employed. Non-昀椀ducial feature extraction does not rely on char-
acteristic points to generate the feature set. Instead, some systems rely on evaluating an ECG comprehensively, or generally 
using time or frequency analysis to extract different statistical data. This approach tries to extract discriminative information 
from the ECG waveform without the need for 昀椀ducial point localization.  

(2) Algorithms Based on Non-handcrafted Fiducial Features [20]: The majority of handmade feature extraction algorithms include 
a pre-processing procedure to prepare the ECG (e.g., a statistical analysis such as 昀椀ducial or non-昀椀ducial features extraction). 
Researchers have begun to investigate non-handcrafted features, and usage of deep learning approaches to gain greater per-
formance and resilience since the debut of deep learning. Handmade techniques rely on independent procedures and prepa-
ration, such as feature transformations and/or noise reduction, in addition to its optimization work, which results in poor 
performance. As a result, deep learning contributes to improved performance by circumventing the aforementioned constraints. 

Table 2, represents the ECG-based continuous authentication or EMG-based continuous authentication schemes for IoT devices. 
Table 2 describes the realm of continuous authentication with ECG or EMG using ML for IoT devices. Barros et al., 2019 [21], 

explored the performance of various machine learning algorithms using ECG signals and achieved promising results. However, their 
study was limited by the small number of subjects, involving only 14 users. Conor S., 2021 [6], proposed a novel algorithm for ECG 
analysis, but the limited number of individuals in their database and its non-open-source nature hindered broader applicability. 
Guoxin W., 2020 [22], addressed the complexity of CNN-based algorithms for ECG analysis, but their study highlighted the potential 
impact on performance when using 昀氀oating-point multiplications. Donida L., 2019 [5], introduced a deep CNN-based method for ECG 
analysis, demonstrating exceptional accuracy, but the high-performance requirements and computation time were noted as limita-
tions. P. Chandrakar, 2021 [23], proposed an ECG-based scheme for authentication using smart IoT devices but highlighted the high 
computation cost and the potential impact of a large number of features on accuracy. Q. Li and Z. Luo, 2021 [25], employed sEMG 
images for anomaly detection, yet the high computation cost associated with the CNN model was mentioned as a limitation. Yamaba, 
H., 2020 [26], proposed an authentication method using the Myo armband but limited to the reliance on the recorded signal at the 
highest possible sampling rate. Y. Wang, 2022 [27], explored ECG authentication with four classi昀椀ers, but the limited number of 
participants may affect the results when considering a larger number of users. Finally, D. Progonov, 2022 [28], investigated heartbeat 
signal authentication using smartwatches, reporting promising results; however, the study was limited by the manually recorded 
dataset. Their model was limited to highest False acceptance rate which is 23% and False rejection rate was 2% which means that this 
authentication has lower rate of blocking unauthorizing user. 

Overall, these studies provide valuable insights into ECG-based authentication methods but also highlight the limitations associ-
ated with sample size, computation cost, dataset availability, and potential performance impacts. 

3.1.2. Non-ML based work 
Approach used in CA for IoT is RFID or key fob authentication used in smart cars such as Tesla. Wouters observed that the Model S 

key fob encrypts the code delivered to the vehicle’s radio receivers with a 40-bit encryption [29]. This is quite simple in terms of 
encryption and isa limitation imposed by the fob’s computing capability. Wouters et al., discovered the car’s continual radio ID 

Fig. 3. ECG-based continuous authentication process.  
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broadcast and feed it to the target’s key fob. Following the fob’s reaction and intercept two return-broadcasts Wouters et al. was able to 
break into the automobile in under two seconds after acquiring two code samples and running them through a 6-terabyte table of 
pre-computed keys [29]. Here the approach can be de昀椀ned as Bluetooth-based authentication, Wi昀椀-based authentication, RFID-based 
authentication or any token-based authentication as described from Table 1. 

Existing CA efforts have been made ef昀椀ciently without non-biometric features while CA with Biometric devices needs high power 
consumption and high-performance usage. Different CA approaches have limitations due to it’s non-liveness (Bluetooth, WiFi, RFID) 
detection for authentication, and if CA is made with the features of liveness characteristics (ECG, EMG, Facial, Eye, 昀椀ngerprint). The 
CA has ow accuracy in detecting an authentic person with having dependent accuracy on external environmental factors. 

These inconveniences, therefore, hindered the extensive use of IoT devices in response to high-security demands. Continuous 
authentication with the help of behavioral biometrics, integral physiological biometrics, behavioral metrics, and knowledge-based 
credentials is password or pin experimented [1]. Some of them work with ECG authentication, but none were made with the 
consideration of low power consumption and less complexity in an algorithm. In addition, none of the existing CA for IoT works 
combined an extra layer of security features using EMG. 

3.2. ECG/EMG-based CA for non-IoT devices 

Our research focus was based on CA for IoT devices using ECG and EMG due to its liveliness authentication detection, which is the 
reason we surveyed existing CA approaches used with ECG or EMG on any devices. Table 3, represents the approaches for continuous 
authentication using ECG or EMG Biometric features for any device where several studies have explored different approaches for 
authentication using biometric signals for non-IoT devices. Belgacem N., 2015 [30], focuses on human authentication using the OPF 
classi昀椀er with AC and FFT techniques applied to ECG and EMG signals. The PTB-database, containing samples from Physionet’s da-
tabases, is used for evaluation, and metrics like FRR and FAR are employed to assess system performance. S. A. Raurale, 2021 [31], 
proposes a method that combines LDA projection with MLP and RBF neural network classi昀椀ers for authentication based on EMG 
recordings. The evaluation in this study considers metrics such as FRR, FAR, accuracy, and EER. A. M. H. Wong, 2020 [32], employs 
TensorFlow Keras to process hand gesture data for authentication, utilizing a Keras Sequential model and evaluating the system using 
metrics like Confusion Matrix, FRR, and FAR. Hammad, M., 2019 [33], introduces a 12-layer CNN architecture for ECG signal 
authentication, utilizing the MWM-HIT database and evaluating system performance based on average accuracy, sensitivity, and 
positive predictivity. Pławiak, P., 2020 [34], uses ResNet architecture to extract local features from ECG signals sourced from PTB and 
CYBHi databases, employing metrics such as accuracy, precision, recall, F1-score, and EER. L. Lu, 2020 [35], presents an alternative 
approach for personal identi昀椀cation using EMG signals transformed into two-dimensional graphics using CWT, classi昀椀ed with a CNN 
algorithm, and evaluated based on Identi昀椀cation Accuracy, True Positive Rate, and False Positive Rate under different model 
thresholds. The limitation of the ECG-based or EMG-based continuous authentication approaches for Non-IoT devices are that it re-
quires high computation resources to provide good accuracy. 

4. Research objective 

This paper examines a continuous authentication for IoT devices that uses real-time biometrics of a person’s ECG and EMG, which 
can be used with a maximum refresh rate for continuous authentication which further can be used in many IoT applications. This 
authentication is important due to its liveliness detection from the person which is hard for any intruder or hacker to impersonate. 
Even if a person tries to replicate the heartbeat features to unlock the authentication scheme, they will need to pass the second layer of 
the authentication system, which is the EMG pattern recognition, making it harder for a hacker or intruder to bypass the authentication 
system. Further taking into the consideration of IoT requirements, there are some characteristics such as Low Complexity of Algorithm, 
Low Power Consumption and highest accuracy that need to be considered in the solution design. 

5. Methodology 

Mainly, security technologies used in Biometric are one-time authentication, which requires user interaction to identify a single 
person. Using our Continuous Authentication, a user will be identi昀椀ed with the help of a behavioral biometric, which requires no 
human interaction. This system could authenticate a person 3 times per minute on ECG and up to 10 times per minute with EMG 
pattern recognition which is adequate for continuous authentication if it is far from the reader. Our system will analyze ECG and EMG, 
which will help a machine identify a user. Further, the sensor can also be implanted on a person’s skin as it is small in size and the 

Fig. 4. CNN model used in ECG experimentation.  
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approach can be integrated. With the help of biometric measurements, it would be easy to identify any individual, which would give us 
more accuracy on liveliness detection or ef昀椀ciency than the current application, which authorizes an individual through continuous 
authentication. On top of biometric, this system will use multiple approaches to secure from intruders impersonating a benign user, 
making it a novel method for continuous Authentication with ECG and EMG. To prepare a safe and secure authorization system for IoT 
devices, we will be following the traditionally regulated CIA Triad: con昀椀dentiality, integrity, and availability. If one of these CIA triad 
principles is not ful昀椀lled, it is possible to say the security is breached [36]. 

5.1. ECG-based continuous authentication 

Our proposed system begins with ECG signal recognition to con昀椀rm that the accepted score is from an alive user, which not only 
naturally detects liveliness, but is also better at rejecting impostors due to QRS complexes. The sampling rate of ECG signals varies 
based on the testing device. To experiment on signals collected from numerous sensors, the signals of diverse input sampling rates must 
昀椀rst be converted into an average sample rate signal. 

Furthermore, the strength of heartbeats among ECG measurement participants will vary depending on whether or not they exercise, 
take medicine, and so on. As a result, there must be a procedure for normalizing the amplitude of the ECG signal. Preprocessing is 
carried out by computing an individual’s average ECG waveform and using the group average of all ECG waveforms to compute the 
average space of average ECG waveform samples and align ECG waveforms [37]. These average ECG waveform (QRS complexes) 
samples will be used in machine learning. As shown in Fig.3, if the accuracy of the machine learning model drops below 99.50% while 
authenticating, the system would automatically rely on EMG authentication until the machine learning model gains the accuracy to 
99.50% upon the authentication scheme, which will again switch to ECG authentication. 

5.2. EMG-based continuous authentication 

Electrical bio signals are preferred as biometric features due to their concealed nature and ability to identify liveliness. Biological 
signals have gained popularity as a method for human-computer interaction in recent years [31]. Biological signals such as brain 
waves, pulse waves, and electromyograms (EMG) have been studied extensively. Electromyograms (EMG) measures muscle response 
or electrical activity in response to nerve stimulation of the muscle. As shown in Table 2 and 3, EMG has been used in a variety of 
studies to date. EMG authentication requires pattern recognition, where EMG pattern can be recorded at the beginning of initiation of 
the system similar to 昀椀ngerprint or face unlock and further can be used to unlock the system with that recorded EMG pattern. This 
requires no additional sensor as there are several types of publicly available sensors which can record ECG and EMG as required. 
However, this may require an additional switch in hardware in the current state of the art in ECG & EMG sensor hardware. 

Listing 1 algorithm is a high-level representation of a continuous authentication system using ECG (heartbeat) and EMG (motion) 
signals. The goal of the algorithm is to determine whether to accept or reject the user based on the input signals. 

Following is the description of the algorithm step by step:  

1 Input: ECG and EMG signals are provided as the input to the algorithm.  
2 For each ECG, the following steps are performed:  

a Input Correction: If necessary, the input signals are corrected or processed to ensure data quality.  
b ECG Signal Processing: Filtering: The ECG signal is 昀椀ltered to remove noise and artifacts.  
c Preprocessing: Preprocessing techniques are applied to enhance the signal quality.  
d Point Extraction: Relevant 昀椀ducial points are extracted from the preprocessed data.  
e Accuracy Improvement Loop: The algorithm enters a loop where the preprocessed data is used as input to a CNN (Convolutional 

Neural Network) model. The output accuracy of the model is updated, and the loop continues until the accuracy reaches a certain 
limit.  

3 Acceptance or Rejection: If the accuracy of the CNN model is equal to or higher than the speci昀椀ed limit, the algorithm returns "accept" 
as the output, indicating that the user is authenticated. If the accuracy is below the limit, a pattern matching algorithm, denoted as 
matching pattern (DT Model), is applied to determine a pattern match and obtain an EMG score.  
a The EMG score is compared to a prede昀椀ned limit for EMG signals.  
b If the EMG score is lower than the EMG limit, the algorithm returns "reject" as the output, indicating that the user is not 

authenticated.  
c If the EMG score exceeds or meets the EMG limit, the algorithm returns "accept" and proceeds to the ECG step again.  
d Exit: If the initial input fails the correction step, the algorithm exits. 

Fig. 2 explains an authorization process that will help us to create a continuous authentication project. Here we propose a speci昀椀c 
selection of features used in previous research, which can only be based on the 昀椀duciary amplitude and time of the signal obtained 
without any complex processing, and then examine some of the most used machine learning algorithms, i.e., the SVM (Support Vector 
Machine), and RF (Random Forest), convolution neural network (CNN). 

Support Vector Machines (SVM) are often used as best choice classi昀椀ers in biological signal analysis applications. SVM is a pattern 
recognition algorithm that separates a collection of training features with a maximum margin from the hyperplane. Non-linear kernel 
changes may be used when linear separation is not achievable. Different kernels with quadratic, polynomial, and radial basis functions 
are available. The selection of an appropriate kernel function is dependent on the particular dataset and its feature [21]. 
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Our work will also experiment with decision trees and CNN. Given the variety of characteristics retrieved from ECG signals, the 
ef昀椀ciency of frequently used features in ECG biometric authentication techniques is comprehensively investigated in our work. The 
characteristics such as QRS-complex detection are speci昀椀cally considered. These characteristics are put into decision tree classi昀椀cation 

Fig. 5. CNN classi昀椀cation heatmap for ECG experimentation.  

Listing 1 
ECG and EMG based continuous authentication.  
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algorithms. Convolutional layers process the input signal x by convolving it with a bank of K 昀椀lters f, using biases b. As a result, they 
obtain an output signal y. 

Herex * RH×W×D
, fx * RH×W×D

, y * RH×W×D (1) 
From Eq. (1) H, W and D are the height, width, and depth dimensions, respectively. In the basic con昀椀guration of the convolutional 

layer, for each coordinate (i, j, d), the output is computed as follows: 

Y′

i″j″d″ = bd″ +
3H″

i′=1

3W″

j′=1

3D

d′=1
fi′j′d × xi″+i′−1, j″ + j − 1, d″

, d″ (2) 

Padding of the input signal x or subsampling stride of the output are required in some layers. We focus on top-bottom-left-right 
paddings (P−

h ,P+
h , P−

w , P+
w) and strides in particular (Sh, Sw). 

Y′

i″j″d″ = bd″ +
3H″

i′=1

3W″

j′=1

3D

d′=1
fi′j′d × xsh(i″−1)+i′−P−

h
, Sw(j− 1) + j′ − P−

w (3) 

Since IoT devices have minimal computing power, complex architectures need to be avoided [21]. Furthermore, the performance of 
these algorithms needs to be analyzed to the user constantly. This will help us create a low complexity system [22] that will help 
integrate the above approach with our existing IoT authentication module. Further we can use EMG pattern recognition when ECG 
precision or accuracy of identifying the person drops below 99.50% and use EMG pattern recognition for authentication as shown in 
Fig. 2. 

Fig. 3 represents the simple ECG/EMG authentication approach used in our method. Once the sensor device is implanted in any 
person’s body, it will transmit an ECG and EMG signal with the help of a sensor. Further, the receiver will use the above-mentioned 
approach presented in 昀氀owchart to extract features from ECG/EMG data, helping an IoT device to identify an individual. This approach 
will be continuous, and as soon as the system detects any intruder or if the authorized person’s leaves, the access will be denied 
immediately. The above integration of ECG and EMG will help to create a novel approach for continuous Authentication, a system with 
the highest ef昀椀ciency, and no human interaction. 

6. Experimentation and results for evaluating different ECG and EMG using ML models 

The experiment will be carried out with an intruder user and a legit user. Both of the signal points will be collected in csv 昀椀le, which 
are available in ECG dataset from PhysioNet [38] and EMG dataset from geostat. The ECG data is processed as shown in following 
Fig. 5. Processing EMG data is comparatively easier, since the process is reduced in half comparing to converting ECG raw data to csv. 

Fig. 3 represents the initial steps for experimenting our continuous authentication approach. The success of the approach will be 
measured in terms of time, accuracy, sensitivity, speci昀椀city and error. 

Firstly, we will conduct two different experiments: 

6.1. Differentiating different ECG signals between multiple samples experimentation 

In order to conduct this experiment. We will be diving the experiment in multiple phases which are: 

Fig. 6. SVM Classi昀椀cation heatmap report for ECG experimentation.  
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6.1.1. Data pre-processing 
We retrieved ECG signal characteristics from the original dataset from PTB database [38]. It takes ECG records in the PhysioNet 

PTB Diagnostic ECG Database and generates a dataset for further use. The code loads each record, resamples the signal, detects QRS 
peaks, corrects the peaks, and calculates the average QRS complex. It then removes outliers based on a count threshold. The count 
threshold refers to the minimum number of valid QRS complexes required for a record to be included in the dataset. If the count of valid 
QRS complexes is below this threshold, the record is considered an outlier and is discarded. In the provided code, the count threshold is 
set to 8. Therefore, any record with fewer than 8 valid QRS complexes will be excluded from the dataset. Afterward, it calculates the 
correlation coef昀椀cients between each QRS complex and the average QRS complex, selects the maximum correlation coef昀椀cients, and 
generates combinations of indices. For each combination, it creates a temporary data frame with the corresponding signal segments 
and appends it to the 昀椀nal dataset. The processed dataset is saved as a CSV 昀椀le. This ECG signal has multiple 昀椀ducial points, that can be 

Fig. 7. Decision Tree Classi昀椀cation heatmap report for ECG experimentation.  

Fig. 8. K-mean Classi昀椀cation of Physio Net.  
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utilized to divide a lengthy signal into shorter segments. Then, for each ’R’ point, we detected it and chose a time frame of 1 s. As a 
result, we obtained a large number of ’QRS’ duration or QRS complexes, each having 200 samples [22]. Following that, we chose 
15–25 complexes at random. When we have 昀椀nished preprocessing all of the individuals’ records, we will utilize those complexes as 
input data for the convolution neural network. 

Fig. 9. Count of Similarity vs Dissimilarity.  

Fig. 10. Siamese binary classi昀椀cation report.  
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6.1.2. Modeling 
To develop our model, we employed a CNN framework inspired from [5]. With around 20 epochs, we trained the CNN model using 

gradient descent. The batch size was set at 16. To produce high-dimensional characteristics of ECG signals, deleting the fully-connected 
layers of the training CNN structure and maintaining the convolution layers that include ECG signal information [22]. The model 
architecture consists of several convolutional layers with ReLU activation and max pooling, followed by dropout regularization and 
fully connected layers as shown in Fig. 4. The model is compiled with cross-entropy loss and the Adam optimizer. The training process 
is carried out for a speci昀椀ed number of epochs, with the best model weights saved based on validation accuracy. The performance of 
the trained model is evaluated using classi昀椀cation metrics such as precision, recall, and F1-score. The training and validation loss 

Fig. 11. 3D plot features of Siamese Network.  

Fig. 12. Decision tree Classi昀椀cation heatmap report for EMG experimentation.  
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curves are plotted using Matplotlib. Finally, the trained model is saved for future use. 
Fig. 4 represents CNN Model, which represents the building of CNN model layer for ECG. Fig. 5 represents classi昀椀cation heatmap 

report for CNN model used for ECG authentication to identify unique patients among 295 patients(295 users). 
In addition to CNN, we performed SVM model to distinguish all 295 patients(295 users). We used default kernel which is radial 

basis function kernel “RBF”. Further we set gamma to auto, so it can be scaled on auto and did the punishment or penalty of 2 for the 
parameters. The following Fig. 6 shows the SVM had an average of 95% of right prediction for all 20% of the test data. Fig. 6 represents 
the classi昀椀cation heatmap report for SVM model. 

Similarly, we performed the similar approach using decision tree model to distinguish all patients from. Fig. 7 represents the 
classi昀椀cation heatmap report for the decision tree model. 

Fig. 8 represents the classi昀椀cation results obtained by k-mean clustering algorithm. The color of each point in the scatter plot is 
determined by the corresponding numeric label assigned to the data sample. The conversion to numeric labels enables the visualization 
of different categories or classes in the scatter plot. Principal Component 1 (x-axis), Principal Component 2 (y-axis), and Principal 
Component 3 (z-axis) represent orthogonal directions in the multidimensional feature space. The points in one area indicates that for 
K-mean clustering, it is not able to separate all individual with ECG Fiducial points. 

Fig. 9 represents count of similarities found by k-mean clustering, which is approximately 40,000, indicates that there are around 
40,000 instances where the closest user identi昀椀ed by the algorithm based on 昀椀ducial points of ECG matches the actual user in the test 
data. This suggests that the 昀椀ducial points of ECG have successfully captured similar patterns or characteristics among these users, 
leading to a decent number of correct identi昀椀cations. On the other hand, the count of dissimilarities, approximately 13,000, represents 
instances where the closest user identi昀椀ed by the algorithm does not match the actual user in the test data. This indicates that there are 
differences in the 昀椀ducial points of ECG among these users, resulting in high number of incorrect identi昀椀cations. 

Fig. 10, shows the heatmap classi昀椀cation report for identi昀椀cation of 2 users (0,1) with using Siamese network. The similarity score 
presents that the Siamese model is able to not able to detect similarity between two users as it has lower precision, recall and F1-score. 

Fig. 11, represents Siamese model cannot identify all user but was able to 昀椀nd to some unique users. By watching 3D plot diagram, 
it has a high number of red points indicating, dissimilarity between the same user’s 昀椀ducial point making it high number of false 
rejection rate. 

6.1.3. ECG authentication process 
For authentication, accuracy experiments were used and we pass user, intruder, and test data where the test number is represented 

below. We passed all of the three data to a trained model to obtain accuracy where accuracy is shown as below: 

Accuracy =
userscore + intruderscore

testnumber

(4) 

Where test number is:  
test_number = user_number + intruder_number                                                                                                                             (5) 

Here user_number represents the number legit user and intruder_number represents the number of intruders. The ECG features of 
both users which is intruder and authorized user are passed to CNN model to get the correlation of accuracy of authorized and 
unauthorised users. To assess the model’s robustness, we employ an impersonation attack approach. The methodology involves 
selecting an intruder who impersonates a legitimate user during the data-preprocessing phase. We calculate the intruder accuracy, 
which represents the model’s performance when the intruder attempts to deceive the system. Additionally, we measure the test user 

Fig. 13. SVM model Classi昀椀cation heatmap report for EMG experimentation.  
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accuracy to evaluate the model’s capability to correctly identify and authenticate genuine users. 

6.2. Differentiating different EMG signals between multiple samples experimentation 

In order to conduct this experiment, we will be diving the experiment into multiple phases: 

6.2.1. Data pre-processing 
For this experiment, we got the dataset from geomstats.datasets.utils and extracted the data to a CSV 昀椀le, for further operation [2]. 

The backend of getting data was done with the help of NumPy. Further moving on we pre-processed data with hand gesture data such 
as Rest, Scissors, Ok, Rock and Paper. The above hand gesture is recorded with 7 channels and labeled with its hand gesture and with its 
time. Data cleaning was done to remove any noise or artifacts present in the data. This involves techniques such as baseline correction, 
昀椀ltering (e.g., bandpass, notch), and removing outliers. Further segmentation is used to split the continuous data into individual 
gestures based on the provided timestamps. This ensures that each gesture is treated as a separate sample for analysis. Further, feature 
extraction is done to extract relevant features from the segmented data to capture the characteristics of each gesture. Commonly used 
features for EMG data include frequency-domain features (e.g., spectral entropy, power spectrum), and time-frequency features (e.g., 
wavelet transform). After extracting features, standard normalization is used to normalize the feature values to a consistent scale. This 
step helps mitigate the in昀氀uence of different magnitude ranges across channels and ensures that all features contribute equally during 
classi昀椀cation. If the number of features is high or if there is redundancy in the feature set, applying dimensionality reduction tech-
niques which is feature selection algorithm is used to reduce the feature space while preserving important information. Further, we will 
use this data to feed different models and test their prediction, so the model with the highest accuracy can be used with the 
authentication process. 

6.2.2. Modeling 
To develop our model, we used decision tree algorithm which is fast and easy to use and we got the f1-score which is above 90%, 

which means that the decision tree has the perfect precision and recall. Fig. 12 shows the classi昀椀ed heatmap report for decision tree- 
based model. As we can see the lowest accuracy, we have got is in rest gesture that is while doing no gesture. To make it more precise 
we can remove the rest label as it is not needed in the authentication proposal because a person has to do some gestures in order to get 
into the authentication system. But we kept the rest data so that the model has to perform for all possible gestures. Further, we can also 
conclude that the more pressure we put on hand will result in more precision, which means scissors, which will be similar in all 
different ML models. 

We then repeated the experiment with SVM model, by passing data to SVM algorithm and used the default kernel which is Radial 
Basis Function (RBF) and set gamma to auto, where we set the penalty to 2. Fig. 13 shows the classi昀椀cation heat map report for the SVM 
model. While seeing the heat map, we can see that RBF cannot be used to perform prediction on gestures as it seems its accuracy is too 
low. 

We further repeated the experiment using CNN model with 100 epochs. We used Sequential model for the experiment. Before 
performing CNN experiment, we converted the label into numerical digits so that further it can be converted to 昀氀oat32 and then further 
to NumPy array, so that it can be processed in CNN model. Fig. 14 represents the classi昀椀cation heatmap report for CNN model with 
respect to EMG-gesture classi昀椀cation. 

6.2.3. EMG authentication process 
To perform the EMG authentication experimentation, we de昀椀ned a pre-de昀椀ned pattern (gesture example: rock, ok, paper, scissors). 

Fig. 14. CNN model Classi昀椀cation heatmap report for EMG experimentation.  
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This label will be used to identify the combination of ML prediction and unlock pattern, giving us the output as authorized or 
unauthorised. Further, this can be integrated into ECG continuous authentication 昀椀les and using EMG authentication when needed by 
the authentication system and such authentication decision can again be carried out with ECG after a speci昀椀c time interval. 

6.3. 2-layer authentication process 

As shown in Fig. 15, the authentication starts by importing necessary libraries such as numpy, pandas, progress.bar, matplotlib, 
time, and keras. The function weightTransform is de昀椀ned, which applies different transformations to the weights of a model’s con-
volutional layers based on the speci昀椀ed mode and parameter n which can be de昀椀ned by end-user while running authentication process. 
The function rebuildModelENN loads a pre-trained Keras model from the path and applies weight transformations to its convolutional 
layers using the weightTransform function. It also retrieves the output tensors of each layer in the model. The function dataProcessing 
reads a dataset from the provided path (CSV format) and performs data preprocessing steps like randomly selecting users, creating a 
test user dataset, creating a test intruder and converting it to set of templates. The function databaseGeneration takes the model and 
template as input and predicts output of the valid user using the model. The function authentication performs the authentication 
process by comparing the output of the model with the templates. It calculates the correlation coef昀椀cient between each login part and 
database part and checks if it exceeds the speci昀椀ed threshold. If a match is found, it returns True; otherwise, it returns False. The 

Fig. 15. Flowchart for ECG and EMG Authentication.  
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Fig. 16. Performance of authentication using different approaches in CNN model with 15 parameters.  

Fig. 17. Performance of authentication using different approaches in CNN model with 25 parameters.  
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function login performs the login process for both test users and test intruders. It iterates through the test users and intruders, applies 
the authentication process, and calculates the accuracy of user and intruder veri昀椀cation based on the number of successful matches. 
The main function of the code executes the login function to perform the login process and obtain the accuracy. If the accuracy is below 

Fig. 18. Discarding convolutional layer 1 with 15 QRS complexes in Data Preprocessing.  

Fig. 19. Binary Approach of CNN model with convolutional layer 1 with 25 parameters.  
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99.50%, it performs an additional process of EMG signal prediction using a pre-trained model (decision-emg.joblib). It then compares 
the predicted sequence with an unlock pattern to determine authorization. If gesture matches with model predication it gives access 
and reiterates through ECG authentication again, if not the program session is ended. 

Fig. 20. Normal Approach of CNN model with convolutional layer 1 with 25 parameters.  

Fig. 21. CA performance for SVM model using ECG and EMG data executed on OSC environment.  
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7. CA experimentation and results/solution evaluation for ECG and EMG based-approach 

The following 昀椀gures in the results section are based on continuous authentication with different approaches and different machine 
learning models with best performance are selected for comparison purposes. 

Fig. 22. CA performance for Decision Tree model using ECG and EMG data executed on OSC environment.  

Fig. 23. CA performance for CNN model using ECG and EMG data executed on OSC environment.  
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7.1. CA experimental results for ECG-based authentication with different CNN models 

Fig. 16-20 shows the performance of authentication using ECG with different con昀椀guration in CNN model and executed in Ohio 
supercomputers with 1 node to get ECG accuracy. Fig. 16 represents adding only 15 parameters of QRS complex data in Data Pre-
processing stage. Fig. 17 represents authentication using ECG with different approaches in the CNN model. The traditional approach of 
25 QRS parameters needs more time and parameters when compared to our limit on QRS complex [5]. 

The following result in Fig. 17 is for the current state of art machine learning model [5] with CNN layer 1 which is conducted on 
Ohio supercomputers (OSC) and 1 node was used to get ECG’s machine learning model and its accuracy. Fig. 17 represents current 
state of art approach of adding 25 parameters of QRS complex data in Data Preprocessing with CN-layer 1 included in CNN model 
executed on Ohio supercomputer environment using 1 node. 

Fig. 18-20 represents comparisons of different methods of CNN model for ECG authentication with respect to the behavior of the 
model and time being a constraint in a continuous authentication approach. Fig. 18 represents the results of our approach with adding 
15 parameters of QRS complex in machine learning model with discarding convolutional layer 1. The behavior of model represents to 
be fastest among all approaches in CNN model. 

Fig. 19 represents the binary approach done with CNN model for continuous authentication with ECG. The binary weight approach 
replaces original 昀氀oating-point integers with binary numbers (1 and −1). Here 25 parameters of QRS are randomly selected. 

Fig. 20 represents the CNN network is supplied all of the ECG data with features for training and testing. They go via a stack of 
several convolutions and max-pooling layers, two completely linked layers, and a soft-max layer which is the normal approach used 
while experimenting with ECG authentication. Here 25 parameters of QRS are randomly selected. 

7.2. CA experimental results for combined ECG and EMG-based ML models 

We have performed ECG & EMG authentication where EMG is used as a second layer of authentication. The yellow dots in graph 
represents the switching to second layer of authentication only if the ECG authentication is below threshold. The threshold set by us is 
99.50% accuracy. We set up the threshold to the highest level because we wanted to know how frequently the continuous authen-
tication gets changed to EMG and then back to ECG. With the accuracy threshold of 99.50%, we can leverage the results of the most 
secure and authentic approach for continuous authentication on IoT devices. 

7.2.1. SVM model for ECG and EMG authentication 
Fig. 21 shows the performance of continuous authentication using ECG and EMG with SVM model used at both ECG & EMG 

authentication layers. While performing the following experiment as we can see that the system relies more on EMG authentication 
rather than ECG as primary because SVM model for ECG authentication has lower accuracy than 99.50% many times while performing 

Fig. 24. CA performance for CNN model using ECG and DT using EMG data executed on OSC environment.  
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continuous authentication. This is the worst performance we observed with ECG and EMG authentication. 

7.2.2. Decision tree for ECG and EMG authentication 
Fig. 22 shows the performance of continuous authentication using ECG and EMG data with Decision Tree model at both ECG & EMG 

authentication layers. While performing this experiment as we can see Decision Tree has on average less accuracy on ECG and has less 
switching to second layer of authentication which is EMG authentication resulting in lower average accuracy. Yellow color in the graph 
represents switch from ECG to EMG due to accuracy threshold set to 99.50%. 

7.2.3. CNN model for ECG and EMG authentication 
Fig. 23 shows the performance of continuous authentication using CNN model for ECG and EMG data at both ECG & EMG 

authentication layers. While performing CNN model for ECG and EMG authentication, it clearly represents low accuracy on second 

Fig. 25. CA performance with the best approach and authentication number set to 11,000 executed on OSC environment.  

Fig. 26. CA Latency with the different approaches executed on OSC environment.  
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layer of security which is EMG that is yellow spots in graphs, which is not acceptable. The following continuous authentication 
behavior is the worst scenario at the EMG level and it needs a lot of performance power to conduct the experiment. Another problem 
with the CNN model found during experimentation was it needs more time to initiate as the authentication 昀椀le uses both models as 
CNN which requires more time in the initiation phase. 

7.2.4. CNN model for ECG and decision tree for EMG authentication (Best authentication approach) 
Since CNN model performed best at ECG layer and DT performance best at EMG layer. We did not choose the CNN model for EMG as 

it would require a major amount of performance power for TWO CNN model running on a system, one for ECG and the other for EMG. 
We performed the experiment with CNN model for ECG and Decision Tree model for EMG and got a quit promising result. The graph 

Fig. 27. Performance of CA with respect to accuracy vs time for 3 days of CA of raspberry pi.  

Fig. 28. CPU load for performing CA in raspberry pi.  
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shown in Fig. 24 is the accuracy of ECG at layer 1 and EMG at layer 2 authentication. The yellow point in the following graph represents 
the EMG authentication switch from ECG authentication. The following continuous authentication behavior is the best case taken from 
the experiment because it has the highest average accuracy while performing CA and the lowest performance requirement. 

Fig. 25 shows a continuous authentication pattern with the number of authentications set at 11,000. The following graph has been 
plotted with the number of 300 points of accuracy data with its respective time. With the help of Fig. 25 we can also see the continuous 
authentication pattern between time frames which stays between 99.60%−99.70%, 99.80%−99.90% and 100% all the time when 
being executed. 

7.3. CA experimentation-latency metrics 

Fig. 26 represents the latency between identifying individuals with respect to different ML models. As we can see from the Fig. 26 
decision tree outperforms all different ML models in terms of Latency which is the only reason the second layer of EMG authentication 
was selected with the decision tree because dual CNN model will result in tremendous latency on IoT devices. We can also identify that 
the CNN exponent_n1 approach with 15 parameters has the least latency out of all other models with consideration of the best accuracy 
result from the above 昀椀gures. 

Fig. 29. Temperature of core processor for performing CA in raspberry pi.  

Fig. 30. Swap size for performing CA in raspberry pi.  
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7.4. CA experimentation evaluated on raspberry Pi 

The following Fig. 27-31 represents the accuracy, performance, swap size, temperature, memory vs time on raspberry pi with 
respect to continuous authentication. Here the number of authentications is set at 11,000. We set the RAM limit to 1GB and restricted 
the system to utilize 1 CPU core to simulate resource-constrained IoT environments. The Raspberry Pi 4, with its Broadcom BCM2711 
SoC featuring a Quad-core Cortex-A72 ARMv8 processor running at 1.8 GHz and 4GB LPDDR4–3200 SDRAM, provides a relevant 
platform for our experimentation. The combination of wireless connectivity (2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 

Fig. 31. Total memory used for performing CA in raspberry pi.  

Fig. 32. CA Latency with different ML CNN models with ECG&EMG in raspberry pi.  
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5.0, BLE), Gigabit Ethernet, USB ports, HDMI ports, GPIO header, and various multimedia capabilities ensures the Raspberry Pi 4 is a 
suitable choice for IoT applications. 

Fig. 27 represents the pattern of continuous authentication with respect to accuracy vs time for 3 days of continuous authentication 
on raspberry pi with ECG and EMG sensor data. Here the number of authentications is 11,000 and the dots in Fig. 27 represent one 
authentication at a distinct time interval. With the help of Fig. 27 we can also see the continuous authentication pattern between time 
frames which stays between 99.60%−99.65%, 99.80%−99.85% and 100%, similarly to Fig. 27. We can see the similar behavior 
between experiment performed in OSC(Fig. 26) and experiment performed in raspberry pi (Fig. 27). So that it is proved that e our 
experiment performed in raspberry pi sustained the highest average accuracy of continuous authentication with our method. 

Fig. 28 represents the CPU load, which is extracted from RPI-Monitor repository. The CPU load remains between 1 CPU load for 
entire continuous authentication and 1–2 with other system’s requirement running, the spike is because of opening and closing of 
browser to get the result during continuous authentication. 

As shown in Fig. 29, the temperature graph examines the temperature of core processor during the performance of continuous 
authentication with respect to time. The core temperature is directly proportional to CPU load as increase in performance leads to 
increase of temperature which is the reason of small spike between 40 and 50. 

The graph in Fig. 30 represents the swap size of IoT device, where used swap and free swap size are de昀椀ned with respect to time and 
the following graph is extracted during continuous authentication on IoT. 

The graph in Fig. 31 represents the memory used while performing continuous authentication with respect to time. The reason for 
the usage of memory while performing experiments is due to storing raw accuracy data of machine learning models in an array with 
respect to time, which was used to plot all the graphs of different ML model on all of the above section of performance of CA. 

Fig. 32 shows the result of different CNN model approaches used to perform authentication with having EMG authentication as a 
second layer of authentication. SVM model was not considered in IoT due to its large latency in OSC environment which is presented in 
Fig. 32. As we can see from the Fig. 32, we conclude that exponent_en1 should be used for ECG authentication and DT model used for 
EMG authentication in our CA schema rather than using traditional CNN models approach used in previous state of art. 

8. Robustness against impersonation attack 

The results obtained from our experiments provide valuable insights into the model’s robustness against impersonation attacks. By 
manipulating 50% to 70% of the 昀椀ducial points of the authorized user, we effectively simulate an impersonation scenario and trained 
model accordingly. We analyze the model’s accuracy, comparing the outcomes for the test intruder and the genuine test user. This 
analysis helps us gage the system’s susceptibility to impersonation attacks and assess its ability to accurately differentiate between 
genuine and unauthorised users. 

To evaluate the system’s robustness against impersonation attacks, we conducted experiments and analyzed the results. Fig. 33 
presents the 昀椀ndings, illustrating the accuracy of the model in distinguishing between authorized users and impersonating users 
(intruders). In Fig. 33, the y-axis represents the percentage of data used to impersonate an authorized user. The accuracy values are 

Fig. 33. Model Robustness against impersonation attack.  
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depicted using two bars: a blue bar representing the accuracy of the intruder and an orange bar representing the accuracy of the 
authorized user. 

The graph clearly demonstrates that the model exhibits a notable capability to differentiate between the authorized user and the 
impersonating user (intruder). This distinction is evidenced by the intruder’s lower accuracy, as indicated by the blue bar. Conversely, 
the authorized user achieves a comparatively higher accuracy, represented by the orange bar. The discrepancy in accuracy between the 
intruder and the authorized user implies that the system successfully identi昀椀es and distinguishes between genuine users and imper-
sonators. The lower accuracy of the intruder indicates the model’s ability to detect and reject unauthorised access attempts because of 
EMG authentication as a second layer of authentication. 

These results highlight the robustness of our continuous authentication system against impersonation attacks. The system’s 
capability to differentiate between authorized users and impersonators is a promising indication of its resistance to unauthorised 
access and manipulation. 

9. Anonymization and data protection in CA biometrics 

In our proposed continuous authentication (CA) scheme utilizing ECG and EMG, data protection and privacy are paramount 
considerations. As our method involves sensitive health data, it is essential to ensure that the implementation complies with privacy 
protection standards outlined by the General Data Protection Regulation (GDPR) in the European Union (EU) [28]. 

In the context of GDPR, anonymization is de昀椀ned as a process of turning data into a form which does not identify individuals and 
where identi昀椀cation is not likely to take place. To comply with this principle, our CA scheme includes several layers of anonymization:  

1 De-identi昀椀cation: All personally identi昀椀able information (PII), such as names and addresses, are removed from the data before 
processing. This includes direct identi昀椀ers as well as indirect identi昀椀ers that could potentially be linked back to the individual.  

2 Data Masking: Raw ECG and EMG data are transformed in such a way that their original characteristics are not discernible but their 
format is preserved for computational analysis.  

3 Noise Addition: We add a small amount of statistical noise to the data which prevents the original data from being reconstructed. 

The anonymization process ensures that individual data cannot be traced back to the original subject, thereby providing a high 
level of privacy protection. However, it is also important to note that this process does not signi昀椀cantly alter the accuracy of our CA 
scheme. 

In terms of the GDPR-EU documentation [28], the key aspects addressed by our method include lawful basis for processing (Article 
6), rights of the data subject (Articles 15–22), and the data protection principles outlined in Article 5.  

1 Lawful basis for processing: Data are processed on the basis of explicit consent from the user, and this consent can be withdrawn at 
any time.  

2 Rights of the data subject: Individuals have the right to access their data, correct inaccuracies, request the erasure of their data, and 
object to or limit its processing. These rights are ensured by the design of our system.  

3 Data protection principles: We have designed our CA scheme to meet the GDPR principles of data minimization, accuracy, storage 
limitation, and integrity and con昀椀dentiality. 

In conclusion, while our proposed CA biometrics scheme provides a novel approach to authentication, we have taken considerable 
measures to ensure that it respects privacy and upholds the principles of GDPR. We believe that a balance between technological 
innovation and data privacy is not just feasible, but essential in today’s digital world. 

10. Lessons learned and future actions 

The main purpose of our work is to study an effective approach of combining ECG-based authentication along with EMG-based 
authentication with respect to CA for IoT devices. The experiment conducted to evaluate a continuous authentication method using 
ECG and EMG data for IoT devices provided valuable lessons. Firstly, the signi昀椀cance of proper preprocessing of data was evident. By 
applying various preprocessing techniques such as resampling, peak detection, outlier removal, and correlation analysis for ECG data, 
and baseline correction, 昀椀ltering, segmentation, feature extraction, and normalization for EMG data, the experiment demonstrated the 
importance of preparing the data accurately. These preprocessing steps played a crucial role in ensuring the reliability and accuracy of 
the authentication system. 

Secondly, the choice of machine learning models had a signi昀椀cant impact on the system’s performance. The experiment compared 
different models such as CNN, SVM, and Decision Tree for ECG and EMG authentication. It was observed that the selection of models 
in昀氀uenced factors like accuracy, latency, and resource utilization. The best-performing approach was found to be a combination of 
CNN for ECG authentication and Decision Tree for EMG authentication, striking a balance between accuracy and computational ef-
昀椀ciency. Considering the computational resources and latency constraints is crucial when designing authentication systems for IoT 
devices. Additionally, the experiment highlighted the advantages of a multi-layer authentication approach. By incorporating a sec-
ondary authentication layer (EMG) alongside the primary layer (ECG), the system achieved enhanced security. This two-layer 
approach provided an additional level of veri昀椀cation and increased the overall accuracy and reliability of the continuous authenti-
cation system. 
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While our preliminary experiments are successful, further research can be conducted to improve the latency of authentication. As 
an extension of the proposed approach, signal can be sent with the help of existing wireless signals by re昀氀ecting wireless signal with 
LTE-Backscatter device [2] which will be received by a receiver. The backscatter device requires no power source to transmit ECG and 
EMG signals. Once the Backscatter device is implanted in any person’s hand, it will transmit an ECG and EMG signal with the help of a 
sensor and send it simultaneously with the help of existing wireless signals by re昀氀ecting wireless signal to a receiver that requires no 
power source to transmit. Future research and development efforts could focus on enhancing the bandwidth, data transfer rate, and 
signal 昀椀delity of backscatter LTE devices to accommodate the complex analog nature of ECG and EMG signals. This would involve 
optimizing the modulation and re昀氀ection techniques used in backscatter technology to ensure accurate and reliable transmission of 
these biomedical signals. Further, the receiver will use our mentioned approach presented in Fig. 2. This approach will be continuous, 
and as soon as the system detects any intruder or authorized person leaves, the access will be denied immediately. Our research and 
integration of backscatter devices will help create a further novel approach for continuous authorization, creating the innovative 
smallest backscattering authorization system for continuous authentication system with the highest ef昀椀ciency, no power source, and 
non-interaction with humans. This system will make it easier for people to integrate with the existing IoT applications effectively. 

We will also be extending our focus to encompass the privacy aspect associated with this novel continuous authentication method. 
Recognizing that both electrocardiogram (ECG) and electromyography (EMG) data are sensitive medical information, any potential 
leakage could lead to serious privacy issues. Consequently, we will be adopting anonymization techniques, the effectiveness of which 
will be quanti昀椀ed in terms of the identi昀椀able features removed and the level of distortion applied to the raw biometric data. This is 
expected to ensure that any compromised data cannot be linked back to an individual. Furthermore, we will be looking into the 
guidelines and regulations proposed by the General Data Protection Regulation (GDPR) in the European Union, which provides a well- 
de昀椀ned framework for the protection of personal data. By aligning our method with these stipulations, we aim to not only enhance the 
security of our authentication scheme but also to ensure its compliance with international data protection standards, therefore 
guaranteeing the privacy and security of user data. 

11. Conclusion 

In this work, we designed and evaluated that a continuous authentication scheme using ECG and EMG data for IoT devices. This 
security solution targets a wide range of IoT devices, and all IoT, MIoT and IIoT devices are equipped with at least one wireless fre-
quency. Based on our experiment CNN performed best for ECG data and Decision Tree performed best for EMG data with holding 
average accuracy of overall system 99.90%. This research paper also highlights the signi昀椀cance of evaluating model robustness against 
impersonation attacks through 昀椀ducial point manipulation. Our experiments on a representative dataset demonstrate the model’s 
robustness against vulnerability to impersonation attack. Our proposed solution requires a small hardware circuit, which will calculate 
biometric data and transmit it on the current wireless signal from the body and to IoT device. Our technology can perform continuous 
authentication without interaction from human interest or without interference with the already crowded wireless spectrum, 
compared to conventional authentication methods. Our proposed framework can serve diverse IoT applications. 
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