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Abstract—We present a reinforcement learning (RL) framework
in which the learned policy comes with a machine-checkable
certificate of provable adversarial robustness. Our approach, called
CAROL, learns a model of the environment. In each learning
iteration, it uses the current version of this model and an
external abstract interpreter to construct a differentiable signal
for provable robustness. This signal is used to guide learning,
and the abstract interpretation used to construct it directly leads
to the robustness certificate returned at convergence. We give
a theoretical analysis that bounds the worst-case accumulative
reward of CAROL. We also experimentally evaluate CAROL on
four MuJoCo environments with continuous state and action
spaces. On these tasks, CAROL learns policies that, when
contrasted with policies from two state-of-the-art robust RL
algorithms, exhibit: (i) markedly enhanced certified performance
lower bounds; and (ii) comparable performance under empirical
adversarial attacks.

Index Terms—Certified Learning, Adversarial Robustness, For-
mal Verification, Abstract Interpretation, Reinforcement Learning

I. INTRODUCTION

Reinforcement learning (RL) is an established approach to

control tasks [1], [2], including safety-critical ones [3], [4].

However, state-of-the-art RL methods use neural networks

as policy representations. This makes them vulnerable to

adversarial attacks in which carefully crafted perturbations to a

policy’s inputs cause it to behave incorrectly. These problems

are even more severe in RL than in supervised learning, as the

effects of successive mistakes can cascade over a long time

horizon.

These challenges have motivated research on RL algorithms

that are robust to adversarial perturbations. In general, adversar-

ial learning techniques can be divided into best-effort heuristic

defenses and certified approaches that guarantee provable

robustness. The latter are preferable as heuristic defenses are

often defeated by counterattacks [5]. While many certified

defenses are known for the supervised learning setting [6], [7],

[8], extending these methods to RL has been difficult. The

reason is that RL involves a black-box environment. To ensure

the certified robustness of an RL policy, one needs to reason

about repeated interactions between the policy, the environment,

and the adversary, and there is no general approach to doing

so. Existing approaches to deep certified RL typically sidestep

the challenge through various simplifying assumptions, for
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example, that the perturbations are stochastic rather than

adversarial [9], that the certificate only applies to one-shot

interactions between the policy and the environment [10], [11],

or that the action space is discrete [12].

In this paper, we develop a framework, called CAROL

(CertifiAbly RObust Reinforcement Learning), that fills this

gap in the literature. We reason about adversarial dynamics

over entire episodes by learning a model of the environment

and repeatedly composing it with the policy and the adversary.

To this end, we consider a state-adversarial Markov Decision

Process [11] in which the observed states are adversarially

attacked states of the original environment. This threat model

aligns with many existing efforts on robust RL [10], [11], [13],

[12], [14] and is also important for real-world RL agents under

unpredictable sensor noise. During exploration, our algorithm

learns a model of the environment using an existing model-

based reinforcement learning algorithm [15]. We perform

abstract interpretation [16], [6] over compositions of the

current policy and the learned environment model to estimate

worst-case bounds on the agent’s adversarial reward. The lower

bound on the reward is then used to guide the learning.

A key benefit of our model-based abstract interpretation

approach is that it not only computes bounds on a policy’s

worst-case reward but also offers a proof of this fact if it holds.

A certificate of robustness in our framework consists of such

a proof.

Our results include a theoretical analysis of our learning

algorithm, which shows that our learned certificates give

probabilistically sound lower bounds on the accumulative

reward of any allowed adversary. We also empirically evaluate

CAROL over four high-dimensional MuJoCo environments

(Hopper, Walker2d, Halfcheetah, and Ant). We demonstrate that

CAROL is able to successfully learn certified policies for these

environments and that our strong certification requirements do

not significantly compromise empirical performance.

To summarize, our main contributions are as follows:

• We offer CAROL, the first RL framework to guarantee

episode-level certifiable adversarial robustness for con-

tinuous states and actions. The framework is based on a

new combination of model-based learning and abstract

interpretation that can be of independent interest.

• We give a rigorous theoretical analysis that establishes

the (probabilistic) soundness of CAROL.



• We give experiments on four MuJoCo domains that

establish CAROL as a new state-of-the-art for certifiably

robust RL.

II. BACKGROUND

A. Markov Decision Processes (MDPs)

We start with the standard definition of an Markov Decision

Process (MDP)M = (S,A, r, P,S0). Here, S is a set of states,

and A is a set of actions; for simplicity of presentation, we

assume these sets to be R
k and R

m for suitable dimensionality

k and m. S0 is a distribution of initial states; P (s′ | s, a), for

s, s′ ∈ S and a ∈ A, is a probabilistic transition function;

r(s, a) for s ∈ S, a ∈ A is a real-valued reward function.

Our method assumes an additional property that is commonly

satisfied in practice: that P (s′ | s, a) has the form µP (s, a) +
fP (s

′), where fP (s
′) is a distribution independent of (s, a)

and µP is deterministic.

A policy in M is a distribution Ã(a | s) with s ∈ S
and a ∈ A. A (finite) trajectory Ä under Ã is a sequence

s0, a0, s1, a1, . . . such that s0 ∼ S0, each ai ∼ Ã(si), and

each si+1 ∼ P (s′ | si, ai). We denote by R(Ä) =
∑

i r(si, ai)
the aggregate (undiscounted) reward along a trajectory Ä , and

by R(Ã) the expected reward of trajectories unrolled under Ã.

B. State-Adversarial MDPs

We model adversarial dynamics using state-adversarial

MDPs [11]. Such a structure is a pair Mν = (M, B), where

M = (S,A, r, P,S0) is an MDP, and B : S → P(S) is a

perturbation map, where P(S) is the power set of S . Intuitively,

B(s) is the set of all states that can result from adversarial

perturbations of s.
Suppose we have a policy Ã in the underlying MDP M. In

an attack scenario, an adversary ¿ perturbs the observations

of the agent at a state s. As a result, rather than choosing

an action from Ã(a | s), the agent now chooses an action

from Ã(a | ¿(s)). However, the environment transition is still

sampled from P (s′ | s, a) and not P (s′ | ¿(s), a), as the

ground-truth state does not change under the attack. We denote

by Ã ◦ ¿ the state-action mapping that results when Ã is used

under this attack scenario. In real world, the adversary could

represent the state estimation error and the noise in the state

measurement.

Naturally, if ¿ can arbitrarily perturb states, then adversarially

robust learning is intractable. Consequently, we constrain

¿ using B, requiring ¿(s) ∈ B(s) for all s ∈ S. We

denote the set of allowable adversaries in Mν as AB =
{¿ : S → S | ∀s ∈ S. ¿(s) ∈ B(s)}.
C. Abstract Interpretation

We certify adversarial robustness using abstract interpreta-

tion [16], a classic framework for worst-case safety analysis

of systems. Here, one represents sets of values — e.g.,

system states, actions, and reward values — using symbolic

representations, or abstractions, in a predefined language (the

abstract domain). For example, we can set our abstract states

to be hyperintervals that maintain upper and lower bounds in

each state space dimension. We denote abstract values with the

superscript #. For a set of concrete states, S, ³(S) denotes the

minimal-area abstract state which contains S. For an abstract

state s#, ´(s#) is the set of concrete states represented by

s#.

The core of abstract interpretation is the propagation of

abstract states s# through a function f(s) that captures single-

step system dynamics. For propagation, we assume that we

have access to a map f#(s#) that “lifts" f to abstract states.

This function must satisfy the property ´(f#(s#)) § {f(s) :
s ∈ ´(s#)}. Intuitively, f# overapproximates the behavior of

f : while the abstract state f#(s#) may include some states

that are not actually reachable through the application of f to

states encoded by s#, it will at least include every state that

is reachable this way. For simplicity of notation, we assume

that functions over concrete states are lifted to their abstract

analogs. For example, Ã(s#) is short-hand for a function

Ã#(s#) satisfying ´(Ã#(s#)) § {Ã(s) : s ∈ ´(s#)}) for

every abstract state s#. Similar functions are defined for

abstract reward values, actions, and so on.

By starting with an abstraction s#0 of the initial states and

using abstract interpretation to propagate this abstract state

through the transition function f , we can obtain an abstract state

s#i which includes all states of the system that are reachable

in i steps for increasing i. A sequence of abstract states Ä# =
s#0 s

#
1 s

#
2 . . . is called an abstract trace.

D. Abstract States Propagation

Practically, we utilize the box domain [6] for all the abstract

states, s# in our work. For a program with m variables, each

abstract state in the domain is represented by a m-dimensional

box. Each abstract state is a pair s# = (bc, be)#, where bc ∈
R
m is the center of the box and be ∈ R

m
g0 represents the non-

negative deviations. The i-th dimension of the concretization,

´(s#), is given by

[(bc)i − (be)i, (bc)i + (be)i].

Specifically, we showcase how the abstract state is propa-

gated through programs or neural networks as below. Please

refer to Appendix D for more details.

Add. For a concrete function f that replaces the i-th element

in the input vector x ∈ R
m by the sum of the j-th and k-th

element:

f(x) = (x1, . . . , xi−1, xj + xk, xi+1, . . . xm)T .

The abstraction function of f is given by:

f#(s#) = (M · bc,M · be)#,
where M ∈ R

m×m can replace the i-th element of x by the

sum of the j-th and k-th element by M · bc.
Matrix Multiplication. For a concrete function f that

multiplies the input x ∈ R
m by a fixed matrix M ∈ R

m′×m:

f(x) =M · x.
The abstraction function of f is given by:

f#(s#) = (M · bc, |M | · be)#,



where |M | is the element-wise absolute value of M . Con-

volutions follow the same approach, as they are also linear

operations.

ReLU. For a concrete element-wise ReLU operation over

x ∈ R
m:

ReLU(x) = (max(x1, 0), . . . ,max(xm, 0))
T ,

the abstraction function of ReLU is given by:

ReLU#(s#) =

(

ReLU(bc + be) + ReLU(bc − be)
2

,

ReLU(bc + be)− ReLU(bc − be)
2

)

#

.

where bc + be and bc − be denotes the element-wise sum and

element-wise subtraction between bc and be.

III. PROBLEM FORMULATION

We start by defining robustness. Assume an adversarial MDP

Mν , a policy Ã, and a threshold ∆ > 0. A robustness property

is a constraint ϕ(Ã,∆) of the form ∀¿ ∈ AB . R(Ã)−R(Ã◦¿) <
∆. Intuitively, ϕ states that no allowable adversary can reduce

the expected reward of Ã by more than ∆.

Our goal in this paper is to learn policies that are provably

robust. Accordingly, we expect our learning algorithm to

produce, in addition to a policy Ã, a certificate, or proof,

c of robustness. Formally, let Π be the universe of all policies

in a given state-adversarial MDP Mν = (M, B). For a policy

Ã and a robustness property ϕ, we write Ã ¢c ϕ if Ã provably

satisfies ϕ, and c is a proof of this fact.

The problem of reinforcement learning with robustness

certificates is now defined as:

(Ã∗, c) = argmax
π∈Π

E
τ∼(M,π)

[R(Ä)] , s.t. Ã∗ ¢c ϕ. (1)

That is, we want to find a policy that maximizes the standard

expected reward in RL but also ensures that the expected

worst-case adversarial reward is provably above a threshold.

We assume that a policy satisfying the constraint ϕ exists.

Our certificates can be constructed using a variety of

symbolic or statistical techniques. In CAROL, certificates are

constructed using an abstract interpreter. Suppose we have a

policy Ã and an abstract trace Ä# = s#0 s
#
1 . . . s

#
n such that for

all length-n trajectories Ä = s0 . . . sn and for all i, si ∈ ´(s#i ).
The abstract trace allows us to compute a lower bound on

the expected reward for Ã and also serves as a proof of this

bound. We give an example of such certification in a simple

state-adversarial MDP, assumed to be available in white-box

form, in Table I.

A challenge here is that abstract interpretation requires a

white-box transition function, which is not available in RL. We

overcome this challenge by learning a model of the environment

during exploration. Model learning is a source of error, so

our certificates are probabilistically sound, i.e., they guarantee

robustness with high probability. However, this error only

depends on the underlying model-based RL algorithm and

does not restrict the adversary.

Environment

Model

Policy

Model#

Policy#

Loss

Robustness Property

Learner
Abstract 
Interpreter

Certificate

Fig. 1: Schematic of CAROL

IV. LEARNING ALGORITHM

Now we present the CAROL framework. The framework

(Figure 1) has two key components: a model-based learner

and an abstract interpreter. During each training round, the

learner maintains a model of the environment dynamics and

a policy. These are sent to the abstract interpreter, which

calculates a lower bound on the abstract reward. The lower

bound is used to compute a differentiable loss the learner uses

in the next iteration of learning. At convergence, the abstract

trace computed during abstract interpretation is returned as a

certificate of robustness.

A. Abstract Interpretation in CAROL

Now we describe the abstract interpreter in CAROL in more

detail. Recall that our definition of robustness compares the

expected reward of the original policy to the expected reward

of the policy under an adversarial perturbation. As a result,

our verifier is designed to reason about the worst-case reward

under adversarial perturbations, while considering average-case

behavior for stochastic policies and environments. Algorithm 1

finds a lower bound on this worst-case expected reward

using abstract interpretation to overapproximate the adversary’s

possible behaviors along with sampling to approximate the

average-case behavior of the policy and environment. We denote

this lower bound from Algorithm 1 as worst-case accumulative

reward (WCAR), which is also used to measure the certified

performance in our evaluation.

In more detail, Algorithm 1 proceeds by sampling a starting

state s0 ∼ S0. Then in Algorithm 2 for each time step, we

find an overapproximation s#obsi
which includes all of the

possible ways the adversary may perturb si. Based on this

approximation, we sample a new approximation from the policy

Ã. Intuitively, this may be done by using a policy Ã whose

randomness does not depend on the current state of the system.

More formally, Ã(a | s) = µπ(s) + fπ(a) where fπ(a) is a

distribution with zero mean which is independent of s. Then

a#i may be computed as µπ(s
#
obsi

) +³({e}) where e ∼ fπ(a).
Once the abstract action is computed, we may find the new

(abstract) state and reward using the environment model E.

The model is assumed to satisfy a PAC-style bound, i.e., there

exist ¶E and εE such that with probability at least 1 − ¶E ,



s0 = 1.0
¿(s) = ïs0 + ϵ0,

s1 + ϵ1ð
s0 sobs0 a0 s1 sobs1 a1 R(Ã ◦ ¿) Eτ∼π◦ν [R]

No-Adv ϵ0 = ϵ1 = 0.0 1 1 1 2 + e 2 + e 2 + e 6 + 2e 6

Adv-1
ϵ0 = 0.1,
ϵ1 = −0.4

1 1.1 1.1 2.1 + e 1.7 + e 1.7 + e 5.9 + 2e 5.9

Adv-2
ϵ0 = −0.2,
ϵ1 = −0.3

1 0.8 0.8 1.8 + e 1.5 + e 1.5 + e 5.1 + 2e 5.1

Reward Bound (R#)
ϵt ∈ [−0.5, 0.5],

ϵ
#
t

= [−0.5, 0.5]
1 1 + [−0.5, 0.5] [0.5, 1.5] [1.5, 2.5] + e [1, 3] + e

[1 + e,
3 + e]

[4 + 2e,
8 + 2e]

[4, 8]

TABLE I: Example of reward bound calculation. The MDP in this example has initial state set S0 = [1.0, 1.0], white-box

transition function P (s′|s, a) = s+ a+N (0, 1), reward function r(s, a) = s+ a, and adversary ¿(s) ∈ [s− 0.5, s+ 0.5]. ϵt
denotes the disturbance added on step t. e represents the stochasticity from the transition, where e ∼ N (0, 1). We aim to

certify over the worst-case accumulative reward of a deterministic policy Ã defined as Ã(s) = s. We define the worst-case by

considering all potential adversaries while still considering the expected behavior over the stochastic environment, P . As shown

in the above table, we first demonstrate three traces from fixed adversaries. In the last row, we demonstrate how we consider

all the adversary behaviors through an abstract trace via abstract interpretation with intervals. The worst-case accumulative

reward in this example is 4 as EN [e] = 0. The abstract trace over all the adversaries in the last row is our certificate which

serves as a proof that the policy satisfies our property. We want to ensure that the lower bound of the R# should not be lower

than a threshold. In training, we use the abstract trace to compute a loss to guide the learning process.

∥E(s, a) − P (s, a)∥ f εE . The values of ¶E and εE can be

measured during model construction.

One way to understand Algorithm 1 is to consider pairs of

abstract and concrete trajectories in which the randomness

is resolved in the same way. Specifically, if Ã(a | s) =
µπ(s) + fπ(a) and E(s′ | s, a) = µ(s, a) + fE(s

′), the initial

state s0 combined with the sequence of values ei ∼ fπ(a) and

e′i ∼ fE(s
′) for 0 f i f T uniquely determine a trajectory.

For a given set of values, the reward bound inf ´(R#
mint

)
represents the worst-case reward under any adversary for a

particular resolution of the randomness in the environment and

the policy. The outer loop of Algorithm 1 approximates the

expectation over these different random values by sampling.

Theorem 1 in Section V shows formally that with high

probability, Algorithm 1 gives a lower bound on the true

adversarial reward.

B. Learning in CAROL

Now we discuss how to learn a policy and environment

model that may be proven robust by Algorithm 1. At a high

level, Algorithm 3 works by introducing a symbolic loss term

Lsymbolic

ψ which measures the robustness of the policy. Because

robustness is a constrained optimization problem, we use this

symbolic loss with a Lagrange multiplier in an alternating

gradient descent scheme to find the optimal robust policy.

Formally, for a given environment model E, the inner loop in

Algorithm 3 solves the optimization problem

argmin
ψ

Lnormal(Ãψ,Dmodel) s.t. Lsymbolic(Ã,E) f ∆

via the Lagrangian

argmin
ψ

max
λg0

Lnormal(Ãψ,Dmodel)+¼(L
symbolic(Ã,E)−∆). (2)

We ensure that solving this problem solves the certifiable

robustness problem by enforcing the following conditions: (i)

E accurately models the environment and (ii) Lsymbolic(Ã,E)

measures the “provable robustness” of Ã. Condition (i) is

handled by alternating model updates with policy updates,

in the style of Dyna [17], so we will focus on condition (ii).

The computation of Lsymbolic uses the same underlying

abstract rollouts (Algorithm 2) as the verifier described in

Algorithm 1. Once again, this algorithm estimates the reward

achieved by a policy under worst-case adversarial perturbations

but average-case policy actions and environment transitions.

We then define the robustness loss as the difference between

the nominal loss Ro and the provable lower bound on the

worst-case loss Rmin. Now as long as Lsymbolic < ∆, we

satisfy the definition of robustness given in Section III for

that specific trace. Repeating these gradient updates gives an

approximation of the average-case behavior which is considered

in Algorithm 1.

V. THEORETICAL ANALYSIS

Now we explore some key theoretical properties of CAROL.

Proofs are deferred to Appendix B.

Theorem 1. Assume the environment transition distribution

is P (s′ | s, a) = N (µP (s, a),ΣP ) and the environment

model is E(s′ | s, a) = N (µE(s, a),ΣE) with ΣP ,ΣE

diagonal, which is standard under the model-based RL setting

[15]. Further, we assume that the model satisfies a PAC-

style guarantee: for any state s, action a, and ϵ ∈ S,

|(µP (s, a) + Σ
1/2
P ϵ) − (µE(s, a) + Σ

1/2
E ϵ)| f εE with prob-

ability at least 1 − ¶E . For any policy Ã, let the result of

Algorithm 1 be R̂# and let the reward of Ã under the optimal

adversary ¿∗ be R. Then for any ¶ > 0 with probability at

least 1− ¶, we have

R gR̂# − 1√
¶

√

Var [R#]

N
−
(

1− (1− ¶E)T
)

C.

where C is a remainder depending on time horizon T (see

Appendix B for details of C).



Algorithm 1 Worst-Case Accumulative Reward (WCAR)

1: Input: policy Ã, model E
2: Output: Estimated worst case reward of Ã under any adversary

3: for t from 1 to N do

4: Sample an initial state s0 ∼ S0
5: Get the worst case reward Rmint using Algorithm 2 over horizon T starting from s0
6: end for

7: return 1
N

∑N
t=1Rmint

Algorithm 2 Worst-case rollout under adversarial perturbation

1: Input: Initial state s0, rollout horizon T
2: Output: Worst-case reward of Ã starting from s0 over one random trajectory

3: Abstract the initial state and reward: soriginal
#
0 ← ³({s0}), R#

mint i
← ³ ({0})

4: for i from 1 to T do

5: Abstract over possible perturbations: s#obsi ← B(s#originali
)

6: Calculate symbolic predicted actions: a#i ← Ã(s#obsi)
7: Calculate symbolic next-step states and rewards:

s#originali+1
, r#i ← Eθ(s

#
originali

, a#i ) + ³({x | ∥x∥ f εE})
8: Update the estimated worst-case reward: R#

mint ← R#
mint + r#i

9: end for

10: return inf ´(R#
mint)

Algorithm 3 Certifiably Robust Reinforcement Learning

1: Initialize a random policy Ãψ , random environment model Eθ, and empty model dataset Dmodel.

2: Initialize an environment dataset Denv by unrolling trajectories under a random policy.

3: for N epochs do

4: Train model Eθ on Denv via maximum likelihood

5: Unroll M trajectories in the model under Ãψ; add to Dmodel

6: Take action in environment according to Ãψ; add to Denv

7: for G gradient updates do

8: Calculate normal policy loss Lnormal(Ãψ,Dmodel) as in MBPO [15]

9: Sample ïst, at, st+1, rtð uniformly from Dmodel

10: Rollout Ã starting from st under Eθ for Ttrain steps and compute the total reward Ro

11: Compute the worst-case reward Rmin using Algorithm 2 over horizon Ttrain.

12: Compute the robustness loss Lsymbolic(Ãψ, Eθ)← Ro −Rmin

13: Update policy parameters: È ← È − ³∇ψ(Lnormal(Ãψ,Dmodel) + ¼(Lsymbolic(Ãψ, Eθ)−∆))
14: Update Lagrange multiplier: ¼← max(0, ¼+ ³′(Lsymbolic(Ãψ, Eθ)−∆))
15: end for

16: Unroll n trajectories in the true environment under Ãψ; add to Denv

17: end for

We divide the proof into two main parts: (1) Algorithm 2

returns the lower bound of the reward. (2) In cases where

Algorithm 2 does not return the lower bound of the reward, we

bound the distribution shifts between the returned lower bound

and the ground truth lower bound. The proof strategy involves

bounding the per-step distribution shifts over the states under

the assumption of the stochaticity limit, PAC-style guarantee

of the learnt environment model, and the Lipschitz continuity

of the environment. Subsequently, we leverage the bounded

shifts over step-wise states to bound the expected reward of

the abstract rollouts in Algorithm 2. Please see Appendix B

for a detailed proof.

Theorem 1 shows that our checker is a valid (probabilistic)

proof strategy for determining if a policy is robust. That is, if

we use Algorithm 1 to measure the reward of a policy under

perturbation, the result is a lower bound of the true worst-case

reward (minus a constant) with high probability, assuming an

accurate environment model. The bound in Theorem 1 gives

some interesting insights. First, the bound grows as ¶ shrinks,

so we pay the price of a looser bound as we consider higher

confidence levels. Second, the bound depends on the variance

of the abstract reward and the number of samples in an intuitive

way — higher variance makes it harder to measure the true

reward, and more samples make the bound tighter. Third, as



¶E increases, the last term of the bound grows, indicating that

a less accurate environment model leads to a looser bound.

Finally, the bound grows with T , indicating that over longer

time horizons, our reward measurement gets less accurate. This

is consistent with the intuition that the environment model may

drift away from the true environment over long rollouts.

Theorem 2. Assume there exists a provably robust policy.

Let Ãψ be a solution to the optimization problem defined in

Equation 2. Let Ã be any policy that is provably robust in the

sense that Lsymbolic(Ã,E) f ∆. Then Ãψ is provably robust

and has a policy loss that does not exceed that of Ã (that is,

Lnormal(Ãψ,Dmodel) f Lnormal(Ã,Dmodel).

Proof. Note that if Ãψ is not provably robust then

Lsymbolic(Ãψ, E) > ∆ by the soundness of abstract in-

terpretation. By assumption there exists some policy Ã∗

which is provably robust so that Lsymbolic(Ã∗, E) f ∆. Let

ℓ = Lnormal(Ã∗, E) be the value of the objective function in

Equation 2 for Ã∗. Then for any

¼ >
ℓ− Lnormal(Ãψ,Dmodel)

Lsymbolic(Ãψ, E)−∆

we have

Lnormal(Ãψ,Dmodel) + ¼
(

Lsymbolic(Ãψ, E)−∆
)

> ℓ

so that in particular Ãψ would not be an optimum of the

problem defined in Equation 2. Therefore we have that Ãψ is

provably robust.

Now consider any policy Ã, which provably satisfies the

robustness property. In this case, the optimal ¼ for Ã is 0, so the

objective of the saddle point problem is just Lnormal(Ã,Dmodel).
By assumption, Lnormal(Ãψ,Dmodel) f Lnormal(Ã,Dmodel) be-

cause Ãψ is a minimizer for Equation 2.

Intuitively, Theorem 2 shows that the saddle point problem

solved by Algorithm 3 also solves the certifiable robustness

problem, i.e., it converges to a policy that passes the check

by Algorithm 1. The primal-dual gradient descent approach

outlined in Algorithm 3 is a standard technique for solving

such saddle point problems [18].

VI. EVALUATION

We study the following research questions for evaluation:

RQ1: Can CAROL learn policies with nontrivial certified reward

bounds? We assess WCAR with the associated environment

model to demonstrate the certified performance.

RQ2: Do the certified bounds for CAROL beat those for other

(non-certified) robust RL methods? By truncating CAROL

and extracting the its training policies, we compare CAROL

against baselines in terms of WCAR.

RQ3: How does the model error, εE , distribute? We incorporate

the model error, εE in Algorithm 2 and assume the PAC-

style guarantee in Section V. To better exhibit the results

from our main algorithms in Section IV, we empirically

measure how the model error distributes.

RQ4: How tight is the certified bound? To gauge the tightness

of our certified bound within limited time horizons, we

compare the certified reward bound with the reward trace

under empirical attacks.

RQ5: What is CAROL’s performance against empirical adver-

sarial inputs? Certified defenses and heuristic defenses

are distinct well-studied categories in adversarial ML. A

good certified performance may sacrifice the empirical

performance (reward under empirical attacks). We evaluate

the reward under empirical attacks on state observations to

ascertain that our certified defenses maintain high reward.

RQ6: How does the estimation of the model error, εE , impact the

certified reward bounds? We present the certified reward

bounds under the assumption of a flawless model, where

εE = 0.0.

RQ7: How does the model-based training strategy of CAROL

influence its performance? We conduct an ablation study of

the core algorithm by separating data sampling for training

loss from the process of environment model learning.

A. Experiments Setup and Training Details

a) Environments and Setup: Our experiments consider

l∞-norms perturbation of the state with radius ϵ: Bp(s, ϵ) :=
{s′|∥s′−s∥ f ϵ}. We implement CAROL on top of the MBPO

[15] model-based RL algorithm using the implementation

from [19]. For training, we use Interval Bound Propagation

(IBP) [20] as a scalable abstract interpretation mechanism

to compute the layer-wise bounds for the neural networks,

where all the abstract states are represented as intervals per

dimension. More details of the abstract transition are omitted

to Appendix D. During the evaluation, we use CROWN [21], a

more computationally expensive but tighter bound propagation

method based on IBP. During training, we use a smoothed

linear ϵ-schedule [20], [11] to slowly increase the ϵt at each

epoch within the perturbation budget until reaching ϵ. Note

that the policies take action stochastically during training, but

we set them to be deterministic during evaluation.

We experiment on four MuJoCo environments in OpenAI

Gym [22]. For CAROL, we use the same hyperparameters

for the base RL algorithms as in [19] without further tuning.

Specifically, we do not use an ensemble of dynamics models.

Instead, we use a single dynamic model, which is the case

when the ensemble is of size 1. We use Gaussian distribution

as the independent noise distribution, fπ(a), fE(s
′) for both

policy and model in the experiments. Concretely, the output

of our policies are the parameters µπ , Σπ of a Gaussian, with

Σπ being diagonal and independent of input state s. For the

model, the output are the parameters µE , ΣE of a Gaussian,

with ΣE being diagonal and independent of input s, a.

We compare CAROL with the following methods:

• MBPO [15], our base RL algorithm.

• SA-PPO [11], a robust RL algorithm bounding per-step

action distance.

• RADIAL-PPO [10], a robust RL algorithm using lower

bound PPO loss to update the policy. In CAROL, we update

the policy loss Lnormal with the data sampled from the



Fig. 2: Demonstration of the model error distribution. CAROL, MBPO, and Separate represent the distribution from the models

trained with CAROL, models trained with MBPO, and the models trained from datasets from rollout with a set of random

policies, respectively.

rollout between the learned model and the policy. While

in CAROL-SS, the data for Lnormal is sampled from the

rollout between the environment and the policy.

• CAROL-Separate Sampler(CAROL-SS), an ablation of

CAROL.

The ϵtrain is 0.075, 0.05, 0.075, 0.05 for Hopper, Walker2d,

HalfCheetah, and Ant for CAROL, CAROL-SS, SA-PPO, and

RADIAL-PPO in this section for consistency with baselines.

For both the policy networks and the model networks, we

use the same network as in [19]. For both MBPO and CAROL,

we use the optimal hyperparameters in [19]. We set Ttrain = 1
for all the training of CAROL. We mainly set two additional

parameters, regularization parameters and the ϵ-schedule [11],

[10], [20] parameters for CAROL. The additional regularization

parameter ¼ to start with for regularizing Lsymbolic is chosen in

{0.1, 0.3, 0.5, 0.7, 1.0}. The ϵ-schedule starts as an exponential

growth from ϵ = 10−12 and transitions smoothly into a

linear schedule until reaching ϵtrain. Then the schedule keeps

ϵt = ϵtrain for the rest of iterations. We set the temperature

parameter controlling the exponential growth with 4.0 for all

experiments. We have two other parameters to control the ϵ-
schedule: endStep, and finalStep, where endStep is the step

where ϵt reaches ϵtrain and finalStep is the steps for the total

training. The midStep = 0.25 ∗ endStep is the turning point

from exponential growth to linear growth. Table II shows the

details of each parameter.

b) Evaluation Metrics: We evaluate the performance of

policies with two metrics: (i). WCAR, which was formally

defined in Algorithm 1 for certified performance. (ii). total

reward under MAD attacks [11] for empirical performance.

Environments Methods endStep finalStep

Hopper
CAROL 4× 105 5× 105

CAROL-SS 4× 105 5× 105

Ant
CAROL 8× 105 9× 105

CAROL-SS 4× 106 5× 106

Walker2d
CAROL 7× 105 7.5× 105

CAROL-SS 1.5× 106 2× 106

HalfCheetah
CAROL 7.5× 105 8.5× 105

CAROL-SS 7.5× 105 8.5× 105

TABLE II: Parameters for ϵ-schedule.

B. RQ1: Certified Performance with Learned-together Certifi-

cate

Upon completion of training, we obtain a policy, Ã, and

an associated environment model, E, which is trained in

tandem with the policy. Then, we evaluate the WCAR following

Algorithm 1 with Ã and E. Note that we set an ϵtest =
1

255 for

the evaluation of provability as certifying over long-horizon

traces of neural network models tightly is a challenging task for

abstract interpreters due to accumulated approximation error.

The proof becomes more challenging as the horizon increases,

primarily arising from the need to account for the potential

adversary’s behavior in the most unfavorable scenarios at each

step, and the step-wise impact from the worst-case adversary

accumulates. We vary the certified horizon under the ϵtest to

exhibit the certified performance.

Figure 3 exhibits the certified performance of CAROL. Both

CAROL and MBPO are evaluated with the model trained

together. We are able to train a policy with better certified



accumulative reward under the worst attacks compared to the

base algorithm, MBPO, which does not use the regularization

Lsymbolic. As the time horizon increases, it becomes harder to

certify the accumulative reward. For example, in Ant and

HalfCheetah, CAROL is not able to give a good certified

performance when the horizon reaches 10 and 20 respectively

because of the accumulative influence from the worst-case

attack and the overapproximation from the abstract interpreter.

We also highlight that Ant is a challenging task for certification

due to the high-dimensional state space.

C. RQ2: Comparison of Certified Performance with Other

Methods

We compare CAROL with two robust RL methods, SA-

PPO [11] and RADIAL-PPO [10], which both bound the

per-step performance of the policy during training. SA-PPO

bounds the per-step action deviation under perturbation, and

RADIAL-PPO bounds the one-step loss under perturbation.

As described in Section VI-D, to have a fair comparison of

the certified performance of policies and alleviate the impact

from model error bias across methods, we separately train

5 additional environment models, {Ei}, with the trajectory

datasets unrolled from 5 additional random policies and the

environment. We truncate CAROL by extracting the policies

from training and certifying them with these separately trained

environment models. This setting is not completely in line with

CAROL’s learned certificate and verification (see Section VI-D)

but is designed for a fair comparison across policies.

As shown in Figure 4, the CAROL’s certified performance

with separately trained models is slightly worse yet comparable

to its performance when using learned-together certificates.

Compared with non-certified RL policies, CAROL consistently

exhibits better certifiable performance. It is worth noting

that CAROL is able to provide worst-case rewards over time

for benchmarks aligning with the reward mechanisms used

in these environments. We show the abstract trace lower

bound (Rmin) sampled from trajectories in Appendix C. These

results demonstrate that CAROL is able to provide reasonable

certified performance, while the other methods, which are

not specifically designed for worst-case accumulative reward

certification, struggle to attain the same goal.

D. RQ3: Model Error in Practice

We incorporate the model error, denoted as εE , in Algo-

rithm 2. Our approach adheres to Assumption 5 detailed in

Appendix B for ε and ¶E . The ideal scenario involves accurately

quantifying max∀(s,a) ||P (s, a)−E(s, a)||. However, gauging

this error across the entire (s, a) space poses significant chal-

lenges. To mitigate the gap between the theoretical maximum

error and the empirical maximum error, we propose a way to es-

timate the model error using max(s,a=π(s)) ||P (s, a)−E(s, a)||,
where Ã represents a collection of random policies.

In our practical experiments, we assess the model error

associated with three training methodologies: CAROL, MBPO,

and Separate. Both CAROL and MBPO encapsulate envi-

ronment models that are concurrently trained within their

respective algorithms. In contrast, Separate models are derived

from supervised learning, leveraging a rollout dataset from

the original environment and a suite of random policies.

Specifically, Separate is mainly used in Section VI-C for a fair

comparison between model-based algorithms and model-free

algorithms. All the underlying environment model architectures

remain consistent with those described in [19]. Figure 2

illustrates the model error distribution across methods. In

subsequent sections, Section VI-B and Section VI-C, we

evaluate the certified performance of policies originating from

various algorithms, utilizing the εE with the 1− ¶E of 0.90.

E. RQ4: Qualitative Evaluation of the Abstract Trace Lower

Bound

We evaluate and demonstrate the lower bound of the abstract

traces over CAROL with examples in Figure 5. Specifically, we

show the reward under one empirical attack (MAD) and our

WCAR (incorporating the model error) over horizons starting

from the same initial state. WCAR being always smaller than

the reward under empirical attack indicates soundness. The

reasonably small gap between the two lines indicates tightness.

One interesting observation is that as the horizon increases,

the gap increases. We give two possible explanations for this:

• The empirical attack is not strong enough to reveal the

agents’ performance under the worst-case attack.

• The overapproximation error and the model error from

CAROL accumulate as the horizon increases.

Nominal Attack (MAD)
Environment Model ϵ = 0 ϵ = ϵtrain

Hopper
(ϵtrain = 0.075)

MBPO 3246.0±76.1 2874.2±203.4
SA-PPO 3423.9±164.2 3213.8±284.8

RADIAL-PPO 3547.0±166.9 3100.3±368.3

CAROL 3290.1±104.9 3201.4±100.5

Ant
(ϵtrain = 0.05)

MBPO 4051.9±526.2 406.2±83.5
SA-PPO 5368.8±96.4 5327.4±112.7
RADIAL-PPO 4694.1±219.5 4478.9±232.8

CAROL 5696.6±277.9 5362.2±242.8

HalfCheetah
(ϵtrain = 0.075)

MBPO 7706.3±710.1 2314.6±566.7
SA-PPO 3193.9±650.7 3231.6±659.9
RADIAL-PPO 3686.5±439.2 3409.6±683.9

CAROL 5821.5±2401.9 3961.6±899.5

Walker2d
(ϵtrain = 0.05)

MBPO 3815.6±211.9 3616.5±228.2
SA-PPO 4271.7±222.2 4444.4±286.0

RADIAL-PPO 2935.1±272.1 3022.6±381.7

CAROL 3784.4±329.1 3774.3±260.3

TABLE III: Average episodic reward ± standard deviation over

100 episodes on three baselines and CAROL. We show natural

rewards (under no attack) and rewards under adversarial attacks.

The best results over all methods are in bold.

F. RQ5: Comparison of Empirical Performance with Other

Methods

Usually, there is a trade-off between certified robustness

and empirical robustness. One can get good provability but



Fig. 3: Certified performance of policies Ã with the learned-together model, E. To have a fair comparison across different

horizons, we quantify the certified performance by WCAR/T , where WCAR is formally defined in Algorithm 1 and T is the

rollout horizon in Algorithm 2. Each bar is an average of 25 starting states. We use negative infinity, -inf, to exhibit that (Ã,E)

is not certifiable by a third-party verifier [21]. A higher value indicates a better certified worst-case performance. The results

are based on εE with a 1− ¶E of 0.9.

Fig. 4: Certified performance of policies Ã under a set of separately learned models, {Ei}. Each bar averages the learned

policies on each Ei of 25 starting states. The results are based on εE with a 1− ¶E of 0.9.

may sacrifice empirical rewards. We show that policy from our

algorithm shows comparable natural rewards (without attack)

and adversarial rewards compared with other methods. In

Table III, we show results on 4 environments and comparison

with MBPO, SA-PPO, and RADIAL-PPO. The policies are the

same ones evaluated for Section VI-D and Section VI-B. For

each environment, we compare the performance under MAD

attacks [11]. CAROL outperforms other methods on Ant and

HalfCheetah under attacks when the base algorithm, MBPO,

is extremely not robust. For Hopper, CAROL has comparable

adversarial rewards with the best methods. CAROL’s reward is

worse on Walker2d though still reasonable.

G. RQ6: Impact of Model Certification

We showcase the certified performance under the assumption

that the εE is zero in Figure 6 and Figure 7. The general trend

of the certified performance does not change much, while the

exact WCAR /T increases. Specifically, Walker2d could give

reasonable certification over longer horizons.

The results exhibit that whether the environment model is

trained accurately enough does not influence the gap between

our certified performance with other methods.

H. RQ7: Impact of Model-Based Training

In this part, we investigate the impact of our design choices

for Lnormal on performance. We compare our framework,

CAROL, with an ablation of it, CAROL-SS, to understand how

rollout with the learned model for Lnormal matters in CAROL.

We present a comparison of performance during training, as

shown in Figure 8. In the implementation, we set a smoother ϵ-
schedule for CAROL-SS by allowing CAROL-SS to take longer

steps from ϵ = 0 to the target ϵ. These results show that CAROL

converges much faster while achieving a comparable or better

final performance due to the benefits of the sample efficiency

of MBRL. Additionally, the consistency between the rollout

datasets for Lnormal and the ones for Lsymbolic also leads to a

better natural reward at convergence in training.

VII. RELATED WORK

A. Adversarial RL

Adversarial attacks on RL systems have been extensively

studied. Specific attacks include adversarial perturbations on

agents’ observations or actions [23], [13], [24], adversarial

disturbance forces to the system [25], and other adversarial

policies in a multiagent setting [26]. Most recently, [27] and



Fig. 5: Examples of robustness certification of CAROL. We

show the reward under one empirical attack (MAD) and WCAR

(incorporating the model error with 1− ¶E being 0.90) over

horizons starting from the same initial state.

[28] consider an optimal adversary and propose methods to

train agents together with a learned adversary in an online way

to achieve a better adversarial reward.

B. Robust RL and Certifiable Robustness in RL

Multiple robust training methods have been applied to deep

RL. Mankowitz et al. [29] explore a broader adversarial setting

related to model disturbances and model uncertainty. Fischer

et al. [14] leverage additional student networks to help the

robust Q learning, and Everett et al. [30] enhance an agent’s

robustness during testing time by computing the lower bound

of each action’s Q value at each step. Zhang et al. [11] and

Oikarinen et al. [10] leverage a bound propagation technique

in a loss regularizer to encourage the agent to either follow its

original actions or optimize over a loss lower bound. While

these efforts achieve robustness by deterministic certification

techniques for neural networks [20], [31], they mainly focus on

the step-wise certification and are not able to give robustness

certification if the impact from attacks accumulates across

multiple steps. CAROL differs from these papers by offering

certified robustness for the aggregate reward in an episode.

We know of only two recent efforts that study robustness

certification for cumulative rewards. The first, by Wu et al.

[32], gives a framework for certification rather than certified

learning. The second, by Kumar et al. [9], proposes a certified

learning algorithm under the assumption that the adversarial

perturbation is smoothed using random noise. The attack model

here is weaker than the adversarial model assumed by CAROL

and most other work on adversarial learning.

C. Certified RL

Safe control with learned certificates is an active field [33]. A

few efforts in this space have considered controllers discovered

through RL. Many works use a given certificate with strong

control-theoretic priors to constrain the actions of an RL agent

[3], [34], [35] or assume the full knowledge of the environment

to yield the certificate during the training of an agent [36].

Chow et al. [37], [38] attempt to derive certificates from the

structure of the constrained Markov decision process [39]

for the safe control problems. Chang et al. [40] incorporate

Lyapunov methods in deep RL to learn a neural Lyapunov

critic function to improve the stability of an RL agent. We

differ from this work by focusing on adversarial robustness

rather than stability.

VIII. DISCUSSION

We have presented CAROL, the first RL framework with

certifiable episode-level robustness guarantees. Our approach is

based on a new combination of model-based RL and abstract

interpretation. We have given a theoretical analysis to justify

the approach and validated it empirically in four challenging

continuous control tasks.

We present a detailed discussion about the limitations and

future directions of our work below.

a) Precision of Abstract Interpretation: A key challenge

in CAROL is that our abstract interpreter may not be sufficiently

precise, and attempts to increase precision may compromise

scalability. Future research should work to address this issue

with more accurate and scalable verification techniques.

b) Adversarial Setting: We focus on the state-adversarial

setting. There are broader adversarial settings related to model

disturbances and model uncertainty [29]. Exploring the certified

learning over environment dynamics perturbation is of interest.

Specifically, we do not require a predefined model. We learn a

model where the model misspecification amounts to supervised

learning error. Future works would incorporate the potential

disturbance of the environment in training to learn the dynamics

model under CAROL framework.

c) Dimensionality: We focus on control benchmarks in

this work. Related works about certification [32] use higher

dimensional environments (e.g., Atari). However, the methods

in CROP [32] primarily work on discrete state/action space and

assume a deterministic environment. CAROL is more general;

while CROP does post-hoc verification, we focus on certified

learning, where verification is integrated with learning. In

addition, to the best of our knowledge, the environments we

evaluate over have the largest dimensionality in certified RL

papers [41], [40].



Fig. 6: Certified performance of policies Ã with the learned-together model, E. Each bar is an average of 25 starting states.

The results are based on the assumption of εE being 0.0.

Fig. 7: Certified performance of policies Ã under a set of separately learned models, {Ei}. Each bar averages the learned

policies on each Ei of 25 starting states. The results are based on the assumption of εE being 0.0.

Fig. 8: Training Curves of CAROL and CAROL-SS. The solid lines in the graph show the average natural rewards of five

training trials, and the shaded areas represent the standard deviation among those trials.

d) Stochasticity: Because abstract interpretation of prob-

abilistic systems is difficult, our approach assumes that the

randomness in the environment transitions is state-independent.

Future work should try to eliminate this assumption through ab-

stract interpreters tailored to probabilistic systems. In addition,

we have challenges handling highly random environments,

which is a fundamental limitation of all certified learning

techniques. We consider the stochasticity in the theoretical

analysis by incorporating the variance of R#in the soundness

bound. When stochasticity is large, the tightness of our bound

may be affected.

e) Complexity: Certified learning is more expensive than

regular learning due to certifiability and soundness guarantee

requirements. In training, the symbolic state is represented by

the center and the width of a box (2x information representation

per state). Propagating over a box needs an additional 2x

computation compared to computation without symbolic states.

Consequently, CAROL is approximately two times slower than

the base RL algorithm per step.

In summary, CAROL ’s performance is limited in the very

large-scale MDPs over long rollout horizons mainly due to

two reasons:

• Efficient abstract interpretation domains (e.g., Inter-



val/Box) can give accumulated over-approximation error.

• Tighter abstract interpretation domains are expensive in

training and may not be differentiable. (e.g. bounded

Zonotopes [42] or Polyhedra [43]).

We believe that future works on tighter, more efficient, and

differentiable abstract interpretation techniques would benefit

CAROL as our framework is not built on top of one particular

abstract interpretation method. Additionally, a broader setting

of adversarial perturbations would be an interesting future

direction to extend our work.
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APPENDIX

A. Symbols

We give a summary of the symbols used in this paper below.

Definition Symbol/Notation

Policy Ãψ, Ã
Model of the environment Eθ, E

Environment transition P
Parameters (mean, covariance) for Gaussian distribution for environment, model, and policy µP ,ΣP , µE ,ΣE , µπ,Σπ

Distribution representing noise for environment, model, and policy fP , fE , fπ
Adversary ¿

Regular policy loss Lnormal

Robustness loss Lsymbolic

Lipschitz constants for the environment model and policy mean LE , Lπ
Model error εE

PAC bound probability ¶E

Abstract lifts ·#
Abstraction ³

Concretization ´

Horizon for training and testing T , Ttrain, Ttest

Disturbance for training and testing ϵ, ϵtrain, ϵtest

B. Proofs

In this section, we present proofs of the theorems from Section V.

Assumption 3. The horizon of the MDP is bounded by T .

Assumption 4. The environment transition distribution has the form P (s′ | s, a) = N (µP (s, a) ,ΣP ) with ΣP diagonal and

the environment model E has the form E (s′ | s, a) = N (µE(s, a),ΣE) with ΣE diagonal.

Assumption 5. There exist values εE and ¶E such that for all si, ai from step i and for any fixed e with probability at least

1 − ¶E , max0fifT

∥

∥

∥

(

µP (si, ai) +Σ
1/2
P e

)

−
(

µE (si, ai) +Σ
1/2
E e

)∥

∥

∥
f εE . Further, there exists some dE such that for all

s, a,

∥

∥

∥

(

µP (s, a) +Σ
1/2
P e

)

−
(

µE (s, a) +Σ
1/2
E e

)∥

∥

∥
f dE .

Assumption 6. The environment model mean function µE (s, a) is LE-Lipschitz continuous, the immediate reward function

r (s, a) is Lr-Lipschitz continuous, and the policy mean µπ (s) is Lπ-Lipschitz continuous.

Assumption 7. For all s ∈ S , we have s ∈ B (s). That is, the adversary may choose not to perturb any state.

Theorem 1. For any policy Ã, let the result of Algorithm 1 be R̂#, let ¿∗ be the optimal adversary (i.e., for all ¿ ∈ AB ,

R (Ã ◦ ¿∗) f R (Ã ◦ ¿)), and let the reward of Ã ◦ ¿∗ be R. Then for any ¶ > 0 with probability at least 1− ¶, we have

R g R̂# (Ä)− 1√
¶

√

Var [R#]

N
−
(

1− (1− ¶E)T
)

Lr(1 + Lπ)dE
(LELπ)

T
+ (1− LELπ)T − 1

(1− LELπ)2
.

Proof. Recall that the environment transition P and policy Ã are assumed to be separable, i.e., P (s′ | s, a) = µP (s, a)+fP (s′)
and Ã (a | s) = µπ (s) + fπ (a) with µP and µπ deterministic. As a result, a trajectory under policy Ã ◦ ¿∗ may be written

Ä = s0, a0, s1, a1, . . . , sn, an where s0 ∼ S0, each ai = µπ (¿
∗ (si))+ e

π
i for eπi ∼ fπ (a), and each si = µP (si−1, ai−1)+ e

P
i

for ePi ∼ fP (s′). By Assumption 4, we know that ePi ∼ N (0,ΣP ) so that ePi = Σ
1/2
P ei where ei ∼ N (0, I). In particular,

because each trajectory Ä is uniquely determined by s0, {eπi }ni=0, {ei}ni=1, we can write the reward of Ã ◦ ¿∗ as

R (Ã ◦ ¿∗) = E
s0∼S0,{eπi ∼fπ(a)}ni=0

,{ei∼N (0,I)}n

i=1

R (Ä)

Because this expectation ranges over the values of s0, {eπi }ni=0 , {ei}
n
i=1, we will proceed by considering pairs of abstract and

concrete trajectories unrolled with the same starting state and noise terms.

To do this, we analyze Algorithm 2 for some fixed s0, {eπi }ni=0 , {ei}
n
i=1. Let eEi = Σ

1/2
E ei. That is, given the same underlying

sample from N (0, I), ePi is the noise in the true environment while eEi is the noise in the modeled environment. We show by

induction that for all i, si ∈ ´
(

s#original
i

)

with probability at least (1− ¶E)i. Note that, because abstract interpretation is sound,

s0 ∈ ´
(

s#original
0

)

. Additionally, for all i if si ∈ ´
(

s#original
i

)

then ¿∗ (si) ∈ ´
(

s#obsi

)

. Moreover, since eπi is fixed, we have

Ã
(

s#obsi

)

= µπ

(

s#obsi

)

+ eπi



so that Ã (¿∗ (s)) ∈ ´
(

a#i

)

. Similarly, because eEi is fixed, let ∆E = ³ ({x | ∥x∥ f εE}) and we have

E
(

s#original
i

, a#i

)

+∆E = µE

(

s#original
i

, a#i

)

+ eEi +∆E .

By the induction hypothesis, we know that si−1 ∈ ´
(

s#original
i−1

)

with probability at least (1− ¶E)i−1
and therefore ai−1 ∈

´
(

a#i−1

)

. By Assumption 5, we have that
∥

∥

(

µP (s, a) + ePi
)

−
(

µE (s, a) + eEi
)∥

∥ < εE with probability at least 1 − ¶E .

In particular,
(

µP (s, a) + εPi
)

−
(

µE (s, a) + εEi
)

∈ ∆E , so that µP (s, a) + ePi ∈ ´
(

E
(

s#original
i

, a#i

)

+∆E

)

. Then with

probability at least 1− ¶E , if si−1 ∈ ´
(

s#original
i−1

)

then si ∈ ´
(

s#original
i

)

. As a result, si ∈ ´
(

s#original
i

)

with probability at

least (1− ¶E)i. In particular, by Assumption 3, n f T so that for a fixed Ä defined by s0, {eπi }ni=0 , {ei}
n
i=1, we have that

with probability at least (1− ¶E)T , Algorithm 2 returns a lower bound on R (Ä).

Now we consider the case where Algorithm 2 does not return a lower bound of R (Ä). In this case, we show (again by

induction) that for all 0 f i f T , there exists a point s′i ∈ ´
(

s#original
i

)

such that

∥si − s′i∥ f
i−1
∑

j=0

(LELπ)
j
dE = dE

(

1− (LELπ)
i−1

1− LELπ

)

(when
∑−1
j=0 (LELπ)

j
dE is taken to be zero). First, note that s0 ∈ ´

(

s#original
0

)

, so the base case is trivially true. Now by

the induction hypothesis we have that there exists some s′i−1 ∈ ´
(

s#original
i−1

)

with
∥

∥si−1 − s′i−1

∥

∥ f ∑i−2
j=0 (LELπ)

j
dE .

Notice that by Assumption 7, we also have s′i−1 ∈ ´
(

s#obsi−1

)

. Now because abstract interpretation is sound, we have

that µπ
(

s′i−1

)

+ eπi−1 ∈ ´
(

a#i−1

)

and by Assumption 6, ∥µπ (si−1) − µπ
(

s′i−1

)

∥ f Lπ
∑i−2
j=0 (LELπ)

j
dE . Similarly, we

have µE
(

s′i−1, µπ
(

s′i−1

)

+ eπi−1

)

+ eEi ∈ ´
(

s#original
i

)

, and
∥

∥µE
(

si−1, µπ (si−1) + eπi−1

)

− µE
(

s′i−1, µπ
(

s′i−1

)

+ eπi−1

)
∥

∥ f
LELπ

∑i−2
j=0 (LELπ)

j
dE . Let ŝi = µE

(

si−1, µπ (si−1) + επi−1

)

+ εEi . Then by Assumption 5, we have ∥ŝi − si∥ f
dE , so that in particular

∥

∥si − µE
(

s′i−1, µπ
(

s′i−1

)

+ eπi−1

)

+ εEi
∥

∥ f dE + LELπ
∑i−2
j=0 (LELπ)

j
dE . Letting s′i =

µE
(

s′i−1, µπ
(

s′i−1

)

+ eπi−1

)

+ εPi , we have the desired result.

We use this result to bound the difference in reward between the abstract and concrete rollouts when Algorithm 2 does

not return a lower bound. For each i, because s′i ∈ ´
(

s#original
i

)

and µπ (s
′
i) + eπi ∈ a#i , we define r′i = r (s′i, µπ (s

′
i) + eπi )

and we know that r′ ∈ r#i . Because ∥si − s′i∥ f dE

(

1−(LELπ)
i−1

1−LELπ

)

we have ∥ai − a′i∥ f LπdE

(

1−(LELπ)
i−1

1−LELπ

)

and

|r (si, ai)− r′i| f Lr(1 + Lπ)dE

(

1−(LELπ)
i−1

1−LELπ

)

. In particular, let R′ =
∑

i r
′
i and then

|R (Ä)−R′| f
T
∑

i=1

Lr(1 + Lπ)dE

(

1− (LELπ)
i−1

1− LELπ

)

= Lr(1 + Lπ)dE
(LELπ)

T
+ (1− LELπ)T − 1

(1− LELπ)2
.

We now combine these two cases to bound the expected difference between the reward returned by Algorithm 2, denoted

R# (Ä), and the reward of Ä . Let D = R# (Ä) − R (Ä) be a random variable representing this difference. Then with

probability at least (1− ¶E)T , D f 0 and in all other cases (i.e., with probability no greater than 1 − (1− ¶E)T ), D f
LR(1 + Lπ)dE

(LELπ)
T+(1−LELπ)T−1

(1−LELπ)
2 . In particular then,

E [D] f
(

1− (1− ¶E)T
)

Lr(1 + Lπ)dE
(LELπ)

T
+ (1− LELπ)T − 1

(1− LELπ)2
.

By definition E

[

R# (Ä)
]

= E [R (Ä)] + E [D]. Therefore, we have

E [R (Ä)] = E

[

R# (Ä)
]

− E [D] g E

[

R# (Ä)
]

−
(

1− (1− ¶E)T
)

Lr(1 + Lπ)dE
(LELπ)

T
+ (1− LELπ)T − 1

(1− LELπ)2
.

(3)



Algorithm 3 approximates E

[

R# (Ä)
]

by sampling N values. Let R̂# (Ä) be the measured mean and recall E

[

R̂# (Ä)
]

=

E

[

R# (Ä)
]

and Var
[

R̂# (Ä)
]

= Var
[

R# (Ä)
]

/N . Then by Chebyshev’s inequality we have the for all k > 0,

Pr

[

∣

∣

∣
R̂# (Ä)− E

[

R# (Ä)
]

∣

∣

∣
g k

√

Var
[

R̂# (Ä)
]

]

f 1/k2. Then in particular, with probability at least 1− 1/k2,

R̂# (Ä)− k
√

Var [R# (Ä)]

N
f R# (Ä) .

Combining this with Equation 3 above and letting k = 1/
√
¶, we have with probability at least 1− ¶,

E [R (Ä)] g R̂# (Ä)− 1√
¶

√

Var [R# (Ä)]

N

−
(

1− (1− ¶E)T
)

Lr(1 + Lπ)dE
(LELπ)

T
+ (1− LELπ)T − 1

(1− LELπ)2
.

While this paper focuses on continuous state and action spaces, we can extend our main theoretical result to discrete state

and action spaces if the environment is deterministic. For this analysis, we maintain Assumptions 3 and 7, but we add a few

new assumptions for the discrete setting.

Assumption 8. The environment model E is deterministic and E(s, a) = P (s, a) with probability at least 1− ¶E .

Assumption 9. The single-step reward for any state s and action a is bounded by rmin f r(s, a) f rmax.

Theorem 10. For a deterministic policy Ã, let the result of Algorithm 1 be R̂#, let ¿∗ be the optimal adversary, and let the

reward of Ã ◦ ¿∗ be R. Then for any ¶, with probability at least 1− ¶,

R g R̂# − 1√
¶

√

Var[R#]

N
−
(

1− (1− ¶E)T
)

T (rmax − rmin).

Proof. Consider a trajectory Ä = s0, a0, s1, a1, . . . , sn, an where s0 ∼ S0, each ai = Ã(si), and each si+1 = P (si, ai). Note

that because the dynamics of the environment and the policy are deterministic, the only randomness in the trajectory comes

from sampling the initial state. Then R(Ã ◦ ¿∗) = Es0∼S0
R(Ä). Similar to the proof of Theorem 1, we proceed by considering

pairs of abstract and concrete trajectories unrolled from the same starting state.

We show by induction that for all i, si ∈ ´
(

s#original
i

)

with probability at least (1− ¶E)i. For the base case, note that because

abstract interpretation is sound, s0 ∈ ´
(

s#original
0

)

. Additionally, for all i, if si ∈ ´
(

s#original
i

)

then ¿∗(si) ∈ ´
(

s#obsi

)

and

Ã(¿∗(si)) ∈ ´
(

a#i

)

. From the induction hypothesis, we have si−1 ∈ ´
(

s#original
i−1

)

with probability at least (1− ¶E)i−1
. By

Assumption 8, we have si+1 = E(si, ai) with probability at least 1− ¶E . Thus if si−1 ∈ ´
(

s#original
i−1

)

then with probability

at least 1− ¶E we know si ∈ ´
(

s#original
i

)

. Combined with the induction hypothesis, this implies that si ∈ ´
(

s#original
i

)

with

probability at least (1− ¶E)i. Now by Assumption 3, n f T so that for a fixed Ä from a starting state s0, we have that with

probability at least (1− ¶E)T , Algorithm 1 returns a lower bound on R(Ä).
As in the proof of Theorem 1, we now turn to the case where Algorithm 1 does not return a lower bound of R(Ä). In this

case, let ri be the true adversarial reward at time step i. Then by Assumption 9, we have ri g rmin, and inf ´
(

r#i

)

f rmax.

Thus in particular, letting R#(Ä) represent the bound returned by Algorithm 1, we have R#(Ä)−R(Ä) f T (rmax − rmin).
Now letting D = R#(Ä) − R(Ä), we have that with probability at least (1− ¶E)T , D f 0 and in all other cases

D f T (rmax − rmin). In particular,

E[D] f
(

1− (1− ¶E)T
)

T (rmax − rmin) .

By definition, E[R#(Ä)] = E[R(Ä)] + E[D] so that

E[R(Ä)] = E[R#(Ä)]−
(

1− (1− ¶E)T
)

T (rmax − rmin).

Following the same sampling argument we make in the proof of Theorem 1, we have that for any ¶, with probability at least

1− ¶,

E[R(Ä)] g R̂#(Ä)− 1√
¶

√

Var[R#(Ä)]

N
−
(

1− (1− ¶E)T
)

T (rmax − rmin).



Fig. 9: Physical Meaning Demonstration. Example of the bound of the state and the observation of the state. We select the

second dimension of the Hopper states, representing the angle of the top of the Hopper agent. We extract the lower bound and

upper bound of the state value and the observed state value during the reasoning of WCAR of Hopper. For one time step, i, the

orange area represents the interval bound of si and the blue area represents sobsi . The red trajectory shows one example of the

state after the MAD attack. The green trajectory exhibits the observed state trajectory. Our certificate aims to bound the state

trajectories from all attacks within our allowed adversary set.

C. Physical Meaning of the Attack and Certification bound

We demonstrate the physical meaning of the attack and certification bound in Figure 9.

D. Abstract Bound Propagation

Now, we give an explanation of how interval bound propagation (IBP) works. CROWN [21] optimizes over IBP for tighter

bound (specifically for Relu and sigmoid, etc.). IBP considers the box domain in the implementation. For a program with m
variables, each component in the domain represents a m-dimensional box. Each component of the domain is a pair s# = ïbc, beð,
where bc ∈ R

m is the center of the box and be ∈ R
m
g0 represents the non-negative deviations. The interval concretization of the

i-th dimension variable of s# is given by

[(bc)i − (be)i, (bc)i + (be)i].

Now we give the abstract update for the box domain following [6].

a) Add.: For a concrete function f that replaces the i-th element in the input vector x ∈ R
m by the sum of the j-th and

k-th element:

f(x) = (x1, . . . , xi−1, xj + xk, xi+1, . . . xm)T .

The abstraction function of f is given by:

f#(s#) = ïM · bc,M · beð,

where M ∈ R
m×m can replace the i-th element of x by the sum of the j-th and k-th element by M · bc.

b) Multiplication.: For a concrete function f that multiplies the i-th element in the input vector x ∈ R
m by a constant w:

f(x) = (x1, . . . , xi−1, w · xi, xi+1, . . . , xm)T .

The abstraction function of f is given by:

f#(s#) = ïMw · bc,M|w| · beð,

where Mw · bc multiplies the i-th element of bc by w and M|w| · be multiplies the i-th element of be with |w|.



c) Matrix Multiplication.: For a concrete function f that multiplies the input x ∈ R
m by a fixed matrix M ∈ R

m′×m:

f(x) =M · x.
The abstraction function of f is given by:

f#(s#) = ïM · bc, |M | · beð,
where M is an element-wise absolute value operation. Convolutions follow the same approach, as they are also linear operations.

d) ReLU.: For a concrete element-wise ReLU operation over x ∈ R
m:

ReLU(x) = (max(x1, 0), . . . ,max(xm, 0))
T ,

the abstraction function of ReLU is given by:

ReLU#(s#) = ïReLU(bc + be) + ReLU(bc − be)
2

,
ReLU(bc + be)− ReLU(bc − be)

2
ð.

where bc + be and bc − be denotes the element-wise sum and element-wise subtraction between bc and be.
e) Sigmoid.: As Sigmoid and ReLU are both monotonic functions, the abstraction functions follow the same approach.

For a concrete element-wise Sigmoid operation over x ∈ R
m:

Sigmoid(x) = (
1

1 + exp(−x1)
, . . . ,

1

1 + exp(−xm)
)T ,

the abstraction function of Sigmoid is given by:

Sigmoid#(s#) = ïSigmoid(bc + be) + Sigmoid(bc − be)
2

,
Sigmoid(bc + be)− Sigmoid(bc − be)

2
ð.

where bc+ be and bc− be denotes the element-wise sum and element-wise subtraction between bc and be. All the above abstract

updates can be easily differentiable and parallelized on the GPU.

E. Certified Performance When Evaluating against Various Perturbation Range

We show the provability results with ϵtest being 0.075 in Figure 10 and Figure 11.

Fig. 10: Certified performance of policies Ã with the learned-together model, E. The results are based on εE with a 1− ¶E of

0.9.

Fig. 11: Certified performance of policies Ã under a set of separately learned models, {Ei}. The results are based on εE with a

1− ¶E of 0.9.

We show the provability results with ϵtest being 0.001 in Figure 12.



Fig. 12: Certified performance of policies Ã under a set of separately learned models, {Ei}. The results are based on εE with a

1− ¶E of 0.9.
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