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A bst r a ct

T h e g o al of m ulti-t as k l e ar ni n g is t o e n a bl e m or e ef fi ci e nt l e ar ni n g t h a n si n gl e
t as k l e ar ni n g b y s h ari n g m o d el str u ct ur es f or a di v ers e s et of t as ks. A st a n d ar d
m ulti-t as k l e ar ni n g o bj e cti v e is t o mi ni mi z e t h e a v er a g e l oss a cr oss all t as ks. W hil e
str ai g htf or w ar d, usi n g t his o bj e cti v e oft e n r es ults i n m u c h w ors e fi n al p erf or m a n c e
f or e a c h t as k t h a n l e ar ni n g t h e m i n d e p e n d e ntl y. A m aj or c h all e n g e i n o pti mi zi n g
a m ulti-t as k m o d el is t h e c o n fli cti n g gr a di e nts , w h er e gr a di e nts of diff er e nt t as k
o bj e cti v es ar e n ot w ell ali g n e d s o t h at f oll o wi n g t h e a v er a g e gr a di e nt dir e cti o n c a n
b e d etri m e nt al t o s p e ci fi c t as ks’ p erf or m a n c e. Pr e vi o us w or k h as pr o p os e d s e v er al
h e uristi cs t o m a ni p ul at e t h e t as k gr a di e nts f or miti g ati n g t his pr o bl e m. B ut m ost of
t h e m l a c k c o n v er g e n c e g u ar a nt e e a n d/ or c o ul d c o n v er g e t o a n y P ar et o-st ati o n ar y
p oi nt. I n t his p a p er, w e i ntr o d u c e C o n fli ct- A v ers e Gr a di e nt d es c e nt ( C A Gr a d)
w hi c h mi ni mi z es t h e a v er a g e l oss f u n cti o n, w hil e l e v er a gi n g t h e w orst l o c al i m-
pr o v e m e nt of i n di vi d u al t as ks t o r e g ul ari z e t h e al g orit h m tr aj e ct or y. C A Gr a d
b al a n c es t h e o bj e cti v es a ut o m ati c all y a n d still pr o v a bl y c o n v er g es t o a mi ni m u m
o v er t h e a v er a g e l oss. It i n cl u d es t h e r e g ul ar gr a di e nt d es c e nt ( G D) a n d t h e m ulti pl e
gr a di e nt d es c e nt al g orit h m ( M G D A) i n t h e m ulti- o bj e cti v e o pti mi z ati o n ( M O O)
lit er at ur e as s p e ci al c as es. O n a s eri es of c h all e n gi n g m ulti-t as k s u p er vis e d l e ar n-
i n g a n d r ei nf or c e m e nt l e ar ni n g t as ks, C A Gr a d a c hi e v es i m pr o v e d p erf or m a n c e
o v er pri or st at e- of-t h e- art m ulti- o bj e cti v e gr a di e nt m a ni p ul ati o n m et h o ds. C o d e is
a v ail a bl e at h t t p s : / / g i t h u b . c o m / C r a n i a l - X I X / C A G r a d .

1 I nt r o d u cti o n

M ulti-t as k l e ar ni n g ( M T L) r ef ers t o l e ar ni n g a si n gl e m o d el t h at c a n t a c kl e m ulti pl e diff er e nt
t as ks [1 1 , 2 8 , 4 4 , 3 8 ]. B y s h ari n g p ar a m et ers a cr oss t as ks, M T L m et h o ds l e ar n m or e ef fi ci e ntl y wit h
a n o v er all s m all er m o d el si z e c o m p ar e d t o l e ar ni n g wit h s e p ar at e m o d els [ 3 8 , 4 0 , 2 5 ]. M or e o v er, it
h as b e e n s h o w n t h at M T L c o ul d i n pri n ci pl e i m pr o v e t h e q u alit y of t h e l e ar n e d r e pr es e nt ati o n a n d
t h er ef or e b e n e fit i n di vi d u al t as ks [3 5 , 4 3 , 3 4 ]. F or e x a m pl e, a n e arl y M T L r es ult b y [2 ] d e m o nstr at e d
t h at tr ai ni n g a n e ur al n et w or k t o r e c o g ni z e d o ors c o ul d b e i m pr o v e d b y si m ult a n e o usl y tr ai ni n g it t o
r e c o g ni z e d o or k n o bs.

H o w e v er, l e ar ni n g m ulti pl e t as ks si m ult a n e o usl y c a n b e a c h all e n gi n g o pti mi z ati o n pr o bl e m b e c a us e it
i n v ol v es m ulti pl e o bj e cti v es [3 8 ]. T h e m ost p o p ul ar M T L o bj e cti v e i n pr a cti c e is t h e a v er a g e l oss o v er
all t as ks. E v e n w h e n t his a v er a g e l oss is e x a ctl y t h e tr u e o bj e cti v e ( as o p p os e d t o o nl y c ari n g a b o ut
a si n gl e t as k as i n t h e d o or/ d o or k n o b e x a m pl e), dir e ctl y o pti mi zi n g t h e a v er a g e l oss c o ul d l e a d t o
u n d esir a bl e p erf or m a n c e, e. g. t h e o pti mi z er str u g gl es t o m a k e pr o gr ess s o t h e l e ar ni n g p erf or m a n c e
si g ni fi c a ntl y d et eri or at es. A k n o w n c a us e of t his p h e n o m e n o n is t h e c o n fli cti n g gr a di e nts [4 1 ]:
gr a di e nts fr o m diff er e nt t as ks 1) m a y h a v e v ar yi n g s c al es wit h t h e l ar g est gr a di e nt d o mi n ati n g t h e
u p d at e, a n d 2) m a y p oi nt i n diff er e nt dir e cti o ns s o t h at dir e ctl y o pti mi zi n g t h e a v er a g e l oss c a n b e
q uit e d etri m e nt al t o a s p e ci fi c t as k’s p erf or m a n c e.

3 5t h C o nf er e n c e o n N e ur al I nf or m ati o n Pr o c essi n g S yst e ms ( N e urI P S 2 0 2 1).
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Figure 1: The optimization challenges faced by gradient descent (GD) and existing gradient manipu-
lation methods like the multiple gradient descent algorithm (MGDA) [6] and PCGrad [41]. MGDA,
PCGrad and CAGrad are applied on top of the Adam optimizer [16]. For each methods, we repeat
3 runs of optimization from different initial points (labeled with •). Each optimization trajectory
is colored from red to yellow. GD with Adam gets stuck on two of the initial points because the
gradient of one task overshadows that of the other task, causing the algorithm to jump back and forth
between the walls of a steep valley without making progress along the floor of the valley. MGDA and
PCGrad stop optimization as soon as they reach the Pareto set.

To address this problem, previous work either adaptively re-weights the objectives of each task based
on heuristics [3, 15] or seeks a better update vector [30, 41] by manipulating the task gradients.
However, existing work often lacks convergence guarantees or only provably converges to any
point on the Pareto set of the objectives. This means the final convergence point of these methods
may largely depend on the initial model parameters. As a result, it is possible that these methods
over-optimize one objective while overlooking the others (See Fig. 1).

Motivated by the limitation of current methods, we introduce Conflict-Averse Gradient descent
(CAGrad), which reduces the conflict among gradients and still provably converges to a minimum
of the average loss. The idea of CAGrad is simple: it looks for an update vector that maximizes the
worst local improvement of any objective in a neighborhood of the average gradient. In this way,
CAGrad automatically balances different objectives and smoothly converges to an optimal point of
the average loss. Specifically, we show that vanilla gradient descent (GD) and the multiple gradient
descent algorithm (MGDA) are special cases of CAGrad (See Sec. 3.1). We demonstrate that CAGrad
can improve over prior state-of-the-art gradient manipulation methods on a series of challenging
multi-task supervised, semi-supervised, and reinforcement learning problems.

2 Background

In this section, we first introduce the problem setup of multi-task learning (MTL). Then we analyze
the optimization challenge of MTL and discuss the limitation of prior gradient manipulation methods.

2.1 Multi-task Learning and its Challenge

In multi-task learning (MTL), we are given K ≥ 2 different tasks, each of which is associated with
a loss function Li(θ) for a shared set of parameters θ. The goal is to find an optimal θ ∈ Rm that
achieves low losses across all tasks. In practice, a standard objective for MTL is minimizing the
average loss over all tasks:

θ∗ = argmin
θ∈Rm

{
L0(θ) ≜

1

K

K∑
i=1

Li(θ)

}
. (1)

Unfortunately, directly optimizing (1) using gradient descent may significantly compromise the
optimization of individual losses in practice. A major source of this phenomenon is known as the
conflicting gradients [41].

Optimization Challenge: Conflicting Gradients Denote by gi = ∇Li(θ) the gradient of task i,
and g0 = ∇L0(θ) =

1
K

∑K
i gi the averaged gradient. With learning rate α ∈ R+, θ ← θ − αg0 is

the steepest descent update that appears to be the most natural update to follow when optimizing (1).
However, g0 may conflict with individual gradients, i.e. ∃ i, ⟨gi, g0⟩ < 0. When this conflict is large,
following g0 will decrease the performance on task i. As observed by [41] and illustrated in Fig. 1,
when θ is near a steep “valley", where a specific task’s gradient dominates the update, manipulating
the direction and magnitude of g0 often leads to better optimization.
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2.2 Prior Attempts and Convergence Issues

Several methods have been proposed to manipulate the task gradients to form a new update vector
and have shown improved performance on MTL. Sener et al. apply the multiple-gradient descent
algorithm (MGDA) [6] for MTL, which directly optimizes towards the Pareto set [30]. Chen et al.
dynamically re-weight each Li using a pre-defined heuristic [3]. More recently, PCGrad identifies
conflicting gradients as the motivation behind manipulating the gradients and projects each task
gradient to the normal plane of others to reduce the conflict [41]. While all these methods have
shown success at improving the learning performance of MTL, they manipulate the gradient without
respecting the original objective (1). Therefore, these methods could in principle converge to any
point in the Pareto set (See Fig. 1 and Sec. 3.2). We provide the detailed algorithms of MGDA and
PCGrad in Appendix A.1 and A.2, and a visualization of the update vector by each method in Fig. 2.

3 Method

We introduce our main algorithm, Conflict-Averse Gradient descent in Sec. 3.1, and then show
theoretical analysis in Sec. 3.2.

3.1 Conflict-Averse Gradient Descent

Assume we update θ by θ′ ← θ − αd, where α is a step size and d an update vector. We want
to choose d to decrease not only the average loss L0, but also every individual loss. To do so, we
consider the minimum decrease rate across the losses,

R(θ, d) = max
i∈[K]

{
1

α
(Li(θ − αd)− Li(θ))

}
≈ − min

i∈[K]
⟨gi, d⟩, (2)

where we use the first-order Taylor approximation assuming α is small. If R(θ, d) < 0, it means
that all losses are decreased with the update given a sufficiently small α. Therefore, R(θ, d) can be
regarded as a measurement of conflict among objectives.

With the above measurement, our algorithm finds an update vector that minimizes such conflict to
mitigate the optimization challenge while still converging to an optimum of the main objective L0(θ).
To this end, we introduce Conflict-Averse Gradient descent (CAGrad), which on each optimization
step determines the update d by solving the following optimization problem:

max
d∈Rm

min
i∈[K]
⟨gi, d⟩ s.t. ∥d− g0∥ ≤ c ∥g0∥ , (3)

Here, c ∈ [0, 1) is a pre-specified hyper-parameter that controls the convergence rate (See Sec. 3.2).
The optimization problem (3) looks for the best update vector within a local ball centered at the
averaged gradient g0, which also minimizes the conflict in losses measured by (2). Since we focus on
MTL and choose the average loss as the main objective, g0 is the average gradient. However, CAGrad
also applies when g0 is the gradient of some other user-specified objective. We leave exploring this
possibility as a future direction.

Dual Objective The optimization problem (3) involves decision variable d that has the same
dimension as the number of parameters in θ, which could be millions for a deep neural network.
It is not practical to directly solve for d on every optimization step. However, the dual problem of
Eq. (3), as we will derive in the following, only involves solving for a decision variable w ∈ RK ,
which can be efficiently found using standard optimization libraries [7]. Specifically, first note
that mini⟨gi, d⟩ = minw∈W⟨

∑
i wigi, d⟩, where w = (w1, . . . , wK) ∈ RK and W denotes the

probability simplex, i.e. W = {w :
∑

i wi = 1 and wi ≥ 0}. Denote gw =
∑

i wigi and
ϕ = c2 ∥g0∥2. The Lagrangian of the objective in Eq. (3) is

max
d∈Rm

min
λ≥0,w∈W

g⊤wd− λ(∥g0 − d∥2 − ϕ)/2.

Since the objective for d is concave with linear constraints, by switching the min and max, we reach
the dual form without changing the solution by Slater’s condition:

min
λ≥0,w∈W

max
d∈Rm

g⊤wd− λ ∥g0 − d∥2 /2 + λϕ/2.

3



Algorithm 1 Conflict-averse Gradient Descent (CAGrad) for Multi-task Learning
Input: Initial model parameter vector θ0, differentiable loss functions {Li}Ki=1, a constant c ∈ [0, 1)
and learning rate α ∈ R+.
repeat

At the t-th optimization step, define g0 = 1
K

∑K
i=1∇Li(θt−1) and ϕ = c2 ∥g0∥2.

Solve

min
w∈W

F (w) := g⊤wg0 +
√
ϕ ∥gw∥ , where gw =

K∑
i=1

wi∇Li(θt−1).

Update θt = θt−1 − α
(
g0 +

ϕ1/2

∥gw∥gw

)
.

until convergence

We end up with the following optimization problem w.r.t. w after several steps of calculus,

w∗ = argmin
w∈W

g⊤wg0 +
√
ϕ ∥gw∥ ,

where the optimal λ∗ = ∥gw∗∥ /ϕ1/2 and the optimal update d∗ = g0 + gw∗/λ∗. The detailed
derivation is provided in Appendix A.3 and the entire CAGrad algorithm is summarized in Alg. 1.
The dimension of w equals to the number of objectives K, which usually ranges from 2 to tens and is
much smaller than the number of parameters in a neural network. Therefore, in practice, we solve the
dual objective to perform the update of CAGrad.

Remark In Alg. 1, when c = 0, CAGrad recovers the typical gradient descent with d = g0. On the
other hand, when c→∞, then minimizing F (w) is equivalent to minw ∥gw∥. This coincides with
the multiple gradient descent algorithm (MGDA) [6], which uses the minimum norm vector in the
convex hull of the individual gradients as the update direction (see Fig. 2; second column). MGDA is
a gradient-based multi-objective optimization designed to converge to an arbitrary point on the Pareto
set, that is, it leaves all the points on the Pareto set as fixed points (and hence can not control which
specific point it will converge to). It is different from our method which targets to minimize L0 while
using gradient conflict to regularize the optimization trajectory. As we will analyze in the following
section, to guarantee that CAGrad converges to an optimum of L0(θ), we have to ensure 0 ≤ c < 1.

3.2 Convergence Analysis

In this section we first formally introduce the related Pareto concepts and then analyze CAGrad’s
convergence property. Particularly, in Alg. 1, when c < 1, CAGrad is guaranteed to converge to a
minimum point of the average loss L0.

Pareto Concepts Unlike single task learning where any two parameter vectors θ1 and θ2 can
be ordered in the sense that either L(θ1) ≤ L(θ2) or L(θ1) ≥ L(θ2) holds, MTL could have two
parameter vectors where one performs better for task i and the other performs better for task j ̸= i.
To this end, we need the notion of Pareto-optimality [13].

Definition 3.1 (Pareto optimal and stationary points). Let L(θ) = {Li(θ) : i ∈ [K]} be a set of
differentiable loss functions from Rm to R. For two points θ, θ′ ∈ Rm, we say that θ is Pareto
dominated by θ′, denoted by L(θ′) ≺ L(θ), if Li(θ

′) ≤ Li(θ) for all i ∈ [K] and L(θ′) ̸= L(θ). A
point θ ∈ Rm is said to be Pareto-optimal if there exists no θ′ ∈ Rm such that L(θ′) ≺ L(θ). The set
of all Pareto-optimal points is called the Pareto set. A point θ is called Pareto-stationary if we have
minw∈W ∥gw(θ)∥ = 0, where gw(θ) =

∑K
i=1 wi∇Li(θ), andW is the probability simplex on [K].

Similar to the case of single-objective differentiable optimization, a local Pareto optimal point θ must
be Pareto stationary (see e.g., [6]).

Theorem 3.2 (Convergence of CAGrad). Assume the individual loss functions L0, L1, . . . , LK are
differentiable on Rm and their gradients ∇Li(θ) are all H-Lipschitz, i.e. ∥∇Li(x)−∇Li(y)∥ ≤
H ∥x− y∥ for i = 0, 1, . . . ,K where 0 ≤ H ≤ ∞. Assume L∗

0 = infθ∈Rm L0(θ) > −∞.

With a fixed step size α satisfying 0 < α ≤ 1/H , we have for the CAGrad in Alg. 1:
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Figure 2: The combined update vector d (in red) of a two-task learning problem with gradient
descent (GD), multiple gradient descent algorithm (MGDA), PCGrad and Conflict-Averse Gradient
descent (CAGrad). The two task-specific gradients are labeled g1 and g2. MGDA’s objective is
given in its primal form (See Appendix A.1). For PCGrad, each gradient is first projected onto the
normal plane of the other (the dashed arrows). Then the final update vector is the average of the two
projected gradients. CAGrad finds the best update vector within a ball around the average gradient
that maximizes the worse local improvement between task 1 and task 2.

1) For any c ≥ 1, all the fixed points of CAGrad are Pareto-stationary points of (L0, L1, . . . , LK).

2) In particular, if we take 0 ≤ c < 1, then CAGrad satisfies
T∑

t=0

∥∇L0(θt)∥2 ≤
2(L0(θ0)− L∗

0)

α(1− c2)
.

This means that the algorithm converges to a stationary point of∇L0 if we take 0 ≤ c < 1. The proof
is in Appendix A.3. As we discuss earlier, unlike our method, MGDA is designed to converge to an
arbitrary point on the Pareto set, without explicit control of which point it will converges to. Another
algorithm with similar property is PCGrad [41], which is a gradient-based algorithm that mitigates
the conflicting gradients problem by removing the conflicting components of each gradient with
respect to the other gradients before averaging them to form the final update; see Fig. 2, third column
for the illustration. Similar to MGDA, as shown in [41], PCGrad also converges to an arbitrary Pareto
point without explicit control of which point it will arrive at.

3.3 Practical Speedup

A typical drawback of methods that manipulate gradients is the computation overhead. For computing
the optimal update vector, a method usually requires K back-propagations to find all individual
gradients gi, in addition to the time required for optimization. This can be prohibitive for the scenario
with many tasks. To this end, we propose to only sample a subset of tasks S ⊆ [K], compute their
corresponding gradients {gi | i ∈ S} and the averaged gradient g0. Then we optimize d in:

max
d∈Rm

min

(
⟨
Kg0 −

∑
i∈S gi

K − |S|
, d⟩, min

i∈S
⟨gi, d⟩

)
s.t. ∥d− g0∥ ≤ c ∥g0∥ (4)

Remark Note that the convergence guarantee in Thm. 3.2 still holds for Eq. 4 as the constraint
does not change (See Appendix A.3). The time complexity is O((|S|N + T ), where N denotes the
time for one pass of back-propagation and T denotes the optimization time. For few-task learning
(K < 10), usually T ≪ N . When S = [K], we recover the full CAGrad algorithm.

4 Related Work

Multi-task Learning Due to its benefit with regards to data and computational efficiency, multi-task
learning (MTL) has broad applications in vision, language, and robotics [11, 28, 22, 44, 38]. A number
of MTL-friendly architectures have been proposed using task-specific modules [25, 11], attention-
based mechanisms [21] or activating different paths along the deep networks to tackle MTL [27, 40].
Apart from designing new architectures, another branch of methods focus on decomposing a large
problem into smaller local problems that could be quickly learned by smaller models [29, 26, 37, 8].
Then a unified policy is learned from the smaller models using knowledge distillation [12].
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MTL Optimization In this work, we focus on the optimization challenge of MTL [38]. Gradient
manipulation methods are designed specifically to balance the learning of each task. The simplest form
of gradient manipulation is to re-weight the task losses based on specific criteria, e.g., uncertainty [15],
gradient norm [3], or difficulty [9]. These methods are mostly heuristics and their performance can
be unstable. Recently, two methods [30, 41] that manipulate the gradients to find a better local
update vector have become popular. Sener et al [30] view MTL as a multi-objective optimization
problem, and use multiple gradient descent algorithm for optimization. PCGrad [41] identifies a
major optimization challenge for MTL, the conflicting gradients, and proposes to project each task
gradient to the normal plane of other task gradients before combining them together to form the
final update vector. Though yielding good empirical performance, both methods can only guarantee
convergence to a Pareto-stationary point, but not knowing where it exactly converges to. More
recently, GradDrop [4] randomly drops out task gradients based on how much they conflict. IMTL-
G [20] seeks an update vector that has equal projections on each task gradient. RotoGrad [14]
separately scales and rotates task gradients to mitigate optimization conflict.

Our method, CAGrad, also manipulates the gradient to find a better optimization trajectory. Like
other MTL optimization techniques, CAGrad is model-agnostic. However, unlike prior methods,
CAGrad converges to the optimal point in theory and achieves better empirical performance on both
toy multi-objective optimization tasks and real-world applications.

5 Experiment

We conduct experiments to answer the following questions:

Question (1) Do CAGrad, MGDA and PCGrad behave consistently with their theoretical properties
in practice? (yes)

Question (2) Does CAGrad recover GD and MGDA when varying the constant c? (yes)

Question (3) How does CAGrad perform in both performance and computational efficiency compared
to prior state-of-the-art methods, on challenging multi-task learning problems under the supervised,
semi-supervised and reinforcement learning settings? (CAGrad improves over prior state-of-the-art
methods under all settings)

5.1 Convergence and Ablation over c

To answer questions (1) and (2), we create a toy optimization example to evaluate the convergence of
CAGrad compared to MGDA and PCGrad. On the same toy example, we ablate over the constant c
and show that CAGrad recovers GD and MGDA with proper c values. Next, to test CAGrad on more
complicated neural models, we perform the same set of experiments on the Multi-Fashion+MNIST
benchmark [19] with a shrinked LeNet architecture [18] (in which each layer has a reduced number
of neurons compared to the original LeNet). Please refer to Appendix B for more details.

For the toy optimization example, we modify the toy example used by Yu et al. [41] and consider
θ = (θ1, θ2) ∈ R2 with the following individual loss functions:

L1(θ) = c1(θ)f1(θ) + c2(θ)g1(θ) and L2(θ) = c1(θ)f2(θ) + c2(θ)g2(θ), where

f1(θ) = log
(
max(|0.5(−θ1 − 7)− tanh (−θ2)|, 0.000005)

)
+ 6,

f2(θ) = log
(
max(|0.5(−θ1 + 3)− tanh (−θ2) + 2|, 0.000005)

)
+ 6,

g1(θ) =
(
(−θ1 + 7)2 + 0.1 ∗ (−θ2 − 8)2

)
/10− 20,

g2(θ) =
(
(−θ1 − 7)2 + 0.1 ∗ (−θ2 − 8)2)

/
10− 20,

c1(θ) = max(tanh (0.5 ∗ θ2), 0) and c2(θ) = max(tanh (−0.5 ∗ θ2), 0).

The average loss L0 and individual losses L1 and L2 are shown in Fig. 1. We then pick 5 initial
parameter vectors θinit ∈ {(−8.5, 7.5), (−8.5, 5), (0, 0), (9, 9), (10,−8)} and plot the corresponding
optimization trajectories with different methods in Fig. 3. As shown in Fig. 3, GD gets stuck in 2 out
of the 5 runs while other methods all converge to the Pareto set. MGDA and PCGrad converge to
different Pareto-stationary points depending on θinit. CAGrad with c = 0 recovers GD and CAGrad
with c = 10 approximates MGDA well (in theory it requires c→∞ to exactly recover MGDA).
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Figure 3: The left four plots are 5 runs of each algorithms from 5 different initial parameter vectors,
where trajectories are colored from red to yellow. The right two plots are CAGrad’s results with a
varying c ∈ {0, 0.2, 0.5, 0.8, 10}.

Next, we apply the same set of experiments on the multi-task classification benchmark Multi-
Fashion+MNIST [19]. This benchmark consists of images that are generated by overlaying an image
from FashionMNIST dataset [39] on top of another image from MNIST dataset [5]. The two images
are positioned on the top-left and bottom-right separately. We consider a shrinked LeNet as our model,
and train it with Adam [16] optimizer with a 0.001 learning rate for 50 epochs using a batch size of
256. Due to the highly non-convex nature of the neural network, we are not able to visualize the
entire Pareto set. But we provide the final training losses of different methods over three independent
runs in Fig. 4. As shown, CAGrad achieves the lowest average loss with c = 0.2. In addition,
PCGrad and MGDA focus on optimizing task 1 and task 2 separately. Lastly, CAGrad with c = 0
and c = 10 roughly recovers the final performance of GD and MGDA. By increasing c, the model
performance shifts from more GD-like to more MGDA-like, though due to the non-convex nature of
neural networks, CAGrad with 0 ≤ c < 1 does not necessarily converge to the exact same point.

Figure 4: The average and individual training losses on the Fashion-and-MNIST benchmark by
running GD, MGDA, PCGrad and CAGrad with different c values. GD gets stuck at the steep
valley (the area with a cloud of dots), which other methods can pass. MGDA and PCGrad converge
randomly on the Pareto set.

5.2 Multi-task Supervised Learning

To answer question (3) in the supervised learning setting, we follow the experiment setup from Yu
et al. [41] and consider the NYU-v2 and CityScapes vision datasets. NYU-v2 contains 3 tasks: 13-
class semantic segmentation, depth estimation, and surface normal prediction. CityScapes similarly
contains 2 tasks: 7-class semantic segmentation and depth estimation. Here, we follow [41] and
combine CAGrad with a state-of-the-art MTL method MTAN [21], which applies attention mechanism
on top of the SegNet architecture [1]. We compare CAGrad with PCGrad, vanilla MTAN and Cross-
Stitch [25], which is another MTL method that modifies the network architecture. MTAN originally
experiments with equal loss weighting and two other dynamic loss weighting heuristics [15, 3]. For
a fair comparison, all methods are applied under the equal weighting scheme and we use the same
training setup from [3]. We search c ∈ {0.1, 0.2, . . . 0.9} with the best average training loss for
CAGrad on both datasets (0.4 for NYU-v2 and 0.2 for Cityscapes). We perform a two-tailed, Student’s
t-test under equal sample sizes, unequal variance setup and mark the results that are significant with
an ∗. Following Maninis et al.[24], we also compute the average per-task performance drop of method
m with respect to the single-tasking baseline b: ∆m = 1

K

∑K
i=1(−1)li(Mm,i −Mb,i)/Mb,i where

li = 1 if a higher value is better for a criterion Mi on task i and 0 otherwise. The single-tasking
baseline (independent) refers to training individual tasks with a vanilla SegNet. Results are shown in
Tab. 1 and Tab. 2.

Given the single task performance, CAGrad performs better on the task that is overlooked by
other methods (Surface Normal in NYU-v2 and Depth in CityScapes) and matches other methods’
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Segmentation Depth Surface Normal

#P. Method (Higher Better) (Lower Better) Angle Distance
(Lower Better)

Within t◦

(Higher Better) ∆m% ↓
mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

3 Independent 38.30 63.76 0.6754 0.2780 25.01 19.21 30.14 57.20 69.15

≈3 Cross-Stitch [25] 37.42 63.51 0.5487 0.2188 ∗28.85 ∗24.52 ∗22.75 ∗46.58 ∗59.56 6.96

1.77 MTAN [21] 39.29 65.33 0.5493 0.2263 ∗28.15 ∗23.96 ∗22.09 ∗47.50 ∗61.08 5.59

1.77 MGDA [30] ∗30.47 ∗59.90 ∗0.6070 ∗0.2555 24.88 19.45 29.18 56.88 69.36 1.38

1.77 PCGrad [41] 38.06 64.64 0.5550 0.2325 ∗27.41 ∗22.80 ∗23.86 ∗49.83 ∗63.14 3.97

1.77 GradDrop [4] 39.39 65.12 0.5455 0.2279 ∗27.48 ∗22.96 ∗23.38 ∗49.44 ∗62.87 3.58

1.77 CAGrad (ours) 39.79 65.49 0.5486 0.2250 26.31 21.58 25.61 52.36 65.58 0.20

Table 1: Multi-task learning results on NYU-v2 dataset. #P denotes the relative model size compared
to the vanilla SegNet. Each experiment is repeated over 3 random seeds and the mean is reported.
The best average result among all multi-task methods is marked in bold. MGDA, PCGrad, GradDrop
and CAGrad are applied on the MTAN backbone. CAGrad has statistically significant improvement
over baselines methods with an ∗, tested with a p-value of 0.1.

Segmentation Depth

#P. Method (Higher Better) (Lower Better) ∆m% ↓
mIoU Pix Acc Abs Err Rel Err

2 Independent 74.01 93.16 0.0125 27.77

≈3 Cross-Stitch [25] ∗73.08 ∗92.79 ∗0.0165 ∗118.5 90.02

1.77 MTAN [21] 75.18 93.49 ∗0.0155 ∗46.77 22.60

1.77 MGDA [30] ∗68.84 ∗91.54 0.0309 33.50 44.14

1.77 PCGrad [41] 75.13 93.48 0.0154 42.07 18.29

1.77 GradDrop [4] 75.27 93.53 ∗0.0157 ∗47.54 23.73

1.77 CAGrad (ours) 75.16 93.48 0.0141 37.60 11.64

Table 2: Multi-task learning results on CityScapes Challenge. Each experiment is repeated over 3
random seeds and the mean is reported. The best average result among all multi-task methods is
marked in bold. PCGrad and CAGrad are applied on the MTAN backbone. CAGrad has statistically
significant improvement over baselines methods with an ∗, tested with a p-value of 0.1.

performance on the rest of the tasks. We also provide the final test losses and the per-epoch training
time of each method in Fig. 5 in Appendix B.2.

5.3 Multi-task Reinforcement Learning

To answer question (3) in the reinforcement learning (RL) setting, we apply CAGrad on the MT10 and
MT50 benchmarks from the Meta-World environment [42]. In particular, MT10 and MT50 contains
10 and 50 robot manipulation tasks. Following [33], we use Soft Actor-Critic (SAC) [10] as the
underlying RL training algorithm. We compare against Multi-task SAC (SAC with a shared model),
Multi-headed SAC (SAC with a shared backbone and task-specific head), Multi-task SAC + Task
Encoder (SAC with a shared model and the input includes a task embedding) [42] and PCGrad [41].
We also compare with Soft Modularization [40] that routes different modules in a shared model to
form different policies. Lastly, we also include a recent method (CARE) that considers language
metadata and uses a mixture of expert encoder for MTL. We follow the same experiment setup
from [33]. The results are shown in Tab. 3. CAGrad outperforms all baselines except for CARE
which benefits from extra information from the metadata. We also apply the practical speedup in
Sec. 3.3 and sub-sample 4 and 8 tasks for MT10 and MT50 (CAGrad-Fast). CAGrad-fast achieves
comparable performance against the state-of-the-art method while achieving a 2x (MT10) and 5x
(MT50) speedup over PCGrad. We provide a visualization of tasks from MT10 and MT50, and the
comparison of computational efficiency in Appendix B.3.

5.4 Semi-supervised Learning with Auxiliary Tasks

Training with auxiliary tasks to improve the performance of a main task is another popular application
of MTL. Here, we take semi-supervised learning as an instance. We combine different optimization
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Metaworld MT10 Metaworld MT50

Method success success
(mean ± stderr) (mean ± stderr)

Multi-task SAC [42] 0.49 ±0.073 0.36 ±0.013
Multi-task SAC + Task Encoder [42] 0.54 ±0.047 0.40 ±0.024
Multi-headed SAC [42] 0.61 ±0.036 0.45 ±0.064
PCGrad [41] 0.72 ±0.022 0.50 ±0.017
Soft Modularization [40] 0.73 ±0.043 0.50 ±0.035
CAGrad (ours) 0.83 ±0.045 0.52 ±0.023
CAGrad-Fast (ours) 0.82 ±0.039 0.50 ±0.016

CARE [33] 0.84 ±0.051 0.54 ±0.031
One SAC agent per task (upper bound) 0.90 ±0.032 0.74 ±0.041

Table 3: Multi-task reinforcement learning results on the Metaworld benchmarks. Results are
averaged over 10 independent runs and the best result is marked in bold.

algorithms with Auxiliary Task Reweighting for Minimum-data Learning (ARML) [31], a state-of-
the-art semi-supervised learning algorithm. The loss function is composed of the main task and two
auxiliary tasks:

L0 = LCE(θ;Dl) + w1L
1
aux(θ;Du) + w2L

2
aux(θ;Du), (5)

where LCE is the main cross-entropy classification loss on the labeled dataset Dl, and L1
aux, L

2
aux

are auxiliary unsupervised learning losses on the unlabeled dataset Du. We use the same w1 and w2

from ARML, and use the CIFAR10 dataset [17], which contains 50,000 training images and 10,000
test images. 10% of the training images is held out as the validation set. We test PCGrad, MGDA and
CAGrad with 500, 1000 and 2000 labeled images. The rest of the training set is used for auxiliary
tasks. For all the methods, we use the same labeled dataset, the same learning rate and train them
for 200 epochs with the Adam [16] optimizer. Please refer to Appendix B.4 for more experimental
details. Results are shown in Tab. 4. With all the different number of labels, CAGrad yields the best
averaged test accuracy. We observed that MGDA performs much worse than the ARML baseline,
because it significantly overlooks the main classification task. We also compare different gradient
manipulation methods on the same task with GradNorm [3], which dynamically adjusts w1 and w2

during training. The results and conclusions are similar to those for ARML.

Method 500 labels 1000 labels 2000 labels

ARML [31] 67.05 ±0.16 73.22 ±0.26 81.35 ±0.36
ARML + PCGrad [41] 67.49 ±0.64 73.23 ±0.62 81.91 ±0.19
ARML + MGDA [30] 49.27 ±0.68 60.11 ±2.35 60.78 ±0.17
ARML + CAGrad (Ours) 68.25 ±0.37 74.37 ±0.42 82.81 ±0.48

GradNorm [3] 67.35 ±0.15 73.53 ±0.23 81.03 ±0.71
GradNorm + PCGrad [41] 67.83 ±0.19 73.91 ±0.09 82.72 ±0.19
GradNorm + MGDA [30] 36.99 ±2.11 57.94 ±0.92 59.12 ±0.63
GradNorm + CAGrad (Ours) 67.53 ±0.26 74.72 ±0.19 83.15 ±0.56

Table 4: Semi-supervised Learning with auxiliary tasks on CIFAR10. We report the average test
accuracy over 3 independent runs for each method and mark the best result in bold.

6 Conclusion

In this work, we introduce the Conflict-Averse Gradient descent (CAGrad) algorithm that explicitly
optimizes the minimum decrease rate of any specific task’s loss while still provably converging to
the optimum of the average loss. CAGrad generalizes the gradient descent and multiple gradient
descent algorithm, and demonstrates improved performance across several challenging multi-task
learning problems compared to the state-of-the-art methods. While we focus mainly on optimizing
the average loss, an interesting future direction is to look at main objectives other than the average
loss under the multi-task setting.
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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Sec. 3.2 for the convergence analysis, Fig. 1 for
the challenges faced by previous methods, and Sec. 5 for empirical evaluation of these
challenges and the advantage of CAGrad.

(b) Did you describe the limitations of your work? [Yes] See Sec. 6. Currently we mainly
focus on optimizing the average loss, which could be replaced by other main objectives.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our
method does not have potential negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] The assump-
tions are stated in Thm. 3.2.

(b) Did you include complete proofs of all theoretical results? [Yes] The complete proof is
included in Appendix A.3.

3. If you ran experiments...
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(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We mention
most of the details to reproduce the result in Sec. 5 and provide the rest of details of
each experiment in Appendix.B. The code comes with the supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix.B and Sec. 5.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] For each experiment except for the toy (since there is no
stochasticity), we run over multiple (≥ 3) seeds.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] We explicitly compare the
computational efficiency in Fig. 5. More details on the resources are provided in the
corresponding sections in Appendix.B.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] For most of the

experiment, we follow the exact experiment setup and use the corresponding open-
source code from previous works and have cited and compared against them.

(b) Did you mention the license of the assets? [Yes] All code and data are publicly available
under MIT license

(c) Did you include any new assets either in the supplemental material or as a URL? [No]
No new assets are introduced for our experiment. The only thing we modified is a
shrinked LeNet, where the details are provided in Appendix.B.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] The data we use are publicly available data
that has been used by a lot of prior research. There should be no personally identifiable
information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] No human subjects involved.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

A Algorithm Details

In this section, we first formally introduce the Multiple Gradient Descent Algorithm and the Projecting
Conflicting Gradients method. Then we provide the full proof of Thm. 3.2.

A.1 Multiple Gradient Descent Algorithm (MGDA)

The Multiple Gradient Descent Algorithm (MGDA) explicitly optimizes towards a Pareto-optimal
point for multiple objectives (See the definition 3.1). It is known that a necessary condition for θ
to be a Pareto-optimal point is that we could find a convex combination of the task gradients at θ
that results in the 0 vector. Therefore, MGDA proposes to minimize the minimum possible convex
combination of task gradients:

min
1

2

∥∥∥∥∥
K∑
i=1

wigi

∥∥∥∥∥
2

, s.t.
K∑
i=1

wi = 1, and ∀i, wi ≥ 0. (6)

We call this the dual objective for MGDA, as the primal objective of MGDA has a close connection
to CAGrad’s primal objective in Eq. (3). Specifically, the primal objective of MGDA is

max
∥d∥≤1

min
i
⟨d, gi⟩. (7)
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To see the primal-dual relationship, denote gw =
∑

i wigi, where w ∈ W ≜ {w ∈ RK :
∑

i wi =
1, wi ≥ 0, ∀i ∈ [K]}. Note that mini⟨gi, d⟩ = minw∈W⟨

∑
i wigi, d⟩. The Lagrangian of Eq. (7) is

max
d

min
λ≥0,w∈W

⟨d, gw⟩ −
λ

2
(∥d∥2 − 1). (8)

Since the problem is a convex programming and the Slater’s condition holds when c > 0 (On the
other hand, if c = 0, then it is easy to check that all the results hold trivially), the strong duality holds
and we can exchange the min and max:

min
λ≥0,w∈W

max
d
⟨d, gw⟩ −

λ

2
(∥d∥2 − 1). (9)

The optimal d∗ = gw/λ and the resulting primal objective is therefore

min
λ≥0,w∈W

λ(
1

2
∥gw∥2 + 1). (10)

Here, λ corresponds to the constraint ∥d∥ ≤ 1. If we fix λ to be any constant, then we recover the
dual objective in Eq. (6).

Remark Looking at the primal form of MGDA in Eq. (7), the major difference between MGDA
and CAGrad is that the new update vector d is searched around the 0 vector for MGDA and g0 for
CAGrad. Therefore, theoretically both MGDA and CAGrad optimizes the worst local update, but
MGDA is more conservative and can converge to any point on the Pareto set without explicit control
(See Thm. 2 from [6]). This also explains MGDA’s behavior in practice that it often learns much
slower than other methods.

A.2 Projecting Conflicting Gradients (PCGrad)

Identifying that a major challenge for multi-task optimization is the conflicting gradient, Yu et al. [41]
propose to project each task gradient to the normal plane of others before combining them together
to form the final update vector. In the following, we provide the full algorithm of the Projecting
Conflicting Gradients (PCGrad):

Algorithm 2 Projecting Conflicting Gradient Update Rule
Input: model parameter vector θ and differentiable loss functions {Li}Ki=1.
gi ← ∇θLi(θ).
gPC
i = gi, ∀i.

for task i ∈ [K] do
for j ̸= i ∈ [K] in random order do

if gPC
i · gj < 0 then
gPC
i = gPC

i −
gPC
i ·gj
∥gj∥2 gj .

end if
end for

end for
Return the new update vector d = gPC = 1

K

∑
i g

PC
i .

Fig. 2 provides a visualization of PCGrad’s update rule for two-task learning (the 3rd column).
Different from MGDA and CAGrad, PCGrad does not have a clear optimization objective at each
step, which makes it hard to analyze PCGrad’s convergence guarantee in general. In practice, the
random ordering to do the projection is particularly important for PCGrad to work well [41], which
suggests that the intuition of removing the “conflicting" part of each gradient might not be always
correct. For the convergence analysis, Yu et al. establishes the convergence guarantee for PCGrad
only under the two-task learning setting. Moreover, PCGrad is only guaranteed to converge to the
Pareto set without explict control over which point it will arrive at (See Thm. A.1 in the following).

Theorem A.1 (Convergence of PCGrad [41]). Consider two-task learning, assume the loss functions
L1 and L2 are convex and differentiable. Suppose the gradient of L0 = (L1 + L2)/2 is H-Lipschitz
with H > 0. Then, the PCGrad update rule with step size t ≤ 1/H will converge to a Pareto-
stationary point.
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A.3 Conflit-Averse Gradient descent (CAGrad)

We provide the full derivation of CAGrad and the proof for its convergence in this section. Our proof
assumes L0 is a general function with gradient g0 = ∇L0, that is, it does not have to be the average
of Li as the case we focus on in the main paper.

Lemma A.2. Let d∗ be the solution of

max
d∈Rm

min
i∈[K]

g⊤i d s.t. ∥g0 − d∥ ≤ c ∥g0∥ ,

where c ≥ 0, and g0, g1, . . . , gK ∈ Rm. Then we have

d∗ = g0 +
c ∥g0∥
∥gw∗∥

gw∗ ,

where gw∗ =
∑

i w
∗
i gi and w∗ is the solution of

min
w≥W

g⊤wg0 + c ∥g0∥ ∥gw∥ , (11)

whereW = {w ∈ RK :
∑

i wi = 1, wi ≥ 0, ∀i ∈ [K]}. In addition,

min
i

g⊤i d
∗ = g⊤w∗g0 + c ∥g0∥ ∥gw∗∥ . (12)

Proof. Denote ϕ = c2 ∥g0∥2. Note that mini⟨gi, d⟩ = minw∈W⟨
∑

i wigi, d⟩. The Lagrangian of
the objective in Eq. (3) is

max
d∈Rm

min
λ≥0,w∈W

g⊤wd−
λ

2
(∥g0 − d∥2 − ϕ).

Since the problem is a convex programming and the Slater’s condition holds when c > 0 (On the
other hand, if c = 0, then it is easy to check that all the results hold trivially), the strong duality holds
and we can exchange the min and max:

min
λ≥0,w∈W

max
d∈Rm

g⊤wd−
λ

2
∥g0 − d∥2 + λϕ

2
.

With λ,w fixing, the optimal d is achieved when d = g0+gw/λ, yielding the following dual problem

min
w,λ≥0

g⊤w (g0 + gw/λ)−
λ

2
∥gw/λ∥2 +

λ

2
ϕ.

This is equivalent to

min
w,λ≥0

g⊤wg0 +
1

2λ
∥gw∥2 +

λϕ

2
.

Optimizing out the λ we have
min
w∈W

g⊤wg0 +
√
ϕ ∥gw∥ ,

where the optimal λ = ∥gw∥ /ϕ1/2. This solves the problem. (12) is the consequence of the strong
duality.

Convergence Analysis

Assumption A.3. Assume individual loss functions L0, L1, . . . , LK are differentiable on Rm

and their gradients ∇Li(θ) are all H-Lipschitz, i.e. ∥∇Li(x)−∇Li(y)∥ ≤ H ∥x− y∥ for
i = 0, 1, . . . ,K , where H ∈ (0,∞). Assume L∗

0 = infθ∈Rm L0(θ) > −∞.

Theorem A.4 (Convergence of CAGrad). Assume Assumption A.3 holds. With a fixed step size α
satisfying 0 < α ≤ 1/H , we have for the CAGrad in Alg. 1:

1) If 0 ≤ c < 1, then CAGrad converges to stationary points of L0 convergence rate in that
T∑

t=0

∥g0(θt)∥2 ≤
2(L0(θ0)− L∗

0)

α(1− c2)
.

2) For any c ≥ 0, all the fixed point of CAGrad are Pareto-stationary points of (L0, L1, . . . , LK).
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Proof. We will first prove 1). Consider the t-th optimization step and denote d∗(θt) the update
direction obtained by solving (3) at the t-th iteration. Then we have

L0(θt+1)− L0(θt) = L0(θt − αd∗(θt))− L0(θt)

≤ −αg0(θt)⊤d∗(θt) +
Hα2

2
∥d∗(θt)∥2

≤ −αg0(θt)⊤d∗(θt) +
α

2
∥d∗(θt)∥2 //α ≤ 1/H

≤ −α

2

(
∥g0(θt∥2 + ∥d∗(θt)∥2 − ∥g0(θt)− d∗(θt)∥2

)
+

α

2
∥d∗(θt)∥2

= −α

2

(
∥g0(θt)∥2 − ∥d∗(θt)− g0(θt)∥2

)
≤ −α

2
(1− c2) ∥g0(θt)∥2 //by the constraint in (3)

Using telescoping sums, we have L0(θT+1)−L0(0) = −(α/2)(1− c2)
∑T

t=0 ∥g0(θt)∥
2. Therefore

min
t≤T
∥g0(θt)∥2 ≤

1

T + 1

T∑
t=0

∥g0(θt)∥2 ≤
2(L0(0)− L0(θT+1))

α(1− c2)(T + 1)
.

Therefore, if L0 is lower bounded, that is, L∗
0 := infθ∈Rm L0(θ) > −∞, then mint≤T ∥g0(θt)∥2 =

O(1/T ).

For general c ≥ 0, in the fixed point, we have d∗(θ) = g0(θ) + λgw∗(θ) = 0, which readily match
the definition of Pareto Stationarity.

In the following, we show an additional result that when c ≥ 1, and we use a properly decaying step
size, the limit points of CAGrad are either stationary points of L0, or Pareto-stationary points of
(L1, . . . , LK).

Theorem A.5. Under Assumption A.3, assume c ≥ 1 and we a time varying step size satisfying

αt ≤
∥∥gw∗

t
(θt)

∥∥
H(c− 1) ∥g0(θt)∥

,

where w∗
t is the solution of (11) at the t-th iteration, then we have

T∑
t=0

αt ∥g0(θt)∥
∥∥gw∗

t
(θt)

∥∥ ≤ 2
mini(Li(θ0)− Li(θT+1))

(c− 1)
.

Therefore, if we hae L∗
i = infθ∈Rm L(θ) > −∞ and c > 1, then we have αt ∥g0(θt)∥

∥∥gw∗
t
(θt)

∥∥→
0 as t→∞, meaning that we have either αt → 0, or ∥g0(θt)∥ → 0 or

∥∥gw∗
t
(θt)

∥∥→ 0.

In this case, the actual behavior of the algorithm depends on the specific choice of the step size. For

example, if we take αt =

∥∥∥gw∗
t
(θt)

∥∥∥
H(c−1)∥g0(θt)∥ , then the result becomes

T∑
t=0

∥∥gw∗
t
(θt)

∥∥2 ≤ 2Hmin
i
(Li(θ0)− Li(θT+1)).

which ensures
∥∥gw∗

t
(θt)

∥∥2 → 0.

Proof. For any task i ∈ [K],

Li(θt+1)− Li(θ) ≤ −αtgi(θt)
⊤d∗(θt) +

Hα2
t

2
∥d∗(θt)∥2

≤ −αt min
i

gi(θt)
⊤d∗(θt) +

Hα2
t

2
∥d∗(θt)∥2

≤ −αt

(
gw∗

t
(θt)

⊤g0(θt) + c ∥g0(θt)∥
∥∥gw∗

t
(θt)

∥∥)+ Hα2
t

2
∥d∗(θt)∥2 //by (12)
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Meanwhile, note that

∥d∗(θt)∥2 =

∥∥∥∥∥g0(θt) + c ∥g0(θt)∥∥∥gw∗
t
(θt)

∥∥gw∗
t
(θt)

∥∥∥∥∥
2

= (c2 + 1) ∥g0(θt)∥2 + 2
c ∥g0(θt)∥∥∥gw∗

t
(θt)

∥∥g0(θt)⊤gw∗
t
(θt)

= 2c
∥g0(θt)∥∥∥gw∗

t
(θt)

∥∥ (gw∗
t
(θt)

⊤g0(θt) + c ∥g0(θt)∥
∥∥gw∗

t
(θt)

∥∥)+ (1− c2) ∥g0(θt)∥2 .

Therefore,
Li(θt+1)− Li(θ)

≤ −αt

(
1−Hαtc

∥g0(θt)∥∥∥gw∗
t
(θt)

∥∥
)(

gw∗
t
(θt)

⊤g0(θt) + c ∥g0(θt)∥
∥∥gw∗

t
(θt)

∥∥)+ Hα2
t

2
(c2 − 1) ∥g0(θt)∥2

(∗)
≤ −αt

(
1−Hαtc

∥g0(θt)∥∥∥gw∗
t
(θt)

∥∥
)
(c− 1) ∥g0(θt)∥

∥∥gw∗
t
(θt)

∥∥− Hα2
t

2
(c2 − 1) ∥g0(θt)∥2

= −αt(c− 1) ∥g0(θt)∥
∥∥gw∗

t
(θt)

∥∥+ Hα2
t

2
(c− 1)2 ∥g0(θt)∥2

≤ −1

2
αt(c− 1) ∥g0(θt)∥

∥∥gw∗
t
(θt)

∥∥ //assume αt ≤
∥∥gw∗

t
(θt)

∥∥
H(c− 1) ∥g0(θt)∥

, c ≥ 1

where inequality (*) uses Cauchy-Schwarz inequality. Therefore, a telescoping sum gives
T∑

t=0

αt ∥g0(θt)∥
∥∥gw∗

t
(θt)

∥∥ ≤ 2
mini(Li(θ0)− Li(θT+1))

(c− 1)
,

when c ≥ 1.

B Experiment Details

B.1 Multi-Fashion+MNIST

Experiment Details We follow the experiment setup from [23] and use the same shrinked LeNet
that consists of the following layers as the shared base network: CONV(1,5,9,1), MAXPOOL2D(2),
RELU, BATCHNORM2D(5), CONV2D(5,10,5,1), MAXPOOL2D(2), RELU, BATCHNORM1D(250),
LINEAR(250, 50). Then a task-specific linear head LINEAR(50, 10) is attached to the shared base
for the MNIST and FashionMNIST prediction. We use Adam [16] optimizer with a 0.001 learning
rate and 0.01 weight decay, and then train for 50 epochs with a batch size of 256. The training set
consists of 120000 images of size 36x36 and the test set consists of 20000 images of the same size.

B.2 Multi-task Supervised Learning

Experiment Details For the multi-task supervised learning experiments on the NYU-v2 and
CityScapes datasets, we follow exactly the same setup from MTAN [21]. We describe the details in
the following. We adopt the SegNet [1] architecture as the backbone network and apply the attention
mechanism from MTAN [21] on top of it. For the CityScapes dataset, we use the 7-class semantics
labels. We train MTAN, Cross-Stitch, PCGrad and CAGrad with 200 epochs with a batch size of
2 for NYU-v2 and a batch size of 8 for CityScapes, using the Adam [16] optimizer with a learning
rate of 0.0001. We further decay the learning rate to 0.00005 at the 100th epoch. As Liu et al.
do not separately create a validation set, they average the test performance of each method in the
last 10 epochs. We follow this and also average the test performance over the last 10 epochs, but
additionally run over 3 seeds and calculate the mean and the standard error. We train CAGrad with
c ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and pick the best c using their corresponding averaged
training performance (c = 0.4 for NYU-v2 and c = 0.4 for CityScapes).

We also provide the final test losses and the per-epoch training times of each method in Fig. 5.
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Figure 5: Test loss and training time comparison on NYU-v2 and Cityscapes.

Segmentation Depth Surface Normal

#P. Method (Higher Better) (Lower Better) Angle Distance
(Lower Better)

Within t◦

(Higher Better) ∆m% ↓
mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

3 Independent 38.30 63.76 0.6754 0.2780 25.01 19.21 30.14 57.20 69.15

≈3 Cross-Stitch [25] 37.42 63.51 0.5487 0.2188 28.85 24.52 22.75 46.58 59.56 6.96

1.77 MTAN [21] 39.29 65.33 0.5493 0.2263 28.15 23.96 22.09 47.50 61.08 5.59

1.77 MGDA [30] 30.47 59.90 0.6070 0.2555 24.88 19.45 29.18 56.88 69.36 1.38

1.77 PCGrad [41] (lr=1e-4) 38.06 64.64 0.5550 0.2325 27.41 22.80 23.86 49.83 63.14 3.97

1.77 PCGrad [41] (lr=2e-4) 37.70 63.40 0.5871 0.2482 28.18 24.09 21.94 47.20 60.87 8.12

1.77 GradDrop [4] 39.39 65.12 0.5455 0.2279 27.48 22.96 23.38 49.44 62.87 3.58

1.77 CAGrad (c=0.2) 39.15 65.45 0.5563 0.2295 26.74 21.93 25.17 51.55 64.70 1.55

1.77 CAGrad (c=0.4) 39.79 65.49 0.5486 0.2250 26.31 21.58 25.61 52.36 65.58 0.20

1.77 CAGrad (c=0.6) 39.54 65.60 0.5340 0.2199 25.87 20.94 25.88 53.78 67.00 -1.36

1.77 CAGrad (c=0.8) 39.18 64.97 0.5379 0.2229 25.42 20.47 27.37 54.73 67.73 -2.29

1.77 MTAN [21] (Uncert. Weights) 38.74 64.70 0.5360 0.2243 26.52 21.71 25.50 52.02 65.14 0.75

1.77 PCGrad [41] (Uncert. Weights) 37.81 64.35 0.5318 0.2242 26.53 21.73 25.45 51.98 65.16 1.04

1.77 CAGrad (c=0.2) (Uncert. Weights) 38.87 65.19 0.5357 0.2227 26.38 21.64 25.66 52.21 65.39 0.319

1.77 CAGrad (c=0.4) (Uncert. Weights) 38.89 64.98 0.5313 0.2242 25.71 20.72 26.89 54.14 67.13 -1.59

1.77 CAGrad (c=0.6) (Uncert. Weights) 39.80 65.32 0.5334 0.2242 25.69 20.91 26.89 54.14 67.13 -1.59

1.77 CAGrad (c=0.8) (Uncert. Weights) 39.20 65.15 0.5322 0.2202 25.28 20.17 27.83 55.41 68.25 -3.14

Table 5: Multi-task learning results on NYU-v2 dataset. #P denotes the relative model size compared
to the vanilla SegNet. Each experiment is repeated over 3 random seeds and the mean is reported.

More Ablation Studies on NYU-v2 and CityScapes Datasets We conduct the following additional
studies on NYU-v2 and CityScapes datasets: 1) How do different methods perform when we
additional apply the uncertain weight method [15]? 2) How do CAGrad perform with different values
of c? 3) How does PCGrad perform when we enlarge the learning rate? Specifically we double the
learning rate to 2e-4. Results are provided in Tab. 5 and Tab. 6. We can see that CAGrad perform
consistently with different values of 0 < c < 1. PCGrad with larger learning rate will not perform
better. Under the uncertain weights, MTAN and PCGrad indeed perform better but CAGrad is still
comparable or better than them.

B.3 Multi-task Reinforcement Learning

Experiment Details The multi-task reinforcement learning experiments follow the exact setup
from CARE [33]. Specifically, it is built on top of the MTRL codebase [32]. We consider the MT10
and MT50 benchmarks from the MetaWorld environment [42]. A visualization of the 50 tasks from
MT50 is provided in Fig. 6. The MT10 benchmark consists of a subset of 10 tasks from the MT50
task pool. For all methods, we use Soft Actor Critic (SAC) [10] as the underlying reinforcement
learning algorithm. All methods are trained over 2 million steps with a batch size of 1280. Following
CARE [32], we evaluate each method once every 10000 steps, and report the highest average test
performance of a method over 10 random seeds over the entire training stage. For CAGrad-Fast, we
sub-sample 4 and 8 tasks randomly at each optimization step as the S (See Eq. (4)) for the MT10
and MT50 experiments. For CAGrad, since MT10 and MT50 have 10 and 50 tasks, much more
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Segmentation Depth

#P. Method (Higher Better) (Lower Better) ∆m% ↓
mIoU Pix Acc Abs Err Rel Err

2 Independent 74.01 93.16 0.0125 27.77

≈3 Cross-Stitch [25] 73.08 92.79 0.0165 118.5 90.02

1.77 MTAN [21] 75.18 93.49 0.0155 46.77 22.60

1.77 MGDA [30] 68.84 91.54 0.0309 33.50 44.14

1.77 PCGrad [41] 75.13 93.48 0.0154 42.07 18.29

1.77 GradDrop [4] 75.27 93.53 0.0157 47.54 23.73

1.77 CAGrad (c=0.2) 75.18 93.49 0.0140 40.12 13.69

1.77 CAGrad (c=0.4) 75.16 93.48 0.0141 37.60 11.64

1.77 CAGrad (c=0.6) 74.31 93.39 0.0151 34.84 11.46

1.77 CAGrad (c=0.8) 74.95 93.50 0.0143 36.05 10.74

1.77 MTAN [21] (Uncert. Weights) 75.02 93.36 0.0139 35.56 9.48

1.77 PCGrad [41] (Uncert. Weights) 74.68 93.36 0.0135 34.00 7.26

1.77 CAGrad (c=0.2) (Uncert. Weights) 75.05 93.45 0.0140 34.33 8.40

1.77 CAGrad (c=0.4) (Uncert. Weights) 74.90 93.46 0.0141 34.84 9.13

1.77 CAGrad (c=0.6) (Uncert. Weights) 74.89 93.45 0.0136 35.17 8.48

1.77 CAGrad (c=0.8) (Uncert. Weights) 75.38 93.48 0.0141 35.54 9.63

Table 6: Multi-task learning results on CityScapes Challenge. Each experiment is repeated over 3
random seeds and the mean is reported.

Figure 6: The 50 tasks in MT50 benchmark [42].

than the number of tasks in supervised MTL, so instead of using standard optimization library to
solve the CAGrad objective, we apply 20 gradient descent steps to approximately solve the objective.
The gradient descent is performed with a learning rate of 25 for MT10 and 50 for MT50, with a
momentum of 0.5. We search the best c from {0.1, 0.5, 0.9} for MT10 and MT50 (c = 0.9 for MT10
and c = 0.5 for MT50). The computation efficiency is compared in Tab. 7.
In principle, PCGrad should have the same time complexity as CAGrad. However, in practice,

Method MT10 Time (sec) MT50 Time (sec)

PCGrad 9.7 59.8
CAGrad 10.3 27.8
CAGrad-Fast 4.8 11.4

Table 7: The training time per update step for PCGrad, CAGrad and CAGrad-Fast on MT10/50.

PCGrad projects the gradients following a random ordering of the tasks in a sequential fashion (See
Alg. 2), so it requires a for loop over that task ordering, which makes it slow for a large number of
tasks. Combined with the results from Tab. 3, we see that CAGrad-Fast achieves comparable or better
results than PCGrad with a roughly 2x and 5x speedup on MT10 and MT50.
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B.4 Semi-Supervised Learning with Auxiliary Tasks

Experiment Details We provide the hyperparameters for reproducing the experiments in our
main text. All the methods are applied upon the original ARML baseline, with the same configuration
in [31]. Specifically, the batch size is 256 and the optimizer is Adam. The learning rate is initialized
to 0.005 in the first 160, 000 iterations and decay to 0.001 in the rest iterations. The backbone
networks is a WRN-28-2 model. To stablize the training process, the features are extracted by a
moving-averaged model like in [36] with a moving-average factor of 0.95. For PCGrad and MGDA,
we use their official implementation without any change. For CAGrad (our method), we fix c = 0.1
in all the experiments. The labeled images are randomly selected from the whole training set, and we
repeat the experiments for 3 times on the same set of labeled images. We report the test accuracy of
the model with the highest validation accuracy.

Training Losses We analyze the training losses of different methods to demonstrate the difference
between these optimization methods. We report the losses, LCE , L1

aux and L2
aux, of the last epoch,

when the number of labeled images is 2, 000. The losses are listed in Tab. 8. We have two key
observations: (1) MGDA totally ignores the main task LCE , yet it has the smallest loss on the second
auxiliary task L2

aux. This implies MGDA finds a sub-optimal solution on the Pareto front. (2) PCGrad
and CAGrad can both decrease the averaged loss L0 compared with the baseline ARML, however,
CAGrad yields a smaller L0 than PCGrad.

Method LCE L1
aux L2

aux L0

ARML [31] 0.0 ±0.0 0.0574 ±0.0036 -0.4946 ±0.0010 -0.4372 ±0.0046
ARML + PCGrad [41] 0.0 ±0.0 0.0494 ±0.0088 -0.4943 ±0.0007 -0.4449 ±0.0095
ARML + MGDA [30] 0.407 ±0.018 0.0453 ±0.0049 -0.4980 ±0.0007 -0.0463 ±0.0233
ARML + CAGrad (Ours) 0.0 ±0.0 0.0419 ±0.0034 -0.4926 ±0.0023 -0.4507 ±0.0058

Table 8: The Training Losses in the Last Epoch when the number of the labeled images is 2, 000.
Values that are smaller than 10−6 are replaced by 0. We report the averaged losses over 3 independent
runs for each method, and mark the smallest losses in bold.
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