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Abstract—We study the visual quality judgments of human
subjects on digital ‘“holograms” (as they are called in the parlance
of virtual reality [VR] and augmented reality [AR] systems)
that have been subjected to distortions. We also study the
ability of video quality models to predict human judgments. As
streaming human body hologram videos in VR or AR become
increasingly common, the need for more advanced hologram
video compression protocols will be required to address the
tradeoffs between faithfully transmitting high-quality visual rep-
resentations while adjusting to changeable bandwidth scenarios.
During transmission over the internet, the perceived quality of
compressed hologram videos can be severely impaired by visual
artifacts. To optimize trade-offs between perceptual quality and
data volume in practical workflows, video quality assessment
(VQA) models are essential tools. However, there are very few
VQA algorithms developed specifically to analyze human body
hologram videos, due, at least in part, to the dearth of appropriate
and comprehensive datasets of adequate size. Towards filling
this gap, we introduce the LIVE-Meta Rendered Hologram
VQA Database, which contains 720 hologram videos processed
using 20 different combinations of encoding parameters, la-
beled by corresponding human perceptual quality judgments
that were collected in six degrees of freedom VR headsets.
To demonstrate the usefulness of this new and unique video
resource, we use it to study and compare the performances of
a variety of state-of-the-art Full Reference and No Reference
video quality prediction models, including a new model called
HologramQA. As a service to the research community, we will
be publicly releasing the metadata of the new database at
https://live.ece.utexas.edu/research/Hologram/index.htmﬂ

Index Terms—virtual reality, video quality assessment, 3D
mesh, hologram video, six degrees of freedom

I. INTRODUCTION

ECENT advancements in head-mounted displays
(HMDs) and extended reality (XR) technologies
have made it possible for people to engage in impressive
immersive 3D experiences. Among these, virtual reality
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(VR) applications now allow for virtual work meetings [1]],
entertainment, gaming, and education. This “metaverse”
of virtual possibilities is also envisioned to include rich
augmented reality (AR) applications, whereby users can
visualize and interact with the real world, supplemented by
graphical overlays, inserted objects, realistic 3D avatars or
digital twins, and the ability to communicate with one another
by sound and sight from afar. A major goal in this direction
is to give users the ability to interact more intimately and
personally via high-quality wireless communications-enabled
shared VR or AR experiences.

In one promising scenario relevant to both workplace and
social scenarios, two or more users can visually and remotely
interact in a virtual space, each person represented by an
animated avatar, or “hologram,” having facial expressions,
body movements, and hand gestures that replicate those of
the actual participants. Indeed, as computing hardware, image
capture, and graphical processing technologies have advanced,
methods for creating high quality, realistic holograms have
significantly improved [2], [3]]. 3D hologram videos are nor-
mally represented as dynamic 3D meshes with textured color
surfaces. Holographic model creation involves capturing mul-
tiple images from different viewpoints of real world objects
or people using high-speed cameras, then reconstructing them
into mesh or point cloud geometric and color representations
that can be rapidly rendered for 3D visualization. Here we
focus on textured mesh data, although point clouds are easily
converted into 3D polygonal mesh formats. As 3D digital
twins or holograms become increasingly realistic and data
heavy, and HMDs continue to have improved space-time
resolutions, visual data streams having much higher band-
widths will require perceptually optimized compression tools
to ensure efficient, high quality throughput and visualizations.

The possibility of practical holographic data transmission
over the wireless internet presents significant practical chal-
lenges. To be able to communicate high quality 3D hologram
videos in real time, volumetric compression is required, which
can adversely impact the perceived visual quality of immersive
3D experiences. Since real-time communication is required
to enable seamless human interactions, the compression and
transmission protocols must minimize temporal and rotational
latencies to minimize sensations of lag. Indeed, proposed
metaverse infrastructures typically aim to constrain the end-
to-end delay (from cloud to client) to less than 20 ms [4].

Further, visual artifacts arising from compression and ren-
dering can significantly degrade the visual quality of hologram
videos. Motivated by the successes of streaming and social
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media platforms that perceptually optimize video throughput
using video quality prediction models, it is highly desirable
to be able to quantitatively model holographic video quality.
Given models, video quality prediction algorithms may be
devised to measure and control tradeoffs between perceptual
hologram quality and data bandwidth, by providing feedback
that can be used to adjust encoder settings.

VQA research encompasses two general categories of study:
subjective and objective video quality. Subjective studies in-
volve the collection of substantial amounts of human subjec-
tive judgments of video quality. Subjective quality datasets can
be used to create, compare, and benchmark objective video
quality models. However, existing databases of volumetric
picture data are quite limited in terms of their sizes, content
varieties, and varieties of realistic distortions. Many of these
have deployed 2D displays when conducting human subjective
studies, thereby restricting viewpoint, depth sensation, and
immersion. Few studies have employed HMDs which allow
the study participants to experience immersion in VR or AR
[51-12].

Conducting studies of VR or AR using modern headsets
is important, because the effects of experiencing immersion,
six degrees of freedom (6DoF) of movement, and wide-field
video compositions can be accounted for. The developments of
modern VQA models suitable for analyzing and predicting the
quality of VR and AR videos, including “hologram” videos,
requires the creation of subjective quality databases that cap-
ture these aspects. Towards overcoming these limitations and
helping to advance immersive “holographic” video streaming,
we have created a new psychometric resource called the LIVE-
Meta Rendered Hologram VQA database. It contains 720
videos derived from 36 source sequences of dynamic human
hologram videos, rendered with varying degrees of spatial and
temporal distortions, which were viewed and quality rated by
78 human subjects in an immersive 6DoF VR environment.
To demonstrate the value of the new subjective dataset, we
also evaluated the performances of a variety of state-of-the-art
(SOTA) VQA models on it. We also describe new holographic
video quality predictors of our own design, and test and
compare them on the new dataset.

The remainder of the paper is organized as follows. Section
provides an overview of previous subjective and objective
VQA quality studies on 3D point clouds and meshes. Sections
and [[V]introduce the processes of content creation for the
new hologram VQA database, and explain the study design
protocol and subjective data acquisition processes, respec-
tively. Section [V shows the value of the new psychometric
resource by comparing the performance of a variety of SOTA
VQA models on it. We also describe and analyze new models.
Finally, Section [VIconcludes the paper and discusses potential
directions for future work.

This paper has evolved from a conference paper [13[]. It
provides expanded insights into related works, comprehensive
coverage of the subjective study, detailed analysis of the
post-study questionnaire, an in-depth examination of human
ratings, and a thorough evaluation of various state-of-the-art
Full Reference and No Reference video quality prediction
models.

II. RELATED WORKS
A. Subjective 3D Graphics Quality Assessment

Since 2014, several datasets have been developed and uti-
lized for evaluating the quality of 3D graphics, represented
as 3D meshes and point clouds, with and without appearance
attributes. A number of research groups have conducted sub-
jective quality assessment tests involving these types of 3D
data. Early studies focused on evaluating static object contents
displayed on 2D screens [14], [[15], [27]-[29]. Some users of
these datasets [28], [29] converted the original point clouds
into polygonal meshes via surface reconstruction methods
prior to using them, or vice-versa.

Previous studies primarily concentrated on colorless point
clouds and only explored human responses to a limited range
of degradations, such as downsampling and noise generation.
The SJITU-PCQA database [22] introduced additional relevant
compression/distortion types, including geometric distortions,
Gaussian noise, and octree-pruning. Later, Geo-Metric [30]]
introduced more geometric distortions, including 4 types of
noise, smoothing, and simplification.

The emergence of a real-time point cloud codec for 3D
immersive video [31] in 2017 helped drive research into
the development of point cloud quality assessement (PCQA)
methodologies. This codec found applications in immersive
and augmented communication scenarios, and was later con-
sidered as a standardized point-cloud compression solution
by MPEG. The Video-based PCC (V-PCC) quality prediction
model, which targeted dynamic point clouds, was applicable
to colored and rendered point clouds [16], leading to its
use in evaluating advanced point cloud codecs in subjective
PCQA studies. These studies revealed that texture distortions
generally had a greater impact on perceived quality than
geometric distortions, particularly when evaluating images of
human figures.

Later, many databases incorporated dynamic 3D graphics to
represent the movement of 3D objects, resulting in temporal
content variations and temporal artifacts [[16]-[19], and includ-
ing moving human figures [9]], [16]-[18], [22], [23[], [26].

Subjective comparisons between point clouds and their
corresponding reconstructed meshes were first studied in [29],
but no definitive conclusions were drawn regarding the su-
periority of either representation. A later study [18] was the
first attempt to compare textured meshes and colored point
clouds in the context of compression. This study found that
textured meshes tend to exhibit superior quality at higher
bitrates, whereas colored point clouds demonstrate enhanced
performance in scenarios involving limited bandwidth and
storage capacity. Another study [19] investigated the combined
impacts of viewing distance and bitrate on the perceptual
quality of compressed 3D human figure sequences. Their
findings suggested that viewers preferred meshes at viewing
distances of 1.5 meters, while point clouds were generally
favored at lower bitrates.

Another subjective database, named IRPC [21]], was pub-
lished to investigate the effects of coding and rendering on
the perceptual quality of point clouds, without considering
color attributes. These datasets were limited in terms of con-
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TABLE I
A SUMMARY OF EXISTING PUBLICLY AVAILABLE 3D GRAPHICS IQA/VQA DATABASES INCLUDING HUMAN FIGURES WITH SUBJECTIVE SCORES
OBTAINED USING MONITORS

Dataset name # Stimulus | #Source contents ﬁefdvﬂi; Resolution Model Degradation type Duration | Display Device | Interaction method | Rendering mode
- 9 (@ objects A . . GpCe . .
Alexiou et al., 2017 (14 99 ¢ 20 147K - 14M points Static V-PCC, G-PCC N/A 27" monitor Interactive Point
+5 humans)
7 @ objects - - - N
Torlig et al., 2018 (15 63 +3 humand) 20 482K - 857K points Static Ociree-based compression + JPEG N/A 27" Monitor Interactive Point
VsenseVVDB, 2019 |16 ) 2 humans 5] 62K-495K points Dynamic V-PCC, 6.6 sec | 2D monitor Tnteractive Point
M-PCCD, 2019 (17 244 f ﬂi?ﬁf.?) 10+7+15 | 150K - 73.8M points Dynamic Octree pruning, 3DTK compression 24 sec | 497, 55" monitors Passive Point
VVs: 402K - 406K points | .- - Mesh: Draco+JPEG - ’
vsenseVVDB2, 2020 (18] | 136 8 humans 23| g 720K - 1.06M paints | Stae & Dynamic Point Clouds: G.pCC. V-PCC 10 sec | 24" monitor Passive Point, Mesh
o — A — Mesh: TFAN+FFmpeg-+distance T . —
Cao et al., 2020 (19 120 4 humans 2 20482048 (texture) Dynamic Point Clouds: V.PCCAFPupeatdistance 10 sec | 24" monitor Passive Point, Mesh
T6+15+ - - 317, 497, -
Perry et al., 2020 [20 90 6 humans IM points Static G-PCC, V-PCC 12 sec " N Passive Point
15427 55" monitors
. 6 (4 objects . N Cpee vpee T - -
IRPC, 2021 (21 54 ¢ 18-20 272K - 4.8M points Static PCL, G-PCC, V-PCC 10 sec | 23" monitor Passive Point
+ 2 humans)
jec “trec-based T T
SITU-PCQA, 2021 [22 420 10 (4 objects 16 N/A Static o sec comy - 15 sec | 21.5” monitor Interactive Point
+ 6 humans) color noise, geometry noise
o 104 (76 objects . - Color noise, geometry noise, V-PCC, G-PCC, N - -
LS-PCQA, 2022 [23 1240 + 28 humans) 16 N/A Static & Dynamic AVS, Octree-based compression 20 sec | 21.5” monitor Ineractive Point
SITU-H3D, 2023 (24 1120 40 humans 40 20482048 (texture) Static Position, UV map, and texture compression, geometry/color noise, 8 sec | 4K iMac monitor Passive Mesh
face and texture
DHHQA, 2023 [25 1540 |55 humans (heads)| 20 40964096 (texture) Static Surface simpli position compression, UV ) N/A | 4K iMac monitor Passive Mesh
texture sub-sampling, texture compression, color noise, geometry noise
Color noise, geometry noise, texture compression, texture downsampling,
DDH-QA, 2023 26, 800 2 humans 41 2048 %2048 (texture) Dynamic position compression, UV map compression, N/A | 4K iMac monitor Passive Mesh
skeleton binding error, motion range

TABLE I
A SUMMARY OF EXISTING PUBLICLY AVAILABLE 3D GRAPHICS IQA/VQA DATABASES RATED WITH SUBJECTIVE SCORES OBTAINED USING HMDs

# Ratings

Dataset name # Stimulus | #Source contents per Video Resolution Model Distortion type Duration Display Device Interaction method | Rendering mode
Alexious et al., 2017 [5], [6 40 5 objects 21 22K - 36K points Static Gaussian noise, octree-pruning N/A . .AR . Interactive Point
(Occipital Bridge)
Nehmé et al., 2019 |7 80 S objects 30 250K - 600K points Static Geometric quunuzuu»on, c.ulur quantization, 6, 10 sec VR Passive Mesh
color distortions (HTC Vive Pro)
s . . - . MR/AR .
Gutiérrez et al., 2020 8’ 28 4 objects 24 N/A Static Geometry quantization, JPEG compression 15 sec (Microsoft HoloLens) Interactive Mesh
Subramanyam et al., 2020 (9 72 8 humans 27425 N/A Dynamic the MPEG anchor, V-PCC 5 sec (Ocu:llll:Riﬂ) Interactive Point, Mesh
. . . VR . .
PointXR, 2020 |10 40 5 objects 20 4096 %4096 Static G-PCC 13.7, 23 sec (HTC Vive Pro) Interactive Point
20 (10 objects . . VR . .
L - -] 2
SIAT-PCQD, 2021 |11 340 + 10 humans) 38 145K - 1.6M points Static V-PCC 20 sec (HTC Vive) Interactive Point
Nehmé et al., 2021 |12 480 5 objects 24 216K - 1.3M points Static Geometrie quanllzal{on, c.olor quantization, 10 sec VR Interactive Mesh
color distortions (HTC Vive Pro)
LIVE-Meta Rendered Hologram . | Temporal artifacts, reduced texture resolution, VR .
2 2 c
VQA Database, 2023 720 36 humans 26 2048 %2048 (texture) | Dynamic reduced frame rate 15 sec (Oculus Quest Pro) Interactive Mesh

tent, distortion types, and representation of prevailing codecs,
making them inadequate for developing learning-based PCQA
algorithms.

Different subjective evaluation methods, including the Ab-
solute Category Rating with Hidden Reference (ACR-HR), and
Double Stimulus Impairment Scale (DSIS) were considered
and compared for subjective VR studies [7]], [[12]]. Their results
suggested that DSIS led to better accuracy than ACR-HR,
while DSIS participants required more time to rate the videos.

One novel quality evaluation methodology proposed by
Torlig et al. [15] allowed the human subjects to interact with
the viewed content by zooming, rotating, and translating, using
a mouse. Some subsequent studies continued to have subjects
passively view and assess perceptual quality [17]-[21], [24]—
[26], other studies allowed subjects to manipulate 3D graphical
content on 2D monitors [[14], [[16], [22], [23]. However, these
interactive datasets usually only encompassed static objects.

Towards providing more realistically immersive user expe-
riences in human studies, several researchers employed 3D
visualization tools, including HMDs, with subjects operating
in VR and AR environments [5]—[12f], including 3DoF and
6DoF VR environments [[11]. Subramanyam et al. [9] com-
pared viewing conditions enabling 3DoF and 6DoF VR and
developed the PointXR toolbox for conducting PCQA in VR
environments [[10]. These studies explored different aspects
of subject mobility, fixed positioning, navigation using head
movements alone with 3DoF [9]], and free body navigation in a

room with 6DoF [10]. One study focused on subjective PCQA
in 6DoF VR environments [11], resulting in a subjective
database called SIAT-PCQD [11] with compression-induced
combinations of geometric and texture distortions. They also
proposed two projection-based objective quality evaluation
methods.

To our knowledge, just seven previous 3D graphical human
studies have been conducted using VR and AR HMDs [5]-
[12], and only one of them includes dynamic human figures
[9, as indicated in Table There are no 3D graphical
subjective quality datasets that include rendered human fig-
ure holograms impaired by spatial and temporal distortions,
viewed by human subjects in a 6DoF VR environment. Cur-
rently available datasets are insufficient to conduct studies
of such deep, immersive experiences. Therefore, there is a
need for such datasets, which are the kind of important
scientific tools that are needed to develop AR/VR quality
prediction models, which in turn are needed to perceptually
optimize processing protocols such as rendering, scaling, and
compression. Towards addressing these needs, we have created
such a perceptual resource, which we call the LIVE-Meta
Rendered Hologram VQA Database. We describe the details
of construction, content, and experimental design of this new
dataset in the following sections. However, Table [[ supplies a
basic comparison of existing 3D graphics datasets in terms of
size, content, distortion types, and display devices.
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B. Objective 3D Graphics Quality Assessment

Over the last decade, numerous PCQA and mesh compres-
sion datasets have been developed, leading to the introduction
of several objective quality assessment models specifically
designed for 3D graphics. Next we discuss objective video
quality assessment models designed specifically for the anal-
ysis of point cloud and mesh videos.

1) Objective Point Cloud Quality Assessment Models: Full
Reference (FR) VQA models are commonly used to evaluate
the quality of point clouds. These FR models can in turn be
classified as point-based models or as projection-based models
[15]. They can also be further categorized by the type of
distortion type being evaluated, whether geometric texture-
based, or some combination.

Point-based FR VQA models have been proposed to evalu-
ate specific types of point cloud distortions, such as geometry
and color. While these models offer the advantage of com-
puting explicit information that can be stored in point cloud
formats and have been utilized in recent studies, they have
been found to poorly predict visual quality across different
types of content [32].

Projection-based models project both reference and test
point clouds onto six planes. This allows the application of
conventional 2D objective video quality models to directly
measure geometric and color artifacts [[15]. The processes of
real-time voxelization and projection also reduce the compu-
tational complexity of VQA.

For example, in [22], a projection-based approach was
employed where 3D point clouds were projected onto six
perpendicular cubic faces. Weights were then computed and
applied on color texture and depth images from the different
projection planes, then summed to generate the final quality
index. Excluding pixels that belong to the background can
improve the accuracy of quality prediction [33[]. Increasing
the number of projected views only moderately improves pre-
dictions, while incorporating user interactivity information can
enhance performance [33|]. When viewing inanimate objects,
viewers take longer to access the content; when viewing hu-
man body models, frontal and face views consistently receive
more attention [34]).

Consequently, frontal views are often deemed the optimal
configuration in human body datasets, while a greater variety
of perspectives better represents scenes containing inanimate
objects. However, models based on these premises tend to be
viewpoint-dependent [35].

In point cloud applications, it is often impractical to obtain
original point clouds because of storage limitations and inade-
quate communication bandwidths. In such instances, using FR
VQA models may be infeasible. No Reference (NR) quality
assessment models, which estimate point cloud quality without
the availability of original point clouds, are the necessary
instruments in such applications.

When evaluating the visual quality of point clouds, it is
important to consider both static and dynamic aspects, as
humans visualize point clouds simultaneously in space and
time. Consequently, VQA models that can account spatio-
temporal content/distortions offer the greatest potential quality

prediction power. One such model called VQA-PC [36] uti-
lizes a trainable 2D-CNN and pre-trained 3D-CNN modules to
extract spatial and temporal features. By treating point clouds
as moving camera videos, VQA-PC advanced the field of
projection-based PCQA, leveraging both static and dynamic
views.

2) Objective Mesh Quality Assessment Models: Algorithms
that have been designed to evaluate the visual quality of 3D
meshes can be generally categorized into two types: model-
based ones, which operate directly on the 3D models [37]]—-
[39]], and IQA models which operate on rendered snapshots
of 3D models [40], [41]. Most model-based approaches lead
to FR models, and are inspired by successful IQA mod-
els. Model-based NR mesh quality algorithms [42[|-[44] are
generally able to predict the quality of 3D meshes when
there are geometric distortions, but usually do not address
color distortions. However, the NR model in [45] operates on
3D color meshes by extracting quality-aware geometric and
color features which are integrated into quality scores using a
support vector regressor (SVR).

A variety of deep learning-based models trained to analyze
the quality of 3D meshes have been proposed. Abouelaziz et
al. [44] train a CNN using hand-crafted perceptual geometric
features extracted from 3D meshes. They also proposed a
later model that extracts feature vectors along 3 different
CNN paths, then combines them [46]]. However, these deep
models only consider geometric meshes without analyzing
color/texture attributes. The authors of [47] trained a learning-
based NR model for predicting the quality of textured meshes,
using a large-scale dataset of more than 343k textured meshes.
Their NR models are image-based; hence their approach takes
the approach of transferring the complex task of mesh quality
prediction to the simpler one of IQA.

III. LIVE-META RENDERED HOLOGRAM VQA DATABASE

The LIVE-Meta Rendered Hologram VQA Database con-
sists of 720 video sequences created by adding compression
artifacts to 36 pristine hologram videos using 20 different
encoding parameter settings. These videos were used as stimuli
in a laboratory-based human subjective study of hologram
video quality. Several sample frames depicting standing and
sitting poses from the hologram videos are shown in Fig.
Next, we provide a detailed description of the dataset prepa-
ration, including obtaining the source sequences, protocol
for adding artifacts, and the volumetric simulation-rendering
pipeline.

A. Source Sequences

We purchased 36 pristine hologram videos from the
Metastage shop, tabulated by title in Table Metastage
recorded individuals from various angles using 106 cameras
and reconstructed their actions and emotions into 3D Unity
assets at a texture resolution of 20482048 wrapped with
MP4 mesh textures. Each hologram has a mesh polycount of
approximately 20,000 triangles.

The original durations of the 36 reference videos, which
ranged from 14 to 32 seconds, was clipped to 14 to 15
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TABLE III
GROUPINGS OF METASTAGE SHOP HOLOGRAM VIDEOS WITH TITLES

Study Group A

Study Group B

Study Group C

Video Group 1 Video Group 2 Video Group 3

Video Group 4 Video Group 5 Video Group 6

Natasha Serious Talking | Jim Listening Business
Jim Listening Casual Deena Listening Casual
Robyn Seated Talking Julia Serious Talking

Wendy Listening Casual | Luke Seated Listening

Terence Seated Listening | Carl Listening Business

Frank Listening Casual Jenny Sitting Casual

Natasha Seated Listening
Robyn Listening Casual
Frank Casual Talking
Deena Casual Talking
Luke Seated Listening
Amanda Seated Listening

Jim Standing Business
Deena Listening Business
Luke Study Chart
Carl Serious Talking
Jenny Seated Listening
Sophie Typing

Jim Serious Talking Deena Presentation
Robyn Casual Talking Luke Seated Small Talk
Wendy Listening Business | Carl Standing Business
Terence Seated Talking Amanda Listening
Frank Standing Casual Jenny Casual Talking
Julia Seated Talking Sophie Seated Typing

(c) Julia Seated Talking

(d) Luke Seated Small Talk

Fig. 1. Sample frames of (a) (b) standing and (c) (d) sitting hologram videos
from the LIVE-Meta Rendered Hologram VQA Database.

seconds to facilitate practical use in the human study. Through
a trial study involving three participants familiar with VR
headsets, and two more participants unfamiliar with them, we
determined that 15 second durations are sufficient to enable
subjects to rate the video quality. Two of the participants expe-
rienced dizziness after approximately 30 minutes of viewing,
so we avoided sessions longer than this to prevent feelings of
discomfort caused by using the VR headsets.

To ensure a balanced representation, the 36 videos were
selected based on demographic characteristics, attire colors,
and poses including standing and sitting but excluding walking
and dancing. Subjects having distracting accessories, such as
doctor’s stethoscope, were excluded. As shown in Table the
set of pristine videos were divided into six video groups, each
containing a diverse mix of genders, skin colors, poses, and
clothing colors. Videos of the same individual were allocated
to different groups, to prevent repetition in any of the sessions
of the human study, as described in Section

B. Video Distortions

Table[[V]tabulates the 20 different distortion settings that are
meant to simulate events that might occur during cloud stream-
ing, yielding a total of 720 videos. These were generated using
a special-purpose application tool which we will introduce in
Section [[V] The Table shows that the distortions are indexed
from 1 to 20. This includes the 36 pristine reference videos

(index = 1), each of which was processed with eight single
distortions (index = 2 to 9) and 11 combinations of multiple
distortions (index = 10 to 20).

Among the single distortions, delay artifacts arise when the
presumed viewing angle at which the mesh is generated differs
from the viewer’s actual current viewing angle because of pro-
cessing or communication latencies. The delays ranged from
100ms to 300 ms. Distortions from color resolution/scaling
ranged from 480p to 2048p (pristine), while frame rates were
varied over 10 fps to 30 fps.

The delay distortions present visually as temporal self-
occlusions, resulting in unnatural visual overlaps. Distortions
from color resolution/scaling manifest as blur or blockiness.
Frame rate distortions cause visual sensations of temporal dis-
continuity or “statter,” especially when there is rapid motion.

The combinations of multiple distortions are divided into
three categories: “moderately limited bandwidth conditions,”
(MLBC) “heavily limited bandwidth conditions,” (HLBC) and
“severely limited bandwidth conditions” (SLBC), as shown in
Table [[V] These are combinations of the single distortions, but
also include distortions from reduced depth resolution. Our
choice of parameters resulted in a diverse and wide range of
perceptual distortions and contents.

Due to limitations of the Metastage capture system, holo-
gram reference videos were reconstructed into 3D Unity assets
with a texture resolution of 20482048 and mesh polycounts
of around 20,000 triangles. Although these reference videos
still cannot be considered as perfect due to their limited
resolutions, their quality is quite good.

C. Volumetric Simulation-Rendering Pipeline

The conversion from Metastage raw mesh data to RGB-
D was accomplished via a volumetric simulation-rendering
pipeline, a simplified model of which is shown in Fig. [2|

Initially, the Metastage mesh was loaded via the Metastage
Unity plugin which we will introduce in Section The
input .mp4 video data was processed by the GPU and loaded
into vertex and index buffers. This process was internally
controlled by the Metastage plugin. The .mp4 format used
by Metastage is a proprietary extension that includes vertices,
indices, and texture. Once the data was loaded into GPU
buffers by the plugin, we could render it. The bitrate was
relatively high, as Metastage decoded and read every vertex
and triangle per frame of the capture. The reconstructed mesh
typically consisted of 15,000 to 30,000 vertices and 20,000 to
40,000 triangles per frame, with a standard framerate of 30fps.

Subsequently, the GPU buffers containing the mesh, as filled
by Metastage, were rendered using a simple unlit shader.
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Fig. 2. A simplified flow diagram of the volumetric simulation-rendering pipeline used in the privately released Unity tool provided by the Meta platform.

TABLE IV
LIST OF DISTORTIONS

Depth Depth Color Framerate Mean . .
Index Delay Errorp(m) Resollzllion Resolution +Variance (fps) Distortion Type
1 0 0 1000p 2048p 30 pristine
2 100/200 0 1000p 2048p 30 delay
3 300/400 0 1000p 2048p 30 delay
4 0 0 1000p 1600p/1280p 30 color resolution/scaling
5 0 0 1000p 1080p/720p 30 color resolution/scaling
6 0 0 1000p 640p/480p 30 color resolution/scaling
7 0 0 1000p 2048p 20 frame rate reduced
8 0 0 1000p 2048p 10 frame rate reduced
9 0 0 1000p 2048p random 15+10 frame rate reduced
10 100 0.025 480p 1600p 30 MLBC
11 200 0.025 480p 1920p 30 MLBC
12 300 0.025 480p 1600p 30 MLBC
13 100 0.05 360p 1280p 30 HLBC
14 100 0.05 360p 1080p 30 HLBC
15 100 0.05 360p 1080p 15 HLBC
16 400 0.05 360p 1280p 30 HLBC
17 400 0.05 360p 1080p 30 HLBC
18 400 0.05 360p 1080p 15 HLBC
19 100 0.075 120p 720p 15 SLBC
20 300 0.075 120p 720p 15 SLBC

We rendered the mesh from the perspective of the sensor to
simulate various artifacts in a later stage. This render pass
generated two textures: color and depth. The color texture
simulated what the sensor would observe, while the depth
texture simulated what an ideal depth sensor would perceive.
Both color and depth resolutions could be toggled.

Finally, with the color and depth textures available, we
rendered the Metastage mesh again from the headset’s point
of view. We utilized a custom shader that reprojected the
previously produced color and depth textures onto the mesh,
taking into account the sensor’s perspective. Additionally,
noise could be added to the sampled depth data to simulate a
physical depth sensor. This data was then used to modify the
Metastage mesh to conform to the sampled depth data. The
depth texture was also employed to calculate self-occlusion
from the sensor’s perspective. Instead of using the original
high-fidelity Metastage texture, the color texture was sampled
to simulate lower resolution and edge color transfer. It is
important to note that if we wish to simulate any topical
artifacts or treatments, we must provide data to the shader
so that it can identify areas of interest in 3D space (UV space
is not useful due to Metastage encoding technology jitter).

IV. HUMAN STUDY DESIGN

This section provides a comprehensive description of the
subjective quality assessment study, including details about

the test environment, the interface of the assessment tool,
the experimental protocol, the evaluation methodology, the
post-study questionnaire, and analysis and processing of the
subjective scores.

A. Subjective Study Environment

The subjective quality assessment study was conducted in
two separate rooms at the Laboratory of Image and Video
Engineering at The University of Texas at Austin. The study
utilized two Oculus Quest Pro headsets having resolutions of
1800x% 1920 for each eye, using LCDs with a refresh rate of
72 Hz, and a field of view of 106 degrees horizontally and
96 degrees vertically. The participants used two controllers
to interact with the holograms during the study. The choice
of the Oculus Quest Pro headset was based on its SOTA
capabilities, relative affordability, and compatibility with many
Metaverse applications, making it a suitable representative
device presenting immersive experiences to human subjects.

The VR headsets were interfaced with two desktop comput-
ers equipped with an AMD Ryzen Threadripper PRO 5975WX
32-core CPU@3.60GHz, 256GB RAM, and two GeForce RTX
3090 Ti Graphics Cards. This setup allowed for simultaneous
participation of two subjects. There was no distinguishable
difference between the two desktop computers and the two
Quest Pro headsets, ensuring a consistent experience between
the two setups.

B. Tool Design and Interface

Hologram videos offer a suitable means to visualize objects
and scenes within immersive applications that involve 6DoF.
To enable subjects to observe human hologram videos in a
6DoF environment, a privately released Unity tool provided
by the Meta platform was utilized. The Unity tool, code
will be made available, pending institutional approval, offered
two modes of operation. The first mode allows live driving,
enabling users to play hologram videos while adjusting param-
eter configurations that control the appearance of artifacts. The
second mode allows the playback of camera coordinates from
a live HMD driving session, then dumps frames of ground
truth and target. Users could monitor the tool using either a
PC or a VR headset.

In the PC view mode, users had the freedom to explore a
room and observe the hologram from different viewing angles.
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TABLE V
DIVISIONS OF HUMAN SUBJECTS AND VIDEOS INTO MATCHED GROUPS

Group | Participants Session 1 Session 2
1 13 subjects | Subject Group A - Video Group 1 | Subject Group A - Video Group 2
I 13 subjects | Subject Group A - Video Group 2 | Subject Group A - Video Group 1
I 13 subjects | Subject Group B - Video Group 3 | Subject Group B - Video Group 4
v 13 subjects | Subject Group B - Video Group 4 | Subject Group B - Video Group 3
v 13 subjects | Subject Group C - Video Group 5 | Subject Group C - Video Group 6
VI 13 subjects | Subject Group C - Video Group 6 | Subject Group C - Video Group 5

The HMD provided observers with a synchronized display
that accurately matched their body and head movements,
creating a seamless and immersive perception of the virtual
environment. In the VR view mode, a reminder window with a
start button was provided to the users, allowing them to initiate
the study using the controllers. The hologram videos were
then displayed, and after each video finished, a continuous
rating bar was displayed, with a movable cursor initially
positioned at the leftmost end. The quality bar was marked
with five evenly-spaced Likert indicators, ranging from “Bad”
to “Excellent.” The ratings were then sampled as floating point
numbers to one decimal place on [1, 5], with 1 indicating the
lowest quality and 5 denoting the highest quality. Subjects
adjusted the cursor position using the controller, then pressed
the ”Next” button to proceed to the next video sequence. The
ratings were automatically recorded and saved in a CSV file.
The application continued to play the subsequent videos in
the playlist. Upon completion of all sequences, the subject
was informed that the study was over.

To reduce any background distractions, a simple synthetic
scene of a conference room was chosen and not varied across
all the videos, with the exception of Video Group 1 (Table
[V), which had a different background as a control. This
created a focused environment that allowed the participants
to concentrate their efforts on providing accurate reports of
the visual quality of the rendered avatar objects.

C. Subjects and Training

A total of 78 subjects (48 male and 30 female) from The
University of Texas at Austin participated in the subjective
human study. Their ages ranged from 18 to 33 years, with
a majority falling between 20 and 25 years, as shown in
Section I of the Supplementary Material. The participants had
only limited or no familiarity with concepts of image and
video processing. Some participants used only one of the two
desktop computers, while others used both in two sessions.
The computational power of the two PCs was very similar.
The subjects were divided into six groups, and each participant
completed two sessions as shown in Table [V. As mentioned
earlier, and explained in Table[ITI} the videos were also divided
into groups. Organizing the data in this way allowed every
video to be viewed and rated by 26 subjects, but divided into
two groups who viewed two video groups but in opposite
order. Hence, Subject Groups I and II both viewed and rated
Video Groups 1 and 2, but in reverse-ordered sessions. Similar
protocol was applied for Subjects Group III and IV, and V and
VI

Prior to the first session, the subjects signed a consent form
and received a general introduction to the study, informing
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them that they would be watching two different sets of videos
in two separate sessions. The vision of each participant probed
and recorded using the Snellen visual acuity test and the
Ishihara color perception test, but no restrictions were placed
on participation based on any visual deficiencies.

The subjects were asked to maintain a fixed sitting position
at a distance of about 1.2 meters from the display. This
distance aligns with the default separation between subjects
and holograms presented in HMDs. The prescribed distance
aimed to afford participants adequate space to explore the
holograms from different angles, while also ensuring their
comfort. The participants underwent a brief training session
to acquaint them with the rating system and to provide
instructions on how to assess and rate each video. The training
session included six sequences generated from two contents,
William Casual Talking and Tony, each presented at different
qualities (pristine, slight distortion, severe distortion). These
training sequences were not included in the test dataset.

During the testing sessions, a single-stimulus testing pro-
tocol was followed, as recommended by ITU-R BT 500.13
[48]. The ACR-HR methodology was employed to collect
subjective scores, meaning that only one hologram video was
displayed during each rating. As mentioned in Section [[II-B]
due to limitations of the capture device and reconstruction
technology, it was not possible to include the true pristine
reference videos. However, proxy reference videos were pur-
chased from Metastage, which closely resembled the original
source hologram videos, and these were included. These were
included in the human study, but the subjects were unaware
of which videos were references.

A randomized sequence of 120 hologram videos, each
with a duration of 14 or 15 seconds, was presented in each
session. Consecutive videos from the same content were not
played back-to-back to minimize visual memory effects. The
participants were instructed to evaluate the perceived quality of
the videos without considering aspects of the content, whether
exciting, appealing, boring, or un/attractive. The randomized
ordering aimed to minimize biases related to content prefer-
ences or relative ordering. Each subject spent approximately 5
to 10 seconds manipulating the cursor and rating each video,
resulting in a total session time of 40 to 50 minutes. To avoid
fatigue and biases, the subjects were instructed to participate
in the second session more than 24 hours after the first.

D. Post Study Questionnaire

After completing each session, each participant was re-
quested to provide feedback on the study via a post-survey
questionnaire. This subsection offers an outline of the post-
survey questionnaire and presents relevant demographic infor-
mation pertaining to the participants.

To assess the adequacy of the durations of the displayed
videos that the subjects rated the quality of, a specific question
was included. Among the 156 sessions conducted (comprising
78 subjects, two sessions per subject), the subjects reported
that in 155 sessions (99.3%) that the 15-second duration
was sufficient to rate overall video quality. Another question
examined the perception of the overall distribution of the video
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TABLE VI
SUBJECT CONSISTENCY OF SIX VIDEO GROUPS

Inter-Subject Consistency Intra-Subject Consistency

Video Group SRCC PLCC SRCC PLCC
1 0.9420 0.9748 0.8444 0.8833

2 0.9524 0.9798 0.8729 0.9084

3 0.9611 0.9763 0.8759 0.8809

4 0.9591 0.9780 0.8706 0.8855

5 0.9382 09711 0.8353 0.8774

6 0.9436 0.9736 0.8363 0.8726

TABLE VII
SUBJECT CONSISTENCY BEFORE AND AFTER CHANGING THE
BACKGROUND
Inter-Subject Consistency
Video Group SRCC PLCC

1 (before: 12 ratings / after: 15 ratings) 0.9293 0.9746
2 (before: 13 ratings / after: 14 ratings) 0.9590 0.9804

quality of the videos. In 128 sessions (81.8%), the participants
reported that the distribution was uniform, indicating an equal
representation of videos across quality levels. However, in
some sessions the participants generally perceived the majority
of the videos to be either of above average quality or of below
average quality.

To evaluate the difficulty experienced by the subjects when
rating the perceptual quality of the videos, another question
requested them to rate the difficulty (after each session) on
a scale of 0 to 5, with O indicating very difficult and 5
indicating reasonably easy to make quality judgments. Among
the 156 sessions, only one session was reported as generally
difficult to make subjective quality ratings, indicating that the
majority of participants were able to rate subjective quality
without encountering significant difficulty. This observation
is supported by the mean difficulty score of 3.48 and the
median difficulty score of 4, indicating only a moderate level
of difficulty.

Section I of the Supplementary material summarizes the
answers given to the questions regarding any experiences of
dizziness or uneasiness. Generally, only a very small number
of videos elicited these feelings, and none caused any of the
subjects to stop their participation.

E. Subject-Consistency Analysis

To study the internal consistency of the collected data,
we analyzed inter-subject and intra-subject correlations of
the raw data collected from the participants. As previously
mentioned, the 78 participants were evenly divided into six
groups, as outlined in Table To compute the inter-subject
consistency scores, each video group’s subject ratings of every
video were divided into two separate and non-overlapping
subsets of equal size. This procedure was repeated 100 times
with random splits. The median values of the Spearman’s
rank-ordered correlation coefficient (SRCC) and the Pearson
linear correlation coefficient (PLCC) between the MOS of the
two subsets were computed and are presented in Table
Across all subject groups, the average SRCC and PLCC values
representing inter-subject consistency were determined to be
0.9494 and 0.9756, respectively.

Intra-subject consistency measurements were also calculated
to assess the level of consistency exhibited by the individual

subjects when rating the videos. For each subject group, the
SRCC and PLCC were calculated between the individual
opinion scores and MOS. This procedure was repeated for
all 78 subjects across all subject groups. Table [V presents the
median SRCC and PLCC values for each subject group. The
overall average SRCC and PLCC across all subject groups
were determined to be 0.8559 and 0.8847, respectively. These
scores encourage a high level of confidence in the acquired
opinion scores.

To further investigate the reliability of the data, an inter-
subject consistency check was conducted on Video Groups 1
and 2 to determine whether changing the background influ-
enced the subjects’ ratings and to assess the consistency of
their responses. The SRCC and PLCC between the two sets
of ratings were computed between the two sets of ratings for
each video group. The results of this analysis are presented
in Table For Video Group 1, which had the different
background, the SRCC and PLCC values between the two sets
of ratings were found to be 0.9293 and 0.9746, respectively.
In the case of Video Group 2, characterized by a distinct
background, the ratings exhibited a strong positive correlation
before and after the background change, as indicated by the
high SRCC (0.9590) and PLCC (0.9804) values. The high
correlation scores between the two sets of ratings for both
video groups suggest that changing the background did not
significantly impact the subjects’ perception of video quality.

The analysis of subject consistency also revealed strong
agreement among the subjects, both within subjects and across
different backgrounds, lending credibility to the subjective
ratings collected in this study.

F. Processing of the Subjective Scores

We applied the SUREAL MLE-MOS method [49] to re-
cover reliable subjective quality scores on the hologram videos
using the P.910 model [50]. This method utilizes a maximum
likelihood estimate (MLE) approach to compute MOS, of-
fering advantages over prior subject rejection protocols [48]],
[51]. We will refer to MOS processed in this way as MLE-
MOS. These include decreased susceptibility to subject bias,
narrower confidence intervals, robust handling of missing data,
and the ability to provide insights into video contents and test
subjects.

In SUREAL, the raw video ratings are represented as
random variables X, :

Xc,s =T+ Be,s + Ae,sa (1)
Be,s ~ N(bsa U?)a
A€7S ~ N(07 a’?:c(e):c)'

fore = 1,2,3,...,720 and s = 1,2,3,...,78. Let x. denote
the perceived quality of video e as assessed by an impartial
and consistent hypothetical viewer. The bias (bs) and incon-
sistency (v?) associated with human subject s are represented
by ii.d. Gaussian variables B, ;. Assume that the bias and
inconsistency of human subjects are consistent across all rated
videos. The ambiguity (a?) associated with a specific video
content ¢ is modeled by i.i.d. Gaussian variables A. . In
this database, the unique source sequences are denoted as
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Fig. 3. The MLE formulation provides (a) estimated final opinion scores, along with (b) subject bias and inconsistency figures and (c) content ambiguity.
Each of these results includes the estimated parameters and their 95% confidence intervals.
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\\\\\\\

(a) (b)

Fig. 4. Histograms of (a) MLE-MOS and (b) DMOS from the LIVE-Meta
Rendered Hologram VQA Database.

c =1,2,...,36. Also assume that all distorted videos from
same video source exhibit a uniform level of ambiguity, and
that this ambiguity remains consistent across all users and
video content. To estimate the parameters 6 = (., by, vs, ac)
which represent the variables of the model, MLE is utilized,
and the log-likelihood function L is formulated as follows:

L = log P({xcs}[0). 2

Estimation of the optimal solution 6 = argmaxp L is per-
formed using data collected from the psychometric study,
utilizing the Belief Propagation algorithm described in [49].

Figure 3 visually illustrates the estimated parameters. Figure
[3a] plots the recovered quality scores of the 720 videos in
the database created with the 20 different distortion parameter
settings listed in Table As expected, the mean predicted
video quality scores noticeably decline as the color resolution
is increased.

From the parameter estimates, subject #58 had the bias value
bs = —0.64, the lowest among all the subjects, indicating

that their quality scores tended to be lower than those of
the other subjects. Conversely, subject #39 had the highest
bias value (bs = 0.55), suggesting that their quality scores
tended to be higher. The median bias value obtained was -0.03,
reflecting a moderate overall bias. In terms of inconsistency,
subject #55 exhibited the highest value (v; = 0.89), indicating
greater variability of their quality scores, while subject #52
exhibited the lowest inconsistency (vs = 0.29). The median
inconsistency across subjects was 0.53. The level of ambiguity
of the 36 source hologram videos is depicted in Fig.
Among these videos, the hologram video from the Natasha
Serious Talking content exhibited the highest ambiguity with
a value of a. = 0.40, whereas the hologram video from the
Jenny Sitting Casual content displayed the lowest ambiguity
with a value of a. = 0.25.

MLE-MOS has established itself as a dependable subjec-
tive data processing protocol, especially in scenarios where
reference pristine videos are absent, making it particularly
valuable in the advancement and assessment of NR VQA
algorithms. Conversely, Differential Mean Opinion Scores
(DMOS) are commonly employed in the development of FR
VQA algorithms, reducing the dependence of quality labels on
the content. Here, the original hologram videos provided by
Metastage serve as proxy reference videos for the calculation
of DMOS. The DMOS of the i*" video sequence is determined
as:

DMOS(i) =5 — (MOS(ref(i)) — MOS(i)).  (3)

In this context, MOS(:) denotes the i*" video that has
undergone distortion, determined via the MLE formulation.
The proxy reference video is denoted as ref(z).
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2 TABLE VIII
3 MEDIAN SRCC, KRCC, PLCC AND RMSE OF THE COMPARED FR VIDEO QUALITY MODELS AGAINST HUMAN JUDGMENTS OF QUALITY OF THE
VIDEOS IN THE LIVE-META RENDERED HOLOGRAM VQA DATABASE OVER 1000-TRAIN-TEST SPLITS. THE UNDERLINED AND BOLDFACED ITEMS
4 REPRESENT THE BEST AND TOP THREE PERFORMERS, RESPECTIVELY.
5
6 Metrics Body only Face only
SRCC(1) KRCC(T) PLCC(T) RMSE(]) | SRCC(1) KRCC(1) PLCC(1) RMSE(])
7 PSNR-RGB 07219 05223 07562 05750 | 07129 05111 07405 05924
8 PSNR-Y 0.7167 0.5192 0.7505 0.5798 0.6983 0.4987 0.7285 0.6026
9 SSIM 0.7694 0.5618 0.7755 0.5537 0.8001 0.5929 0.8264 0.4917
10 LPIPS (AlexNet) -0.8616  -0.6573 0.8815 0.4131 -0.8790  -0.6835 0.9069 0.3703
LPIPS (VGG) -0.8441  -0.6356  0.8535 04558 | -0.8764 -0.6803 09047 03734
11 DLM 0.8599 0.6601 0.8919 0.3995 0.8716 0.6762 0.9106 0.3624
12 VIF 0.7184 0.5200 0.7499 0.5819 0.8154 0.6085 0.8513 0.4621
13 VMAF (v0.6.1) 0.8179 0.6085 0.8367 0.4789 0.8695 0.6716 0.8949 0.3905
FovVideoVDP (v1.2.0) 0.7763 0.5750 0.8103 0.5168 0.8810 0.6888 0.9155 0.3527
14 ST-GREED 08543  0.6619 08800 04162 | 0.8946 07154 09148 03552
15 CONTRIQUE-FR 0.9024 0.7205 0.9470 0.2816 0.8991 0.7138 0.9403 0.2976
16 CONVIQT-FR 0.9065 0.7289 0.9526 0.2673 0.8834 0.6903 0.9273 0.3283
HologramQA 09104 07369 09402 02997 | 09166  0.7505 09569  0.2547
17 HologramQA with Frame Tracking | 0.9150 0.7482 0.9530 0.2660 0.9291 0.7702 0.9625 0.2378
18
19 TABLE IX
20 MEDIAN SRCC, KRCC, PLCC AND RMSE OF THE COMPARED NR VIDEO QUALITY MODELS AGAINST HUMAN JUDGMENTS OF QUALITY OF THE
21 VIDEOS IN THE LIVE-META RENDERED HOLOGRAM VQA DATABASE OVER 100-TRAIN-TEST SPLITS. THE UNDERLINED AND BOLDFACED ITEMS
22 REPRESENT THE BEST AND TOP THREE PERFORMERS, RESPECTIVELY.
23 Metrics Pre-training Dataset Body only Face only
€ SRCC(T) KRCC(T) PLCC(1) RMSE(l) | SRCC(1) KRCC() PLCC(T) RMSE(])
24 BRISQUE N/A (pure handcraft) 0.8461 0.6440 0.8934 0.3973 0.8673 0.6792 0.9135 0.3641
25 CONTRIQUE KADIS-700k + AVA + COCO + CERTH-Blur + VOC 0.9092 0.7426 0.9593 0.2511 0.8953 0.7102 0.9370 0.3125
TLVQM N/A (pure handcraft) 0.5104 0.3527 0.5966 0.7109 0.6587 0.4719 0.7452 0.5997
26 VIDEVAL N/A (pure handcraft) 0.8497 0.6567 0.8979 0.3914 0.8817 0.6966 0.9220 0.3404
27 ChipQA N/A (pure handcraft) 0.8404 0.6431 0.8853 0.4193 0.8813 0.6967 0.9164 0.3527
FAVER N/A (pure handcraft) 0.8194 0.6277 0.8794 0.4233 0.9106 0.7391 0.9410 0.3027
28 VSFA ImageNet 0.8670 0.6720 09135 0.4079 0.8328 0.6401 0.8904 0.4339
RAPIQUE handcraft + ImageNet 0.8469 0.6472 0.8985 0.3933 0.9108 0.7425 0.9505 0.2754
29 CONVIQT | Kinetics-400 + Waterloolk + dareful + REDS + MCML + UVG | 0.8930 0.7120 0.9532 0.2705 0.8834 0.6943 0.9287 0.3285
30 GAMIVAL handcraft + TmageNet + GVSET + KUGVD + GISET 0.8842 0.6973 0.9251 0.3404 0.9203 0.7539 0.9515 0.2719
31
2 .
23 G. Data Analysis
34 Figure [fa displays the MLE-MOS histogram obtained using
35 SUREAL. The MLE-MOS values spanned the range [1.162,
36 4.391]. The distribution exhibits a slight right-skew, consistent
37 with patterns observed in other VQA databases. The majority
38 of the videos are of good quality, but few videos fall into the
39 category of excellent quality. The histogram in Figure [4b] plots
40 the distribution of DMOS calculated using Equation 3] The
41 DMOS values spanned the range [1.968, 5.302]. The distribu-
42 tion of the DMOS closely resembles that of the MLE-MOS,
43 albeit with a slight rightward shift. We provide additional
analysis of MLE-M in section II of the Supplementar ) .
44 y, 0s Supp y Fig. 5. Exemplar of a dumped frame from the hologram video Natasha
45 material. Serious Talking having original dimension of 1832 x 1920 pixels. Within
this frame, the yellow bounding box captures the avatar’s body (320 x 1088),
46 V. EVALUATION FRAMEWORK while the green box surrounds the avatar’s face (94 x 133).
47 . .
48 A. Evaluation Dataset Processing
49 As mentioned in Section [[V-B| the Unity tool enabled us
50 to extract frames of both the ground truth and target videos of IQA/VQA algorithms, we adopted the method presented in
51 based on user log files. Considering that users may view [33]], which excludes the background pixels. Likewise, we used
52 hologram videos from various angles, previous research [33] the simple expedient of applying the YOLO-v7 model [52] to
53 has shown that increasing the number of projected views has extract of bounding boxes around each human avatar. Prior
54 little correlation to improved quality predictions. Therefore, research has demonstrated the significance of frontal views
55 we adopted a fixed viewing angle when capturing the log of human bodies and faces as attractors of visual attention
56 files used to generate each frame of the hologram videos. An  [34]. To further investigate the impact of facial features and
57 example of a dumped frame is depicted in Fig. [3 expressions on video quality, we applied the YOLO-v8 face
58 Since the background region occupies a large proportion model [53]] to extract tight bounding boxes around each human
59 of the displayed content, and may impact the performance avatar’s face, within the previously cropped body bounding
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boxes, as exemplified in Figure

B. Model Evaluation protocol

To demonstrate the usefulness of the new LIVE-Meta Ren-
dered Hologram VQA Database, we used it to evaluate a
variety of leading IQA/VQA algorithms using various standard
metrics, including the SRCC, Kendall Rank Correlation Coef-
ficient (KRCC), PLCC, and Root Mean Square Error (RMSE).
The SRCC and KRCC measure the degree of monotonicity
between the objective model predictions and the human sub-
jective scores, while the PLCC and RMSE gauge the accuracy
of the predictions. As usual, a logistic non-linearity function
was applied to the predicted quality scores prior to computing
the correlations [54].

For each split, 80% of the videos were randomly selected
from all the contents to form the training and validation sets,
while the remaining 20% were used as the test set. To maintain
fairness of assessment and prevent any model from learning
content, we ensured that the subsets did not share any original
content.

C. Performance of FR IQA/VQA Models

In this section, we examine the performance of SOTA FR
VQA models on the new LIVE-Meta Rendered Hologram
VQA Database. As mentioned in Sec. most existing
quality assessment models designed for meshes are FR models,
and can be further classified into two types: model-based
methods and IQA algorithms that operate on individual frames.
The latter are well-suited when only 2D mesh rendering
snapshots are to be quality-analyzed. Since there exist few
developed FR VQA models designed for 2D mesh projections,
we included FR VQA models originally designed to analyze
natural videos and for generic VQA tasks.

We comprehensively compared the performance of 13 FR
VQA algorithms: PSNR-RGB, PSNR-Y, SSIM [55], LPIPS
(AlexNet) [56], LPIPS (VGG), DLM [57|, VIF [58], [59],
VMAF [60], FovVideoVDP [61], ST-GREED [62], CON-
TRIQUE [63]], CONVIQT [64]], and HologramQA [65] on
the new LIVE-Meta database. We calculated the DMOS using
Equation |3| when computing the performance of the FR VQA
models.

Since they do not utilize multiple frames to make VQA
predictions at a given moment, PSNR-RGB, PSNR-Y, SSIM,
DLM, VIF, and CONTRIQUE were calculated on a per-frame
basis between the reference videos and corresponding distorted
counterparts. These frame-level measurements were subse-
quently averaged across all frames to obtain aggregate global
scores. Among the FR VQA models, PSNR-RGB, PSNR-Y,
SSIM, DLM, and VIF are not ordinarily trained and were thus
applied directly on all 1000 test sets. We used the pre-trained
open-source version of VMAF (v0.6.1) originally designed for
general-purpose VQA tasks. Likewise, we report the results
obtained with the publicly available calibrated FovVideoVDP
model. When implementing ST-GREED, CONTRIQUE-FR,
CONVIQT-FR, and HologramQA, features were extracted
and an SVR was trained using 80%/20% train/test sets.
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CONTRIQUE-FR and CONVIQT-FR are full-reference im-
plementations of established unsupervised NR models, while
Hologram QA is a new hybrid model. The optimal parameters
of the SVR were determined using a five-fold cross-validation
procedure on the training and validation sets.

D. Performance of NR IQA/VQA Models

Table [VIII provides an overview of the median performance
of the above FR IQA/VQA algorithms on the LIVE-Meta
Rendered Hologram VQA Database. The standout performers
were CONTRIQUE-FR and CONVICT-FR, which generalize
well since they are unsupervised, and the two versions of
Hologram QA, which were designed to analyze Hologram
content.

We also conducted a comprehensive evaluation to gauge the
performances of existing NR IQA/VQA algorithms on the new
LIVE-Meta database. A selection of prominent generic NR
IQA/VQA models, namely BRISQUE [66], CONTRIQUE,
TLVQM [67], VIDEVAL [68], ChipQA [69], FAVER [70],
VSFA [71], RAPIQUE [72], CONVIQT, and GAMIVAL [73],
were tested. BRISQUE, TLVQM, VIDEVAL, ChipQA, and
FAVER are primary based on quality-aware neurostatistic
distortion models, while RAPIQUE and GAMIVAL fuse neu-
rostatistical features with deep learning-based features. CON-
TRIQUE derives from a self-supervised learning framework
that aims to learn quality-aware representations without the
need to train on human opinion scores. The VSFA model
leverages deep learning to extract features, which are subse-
quently mapped to MLE-MOS. CONVIQT combines spatial
CONTRIQUE features with temporal quality features, also
without supervision.

The extraction of quality-aware features in frame-based
models like BRISQUE and CONTRIQUE was performed on
a per-frame basis, which were then pooled over frames to
obtain quality predictions. The supervised methods, includ-
ing BRISQUE, CONTRIQUE, TLVQM, VIDEVAL, ChipQA,
FAVER, RAPIQUE, CONVIQT, and GAMIVAL, all employed
an SVR to map the pooled and combined quality-aware
features to MLE-MOS. GAMIVAL, which was designed for
conducting VQA on gaming videos, modifies RAPIQUE by
employing deep pre-trained gaming content model called
NDNet-Gaming [74]. We followed the same evaluation proto-
col using 80%/20% train/test splits.

Table [IX| summarizes the median performances of the com-
pared NR IQA/VQA algorithms on the new VQA database.
TLVQM, which relies on multiple hand-tuned hyperparameters
optimized for predicting generic video quality, was unable to
generalize to hologram videos.

However, algorithms leveraging neurostatistical video dis-
tortion features, including BRISQUE, VIDEVAL, ChipQA,
FAVER, RAPIQUE, and GAMIVAL, all performed well.
Incorporating deep learning techniques in models such as
CONTRIQUE, VSFA, RAPIQUE, CONVIQT, and GAMIVAL
yielded substantial performance improvements. This under-
scores the ability of learning-based approaches to capture
the inherent statistical structure of synthetically generated
hologram videos and their distortions.
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VI. CONCLUSION AND DISCUSSION

We have presented the LIVE-Meta Rendered Hologram
VQA database, which is a new resource for the devel-
opment and evaluation of FR and NR VQA algorithms
that are specifically designed for VR textured mesh con-
tent. Although we cannot make the proprietary Metastage
videos freely available, other users may also purchase
them. To facilitate such efforts, we will be also mak-
ing the metadata of the database publicly available at
https://live.ece.utexas.edu/research/Hologram/index.html. We
showed the usefulness of the new database for analyzing,
benchmarking, and designing for FR and NR IQA/VQA
algorithms. Future investigations may concentrate on the de-
velopment of deep learning methodologies to enhance the
performance of FR and NR IQA/VQA algorithms for avatar
analysis.
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Supplementary material —

Subjective and Objective Quality Assessment of Rendered

Hologram Videos in Virtual Reality

TABLE I: Participant feedback on the proportion of hologram
videos that elicited feelings of dizziness or discomfort.

# of hologram Didn’t

videos inducing None | <10 | 10-19 | 20-39 | 40-100 | >100 | remember
uneasiness/dizziness when
% of sessions 56% | 6.7% | 4% 8.1% 27% | 4.1% 17.5%

Age
20

Amount

Age

(a)

Gender

(b)

Fig. 1: Demographics of human study participants based on
age (a) and gender (b).

I. ADDITIONAL POST STUDY QUESTIONNAIRE

Participants were also queried about any experiences of
dizziness or uneasiness during the viewing and rating of the
videos. Approximately 44% of sessions reported some degree
of dizziness or uneasiness, but this generally occurred only on
a small percentage of the videos, as shown in Table [I]

At the conclusion of each session, demographic information,
including age and gender, was collected. The mean age of the

participants was 23.03, with a median age of 22 and a standard
deviation of 2.69. Visualizations depicting the age and gender
distributions are provided in Fig. [T}

II. ADDITIONAL ANALYSIS AND VISUALIZATION OF
OPINION SCORES

A. Impact of Delays on MLE-MOS

To investigate the impact of delays on MLE-MOS, we
analyzed the MLE-MOS of videos with different content IDs
for various delay values. Fig. presents the MLE-MOS
curves for videos with odd content IDs, while Fig. [2b] displays
the MLE-MOS curves for videos with even content IDs.
It can be observed that there are no significant separation
between curves for MLE-MOS across different delay values.
This suggests that the delay parameter has minimal influence
on the perceived quality of the videos.

B. MLE-MOS Content Dependence

In order to investigate the relationship between the source
video contents, single distortions of color resolution, and their
combined impact on MLE-MOS, we analyzed the results
presented in Fig. 2c|and Fig. 2d| Fig. 2¢ illustrates the MLE-
MOS curves corresponding to videos with odd content IDs,
while Fig. 2d|shows those with even content IDs. These figures
depict distinct demarcations between the MLE-MOS curves
associated with different color resolutions, highlighting the
influence of color resolution on perceptual quality assessment.

C. Rate Distortion Curves

The impact of varying framerates on MLE-MOS was ex-
amined by analyzing the MLE-MOS curves shown in Fig.
[2el Notably, distinct separations can be observed between
curves of MLE-MOS of videos with framerates of 30 fps,
20 fps, and 10 fps. However, the curves for videos with a
framerate of 15+10 fps exhibit inconsistent placement. At
times, these curves fell between the curves of 20 fps and
10fps, while in other instances, they surpassed the 20 fps curve
or align closely with the 10fps curve. This finding indicates
that the introduction of variance in framerate across different
content may hinder individuals’ ability to perceive changes in
perceptual quality, as the content may consist of varying levels
of static or dynamic movements. The observed decrease in
MLE-MOS values at a lower framerate (10 fps) highlights the
significant influence of temporal distortions on the perceived
quality of hologram videos.
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D. Distortion Type Analysis

Figure [2f provides an analysis of the influence of distortion
type on the MLE-MOS across different content IDs. It may be
observed that the curves for contents with odd and even IDs
exhibit consistency, except for a distinct difference observed
in the curves corresponding to distortion indices 4, 5, and
6, which represent color resolution distortions. As discussed
in Section III-B of the Main paper, video content with odd
IDs was assigned color resolution distortions of 1600p, 1080p,
and 640p, while video content with even IDs was assigned
resolutions of 1280p, 720p, and 480p, respectively. Thus, the
curves depicted in Figure 2f effectively reflect this assignment
strategy and its impact on the MLE-MOS.

These analyses highlight several key findings regarding the
impact of different factors on the visual perception of video
quality, particularly in the context of hologram videos. Among
these factors, color resolution and varying frame rate had
a stronger impact on video quality perception of hologram
videos compared to different delay values. These findings
suggest that adjusting delay can lead to data efficiencies in
VR hologram video streaming without significant perceptual
loss.
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(e) Rate distortion curves for video with different frame rates = 30fps, 20fps, 10fps, and 15+10 fps
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(f) Variation of MLE-MOS with distortion index across contents with odd IDs and even IDs

Fig. 2: (a)-(e) Variation of MLE-MOS against content for varying delays, color resolutions, and framerates, (f) Variation of

MLE-MOS with distortion index across contents with odd IDs and even IDs
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