
Str u ct ur e d S e mi d e fi nit e Pr o gr a m mi n g

f or R e c o veri n g Str u ct ur e d Pr e c o n diti o n ers∗

Ar u n J a m b ul a p ati † J err y Li ‡ C hrist o p h er M us c o § Kir a n k u m ar S hir a g ur ¶

A ar o n Si df or d ‖ K e vi n Ti a n ∗ ∗

A b s t r a c t

We d e v el o p a g e n er al fr a m e w or k f or fi n di n g a p pr o xi m at el y- o pti m al pr e c o n diti o n er s f or s ol v-
i n g li n e ar s y st e m s. L e v er a gi n g t hi s fr a m e w or k w e o bt ai n i m pr o v e d r u nti m e s f or f u n d a m e nt al
pr e c o n diti o ni n g a n d li n e ar s y st e m s ol vi n g pr o bl e m s i n cl u di n g t h e f oll o wi n g.

• Di a g o n al p r e c o n di ti o ni n g. We gi v e a n al g orit h m w hi c h, gi v e n p o siti v e d e fi nit e K ∈
R d × d wit h n n z(K) n o n z er o e ntri e s, c o m p ut e s a n ϵ - o pti m al di a g o n al pr e c o n diti o n er i n ti m e

O (n n z(K) ·p ol y (κ ⋆ , ϵ− 1)), w h er e κ ⋆ i s t h e o pti m al c o n diti o n n u m b er of t h e r e s c al e d m atri x.

• S t r u c t u r e d li n e a r s y s t e m s. We gi v e a n al g orit h m w hi c h, gi v e n M ∈ R d × d t h at i s eit h er
t h e p s e u d oi n v er s e of a gr a p h L a pl a ci a n m atri x or a c o n st a nt s p e ctr al a p pr o xi m ati o n of
o n e, s ol v e s li n e ar s y st e m s i n M i n O (d 2) ti m e.

O ur di a g o n al pr e c o n diti o ni n g r e s ult s i m pr o v e st at e- of-t h e- art r u nti m e s of Ω(d 3 .5) att ai n e d b y
g e n er al- p ur p o s e s e mi d e fi nit e pr o gr a m mi n g, a n d o ur s ol v er s i m pr o v e st at e- of-t h e- art r u nti m e s of
Ω(d ω) w h er e ω > 2 .3 i s t h e c urr e nt m atri x m ulti pli c ati o n c o n st a nt. We att ai n o ur r e s ult s vi a n e w
al g orit h m s f or a cl a s s of s e mi d e fi nit e p r o gr a m s (S D P s) w e c all m at ri x- di cti o n a r y a p p r o xi m ati o n
S D P s , w hi c h w e l e v er a g e t o s ol v e a n a s s o ci at e d pr o bl e m w e c all m at ri x- di cti o n a r y r e c o v e r y .

∗ T hi s p a p e r i s a m e r g e of t w o u n p u bli s h e d w o r k s b y s u b s e t s of t h e a u t h o r s, [J S S 1 8] a n d [J L M + 2 1], a v ail a bl e o n
a r Xi v, a n d i s i nt e n d e d t o r e pl a c e t h e m.

† Si m o n s I n s ti t u t e, j m b l p a t i @ b e r k e l e y . e d u . W o r k c o m pl e t e d a t S t a nf o r d a n d t h e U ni v e r si t y of W a s hi n g t o n.
‡ Mi c r o s of t R e s e a r c h, j e r r l @ m i c r o s o f t . c o m .
§ N e w Y o r k U ni v e r si t y, c m u s c o @ n y u . e d u .
¶ B r o a d I n s ti t u t e of MI T a n d H a r v a r d, s h i r a g u r @ s t a n f o r d . e d u . W o r k c o m pl e t e d a t S t a nf o r d.
‖ S t a nf o r d U ni v e r si t y, s i d f o r d @ s t a n f o r d . e d u .

∗ ∗ U ni v e r si t y of Te x a s a t A u s ti n, k j t i a n @ c s . u t e x a s . e d u . W o r k c o m pl e t e d a t S t a nf o r d a n d Mi c r o s of t R e s e a r c h.

1

ar
Xi

v:
23

10
.1

82
65

v1

[c

s.
D
S]

27

Oc
t

20
23

Contents

1 Introduction 1
1.1 Diagonal preconditioning . 2
1.2 Robust linear algebra for structured matrices . 4
1.3 Our framework: matrix-dictionary recovery . 6
1.4 Comparison to prior work . 9
1.5 Organization . 10

2 Preliminaries 10

3 Efficient matrix-dictionary recovery 11
3.1 Identity constraints . 11
3.2 General constraints . 18

4 Graph structured systems 24
4.1 Perturbed Laplacian solver . 25
4.2 M-matrix recovery and inverse M-matrix solver . 26
4.3 Laplacian recovery and Laplacian pseudoinverse solver 27

5 Diagonal scaling 28
5.1 Inner scaling . 28
5.2 Outer scaling . 29

6 Statistical applications of diagonal scaling 35
6.1 Semi-random linear systems . 35
6.2 Statistical linear regression . 36

References 41

A Deferred proofs from Sections 3 and 5 51
A.1 Proof of Proposition 1 . 51
A.2 Polynomial approximation to the square root . 51
A.3 Deferred proofs from Section 5.2 . 52

B M-matrix and SDD matrix facts 53

C Jacobi preconditioning 55

D Faster scalings with a conjectured subroutine 57
D.1 Approximating κ⋆ under Assumption 1 . 59
D.2 Average-case conditioning under Assumption 1 . 61

1 Introduction

Preconditioning is a fundamental primitive in the theory and practice of numerical linear algebra,
optimization, and data science. Broadly, its goal is to improve conditioning properties (e.g., the
range of eigenvalues) of a matrix M by finding another matrix N which approximates the inverse
of M and is more efficient to construct and apply than computing M−1. This strategy under-
pins a variety of popular, recently-developed tools, such as adaptive gradient methods for machine
learning (e.g., Adagrad and Adam [DHS11, KB15]), and near-linear time solvers for combinatorially-
structured matrices (e.g. graph Laplacians [ST04]). Despite widespread practical adoption of such
techniques, there is a surprising lack of provably efficient algorithms for preconditioning.

Our work introduces a new tool, matrix-dictionary recovery, and leverages it to obtain the
first near-linear time algorithms for several structured preconditioning problems in well-studied
applications. Informally, the problem we study is as follows (see Section 1.3 for the formal definition).

Given a matrix M and a “matrix-dictionary” {Mi}, find the best preconditioner

N =
∑
i

wiMi of M expressible as a nonnegative linear combination of {Mi}. (1)

We develop general-purpose solvers for the problem (1). We further apply these solvers to ob-
tain state-of-the-art algorithms for fundamental tasks such as preconditioning linear systems and
regression, and approximately recovering structured matrices, including the following results.

• Diagonal preconditioning. We consider the classical numerical linear algebra problem of
diagonal preconditioning [vdS69]. Given K ∈ Sd≻0, the goal is to find a diagonal W ∈ Sd≻0

minimizing the condition number of W
1
2KW

1
2 . Theorem 1 obtains the first near-linear time

algorithms for this problem when the optimal condition number of the rescaled matrix is small.

• Semi-random regression. We consider a related problem, motivated by semi-random noise
models, which takes full-rank A ∈ Rn×d with n ≥ d and seeks W ∈ Sn≻0 minimizing the
condition number of A⊤WA. Theorem 2 gives the first near-linear time algorithm for this
problem, and applications of it reduce risk bounds for statistical linear regression.

• Structured linear systems. We robustify Laplacian system solvers, e.g., [ST04], to obtain
near-linear time solvers for systems in dense matrices well-approximated spectrally by Lapla-
cians in Theorem 3. We also give new near-linear time solvers for several families of structured
matrices, e.g., dense inverse Laplacians and M-matrices,1 in Theorems 4 and 5.

For the preconditioning problems considered in Theorems 1, 2, and 3, we give the first runtimes
faster than a generic SDP solver, for which state-of-the-art runtimes [JKL+20, HJS+22] are highly
superlinear (Ω(d3.5) for diagonal preconditioning and Ω(d2ω) for approximating Laplacians, where
d is the matrix dimension and ω > 2.3 is the current matrix multiplication constant [AW21]). For
the corresponding linear system solving problems in each case, as well as in Theorems 4 and 5, the
prior state-of-the-art was to treat the linear system as generic and ran in Ω(dω) time.

We survey these results in Section 1.1 and 1.2, highlighting how the problems they study can
be viewed as instances of (1). We then discuss the general matrix-dictionary recovery problem we
study in more detail, and state the guarantees of our solvers, in Section 1.3. Finally, we compare
our framework to related algorithms and give a more thorough runtime comparison in Section 1.4.

1Inverse M-matrices are necessarily dense, see Lemma 33 in Appendix B.

1

1.1 Diagonal preconditioning

When solving linear systems via iterative methods, one of the most popular preconditioning strate-
gies is to use a diagonal matrix. This strategy is appealing because diagonal matrices can be applied
and inverted quickly. Determining the best diagonal preconditioner is a classical numerical linear
algebra problem studied since the 1950s [FS55, vdS69, PG90]. In the context of (1), a diagonal
preconditioner is a nonnegative linear combination of the matrix-dictionary consisting of

eie
⊤
i where ei is the ith basis vector. (2)

Leveraging this viewpoint, we study two natural instantiations of diagonal preconditioning.

Outer scaling. One formulation of the optimal diagonal preconditioning problem, which we refer
to as outer scaling, asks to optimally reduce the condition number of positive definite K ∈ Rd×d

with a diagonal matrix W, i.e., return diagonal W = diag (w) for w ∈ Rd
>0 such that2

κ(W
1
2KW

1
2) ≈ κ⋆o(K) := min

diagonal W≻0
κ(W

1
2KW

1
2).

Given W, a solution to Kx = b can be obtained by solving the better-conditioned W
1
2KW

1
2 y =

W
1
2 b and returning x = W

1
2 y. The optimal W can be obtained via a semidefinite program (SDP)

[QYZ20], but the computational cost of general-purpose SDP solvers outweighs benefits for solving
linear systems. Outer scaling is poorly understood algorithmically; prior to our work, even attaining
a constant-factor approximation to κ⋆o(K) without a generic SDP solver was unknown.

This state of affairs has resulted in the widespread use of studying heuristics for constructing W,
such as Jacobi preconditioning [vdS69, GR89] and matrix scaling [AZLOW17, CMTV17a, GO18].
The former was notably highlighted by Adagrad [DHS11], which used Jacobi preconditioning to
improve the computational costs of their method. However, both heuristcs have clear drawbacks
both from a theoretical and practical perspective. Prior to our work the best approximation guar-
antee known for Jacobi preconditioning was a result of van der Sluis [vdS69, GR89], which shows
the Jacobi preconditioner is an m-factor approximation to the optimal preconditioning problem
where m ≤ d is the maximum number of non-zeros in any row of K: in dense matrices this scales
linearly in the problem dimension and can be much larger than κ⋆o(K). We review and slightly
strengthen this result in Appendix C. We also prove a new dimension-independent baseline result
of independent interest: the Jacobi preconditioner always obtains condition number no worse than
(κ⋆o(K))2. Unfortunately, we exhibit a simple family of matrices showing this characterization of the
Jacobi preconditioner quality is tight, dashing hopes they can solve the outer scaling problem near-
optimally. On the other hand, while it is sometimes effective as a heuristic [KRU14], matrix scaling
algorithms target a different objective and do not yield provable guarantees on κ(W

1
2KW

1
2).

Inner scaling. Another formulation of diagonal preconditioning, which we refer to as inner scal-
ing, takes as input a full-rank A ∈ Rn×d and asks to find an n× n positive diagonal W with

κ(A⊤WA) ≈ κ⋆i (A) := min
diagonal W≻0

κ(A⊤WA).

As a comparison, when outer scaling is applied to the kernel matrix K = A⊤A, W
1
2KW

1
2 can

be seen as rescaling the columns of A. On the other hand, in inner scaling we instead rescale
2κ(M) is the condition number of positive definite M, i.e., the eigenvalue ratio λmax(M)/λmin(M).

2

rows of A. Inner scaling has natural applications to improving risk bounds in a robust statistical
variant of linear regression, which we comment upon shortly. Nonetheless, as in the outer scaling
case, no algorithms faster than general SDP solvers are known to obtain even a constant-factor
approximation to κ⋆i (A). Further, despite clear problem similarities, it is unclear how to best
extend heuristics (e.g., Jacobi preconditioning and matrix scaling) for outer scaling to inner scaling.

Our results. We give the first nontrivial approximation algorithms (beyond calling a generic SDP
solver) for both variants, yielding diagonal preconditioners attaining constant-factor approximations
to κ⋆o and κ⋆i in near-linear time.3 In the following, Tmv(M) is the time required to multiply a vector
by M; this is at most the sparsity of M, but can be substantially faster for structured M.

Theorem 1 (Outer scaling, informal, see Theorem 14). Let ϵ > 0 be a fixed constant.4 There is an
algorithm, which given full-rank K ∈ Sd≻0 computes w ∈ Rd

≥0 such that κ(W
1
2KW

1
2) ≤ (1+ϵ)κ⋆o(K)

with probability ≥ 1− δ in time5

O

(
Tmv(K) · (κ⋆o(K))1.5 · polylog

(
dκ⋆o(K)

δ

))
.

Theorem 2 (Inner scaling, informal, see Theorem 13). Let ϵ > 0 be a fixed constant. There is an
algorithm, which given full-rank A ∈ Rn×d for n ≥ d computes w ∈ Rn

≥0 such that κ(A⊤WA) ≤
(1 + ϵ)κ⋆i (A) with probability ≥ 1− δ in time

O

(
Tmv(A) · (κ⋆i (A))1.5 · polylog

(
nκ⋆i (A)

δ

))
.

Our methods pay a small polynomial overhead in the quantities κ⋆o and κ⋆i , but notably suffer
no dependence on the original conditioning of the matrices. Typically, the interesting use case for
diagonal preconditioning is when κ⋆o(K) or κ⋆i (A) is small but κ(K) or κ(A⊤A) is large, a regime
where our runtimes are near-linear and substantially faster than directly applying iterative methods.

It is worth noting that in light of our new results on Jacobi preconditioning, the end-to-end
runtime of Theorem 1 specifically for solving linear systems (rather than optimal preconditioning)
can be improved: accelerated gradient methods on a preconditioned system with condition number
(κ⋆o)

2 have runtimes scaling as κ⋆o. That said, when repeatedly solving multiple systems in the same
matrix, Theorem 1 may offer an advantage over Jacobi preconditioning. Our framework also gives a
potential route to achieve the optimal end-to-end runtime scaling as

√
κ⋆o, detailed in Appendix D.

Statistical aspects of preconditioning. Unlike an outer scaling, a good inner scaling does
not speed up a least squares regression problem minx ∥Ax − b∥2. Instead, it allows for a faster
solution to the reweighted problem minx ∥W

1
2 (Ax−b)∥2. This has a number of implications from a

statistical perspective. We explore an interesting connection between inner scaling preconditoning
and semi-random noise models for least-squares regression, situated in the literature in Section 1.4.

As a motivating example of our noise model, consider the case when there is a hidden parameter
vector xtrue ∈ Rd that we want to recover, and we have a “good” set of consistent observations

3We are not currently aware of a variant of our matrix dictionary recovery framework which extends to simultaneous
inner and outer scaling, though it is worth noting that prior work [QGH+22] does obtain such a result via semidefinite
programming. Obtaining such a variant is an interesting open problem for future work.

4We do not focus on the ϵ dependence and instead take it to be constant since, in applications involving solving
linear systems, there is little advantage to obtaining better than a two factor approximation (i.e., setting ϵ = 1).

5Our informal results suppress precise dependences on approximation and log factors as the only informality.

3

Agxtrue = bg, in the sense that κ(A⊤
g Ag) is small. Here, we can think of Ag as being drawn

from a well-conditioned distribution. Now, suppose an adversary gives us a superset of these
observations (A, b) such that Axtrue = b, and Ag are an (unknown) subset of rows of A, but
κ(A⊤A) ≫ κ(A⊤

g Ag). This can occur when rows are sampled from heterogeneous sources. Per-
haps counterintuitively, by giving additional consistent data, the adversary can arbitrarily hinder
the cost of iterative methods. This failure can be interpreted as being due to overfitting to gener-
ative assumptions (e.g., sampling rows from a well-conditioned covariance, instead of a mixture):
standard iterative methods assume too much structure, where ideally they would use as little as
information-theoretically possible.

Our inner scaling methods can be viewed as “robustifying” linear system solving to such semi-
random noise models (by finding W yielding a rescaled condition number comparable or better
than the indicator of the rows of Ag, which are not known a priori). In Section 6, we demonstrate
applications of inner scaling in reducing the mean-squared error risk in statistical regression settings
encompassing our semi-random noise model, where the observations b are corrupted by (homoskedas-
tic or heteroskedastic) noise. In all settings, our preconditioning algorithms yield computational
gains, improved risk bounds, or both, by factors of roughly κ(A⊤A)/κ⋆i (A).

1.2 Robust linear algebra for structured matrices

Over the past decade, the theoretical computer science and numerical linear algebra communities
have dedicated substantial effort to developing solvers for regression problems in various families of
combinatorially-structured matrices. Perhaps the most prominent example is [ST04], which gave a
near-linear time solver for linear systems in graph Laplacian matrices.6 A long line of exciting work
has obtained improved solvers for these systems [KMP10, KMP11, KOSZ13, LS13, CKM+14, PS14,
KLP+16, KS16, JS21], which have been used to improve the runtimes for a wide variety of graph-
structured problems, including maximum flow [CKM+11, Mad13, LS14], sampling random spanning
trees [KM09, MST15, DKP+17, Sch18], graph clustering [ST04, OV11, OSV12], and more [DS08,
KRSS15, CMSV17, CMTV17b]. Additionally, efficient linear system solvers have been developed
for solving systems in other types of structured matrices, e.g., block diagonally dominant systems
[KLP+16], M-matrices [AJSS19], and directed Laplacians [CKP+16, CKP+17, CKK+18].

Perturbations of structured matrices. Despite the importance of these families of matrices
with combinatorial structure, the solvers developed in prior work are in some ways quite brittle. In
particular, there are several simple classes of matrices closely related to Laplacians for which the
best-known runtimes for solving linear systems are achieved by ignoring the structure of the problem,
and using generic matrix multiplication techniques as a black box. Perhaps the simplest example is
solving systems in perturbed Laplacians, i.e., matrices which admit constant-factor approximations
by a Laplacian matrix, but which are not Laplacians themselves. This situation can arise when
a Laplacian is used to approximate a physical phenomenon [BHV08]. As an illustration of the
techniques we develop, we give the following perturbed Laplacian solver.

Theorem 3 (Perturbed Laplacian solver, informal, see Theorem 10). Let M ⪰ 0 ∈ Rn×n be such
that there exists an (unknown) Laplacian L with M ⪯ L ⪯ κ⋆M, and that L corresponds to a graph
with edge weights between wmin and wmax, with wmax

wmin
≤ U . For any δ ∈ (0, 1) and ϵ > 0, there is an

algorithm recovering a Laplacian L′ with M ⪯ L′ ⪯ (1 + ϵ)κ⋆M with probability ≥ 1− δ in time

O

(
n2 · (κ⋆)2 · poly

(
log nκ⋆U

δ

ϵ

))
.

6We formally define the structured families of matrices we study in Section 4.

4

Consequently, there is an algorithm for solving linear systems in M to ϵ-relative accuracy with
probability ≥ 1− δ, in time O(n2 · (κ⋆)2 · polylog

(
nκ⋆U
δϵ

)
).7

Theorem 3 can be viewed as solving a preconditioner construction problem, where we know
there exists a Laplacian matrix L which spectrally resembles M, and wish to efficiently recover a
Laplacian with similar guarantees. Our matrix-dictionary recovery framework captures the setting
of Theorem 3 by leveraging the matrix-dictionary consisting of the O(n2) matrices

beb
⊤
e ∈ Rn×n,

where be is the 2-sparse signed vector corresponding to an edge in an n-vertex graph (see Section 2).
The conceptual message of Theorem 3 is that near-linear time solvers for Laplacians robustly extend
through our preconditioning framework to efficiently solve matrices approximated by Laplacians.
Beyond this specific application, our framework could be used to solve perturbed generalizations of
future families of structured matrices.

Recovery of structured matrices. In addition to directly spectrally approximating and solv-
ing in matrices which are well-approximated by preconditioners with diagonal or combinatorial
structure, our framework also yields solvers for new families of matrices. We show that our pre-
conditioning techniques can be used in conjunction with properties of graph-structured matrices to
provide solvers and spectral approximations for inverse M-matrices and Laplacian pseudoinverses.
Recovering Laplacians from their pseudoinverses and solving linear systems in the Laplacian pseu-
doinverse arise when trying to fit a graph to data or recover a graph from effective resistances, a
natural distance measure (see [HMMT18] for motivation and discussion of related problems). More
broadly, the problem of solving linear systems in inverse symmetric M-matrices is prevalent and
corresponds to statistical inference problems involving distributions that are multivariate totally
positive of order 2 (MTP2) [KR83, SH14, FLS+17]. Our main results are the following.

Theorem 4 (M-matrix recovery and inverse M-matrix solver, informal, see Theorem 11). Let M be
the inverse of an unknown invertible symmetric M-matrix, let κ be an upper bound on its condition
number, and let U be the ratio of the largest to smallest entries of M1.8 For any δ ∈ (0, 1) and
ϵ > 0, there is an algorithm recovering a (1 + ϵ)-spectral approximation to M−1 in time

O

(
n2 · poly

(
log nκU

δ

ϵ

))
.

Consequently, there is an algorithm for solving linear systems in M to ϵ-relative accuracy with
probability ≥ 1− δ, in time O(n2 · polylog

(
nκU
δϵ

)
).

Theorem 5 (Laplacian recovery and Laplacian pseudoinverse solver, informal, see Theorem 12).
Let M be the pseudoinverse of unknown Laplacian L, and that L corresponds to a graph with edge
weights between wmin and wmax, with wmax

wmin
≤ U . For any δ ∈ (0, 1) and ϵ > 0, there is an algorithm

recovering a Laplacian L′ with M† ⪯ L′ ⪯ (1 + ϵ)M† in time

O

(
n2 · poly

(
log nU

δ

ϵ

))
.

Consequently, there is an algorithm for solving linear systems in M to ϵ-relative accuracy with
probability ≥ 1− δ, in time O(n2 · polylog

(
nU
δϵ

)
).

7See (8) and the following discussion for the definition of solving to relative accuracy.
8By Lemma 33 in Appendix B, the vector M1 is entrywise positive.

5

Theorems 4 and 5 are perhaps a surprising demonstration of the utility of our techniques: just
because a matrix family is well-approximated by structured preconditioners, it is not a priori clear
that their inverses also are. However, we show that by applying recursive preconditioning tools in
conjunction with our recovery methods, we can obtain analogous results for these inverse families.
These results add to the extensive list of combinatorially-structured matrix families admitting effi-
cient linear algebra primitives. We view our approach as a proof-of-concept of further implications
in designing near-linear time system solvers for structured families via algorithms for (1).

1.3 Our framework: matrix-dictionary recovery

Our general strategy for matrix-dictionary recovery, i.e., recovering preconditioners in the sense of
(1), is via applications of a new custom approximate solver we develop for a family of structured
SDPs. SDPs are fundamental optimization problems that have been the source of extensive study
for decades [VB96], with numerous applications across operations research and theoretical computer
science [GW95], statistical modeling [WSV00, GM12], and machine learning [RSL18]. Though there
have been recent advances in solving general SDPs (e.g., [JKL+20, HJS+22] and references therein),
the current state-of-the-art solvers have superlinear runtimes, prohibitive in large-scale applications.
Consequently, there has been extensive research on designing faster approximate SDP solvers under
different assumptions [KV05, WK06, AK07, BBN13, GHM15, AL17, CDST19].

We now provide context for our solver for structured “matrix-dictionary approximation” SDPs,
and state our main results on solving them.

Positive SDPs. One prominent class of structured SDPs are what we refer to as positive SDPs,
namely SDPs in which the cost and constraint matrices are all positive semidefinite (PSD), a type of
structure present in many important applications [GW95, ARV09, JJUW11, LS17, CG18, CDG19,
CFB19, CMY20]. This problem generalizes positive linear programming (also referred to as “mixed
packing-covering linear programs”), a well-studied problem over the past several decades [LN93,
PST95, You01, MRWZ16b, AO19]. It was recently shown that a prominent special case of positive
SDPs known as packing SDPs can be solved in nearly-linear time [ALO16, PTZ16], a fact that has
had numerous applications in robust learning and estimation [CG18, CDG19, CFB19, CMY20] as
well as in combinatorial optimization [LS17]. However, extending known packing SDP solvers to
broader classes of positive SDPs, e.g., covering or mixed packing-covering SDPs has been elusive
[JY12, JLL+20], and is a key open problem in the algorithmic theory of structured optimization.9

We use the term positive SDP in this paper to refer to the fully general mixed packing-covering
SDP problem, parameterized by “packing” and “covering” matrices {Pi}i∈[n],P, {Ci}i∈[n],C ∈ Sd⪰0,
and asks to find10 the smallest µ > 0 such that there exists w ∈ Rn

≥0 with∑
i∈[n]

wiPi ⪯ µP,
∑
i∈[n]

wiCi ⪰ C. (3)

By redefining Pi ← 1
µP

− 1
2PiP

− 1
2 and Ci ← C− 1

2CiC
− 1

2 for all i ∈ [n], the optimization problem
in (3) is equivalent to testing whether there exists w ∈ Rn

≥0 such that∑
i∈[n]

wiPi ⪯
∑
i∈[n]

wiCi. (4)

9A faster solver for general positive (mixed packing-covering) SDPs was claimed in [JLL+20], but an error was
later discovered in that work, as is recorded in the most recent arXiv version [JLL+21].

10This is the optimization variant; the corresponding decision variant asks to test if for a given µ, (3) is feasible.

6

The formulation (4) was studied by [JY12, JLL+20], and an important open problem in structured
convex programming is designing a “width-independent” solver for testing the feasibility of (4) up to
a 1+ ϵ factor (i.e., testing whether (4) is approximately feasible with an iteration count polynomial
in ϵ−1 and polylogarithmic in other problem parameters), or solving for the optimal µ in (3) to this
approximation factor. Up to now, such width-independent solvers have remained elusive beyond
pure packing SDPs [ALO16, PTZ16, JLT20], even for basic extensions such as pure covering.

Matrix-dictionary approximation SDPs. We develop an efficient solver for specializations of
(3) and (4) where the packing and covering matrices {Pi}i∈[n], {Ci}i∈[n], as well as the constraints P,
C, are multiples of each other. As we will see, this structured family of SDPs, which we call matrix-
dictionary approximation SDPs, is highly effective for capturing the forms of approximation required
by preconditioning problems. Many of our preconditioning results follow as careful applications of
the matrix-dictionary approximation SDP solvers we give in Theorem 6 and Theorem 7.

We develop efficient algorithms for the following special case of (3), (4), the main meta-problem
we study. Given a set of matrices (a “matrix-dictionary”) {Mi}i∈[n] ∈ Sd⪰0, a constraint matrix B,
and a tolerance parameter ϵ ∈ (0, 1), such that there exists a feasible set of weights w⋆ ∈ Rn

≥0 with

B ⪯
∑
i∈[n]

w⋆
iMi ⪯ κ⋆B, (5)

for some unknown κ⋆ ≥ 1, we wish to return a set of weights w ∈ Rn
≥0 such that

B ⪯
∑
i∈[n]

wiMi ⪯ (1 + ϵ)κ⋆B. (6)

While this “matrix-dictionary recovery” problem is a restricted case of (3), as we demonstrate, it is
already expressive enough to capture many interesting applications.

Our results concerning the problem (5) and (6) assume that the matrix-dictionary {Mi}i∈[n] is
“simple” in two respects. First, we assume that we have an explicit factorization of each Mi as

Mi = ViV
⊤
i , Vi ∈ Rd×m. (7)

Our applications in Sections 1.1 and 1.2 satisfy this assumption with m = 1. Second, denoting
M(w) :=

∑
i∈[n]wiMi, we assume that we can approximately solve systems in M(w) + λI for any

w ∈ Rn
≥0 and λ ≥ 0. Concretely, for any ϵ > 0, we assume there is a linear operator M̃w,λ,ϵ which

we can compute and apply in T sol
M · log 1

ϵ time,11 and that M̃w,λ,ϵ ≈ (M(w) + λI)−1 in that:∥∥∥M̃w,λ,ϵv − (M(w) + λI)−1 v
∥∥∥
2
≤ ϵ

∥∥∥(M(w) + λI)−1 v
∥∥∥
2

for all v ∈ Rd. (8)

In this case, we say “we can solve in M to ϵ-relative accuracy in T sol
M · log 1

ϵ time.” IfM is a single
matrix M, we say “we can solve in M to ϵ-relative accuracy in T sol

M · log 1
ϵ time.” Notably, for the

matrix-dictionaries in our applications, e.g., diagonal 1-sparse matrices or edge Laplacians, such
access to {Mi}i∈[n] exists so we obtain end-to-end efficient algorithms. Ideally (for near-linear time
algorithms), T sol

M is roughly the total sparsity of {Mi}i∈[n], which holds in all our applications.
Under these assumptions, we prove the following main claims in Section 3. We did not heavily

optimize logarithmic factors and the dependence on ϵ−1, as many of these factors are inherited
11We use this notation because, if T sol

M is the complexity of solving the system to constant error c < 1, then we can
use an iterative refinement procedure to solve the system to accuracy ϵ in time T sol

M · log 1
ϵ

for any ϵ > 0.

7

from subroutines in prior work. For many applications, it suffices to set ϵ to be a sufficiently small
constant, so our runtimes are nearly-linear for a natural representation of the problem under access
to efficient solvers for the dictionary M. In several applications (e.g., Theorems 1 and 2) the most
important parameter is the “relative condition number” κ, so we primarily optimized for κ.

Theorem 6 (Matrix dictionary recovery, isotropic case, informal, see Theorem 8). Given matrices
{Mi}i∈[n] with explicit factorizations (7), such that (5) is feasible for B = I and some κ⋆ ≥ 1, we
can return weights w ∈ Rn

≥0 satisfying (6) with probability ≥ 1− δ in time

O

(
Tmv({Vi}i∈[n]) · (κ⋆)1.5 · poly

(
log mndκ⋆

δ

ϵ

))
.

Here Tmv({Vi}i∈[n]) denotes the computational complexity of multiplying an arbitrary vector by
all matrices in {Vi}i∈[n]. As an example of the utility of Theorem 6, letting the rows of A ∈ Rn×d

be denoted {ai}i∈[n], a direct application with Vi ← ai, Mi ← aia
⊤
i results in Theorem 2, our result

on inner scaling diagonal preconditioners. We next handle the case of general B.

Theorem 7 (Matrix dictionary recovery, general case, informal, see Theorem 9). Given matrices
{Mi}i∈[n] with explicit factorizations (7), such that (5) is feasible for some κ⋆ ≥ 1 and we can solve
in M to ϵ relative accuracy in T sol

M · log 1
ϵ time, and B satisfying

B ⪯M(1) ⪯ αB and I ⪯ B ⪯ βI, (9)

we can return weights w ∈ Rn
≥0 satisfying (6) with probability ≥ 1− δ in time

O

((
Tmv

(
{Vi}i∈[n] ∪ {B}

)
+ T sol

M
)
· (κ⋆)2 · poly

(
log mndκ⋆αβ

δ

ϵ

))
.

The first condition in (9) is no more general than assuming we have a “warm start” reweighting
w0 ∈ Rn

≥0 (not necessarily 1) satisfying B ⪯
∑

i∈[n][w0]iMi ⪯ αB, by exploiting scale invariance
of the problem and setting Mi ← [w0]iMi. The second bound in (9) is equivalent to κ(B) ≤ β
(see Section 2) up to constant factors, since given a bound β, we can use the power method (cf.
Fact 3) to shift the scale of B so it is spectrally larger than I (i.e., estimating the largest eigenvalue
and shifting it to be Ω(β)). The operation requires just a logarithmic number of matrix vector
multiplications with B, which does not impact the runtime in Theorem 7.

Several of our preconditioning results go beyond black-box applications of Theorems 6 and 7. For
example, a result analogous to Theorem 1 but depending quadratically on κ⋆o(K)) can be obtained
by directly applying Theorem 7 with n = d, Mi = eie

⊤
i , κ = κ⋆o(K), and B = 1

κK (i.e., using
the dictionary of 1-sparse diagonal matrices to approximate K). We obtain an improved (κ⋆o(K))1.5

dependence via another homotopy method (similar to the one used for our SDP solver in Theorem 7),
which allows us to efficiently compute matrix-vector products with a symmetric square-root of K.
Access to the square root allows us to reduce the iteration complexity of our SDP solver.

Further work. A natural open question is if, e.g., for outer scaling, the κ⋆o(K) dependence in
Theorem 1 can be reduced further, ideally to

√
κ⋆o(K). This would match the most efficient solvers

in K under diagonal rescaling, if the best known outer scaling was known in advance. Towards this
goal, we prove in Appendix D that if a width-independent variant of Theorem 6 is developed, it can
achieve such improved runtimes for Theorem 1 (with an analogous improvement for Theorem 2). We
also give generalizations of this improvement to finding rescalings which minimize natural average
notions of conditioning, under existence of such a conjectured solver.

8

1.4 Comparison to prior work

Runtime implications. For all the problems we study (enumerated in Sections 1.1 and 1.2),
our methods are (to our knowledge) the first in the literature to run in nearly-linear time in the
sparsities of the constraint matrices, with polynomial dependence on the optimal conditioning.

For example, consider our results (Theorems 1 and 2) on computing diagonal precondition-
ers. Beyond that which is obtainable by black-box using general SDP solvers, we are not aware of
any other claimed runtime in the literature. Directly using state-of-the-art SDP solvers [JKL+20,
HJS+22] incurs substantial overhead Ω(nω

√
d + nd2.5) or Ω(nω + d4.5 + n2

√
d), where ω < 2.372

is the current matrix multiplication constant [Wil12, Gal14, AW21, DWZ23, WXXZ23]. For outer
scaling, where n = d, this implies an Ω(d3.5) runtime; for other applications, e.g., preconditioning
d× d perturbed Laplacians where n = d2, the runtime is Ω(d2ω). Applying state-of-the-art approx-
imate SDP solvers (rather than our custom ones, i.e., Theorems 6 and 7) appears to yield runtimes
Ω(nnz(A) · d2.5), as described in Appendix E.2 of [LSTZ20]. This is in contrast with our Theo-
rems 1, 2 which achieve Õ

(
nnz(A) · (κ⋆)1.5

)
. Hence, we improve existing tools by poly(d) factors

in the main regime of interest where the optimal rescaled condition number κ⋆ is small. Concurrent
to our work, [QGH+22] gave algorithms for constructing optimal diagonal preconditioners using
interior point methods for SDPs, which run in at least the superlinear times discussed previously.

Similar speedups hold for our results on solving matrix-dictionary recovery for graph-structured
matrices (Theorems 3, 4, and 5). Further, for key matrices in each of these cases (e.g., constant-
factor spectral approximations of Laplacians, inverse M-matrices, and Laplacian pseudoinverses)
we obtain Õ(n2) time algorithms for solving linear systems in these matrices to inverse polynomial
accuracy. This runtime is near-linear when the input is dense and in each case when the input is
dense the state-of-the-art prior methods were to run general linear system solvers using O(nω) time.

Matrix-dictionary recovery. Our algorithm for Theorem 6 is based on matrix multiplicative
weights [WK06, AK07, AHK12], a popular meta-algorithm for approximately solving SDPs, with
carefully chosen gain matrices formed by using packing SDP solvers as a black box. In this sense, it
is an efficient reduction from structured SDP instances of the form (5), (6) to pure packing instances.

Similar ideas were previously used in [LS17] (repurposed in [CG18]) for solving graph-structured
matrix-dictionary recovery problems. Our Theorems 6 and 7 improve upon these results both in
generality (prior works only handled B = I, and κ⋆ = 1+ϵ for sufficiently small ϵ) and efficiency (our
reduction calls a packing solver ≈ log d times for constant ϵ, κ⋆, while [LS17] used ≈ log2 d calls).
Perhaps the most direct analog of Theorem 6 is Theorem 3.1 of [CG18], which builds upon the proof
of Lemma 3.5 of [LS17] (but lifts the sparsity constraint). The primary qualitative difference with
Theorem 6 is that Theorem 3.1 of [CG18] only handles the case where the optimal rescaling κ⋆ is
in [1, 1.1], whereas we handle general κ⋆. This restriction is important in the proof technique of
[CG18], as their approach relies on bounding the change in potential functions based on the matrix
exponential of dictionary linear combinations (e.g., the Taylor expansions in their Lemma B.1),
which scales poorly with large κ⋆. Moreover, our method is a natural application of the MMW
framework, and is arguably simpler. This simplicity is useful in diagonal scaling applications, as it
allows us to obtain a tighter characterization of our κ⋆ dependence, the primary quantity of interest.

Finally, to our knowledge Theorem 7 (which handles general constraint matrices B, crucial
for our applications in Theorems 3, 4, and 5) has no analog in prior work, which focused on the
isotropic case. The algorithm we develop to prove Theorem 7 is based on combining Theorem 6
with a multi-level iterative preconditioning scheme we refer to as a homotopy method. In particular,
our algorithm for Theorem 6 recursively calls Theorem 6 and preconditioned linear system solvers
as black boxes, to provide near-optimal reweightings M(w) which approximate B+ λI for various

9

values of λ. We then combine our access to linear system solvers in M(w) with efficient rational
approximations to various matrix functions, yielding our overall algorithm. This homotopy method
framework is reminiscent of techniques used by other recent works in the literature on numerical lin-
ear algebra and structured continuous optimization, such as [LMP13, KLM+14, BCLL18, AKPS19].

Semi-random models. The semi-random noise model we introduce in Section 1.1 for linear sys-
tem solving, presented in more detail and formality in Section 6, follows a line of noise models
originating in [BS95]. A semi-random model consists of an (unknown) planted instance which a
classical algorithm performs well against, augmented by additional information given by a “mono-
tone” or “helpful” adversary masking the planted instance. Conceptually, when an algorithm fails
given this “helpful” information, it may have overfit to its generative assumptions. This model has
been studied in various statistical settings [Jer92, FK00, FK01, MPW16, MMV12]. Of particu-
lar relevance to our work, which studies robustness to semi-random noise in the context of fast
algorithms (as opposed to the distinction between polynomial-time algorithms and computational
intractability) is [CG18], which developed an algorithm for semi-random matrix completion.

Prior versions of this work. This paper is based on a merge of two prior works by subsets of
the authors, [JSS18] and [JLM+21]. Our algorithm in Section 3 is new, and more general than its
predecessors in either [JSS18] or [JLM+21], but is heavily inspired by techniques developed in both
works. Finally, we remark that algorithms with similar guarantees for more restricted settings were
previously developed in [LS17, CG18], which we discuss in Section 1.4 in more detail.

1.5 Organization

We give preliminaries and the notation used throughout the paper in Section 2. We prove our
main results on efficiently solving matrix-dictionary approximation SDPs, Theorems 6 and 7, in
Section 3. As relatively direct demonstrations of the utility of our solvers, we next present our
results on solving in perturbed Laplacians and inverse matrices with combinatorial structure, i.e.,
Theorems 3, 4, and 5, in Section 4. We give our results on outer and inner scaling variants of
diagonal preconditioning, i.e., Theorems 1 and 2, in Section 5. Finally, we present the implications
of our inner scaling solver for semi-random statistical linear regression in Section 6.

Various proofs throughout the paper are deferred to Appendices A and B. We present our results
on Jacobi preconditioning in Appendix C, and our improvements to our diagonal preconditioning
results (assuming a width-independent positive SDP solver) in Appendix D.

2 Preliminaries

General notation. We let [n] := {1, 2, · · · , n}. Applied to a vector, ∥·∥p is the ℓp norm. Applied
to a matrix, ∥·∥2 is overloaded to mean the ℓ2 operator norm. N (µ,Σ) denotes the multivariate
Gaussian with specified mean and covariance. ∆n is the simplex in n dimensions (the subset of Rn

≥0

with unit ℓ1 norm). We use Õ to hide polylogarithmic factors in problem conditioning, dimensions,
the target accuracy, and the failure probability. We say α ∈ R is an (ϵ, δ)-approximation to β ∈ R if
α = (1+ϵ′)β+δ′, for |ϵ′| ≤ ϵ, |δ′| ≤ δ. An (ϵ, 0)-approximation is an “ϵ-multiplicative approximation”
and a (0, δ)-approximation is a “δ-additive approximation”. We let N (µ,Σ) denote the multivariate
Gaussian distribution of specified mean and covariance.

10

Matrices. Throughout, matrices are denoted in boldface. We use nnz(A) to denote the number
of nonzero entries of a matrix A. The set of d×d symmetric matrices is denoted Sd, and the positive
semidefinite and definite cones are Sd⪰0 and Sd≻0 respectively. For A ∈ Sd, let λmax(A), λmin(A),
and Tr(A) denote the largest magnitude eigenvalue, smallest eigenvalue, and trace. For A ∈ Sd≻0,
let κ(M) := λmax(M)

λmin(M) denote the condition number. We let Im(A) refer to the image of A, and use
A† to denote the pseudoinverse of A ∈ Sd⪰0. The inner product between matrices M,N ∈ Sd is the
trace product, ⟨M,N⟩ := Tr(MN) =

∑
i,j∈[d]MijNij . We use the Loewner order on Sd: M ⪯ N

if and only if N −M ∈ Sd⪰0. I is the identity of appropriate dimension when clear. diag (w)

for w ∈ Rn is the diagonal matrix with diagonal entries w. For M ∈ Sd≻0, ∥v∥M :=
√
v⊤Mv.

For M ∈ Sd with eigendecomposition V⊤ΛV, exp(M) := V⊤ exp(Λ)V, where exp(Λ) is applies
entrywise to the diagonal. Similarly for M = V⊤ΛV ∈ Sd⪰0, M

1
2 := V⊤Λ

1
2V.

We denote the rows and columns of A ∈ Rn×d by Ai: for i ∈ [n] and A:j for j ∈ [d] respectively.
Finally, Tmv(M) denotes the time it takes to multiply a vector v by M. We similarly denote the
total cost of vector multiplication through a set {Mi}i∈[n] by Tmv({Mi}i∈[n]). We assume that
Tmv(M) = Ω(d) for any d× d matrix, as that time is generally required to write the output.

When discussing a graph on n vertices, the elements of V , consider an edge e = (u, v) for
u, v ∈ V . We let be ∈ Rn denote the 2-sparse vector with a 1 in index u and a −1 in index v.

3 Efficient matrix-dictionary recovery

In this section, we develop general solvers for the types of structured “mixed packing-covering”
problems defined in Section 1.3, which we collectively call matrix-dictionary approximation SDPs.

In Section 3.1, we solve a basic version of this problem where B = I, i.e., the constraints are
multiples of the identity. In Section 3.2, we give a more general solver able to handle arbitrary
constraints, whose runtime depends polylogarithmically on the conditioning of said constraints.
Our main results Theorems 8 and 9 are proven at the ends of Sections 3.1 and 3.2.

3.1 Identity constraints

In this section, we consider the special case of the problem (5), (6) in which B = I. To solve this
problem, we first develop a framework for solving the decision variant of the problem (5), (6). Given
a set of matrices {Mi}i∈[n] ∈ Sd⪰0 and a parameter κ ≥ 1, we wish to determine

does there exist w ∈ Rn
≥0 such that λmax

∑
i∈[n]

wiMi

 ≤ κλmin

∑
i∈[n]

wiMi

? (10)

We note that the problem (10) is a special case of the more general mixed packing-covering semidef-
inite programming problem defined in [JLL+20], with packing matrices {Mi}i∈[n] and covering
matrices {κMi}i∈[n]. We define an ϵ-approximate tester for the decision problem (10) to be an
algorithm which returns “yes” whenever (10) is feasible for the value (1 − ϵ)κ (along with weights
w ∈ Rn

≥0 certifying this feasibility), and “no” whenever it is infeasible for the value (1 + ϵ)κ (and
can return either answer in the middle range). After developing such a tester, we apply it to solve
the (approximate) optimization variant (5), (6) by incrementally searching for the optimal κ.

To develop an approximate tester for (10), we require access to an algorithm for solving the
optimization variant of a pure packing SDP,

OPT(v) := max
w∈Rn

≥0 :
∑

i∈[n] wiMi⪯I
v⊤w. (11)

11

The algorithm is based on combining a solver for the testing variant of (11) by [JLT20] with a
binary search. We state its guarantees as Proposition 1, and defer a proof to Appendix A.

Proposition 1. Let OPT+ and OPT− be known upper and lower bounds on OPT(v) as in (11).
There is an algorithm, Apack, which succeeds with probability ≥ 1− δ, whose runtime is

O

(
Tmv

(
{Mi}i∈[n]

)
· log

2(ndT (δϵ)−1) log2 d

ϵ5

)
· T for T = O

(
log log

OPT+

OPT−
+ log

1

ϵ

)
,

and returns an ϵ-multiplicative approximation to OPT(v), and w attaining this approximation.

We require one additional tool, a regret analysis of matrix multiplicative weights from [ZLO15].

Proposition 2 (Theorem 3.1, [ZLO15]). Consider a sequence of gain matrices {Gt}0≤t<T ⊂ Sd⪰0,
which all satisfy for step size η > 0, ∥ηGt∥2 ≤ 1. Then iteratively defining (from S0 := 0)

Yt :=
exp(St)

Tr exp(St)
, St+1 := St − ηGt,

we have the bound for any U ∈ Sd⪰0 with Tr(U) = 1,

1

T

∑
0≤t<T

⟨Gt,Yt −U⟩ ≤ log d

ηT
+

1

T

∑
t∈[T]

η ∥Gt∥2 ⟨Gt,Yt⟩ .

Finally, we are ready to state our ϵ-approximate tester for the decision problem (10) as Algo-
rithm 1. For simplicity in its analysis, we assume each matrix dictionary element’s top eigenvalue is
in a bounded range. We explicitly bound the cost of achieving this assumption in our applications
(which can be achieved via rescaling by a constant-factor approximation to the top eigenvalue of
each matrix using the power method, see Fact 3), and this does not dominate the runtime. The run-
time bottleneck in all our applications is the cost of approximate packing SDP oracles in Line 7; this
is an active research area and improvements therein would also reflect in our algorithm’s runtime.

Lemma 1. Algorithm 1 meets its output guarantees (as specified on Line 2).

Proof. Throughout, assume all calls to Apack and the computation of approximations as given by
Lines 6 and 13 succeed. By union bounding over T iterations, this gives the failure probability.

We first show that if the algorithm terminates on Line 15, it is always correct. By the definition
of Apack, all Gt ⪯ κI, so throughout the algorithm, −St+1 ⪯ ηκT I ⪯ 11κ log d

ϵ . If the check on Line
14 passes, we must have −St+1 ⪰ 11 log d

ϵ I, and hence the matrix − 1
t+1St+1 has condition number

at most κ. The conclusion follows since the reweighting x̄ induces St+1.
We next prove correctness in the “no” case. Suppose the problem (12) is feasible; we show

that the check in Line 9 will never pass (so the algorithm never returns “no”). Let v⋆t be the
vector which is entrywise exactly {⟨Mi,Yt⟩}i∈[n], and let v′t be a ϵ

10 -multiplicative approximation
to v⋆t such that vt is an entrywise ϵ

10n -additive approximation to v′t. By definition, it is clear
OPT(κv′t) ≥ (1 − ϵ

10)OPT(κv⋆t). Moreover, by the assumption that all λmax(Mi) ≥ 1, all wi ≤ 1
in the feasible region of the problem (11). Hence, the combined additive error incurred by the
approximation ⟨κvt, w⟩ to ⟨κv′t, w⟩ for any feasible w is ϵ

10 . All told, by the guarantee of Apack,

κ ⟨vt, xt⟩ ≥
(
1− ϵ

10

)2
OPT(κv⋆t)−

ϵ

10
, where OPT(κv⋆t) = max∑

i∈[n] wiMi⪯I

w∈Rn
≥0

κ

〈
Yt,

∑
i∈[n]

wiMi

〉
. (14)

12

Algorithm 1 DecideStructuredMPC({Mi}i∈[n], κ,Apack, δ, ϵ)

1: Input: {Mi}i∈[n] ∈ Sd×d
⪰0 such that 1 ≤ λmax(Mi) ≤ 2 for all i ∈ [n], κ > 1, Apack which on

input v ∈ Rn
≥0 returns w ∈ Rn

≥0 satisfying (recalling definition (11))

∑
i∈[n]

wiMi ⪯ I, v⊤w ≥
(
1− ϵ

10

)
OPT(v), with probability ≥ 1− δ

2T
for some T = O

(
κ log d

ϵ2

)
,

failure probability δ ∈ (0, 1), tolerance ϵ ∈ (0, 1)
2: Output: With probability ≥ 1− δ: “yes” or “no” is returned. The algorithm must return “yes”

if there exists w ∈ Rn
≥0 with

λmax

∑
i∈[n]

wiMi

 ≤ (1− ϵ)κλmin

∑
i∈[n]

wiMi

 , (12)

and if “yes” is returned, a vector w is given with

λmax

∑
i∈[n]

wiMi

 ≤ (1 + ϵ)κλmin

∑
i∈[n]

wiMi

 . (13)

3: η ← ϵ
10κ , T ←

⌈
10 log d

ηϵ

⌉
, Y0 ← 1

dI, S0 ← 0

4: for 0 ≤ t < T do
5: Yt ← exp(St)

Tr exp(St)

6: vt ← entrywise nonnegative (ϵ
10 ,

ϵ
10κn)-approximations to {⟨Mi,Yt⟩}i∈[n], with probability

≥ 1− δ
4T

7: xt ← Apack(κvt)
8: Gt ← κ

∑
i∈[n][xt]iMi

9: if κ ⟨xt, vt⟩ < 1− ϵ
5 then

10: return “no”
11: end if
12: St+1 ← St − ηGt

13: τ ← log d
ϵ -additive approximation to λmin(−St+1), with probability ≥ 1− δ

4T

14: if τ ≥ 12 log d
ϵ then

15: return (“yes”, x̄) for x̄ := 1
t+1

∑
0≤s≤t xs

16: end if
17: end for
18: return (“yes”, x̄) for x̄ := 1

T

∑
0≤t<T xt

However, by feasibility of (12) and scale invariance, there exists a w ∈ Rn
≥0 with

∑
i∈[n]wiMi ⪯ I

and (1− ϵ)κ
∑

i∈[n]wiMi ⪰ I. Since Yt has trace 1, this certifies OPT(κv⋆t) ≥ 1
1−ϵ , and thus

κ ⟨vt, xt⟩ ≥
(
1− ϵ

10

)2
· 1

1− ϵ
− ϵ

10
> 1− ϵ

5
.

Hence, whenever the algorithm returns “no” it is correct. Assume for the remainder of the proof
that “yes” is returned on Line 18. Next, we observe that whenever A succeeds on iteration t,

13

∑
i∈[n][xt]iMi ⪯ I, and hence in every iteration we have ∥Gt∥2 ≤ κ. Proposition 2 then gives

1

T

∑
0≤t<T

⟨Gt,Yt −U⟩ ≤ log d

ηT
+

1

T

∑
t∈[T]

η ∥Gt∥2 ⟨Gt,Yt⟩ , for all U ∈ Sd⪰0 with Tr(U) = 1.

Rearranging the above display, using η ∥Gt∥2 ≤
ϵ
10 , and minimizing over U yields

λmin

 1

T

∑
0≤t<T

Gt

 ≥ 1− ϵ
10

T

∑
0≤t<T

⟨Gt,Yt⟩ −
log d

ηT
≥

1− ϵ
10

T

∑
0≤t<T

⟨Gt,Yt⟩ −
ϵ

10
.

The last inequality used the definition of T . However, by definition of vt, we have for all 0 ≤ t < T ,

⟨Yt,Gt⟩ = κ
∑
i∈[n]

[xt]i ⟨Mi,Yt⟩ ≥
(
1− ϵ

10

)
κ ⟨xt, vt⟩ ≥

(
1− ϵ

10

)(
1− ϵ

5

)
≥ 1− 3ϵ

10
. (15)

The second-to-last inequality used that Line 9 did not pass. Combining the previous two displays,

κλmin

∑
i∈[n]

x̄iMi

 = λmin

 1

T

∑
0≤t<T

Gt

 ≥ (1− ϵ

10

)(
1− 3ϵ

10

)
− ϵ

10
≥ 1− ϵ

2
.

On the other hand, since all 0 ≤ t < T have
∑

i∈[n][xt]iMi ⪯ I, by convexity
∑

i∈[n] x̄iMi ⪯ I.
Combining these two guarantees and (1 + ϵ)(1− ϵ

2) ≥ 1 shows x̄ is correct for the “yes” case.

We bound the runtime complexities of Lines 6, 7, and 13 of Algorithm 1 in the following sections.

3.1.1 Approximating inner products

In this section, we bound the complexity of Line 6 of Algorithm 1. We will use the following two
standard helper results on random projections and approximation theory.

Fact 1 (Johnson-Lindenstrauss [DG03]). For 0 ≤ ϵ ≤ 1, let k = Θ
(
1
ϵ2
log d

δ

)
for an appropriate

constant. For Q ∈ Rk×d with independent uniformly random unit vector rows in Rd scaled down by
1√
k
, with probability ≥ 1− δ for any fixed v ∈ Rd,

(1− ϵ) ∥Qv∥22 ≤ ∥v∥
2
2 ≤ (1 + ϵ) ∥Qv∥22 .

Fact 2 (Polynomial approximation of exp [SV14], Theorem 4.1). Let M ∈ Sd⪰0 have M ⪯ RI. Then

for any δ > 0, there is an explicit polynomial p of degree O(
√
R log 1

δ + log2 1
δ) with

exp(−M)− δI ⪯ p(M) ⪯ exp(−M) + δI.

We also state a simple corollary of Fact 2.

Corollary 1. Given R > 1, M ∈ Sd⪰0, and κ with M ⪯ κI, we can compute a degree-O(
√
κR+R)

polynomial p such that for P = p(M),

exp (−M)− exp (−R) I ⪯ P ⪯ exp (−M) + exp (−R) I.

Using these tools, we next demonstrate that we can efficiently approximate the trace of a negative
exponential of a bounded matrix, and quadratic forms through it.

14

Lemma 2. Given M ∈ Sd⪰0, R, κ, ϵ > 0 such that λmin(M) ≤ R and λmax(M) ≤ κR, δ ∈ (0, 1), we
can compute an ϵ-multiplicative approximation to Tr exp(−M) with probability ≥ 1− δ in time

O

(
Tmv(M) ·

√
κR ·

log d
δ

ϵ2

)
.

Proof. First, with probability at least 1− δ, choosing k = O(1
ϵ2
log d

δ) in Fact 1 and taking a union
bound guarantees that for all rows j ∈ [d], we have∥∥∥∥∥Q

[
exp

(
−1

2
M

)]
j:

∥∥∥∥∥
2

2

is a
ϵ

3
-multiplicative approximation of

∥∥∥∥∥
[
exp

(
−1

2
M

)]
j:

∥∥∥∥∥
2

2

.

Condition on this event in the remainder of the proof. The definition

Tr exp(−M) =
∑
j∈[d]

∥∥∥∥∥
[
exp

(
−1

2
M

)]
j:

∥∥∥∥∥
2

2

,

and the sequence of equalities

∑
j∈[d]

∥∥∥∥∥Q
[
exp

(
−1

2
M

)]
j:

∥∥∥∥∥
2

2

= Tr
(
exp

(
−1

2
M

)
Q⊤Q exp

(
−1

2
M

))

= Tr
(
Q exp (−M)Q⊤

)
=
∑
ℓ∈[k]

∥∥∥∥exp(−1

2
M

)
Qℓ:

∥∥∥∥2
2

,

implies that it suffices to obtain a ϵ
3 -multiplicative approximation to the last sum in the above dis-

play. Since Tr exp(−M) ≥ exp(−R) by the assumption on λmin(M), it then suffices to approximate
each term

∥∥exp(−1
2M)Qℓ:

∥∥2
2

to an additive ϵ
3k exp(−R). For simplicity, fix some ℓ ∈ [k] and denote

q := Qℓ:; recall ∥q∥22 =
1
k from the definition of Q in Fact 1.

By rescaling, it suffices to demonstrate that on any unit vector q ∈ Rd, we can approximate∥∥exp(−1
2M)q

∥∥2
2

to an additive ϵ
3 exp(−R). To this end, we note that (after shifting the definition

of R by a constant) Corollary 1 provides a matrix P with Tmv(P) = O(Tmv(M) ·
√
κR) and

exp (−M)− ϵ

3
exp (−R) I ⪯ P ⪯ exp (−M) +

ϵ

3
exp (−R) I,

which exactly meets our requirements by taking quadratic forms. The runtime follows from the cost
of applying P to each of the k = O(1

ϵ2
log d

δ) rows of Q.

Lemma 3. Given M ∈ Sd≥0 and κ with M ⪯ κI, 1 > c > 0, δ ∈ (0, 1), ϵ > 0, and a set of matrices
{Mi}i∈[n] with decompositions of the form (7) and 1 ≤ λmax(Mi) ≤ 2 for all i ∈ [n], we can compute
(ϵ, c)-approximations to all {⟨Mi, exp(−M)⟩}i∈[n], with probability ≥ 1− δ in time

O

(
Tmv

(
M, {Vi}i∈[n]

)
·
√
κ log

c

m
·
log mn

δ

ϵ2

)
.

Proof. First, observe that for all i ∈ [n], letting {v(i)j }j∈[m] be columns of Vi ∈ Rd×m, we have

⟨Mi, exp(−M)⟩ =
∑
j∈[m]

(
v
(i)
j

)⊤
exp(−M)

(
v
(i)
j

)
.

15

Hence, to provide an (ϵ, c) approximation to ⟨Mi, exp(−M)⟩ it suffices to provide, for all i ∈ [n],

j ∈ [m], an (ϵ, c
m)-approximation to

(
v
(i)
j

)⊤
exp(−M)

(
v
(i)
j

)
. As in the proof of Lemma 2, by

taking a union bound it suffices to sample a Q ∈ Rk×d for k = O(1
ϵ2
log mn

δ) and instead compute
all ∥Q exp(−1

2M)v
(i)
j ∥22 to additive error c

m . We will instead show how to approximate, for arbitrary
vectors q, v with norm at most 1,〈

q, exp

(
−1

2
M

)
v

〉2

to additive error
c

2m
.

By letting q range over rows of Q renormalized by
√
k, and scaling all v(i)j by a factor of

√
2, this yields

the desired result. To this end, consider using ⟨q,Pv⟩2 for some P with − c
6mI ⪯ P− exp(−1

2M) ⪯
c

6mI. Letting the difference matrix be D := P− exp(−1
2M), we compute(

q⊤ exp

(
−1

2
M

)
v

)2

−
(
q⊤Pv

)2
= 2

(
q⊤ exp

(
−1

2
M

)
v

)(
q⊤Dv

)
+
(
q⊤Dv

)2
≤ 2 ∥D∥2 + ∥D∥

2
2 ≤

c

2m
.

We used q and v have ℓ2 norm at most 1, exp(−1
2M) ⪯ I, and ∥D∥2 ≤

c
6m ≤ 1. Hence, ⟨q,Pv⟩2 is a

valid approximation. The requisite P is given by Corollary 1 with Tmv(P) = O(Tmv(M) ·
√
κ log c

m).
Finally, the runtime follows from first applying P to rows of Q to explicitly form Q̃ with k rows,

and then computing all ∥Q̃v
(i)
j ∥22 for all i ∈ [n], j ∈ [m].

Combining Lemmas 2 and 3, we bound the cost of Line 6 in Algorithm 1.

Lemma 4. We can implement Line 6 of Algorithm 1 in time

O

(
Tmv

(
{Vi}i∈[n]

)
·
√
κ ·

log3(mndκ
δϵ)

ϵ3

)
.

Proof. Since−St is an explicit linear combination of {Mi}i∈[n], we have Tmv(St) = O(Tmv({Vi}i∈[n])).
We first obtain a ϵ

30 approximation to the denominator in Line 6 within the required time by apply-
ing Lemma 2 with κ← O(κ), R← O(log dϵ), ϵ← ϵ

30 , and adjusting the failure probability by O(T).
The bound on λmin(−St) comes from the check on Line 13 and the algorithm yields the bound
on λmax(−St). Next, we obtain a (ϵ

30 ,
ϵ

30κn) approximation to each numerator in Line 6 within
the required time by using Lemma 3 with κ ← O(κ log d

ϵ) and adjusting constants appropriately.
Combining these approximations to the numerators and denominator yields the result.

3.1.2 Implementing a packing oracle

In this section, we bound the complexity of Line 7 of Algorithm 1 by using Proposition 1.

Lemma 5. We can implement Line 7 of Algorithm 1 in time

O

(
Tmv

(
{Vi}i∈[n]

)
·
log5(ndκδϵ)

ϵ5

)
.

16

Proof. First, we observe that the proof of the “no” case in Lemma 1 demonstrates that in all calls to
A, we can set our lower bound OPT− = 1−O(ϵ), since the binary search of Proposition 1 will never
need to check smaller values to determine whether the test on Line 9 passes. On the other hand,
the definition of OPT(κv⋆t) in (14), as well as OPT(κvt) ≤ (1 + ϵ

10)OPT(κv⋆t) by the multiplicative
approximation guarantee, shows that it suffices to set OPT+ ≤ (1 +O(ϵ))κ.

We will use the algorithm of Proposition 1 as Apack in Algorithm 1. In our setting, we argued
OPT+

OPT−
= O(κ), giving the desired runtime bound via Proposition 1.

3.1.3 Approximating the smallest eigenvalue

In this section, we bound the complexity of Line 13 of Algorithm 1, which asks to approximate the
smallest eigenvalue of a matrix M to additive error. At a high level, our strategy is to use the power
method on the negative exponential exp(−M), which we approximate to additive error via Corol-
lary 1. We first state a guarantee on the classical power method from [MM15], which approximates
the top eigenspace (see also [RST09, HMT11] for earlier analyses of the power method).

Fact 3 (Theorem 1, [MM15]). For any δ ∈ (0, 1) and M ∈ Sd≥0, there is an algorithm, Power(M, δ),
which returns with probability at least 1− δ a value V such that λmax(M) ≥ V ≥ 0.9λmax(M). The
algorithm runs in time O(Tmv(M) log d

δ), and is performed as follows:

1. Let u ∈ Rd be a random unit vector.

2. For some ∆ = O(log d
δ), let v ← M∆u

∥M∆u∥2
.

3. Return ∥Mv∥2.

Lemma 6. We can implement Line 13 of Algorithm 1 in time

O

(
Tmv

(
{Vi}i∈[n]

)
·
√
κ ·

log2(dκδϵ)

ϵ

)
.

Proof. Throughout, denote M := −St+1, L := λmin(M) and R := log d
ϵ , and note that (assuming

all previous calls succeeded), we must have L ≤ 14R since the previous iteration had L ≤ 13R and
St is changing by an O(ϵ)-spectrally bounded matrix each iteration. It suffices to obtain V with

0.9(exp(−L)− exp(−20R)) ≤ V ≤ exp(−L), (16)

and then return − log(V), to obtain an R-additive approximation to L. To see this, it is immediate
that − log(V) ≥ L from the above display. Moreover, for the given ranges of L and R, it is clear

exp (−20R+ L) ≤ exp(−6R) ≤ 1− 3

2R

=⇒ exp(−L)− exp(−20R) ≥ exp(−L) · 3

2R

=⇒ exp(−L)− exp(−20R) ≥ exp

(
−L− 2R

3

)
=⇒ log

(
1

exp(−L)− exp(−20R)

)
≤ L+

2R

3
.

Combining with

− log(V) ≤ log

(
1

exp(−L)− exp(−20R)

)
+ log

10

9
≤ log

(
1

exp(−L)− exp(−20R)

)
+

R

3

17

yields the claim. It hence suffices to provide V satisfying (16) in the requisite time. To do so, we
first use Corollary 1 with κ← O(κ log d

ϵ) to produce P with Tmv(P) = O(Tmv(M) ·
√
κ · log dϵ) and

exp(−M)− 1

2
exp(−20R)I ⪯ P ⪯ exp(−M) +

1

2
exp(−20R)I.

The conclusion follows by applying Fact 3 to P− 1
2 exp(−20R)I and adjusting δ.

3.1.4 Runtime of the optimization variant

Finally, we put these pieces together to solve the optimization variant of (5), (6). We begin by
stating the runtime of Algorithm 1, which follows from combining Lemmas 4, 5, and 6.

Corollary 2. Algorithm 1 can be implemented in time

O

(
Tmv({Vi}) · κ1.5 ·

log6(mndκ
δϵ)

ϵ7

)
.

Theorem 8. Given matrices {Mi}i∈[n] with explicit factorizations (7), such that (5) is feasible for
B = I and some κ ≥ 1, we can return weights w ∈ Rn

≥0 satisfying (6) with probability ≥ 1 − δ in
time

O

(
Tmv({Vi}i∈[n]) · κ1.5 ·

log7(mndκ
δϵ)

ϵ7

)
.

Proof. First, to guarantee all Mi satisfy 1 ≤ λmax(Mi) ≤ 2, we exploit the scale-invariance of the
problem (5), (6) and rescale each matrix by a 2-approximation to its largest eigenvalue. This can
be done with Fact 3 and does not bottleneck the runtime.

Next, we perform an incremental search on κ initialized at 1, and increasing in multiples of 2. By
determining the first guess of κ such that Algorithm 1 returns “yes,” we obtain a 2-approximation
to the optimal κ at a log κ overhead from Corollary 2. We then can binary search at multiples of
1+O(ϵ) amongst the multiplicative range of 2 to obtain the required multiplicative approximation,
at a log 1

ϵ overhead from Corollary 2, yielding the overall runtime.

3.2 General constraints

In this section, we consider a more general setting in which there is a constraint matrix B in the
problem (5), (6) which we have matrix-vector product access to, but we cannot efficiently invert B.
We show that we can obtain a runtime similar to that in Theorem 8 (up to logarithmic factors and
one factor of

√
κ), with an overhead depending polylogarithmically on α and β defined in (9) and

restated here for convenience:

B ⪯M(1) ⪯ αB, I ⪯ B ⪯ βI.

3.2.1 Homotopy method preliminaries

Our algorithm will be a “homotopy method” which iteratively finds reweightings of the {Mi}i∈[n]
which (1+ϵ)κ-approximate B+λM(1), for a sequence of λ values. More specifically, we first bound
the required range of λ via two simple observations.

18

Lemma 7. Let λ ≥ 1
ϵ . Then,

B+ λM(1) ⪯
∑
i∈[n]

(1 + λ)Mi ⪯ (1 + ϵ) (B+ λM(1)) .

Proof. The first inequality is immediate from (9). The second follows from B ⪰ 0.

Lemma 8. Let λ ≤ ϵκ
2α , and let w ∈ Rn

≥0 satisfy

B+ λM(1) ⪯
∑
i∈[n]

wiMi ⪯ (1 + ϵ)κ (B+ λM(1)) .

Then, the same w satisfies
B ⪯

∑
i∈[n]

wiMi ⪯ (1 + 2ϵ)κB.

Proof. The first inequality is immediate. The second is equivalent to

ϵκB ⪰ (1 + ϵ)λM(1)

which follows from ϵκ ≥ (1 + ϵ)λα and (9).

Our homotopy method is driven by the observation that if (5) is feasible for a value of κ, then
it is also feasible for the same κ when B is replaced with B+ λM(1) for any λ ≥ 0.

Lemma 9. For any λ ≥ 0, if (5) is feasible for κ ≥ 1, there also exists w⋆
λ ∈ Rn

≥0 with

B+ λM(1) ⪯
∑
i∈[n]

[w⋆
λ]iMi ⪯ κ (B+ λM(1)) .

Proof. It suffices to choose w⋆
λ = w⋆ + λ1 where w⋆ is feasible for (5).

To this end, our algorithm will proceed in K phases, where K = ⌈log2 2α
ϵ2κ
⌉, setting

λ(0) =
1

ϵ
, λ(k) =

λ(0)

2k
for all 0 ≤ k ≤ K.

In each phase k for 0 ≤ k ≤ K, we will solve the problem (5), (6) for B← B+λ(k)M(1). To do so,
we will use the fact that from the previous phase we have access to a matrix which is a 3κ-spectral
approximation to B which we can efficiently invert.

Lemma 10. Suppose for some λ ≥ 0, κ ≥ 1, and 0 < ϵ ≤ 1
2 , we have w ∈ Rn

≥0 such that

B+ λM(1) ⪯
∑
i∈[n]

wiMi ⪯ (1 + ϵ)κ(B+ λM(1)).

Then defining D :=M(w), we have

B+
λ

2
M(1) ⪯ D ⪯ 3κ

(
B+

λ

2
M(1)

)
.

19

Proof. This is immediate from the assumption and

B+ λM(1) ⪯ 2

(
B+

λ

2
M(1)

)
.

Now, Lemma 7 shows we can access weights satisfying (6) for B← B+λ(0)M(1), and Lemma 8
shows if we can iteratively compute weights satisfying (6) for each B+λ(k)M(1), 0 ≤ k ≤ K, then we
solve the original problem up to a constant factor in ϵ. Moreover, Lemma 9 implies that the problem
(5) is feasible for all phases assuming it is feasible with some value of κ for the original problem.
Finally, Lemma 10 shows that we start each phase with a matrix M(w) which we can efficiently
invert using the linear operator in (8), which is a 3κ-spectral approximation to the constraint matrix.
We solve the self-contained subproblem of providing approximate inverse square root access (when
granted a preconditioner) in the following section, by using rational approximations to the square
root, and an appropriate call to Theorem 8.

3.2.2 Inverse square root approximations with a preconditioner

In this section, we show how to efficiently approximate the inverse square root of some B ∈ Sd≻0

given access to a matrix M(w) ∈ Sd≻0 satisfying

B ⪯M(w) ⪯ κB

and supporting efficient inverse access in the form of (8). For brevity in this section we will use
M̃λ,ϵ to denote the linear operator guaranteeing (8) for M(w) + λI. Given this access, we will
develop a subroutine for efficiently applying a linear operator R ∈ Sd≻0 such that∥∥∥(R−B− 1

2)v
∥∥∥
2
≤ ϵ

∥∥∥B− 1
2 v
∥∥∥
2

for all v ∈ Rd. (17)

We will also use Tmv to denote Tmv(B) + Tmv(M(w)) + T sol
M for brevity in this section, where T sol

M
is the cost of solving a system in M(w) to constant accuracy (see (8)). Our starting point is the
following result in the literature on preconditioned accelerated gradient descent, which shows we
can efficiently solve linear systems in combinations of B and I.

Lemma 11. Given any λ ≥ 0 and ϵ > 0, we can compute a linear operator M̂λ,ϵ such that∥∥∥(M̂λ,ϵ − (B+ λI)−1)v
∥∥∥
2
≤ ϵ

∥∥(B+ λI)−1v
∥∥
2

for all v ∈ Rd,

and
Tmv(M̂λ,ϵ) = O

(
Tmv ·

√
κ log κ log

1

ϵ

)
.

Proof. This follows from Theorem 4.4 in [JS21], the fact thatM(w)+λI is a κ-spectral approxima-
tion to B+λI, and our assumed linear operator M̃λ,(10κ)−1 which solves linear systems inM(w)+λI

to relative error 1
10κ which can be applied in time O(Tmv · log κ) (the assumption (8)).

We hence can apply and (approximately) invert matrices of the form B+ λI. We leverage this
fact to approximate inverse square roots using the following approximation result.

20

Proposition 3 (Lemma 13, [JS19]). For any matrix B and ϵ ∈ (0, 1), there is a rational function
r(B) of degree L = O(log 1

ϵ log κ(B)) such that for all vectors v ∈ Rd,∥∥∥(r(B)−B− 1
2)v
∥∥∥
2
≤ ϵ

∥∥∥B− 1
2 v
∥∥∥
2
.

The rational function r(B) has the form, for {λℓ, νℓ}ℓ∈[L]∪{νL+1} ⊂ R≥0 computable in O(L) time,

r(B) =

∏
ℓ∈[L]

(B+ λℓI)

 ∏
ℓ∈[L+1]

(B+ νℓI)
−1

 . (18)

We note that Proposition 3 as it is stated in [JS19] is for the square root (not the inverse square
root), but these are equivalent since all terms in the rational approximation commute. We show
how to use Lemma 11 to efficiently approximate the inverse denominator in (18).

Lemma 12. For any vector v ∈ Rd, {νℓ}ℓ∈[L+1] ⊂ R≥0 and ϵ > 0, we can compute a linear operator
D̂ϵ such that for the denominator of (18), denoted

D :=
∏

ℓ∈[L+1]

(B+ νℓI) ,

we have ∥∥∥(D̂ϵ −D−1)v
∥∥∥
2
≤ ϵ

∥∥D−1v
∥∥
2
,

and
Tmv(D̂ϵ) = O

(
Tmv ·

√
κ · L2 log(κ) log

(
κL · κ(B)

ϵ

))
.

Proof. We give our linear operator D̂ϵ in the form of an algorithm, which applies a sequence of
linear operators to v in the allotted time. Denote Bℓ := B+ νℓI for all ℓ ∈ [L+ 1]. We also define

Πℓ :=
∏
i∈[ℓ]

B−1
i for all ℓ ∈ [L+ 1], and Π0 := I.

We define a sequence of vectors {vℓ}0≤ℓ≤L+1 as follows: let v0 := v, and for all ℓ ∈ [L+ 1] define

vℓ ← M̂νL+2−ℓ,∆vℓ−1 for ∆ :=
ϵ

3(L+ 1)κ(B)2(L+1)
.

Here we use notation from Lemma 11. In particular, for the given ∆, we have for all ℓ ∈ [L+ 1],∥∥vℓ −B−1
L+2−ℓvℓ−1

∥∥
2
≤ ∆ ∥vℓ−1∥2 . (19)

Our algorithm will simply return vL+1, which is the application of a linear operator to v within the
claimed runtime via Lemma 11. We now prove correctness. We first prove a bound on the sizes of
this iterate sequence. By the triangle inequality and (19), for each ℓ ∈ [L+ 1] we have

∥vℓ∥2 ≤
∥∥vℓ −B−1

L+2−ℓvℓ−1

∥∥
2
+
∥∥B−1

L+2−ℓvℓ−1

∥∥
2
≤ (1 + ∆)

∥∥B−1
L+2−ℓ

∥∥
2
∥vℓ−1∥2 .

Applying this bound inductively, we have that

∥vℓ∥2 ≤ (1 + ∆)ℓ

∏
i∈[ℓ]

∥∥B−1
L+2−ℓ

∥∥
2

 ∥v0∥2 ≤ 3

∏
i∈[ℓ]

∥∥B−1
L+2−ℓ

∥∥
2

 ∥v0∥2 . (20)

21

Next, we expand by the triangle inequality that

∥vL+1 −ΠL+1v0∥2 ≤
∑

ℓ∈[L+1]

∥ΠL+1−ℓvℓ −ΠL+2−ℓvℓ−1∥2

≤
∑

ℓ∈[L+1]

∥ΠL+1−ℓ∥2
∥∥vℓ −B−1

L+2−ℓvℓ−1

∥∥
2

≤
∑

ℓ∈[L+1]

∆ ∥ΠL+2−ℓ∥2 ∥vℓ−1∥2

≤
∑

ℓ∈[L+1]

3∆ ∥ΠL+1∥2 ∥v0∥2 ≤ 3∆(L+ 1) ∥ΠL+1∥2 ∥v0∥2 .

The second inequality used commutativity of all {Bℓ}ℓ∈[L+1] and the definition of ΠL+2−ℓ, the
third used the guarantee (19), the fourth used (20) and that all {Bℓ}ℓ∈[L+1] have similarly ordered
eigenvalues, and the last is straightforward. Finally, correctness of returning vL+1 follows from
D = ΠL+1 and the bound

κ(ΠL+1) ≤ κ(B)L+1 =⇒ 3∆(L+ 1) ∥ΠL+1∥2 ∥v0∥2 ≤ ϵ ∥ΠL+1v0∥2 .

To see the first claim, every Bℓ clearly has κ(Bℓ) ≤ κ(B), and we used the standard facts that for
commuting A,B ∈ Sd≻0, κ(A) = κ(A−1) and κ(AB) ≤ κ(A)κ(B).

At this point, obtaining the desired (17) follows from a direct application of Lemma 12 and the
fact that the numerator and denominator of (18) commute with each other and B.

Lemma 13. For any vector v ∈ Rd and ϵ > 0, we can compute a linear operator Rϵ such that∥∥∥(Rϵ −B− 1
2)v
∥∥∥
2
≤ ϵ

∥∥∥B− 1
2 v
∥∥∥
2
,

and
Tmv(Rϵ) = O

(
Tmv ·

√
κ · log6

(
κ · κ(B)

ϵ

))
.

Proof. Let ϵ′ ← ϵ
3 , and let D and N be the (commuting) numerator and denominator of (18) for

the rational function in Proposition 3 for the approximation factor ϵ′. Let u ← Nv, which we can
compute explicitly within the alloted runtime. We then have from Proposition 3 that∥∥∥D−1u−B− 1

2 v
∥∥∥
2
≤ ϵ′

∥∥∥B− 1
2 v
∥∥∥
2
.

Moreover by Lemma 12 we can compute a vector w within the allotted runtime such that∥∥D−1u− w
∥∥
2
≤ ϵ′

∥∥D−1u
∥∥
2
≤ ϵ′

(∥∥∥B− 1
2 v
∥∥∥
2
+
∥∥∥D−1u−B− 1

2 v
∥∥∥
2

)
≤ 2ϵ′

∥∥∥B− 1
2 v
∥∥∥
2
.

The vector w follows from applying an explicit linear operator to v as desired. Finally, by combining
the above two displays we have the desired approximation quality as well:∥∥∥B− 1

2 v − w
∥∥∥
2
≤ 3ϵ′

∥∥∥B− 1
2 v
∥∥∥
2
= ϵ

∥∥∥B− 1
2 v
∥∥∥
2
.

22

3.2.3 Implementing the homotopy method

In this section, we implement the homotopy method outlined in Section 3.2.1 by using the inverse
square root access given by Lemma 13. We require the following helper result.

Lemma 14. Suppose for some ϵ ∈ (0, 12), and M,N ∈ Sd≻0 such that κ(N) ≤ β ≤ 1
3ϵ ,

−ϵN−1 ⪯M−1 −N−1 ⪯ ϵN−1.

Then,
−9ϵβN2 ⪯M2 −N2 ⪯ 9ϵβN2.

Proof. The statement is scale-invariant, so suppose for simplicity that I ⪯ N ⪯ βI. Also, by
rearranging the assumed bound, we have −3ϵN ⪯M−N ⪯ 3ϵN. Write D = M−N such that

−3ϵβI ⪯ −3ϵN ⪯ D ⪯ 3ϵN ⪯ 3ϵβI.

We bound the quadratic form of M2 −N2 with an arbitrary vector v ∈ Rd, such that ∥Nv∥2 = 1.
Since all eigenvalues of D are in [−3ϵβ, 3ϵβ], this implies

∥Dv∥22 = v⊤D2v ≤ 9ϵ2β2 ∥v∥22 ≤ 9ϵ2β2v⊤N2v ≤ 9ϵ2β2

where we use N ⪰ I and hence N2 ⪰ I. We conclude by the triangle inequality and Cauchy-Schwarz:∣∣∣v⊤(M2 −N2)v
∣∣∣ = ∣∣∣v⊤(N2 − (N+D)2)v

∣∣∣
=
∣∣∣v⊤(ND+DN+D2)v

∣∣∣
≤ 2 ∥Dv∥2 ∥Nv∥2 + ∥Dv∥22 ≤ 6ϵβ + 9ϵ2β2 ≤ 9ϵβ.

We now state our main claim regarding solving (5), (6) with general B.

Theorem 9. Given matrices {Mi}i∈[n] with explicit factorizations (7), such that (5) is feasible
for some κ ≥ 1 and we can solve linear systems in linear combinations of {Mi}i∈[n] to ϵ relative
accuracy in the sense of (8) in T sol

M · log 1
ϵ time, and B satisfying

B ⪯M(1) ⪯ αB, I ⪯ B ⪯ βI,

we can return weights w ∈ Rn
≥0 satisfying (6) with probability ≥ 1− δ in time

O

((
Tmv

(
{Vi}i∈[n] ∪ {B}

)
+ T sol

M
)
· κ2 ·

log12(mndκβ
δϵ)

ϵ7
· log α

ϵ

)
.

Proof. We follow Section 3.2.1, which shows that it suffices to solve the following problem O(log α
ϵ)

times. We have an instance of (5), (6) for the original value of κ, and some matrix B with κ(B) ≤ β
such that we know w ∈ Rn

≥0 with B ⪯M(w) ⪯ 3κB. We wish to compute w′ with

B ⪯M(w′) ⪯ (1 + ϵ)κB. (21)

To do so, we use Lemma 13, which yields a matrix R such that

− ϵ

45β
B− 1

2 ⪯ R−B− 1
2 ⪯ ϵ

45β
B− 1

2 and Tmv(R) = O

(
Tmv

(
{Vi}i∈[n] ∪ {B}

)
·
√
κ · log6

(
κβ

ϵ

))
.

23

By Lemma 14, this implies that
− ϵ

5
B ⪯ R−2 −B ⪯ ϵ

5
B. (22)

Now, if we solve (5), (6) with R−2 in place of B to accuracy 1+ ϵ
5 , since the optimal value of κ has

changed by at most a factor of 1 + ϵ
5 , it suffices to compute w′ such that

R−2 ⪯M(w′) ⪯
(
1 +

3ϵ

5

)
κR−2,

since combined with (22) this implies (21) up to rescaling w′. Finally, to compute the above
reweighting it suffices to apply Theorem 8 with Mi ← RMiR for all i ∈ [n]. It is clear these
matrices satisfy (7) with the decompositions given by Vi ← RVi, and we can apply these matrices
in time Tmv(R)+Tmv(Vi). It is straightforward to check that throughout the proof of Theorem 8, this
replaces each cost of Tmv({Vi}i∈[n]) with Tmv({Vi}i∈[n]) + Tmv(R), giving the desired runtime.

4 Graph structured systems

In this section, we provide several applications of Theorem 9, restated for convenience.

Theorem 9. Given matrices {Mi}i∈[n] with explicit factorizations (7), such that (5) is feasible
for some κ ≥ 1 and we can solve linear systems in linear combinations of {Mi}i∈[n] to ϵ relative
accuracy in the sense of (8) in T sol

M · log 1
ϵ time, and B satisfying

B ⪯M(1) ⪯ αB, I ⪯ B ⪯ βI,

we can return weights w ∈ Rn
≥0 satisfying (6) with probability ≥ 1− δ in time

O

((
Tmv

(
{Vi}i∈[n] ∪ {B}

)
+ T sol

M
)
· κ2 ·

log12(mndκβ
δϵ)

ϵ7
· log α

ϵ

)
.

We show how to use Theorem 9 in a relatively straightforward fashion to derive further recovery
and solving results for several types of natural structured matrices. Our first result of the section,
Theorem 10, serves as an example of how a black-box application of Theorem 9 can be used to solve
linear systems in, and spectrally approximate, families of matrices which are well-approximated by a
“simple” matrix dictionary such as graph Laplacians; we call these matrices “perturbed Laplacians.”

Our other two results in this section, Theorems 11 and 12, extend the applicability of Theorem 9
by wrapping it in a recursive preconditioning outer loop. We use this strategy, combined with new
(simple) structural insights on graph-structured families, to give nearly-linear time solvers and
spectral approximations for inverse M-matrices and Laplacian pseudoinverses.

Below, we record several key definitions and preliminaries we will use in this section. We also
state key structural tools we leverage to prove these results, and defer formal proofs to Appendix B.

Preliminaries: graph structured systems. We call a square matrix A a Z-matrix if Aij ≤ 0
for all i ̸= j. We call a matrix L a Laplacian if it is a symmetric Z-matrix with L1 = 0. We call a
square matrix A ∈ Rd×d diagonally dominant (DD) if Aii ≥

∑
j ̸=iAij for all i ∈ [d] and symmetric

diagonally dominant (SDD) if it is DD and symmetric. We call M an invertible M -matrix if
M = sI−A where s > 0, A ∈ Rd×d

≥0 , and ρ(A) < s where ρ is the spectral radius.
For an undirected graph G = (V,E) with nonnegative edge weights w ∈ RE

≥0, its Laplacian L

is defined as
∑

e∈E webeb
⊤
e , where for an edge e = (u, v) we let be ∈ RV be 1 in the u coordinate

24

and −1 in the v coordinate. It is well-known that all Laplacian matrices can be written in this way
for some graph, and are SDD [ST04]. Finally, we let LKn := nI − 11

⊤ be the Laplacian of the
unweighted complete graph on n vertices, which is a scalar multiple of the projection matrix of the
image space of all SDD matrices, the subspace of RV orthogonal to 1.

Lemma 15. Let M be an invertible symmetric M-matrix. Let x = M−1
1 and define X = diag (x).

Then XMX is a SDD Z-matrix.

Lemma 16. Let A be an invertible SDD Z-matrix. For any α ≥ 0, the matrix B = (A−1 + αI)−1

is also an invertible SDD Z-matrix.

We also will make extensive use of a standard notion of preconditioned (accelerated) gradient
descent, which we state here (note that we used a special case of the following result as Lemma 10).

Proposition 4 (Theorem 4.4, [JS21]). Suppose for κ ≥ 1 and A,B ∈ Sd⪰0 sharing a kernel,
A ⪯ B ⪯ κA, and suppose in time T sol

A log 1
ϵ we can compute and apply a linear operator Aϵ with∥∥∥(Aϵ −A†)v

∥∥∥
2
≤ ϵ

∥∥∥A†v
∥∥∥
2

for all v ∈ Im(A).

Then, we can compute and apply a linear operator Bϵ in time (T sol
A + Tmv(B))

√
κ log κ log 1

ϵ with∥∥∥(Bϵ −B†)v
∥∥∥
2
≤ ϵ

∥∥∥B†v
∥∥∥
2

for all v ∈ Im(B).

4.1 Perturbed Laplacian solver

In this section, we prove Theorem 10 through a direct application of Theorem 9.

Theorem 10 (Perturbed Laplacian solver). Let A ⪰ 0 ∈ Rn×n be such that there exists an (un-
known) Laplacian L with A ⪯ L ⪯ κA, and that L corresponds to a graph with edge weights between
wmin and wmax, with wmax

wmin
≤ U . For any δ ∈ (0, 1) and ϵ > 0, there is an algorithm recovering a

Laplacian L′ with A ⪯ L′ ⪯ (1 + ϵ)κA with probability ≥ 1− δ in time

O

(
n2 · κ2 ·

log14(nκUδϵ)

ϵ7

)
.

Consequently, there is an algorithm for solving linear systems in A to ϵ-relative accuracy (see (8))
with probability ≥ 1− δ, in time

O

(
n2 · κ2 · log14

(
nκU

δ

)
+ n2 polyloglog(n) log

(
1

δ

)
·
√
κ log κ · log

(
1

ϵ

))
.

Proof. First, we note that Π := 1
nLKn is the projection matrix onto the orthogonal complement

of 1, and that Π can be applied to any vector in Rn in O(n) time. Next, consider the matrix
dictionary M consisting of the matrices

Me := beb
⊤
e for all e = (u, v) ∈

(
V

2

)
, (23)

where we follow the notation of Section 2. Because all unweighted graphs have poly(n)-bounded
condition number restricted to the image of Π [Spi19], it is clear that we may set α = β = poly(n,U)

25

in Theorem 9 with B ← A. Moreover, feasibility of (6) for this dictionary M and approximation
factor κ holds by assumption. The first result then follows directly from Theorem 9, where we
ensure that all vectors we work with are orthogonal to 1 by appropriately applying Π, and recall
that we may take T sol

M = n2 · polyloglog(n) as was shown in [JS21].
The second result follows by combining the first result for any sufficiently small constant ϵ,

Proposition 4, and the solver of [JS21] for the resulting Laplacian L′; we note this can be turned
into a high-probability solver by a standard application of Markov at the cost of log 1

δ overhead.

4.2 M-matrix recovery and inverse M-matrix solver

In this section, we prove Theorem 11. We first provide a proof sketch. Since A = M−1 for some
invertible M-matrix M, we can compute x = A1 in O(n2) time and set X = diag (x). Any spectral
approximation N ≈ XMX will have X−1NX−1 ≈ M spectrally with the same approximation
factor. Moreover, XMX is an SDD Z-matrix by Lemma 15, and hence we can approximate it using
Theorem 8 if we can efficiently apply matrix-vector products through it. The key is to provide
matrix-vector access to a spectral approximation to XMX = (X−1AX−1)−1. Our algorithm does
so by recursively providing spectral approximations to

Ai := λiI+A

for a sequence of nonnegative λi, using a homotopy method similar to the one used in Theorem 9.

Theorem 11 (M-matrix recovery and inverse M-matrix solver). Let A be the inverse of an unknown
invertible symmetric M-matrix, let κ be an upper bound on its condition number, and let U be the
ratio of the entries of A1. For any δ ∈ (0, 1) and ϵ > 0, there is an algorithm recovering a
(1 + ϵ)-spectral approximation to A−1 in time

O

(
n2 ·

log13
(
nκU
δϵ

)
log
(
κU
ϵ

)
log 1

ϵ

ϵ7

)
.

Consequently, there is an algorithm for solving linear systems in A to ϵ-relative accuracy (see (8))
with probability ≥ 1− δ, in time

O

(
n2 ·

(
log14

(
nκU

δ

)
+ log

1

ϵ

))
.

Proof. We begin with the first statement. In this proof, we will define a sequence of matrices

Bi =
(
X−1AX−1 + λiI

)−1
, λi =

λ0

2i
.

By Lemma 16, each Bi is an invertible SDD Z-matrix, and hence can be perfectly spectrally approx-
imated by the dictionary consisting of all matrices in (23), and {eie⊤i }i∈[n] (1-sparse nonnegative
diagonal matrices). We refer to this joint dictionary by M. By a proof strategy similar to that of
Theorem 9, it is clear we may set λ0 and K = O(log κU

ϵ) such that λ−1
0 I is a constant-factor spectral

approximation to B0, and BK is a (1 + ϵ
4)-factor spectral approximation to X−1AX−1.

For each 0 ≤ k ≤ K−1, our algorithm recursively computes an explicit linear operator B̃i which
is a O(1)-spectral approximation to Bi, with B̃0 ← λ−1

0 I. Then by applying Proposition 4, the fact
that B̃i is a constant spectral approximation to Bi+1 by a variant of Lemma 10, and the fact that

26

we have explicit matrix-vector access to B−1
i+1, we can efficiently provide matrix-vector access to

Bi+1, a 1 + ϵ
4 -spectral approximation to Bi+1 in time

O

((
Tmv(B̃i) + Tmv(A)

)
· log 1

ϵ

)
.

It remains to show how to compute B̃i and apply it efficiently. To do so, it suffices to set B̃i to be
a 1 + ϵ

2 -spectral approximation to Bi+1 using the dictionary M, which is clearly achievable using
Theorem 9 because Bi+1 is a 1 + ϵ

4 -spectral approximation to an SDD Z-matrix, which is perfectly
approximable. Hence, we have Tmv(B̃i) = n2 because we have explicit access to it through our
matrix dictionary. Repeating this strategy K times yields the second conclusion; the bottleneck
step in terms of runtime is the K calls to Theorem 9. Here we note that we have solver access for
linear combinations of the dictionaryM by a well-known reduction from SDD solvers to Laplacian
solvers (see e.g., [KOSZ13]), and we apply the solver of [JS21].

Finally, for the second conclusion, it suffices to use Proposition 4 with the preconditioner B̃K

we computed earlier for constant ϵ, along with our explicit accesses to X, and A.

4.3 Laplacian recovery and Laplacian pseudoinverse solver

In this section, we prove Theorem 12. Our algorithm for Theorem 12 is very similar to the one
we derived in proving Theorem 11, where for a sequence of nonnegative λi, we provide spectral
approximations to

Bi := A†
i , where Ai := λiΠ+A, (24)

and throughout this section we use Π := 1
nLKn to be the projection onto the image of all Laplacian

matrices. We provide the following helper lemma in the connected graph case, proven in Appendix B;
a straightforward observation reduces to the connected case without loss.

Lemma 17. If A† is a Laplacian of a connected graph, then (A+ αLKn)
† for any α > 0 is a

Laplacian matrix.

Theorem 12 (Laplacian recovery and Laplacian pseudoinverse solver). Let A be the pseudoinverse
of unknown Laplacian L, and that L corresponds to a graph with edge weights between wmin and
wmax, with wmax

wmin
≤ U . For any δ ∈ (0, 1) and ϵ > 0, there is an algorithm recovering a Laplacian

L′ with A† ⪯ L′ ⪯ (1 + ϵ)A† in time

O

(
n2 ·

log13
(
nU
δϵ

)
log
(
nU
ϵ

)
log 1

ϵ

ϵ7

)
.

Consequently, there is an algorithm for solving linear systems in A to ϵ-relative accuracy (see (6))
with probability ≥ 1− δ, in time

O

(
n2 ·

(
log14

(
nU

δ

)
+ log

1

ϵ

))
.

Proof. First, we reduce to the connected graph case by noting that the connected components of
the graph corresponding to L yield the same block structure in A = L†. In particular, whenever
i and j lie in different connected components, then Aij will be 0, so we can reduce to multiple
instances of the connected component case by partitioning A appropriately in O(n2) time.

To handle the connected graph case, we use the strategy of Theorem 11 to recursively approx-
imate a sequence of matrices (24). It suffices to perform this recursion K = O(log nU

ϵ) times,
since (as was argued in proving Theorem 10) the conditioning of A is bounded by poly(n,U). The
remainder of the proof is identical to Theorem 11, again using the solver of [JS21].

27

5 Diagonal scaling

In this section, we provide a collection of results concerning the following two diagonal scaling
problems, which we refer to as “inner scaling” and “outer scaling”. In the inner scaling problem, we
are given a full rank n×d matrix A with n ≥ d, and the goal is to find an n×n nonnegative diagonal
matrix W that minimizes or approximately minimizes κ(A⊤WA). We refer to the optimal value
of this problem by

κ⋆i (A) := min
diagonal W⪰0

κ
(
A⊤WA

)
.

Similarly, in the outer scaling problem, we are given a full rank d× d matrix K, and the goal is to
find a d × d nonnegative diagonal matrix W that (approximately) minimizes κ(W

1
2KW

1
2). The

optimal value is denoted
κ⋆o(K) := min

diagonal W⪰0
κ
(
W

1
2KW

1
2

)
.

In Appendix C, we give a simple, new result concerning a classic heuristic for solving the outer scaling
problem. Our main technical contributions are fast algorithms for obtaining diagonal reweightings
admitting constant-factor approximations to the optimal rescaled condition numbers κ⋆i and κ⋆o. We
provide the former result in Section 5.1 by a direct application of Theorem 8. A weaker version of the
latter follows immediately from applying Theorem 9, but we obtain a strengthening by exploiting
the structure of the outer scaling problem more carefully in Section 5.2. We state our main scaling
results here for convenience, and defer proofs to respective sections.

Theorem 13. Let ϵ > 0 be a fixed constant. There is an algorithm, which given full-rank A ∈ Rn×d

for n ≥ d computes w ∈ Rn
≥0 such that κ(A⊤WA) ≤ (1 + ϵ)κ⋆i (A) with probability ≥ 1− δ in time

O

(
Tmv(A) · (κ⋆i (A))1.5 · log7

(
nκ⋆i (A)

δ

))
.

Theorem 14. Let ϵ > 0 be a fixed constant.12 There is an algorithm, which given full-rank K ∈ Sd≻0

computes w ∈ Rd
≥0 such that κ(W

1
2KW

1
2) ≤ (1 + ϵ)κ⋆o(K) with probability ≥ 1− δ in time

O

(
Tmv(K) · (κ⋆o(K))1.5 · log8

(
dκ⋆o(K)

δ

))
.

5.1 Inner scaling

We prove Theorem 13 on computing constant-factor optimal inner scalings.

Proof of Theorem 13. We apply Theorem 8 with κ = κ⋆i (A) and Mi = aia
⊤
i for all i ∈ [n], where

rows of A are denoted {ai}i∈[n]. The definition of κ⋆i (A) and A⊤WA =
∑

i∈[n]wiaia
⊤
i (where

W = diag (w)) implies that (5) is feasible for these parameters: namely, there exists w⋆ ∈ Rn
≥0

such that
I ⪯

∑
i∈[n]

wiMi ⪯ κI.

Moreover, factorizations (7) hold with Vi = ai and m = 1. Note that Tmv({Vi}i∈[n]) = O(nnz(A))
since this is the cost of multiplication through all rows of A.

12We do not focus on the ϵ dependence and instead take it to be constant since, in applications involving solving
linear systems, there is little advantage to obtaining better than a two factor approximation (i.e., setting ϵ = 1).

28

5.2 Outer scaling

In this section, we prove a result on computing constant-factor optimal outer scalings of a matrix
K ∈ Sd≻0. We first remark that we can obtain a result analogous to Theorem 13, but which scales
quadratically in the κ⋆o(K), straightforwardly by applying Theorem 9 with n = d, Mi = eie

⊤
i for all

i ∈ [d], κ = κ⋆o(K), and B = 1
κK. This is because the definition of κ⋆o implies there exists w⋆ ∈ Rd

≥0

with I ⪯ (W⋆)−
1
2K(W⋆)−

1
2 ⪯ κI, where W⋆ = diag (w⋆) and where this w⋆ is the entrywise

inverse of the optimal outer scaling attaining κ⋆o(K). This then implies

1

κ
K ⪯

∑
i∈[d]

w⋆
iMi ⪯ K,

since
∑

i∈[d]w
⋆
iMi = W⋆ and hence Theorem 9 applies, obtaining a runtime for the outer scaling

problem of roughly Tmv(K) · κ⋆o(K)2 (up to logarithmic factors).
We give an alternative approach in this section which obtains a runtime of roughly Tmv(K) ·

κ⋆o(K)1.5, matching Theorem 13 up to logarithmic factors. Our approach is to define

A := K
1
2

to be the positive definite square root of K; we use this notation throughout the section, and let
{ai}i∈[d] be the rows of A. We cannot explicitly access A, but if we could, directly applying The-
orem 13 suffices because κ(W

1
2KW

1
2) = κ(W

1
2A2W

1
2) = κ(AWA) for any nonnegative diagonal

W ∈ Rd×d. We show that by using a homotopy method similar to the one employed in Section 3.2,
we can implement this strategy with only a polylogarithmic runtime overhead. At a high level,
the improvement from Theorem 9 is because we have explicit access to K = A2. By exploiting
cancellations in polynomial approximations we can improve the cost of iterations of Algorithm 1
from roughly κ (where one factor of

√
κ comes from the cost of rational approximations to square

roots in Section 3.2, and the other comes from the degree of polynomials), to roughly
√
κ.

Finally, throughout this section we will assume κ(A) ≤ κ⋆o(K), which is without loss of generality
by rescaling based on the diagonal (Jacobi preconditioning), as we show in Appendix C. Also, for
notational convenience we will fix a matrix K ∈ Sd≻0 and denote κ⋆ := κ⋆o(K).

5.2.1 Preliminaries

We first state a number of preliminary results which will be used in buliding our outer scaling
method. We begin with a polynomial approximation to the square root, proven in Appendix A. It
yields a corollary regarding approximating matrix-vector products with a matrix square root.

Fact 4 (Polynomial approximation of
√
·). Let M ∈ Sd≻0 have µI ⪯ M ⪯ κµI where µ is known.

Then for any δ ∈ (0, 1), there is an explicit polynomial p of degree O(
√
κ log κ

δ) with

(1− δ)M
1
2 ⪯ p(M) ⪯ (1 + δ)M

1
2 .

Corollary 3. For any vector b ∈ Rd, δ, ϵ ∈ (0, 1), and M ∈ Sd≻0 with κ(M) ≤ κ, with probability
≥ 1− δ we can compute u ∈ Rd such that∥∥∥u−M

1
2 b
∥∥∥
2
≤ ϵ

∥∥∥M 1
2 b
∥∥∥
2

in time O

(
Tmv (M) ·

(√
κ log

κ

ϵ
+ log

d

δ

))
.

29

Proof. First, we compute a 2-approximation to µ in Fact 4 within the runtime budget using the
power method (Fact 3), since κ is given. This will only affect parameters in the remainder of the
proof by constant factors. If u = Pb for commuting P and M, our requirement is equivalent to

−ϵ2M ⪯
(
P−M

1
2

)2
⪯ ϵ2M.

Since square roots are operator monotone (by the Löwner-Heinz inequality), this is true iff

−ϵM
1
2 ⪯ P−M

1
2 ⪯ ϵM

1
2 ,

and such a P which is applicable within the runtime budget is given by Fact 4.

We next demonstrate two applications of Corollary 3 in estimating applications of products
involving A = K

1
2 , where we can only explicitly access K. We will use the following standard fact

about operator norms, whose proof is deferred to Appendix A.

Lemma 18. Let B ∈ Rd×d and let A ∈ Sd≻0. Then min (∥AB∥2 , ∥BA∥2) ≥
1

κ(A) ∥B∥2 ∥A∥2.

First, we discuss the application of a bounded-degree polynomial in AWA to a uniformly random
unit vector, where W is an explicit nonnegative diagonal matrix.

Lemma 19. Let u ∈ Rd be a uniformly random unit vector, let K ∈ Sd≻0 such that A := K
1
2 and

κ(K) ≤ κ, and let P be a degree-∆ polynomial in AWA for an explicit diagonal W ∈ Sd⪰0. For
δ, ϵ ∈ (0, 1), with probability ≥ 1− δ we can compute w ∈ Rd so ∥w −Pu∥2 ≤ ϵ ∥Pu∥2 in time

O

(
Tmv(K) ·

(
∆+

√
κ log

dκ

δϵ

))
.

Proof. We can write P = ANA for some matrix N which is a degree-O(∆) polynomial in K and W,
which we have explicit access to. Standard concentration bounds show that with probability at least
1−δ, for some N = poly(d, δ−1), ∥Pu∥2 ≥

1
N ∥P∥2. Condition on this event for the remainder of the

proof, such that it suffices to obtain additive accuracy ϵ
N ∥P∥2. By two applications of Lemma 18,

we have
∥ANA∥2 ≥

1

κ
∥A∥22 ∥N∥2 . (25)

Our algorithm is as follows: for ϵ′ ← ϵ
3Nκ , compute v such that ∥v −Au∥2 ≤ ϵ′ ∥A∥2 ∥u∥2 using

Corollary 3, explicitly apply N, and then compute w such that ∥w −ANv∥2 ≤ ϵ′ ∥A∥2 ∥Nv∥2; the
runtime of this algorithm clearly fits in the runtime budget. The desired approximation is via

∥w −ANAu∥2 ≤ ∥w −ANv∥2 + ∥ANv −ANAu∥2
≤ ϵ′ ∥A∥2 ∥N∥2 ∥v∥2 + ∥ANv −ANAu∥2
≤ 2ϵ′ ∥A∥22 ∥N∥2 + ∥A∥2 ∥N∥2 ∥v −Au∥2
≤ 2ϵ′ ∥A∥22 ∥N∥2 + ϵ′ ∥A∥22 ∥N∥2
≤ 3ϵ′κ ∥ANA∥2 =

ϵ

N
∥P∥2 .

The third inequality used ∥v∥2 ≤ ∥Au∥2 + ϵ ∥A∥2 ∥u∥2 ≤ (1 + ϵ) ∥A∥2 ≤ 2 ∥A∥2.

We give a similar guarantee for random bilinear forms through A involving an explicit vector.

30

Lemma 20. Let u ∈ Rd be a uniformly random unit vector, let K ∈ Sd≻0 such that A := K
1
2 and

κ(K) ≤ κ, and let v ∈ Rd. For δ, ϵ ∈ (0, 1), with probability ≥ 1 − δ we can compute w ∈ Rd so
⟨w, v⟩ is an ϵ-multiplicative approximation to u⊤Av in time

O

(
Tmv(K) ·

√
κ log

dκ

δϵ

)
.

Proof. As in Lemma 19, for some N = poly(d, δ−1) it suffices to give a ϵ
N ∥Av∥2-additive approxi-

mation. For ϵ′ ← ϵ
N
√
κ
, we apply Corollary 3 to obtain w such that ∥w −Au∥2 ≤ ϵ′ ∥Au∥2, which

fits within the runtime budget. Correctness follows from

|⟨Au− w, v⟩| ≤ ∥Au− w∥2 ∥v∥2 ≤ ϵ′ ∥A∥2 ∥v∥2 ≤ ϵ′
√
κ ∥Av∥2 ≤

ϵ

N
∥Av∥2 .

5.2.2 Implementing Algorithm 1 implicitly

In this section, we bound the complexity of Algorithm 1 in the following setting. Throughout this
section denote Mi = aia

⊤
i for all i ∈ [d], where A ∈ Sd≻0 has rows {ai}i∈[d], and A2 = K. We

assume that
κ(K) ≤ κscale := 3κ⋆,

and we wish to compute a reweighting w ∈ Rd
≥0 such that

κ

∑
i∈[d]

wiaia
⊤
i

 = κ
(
W

1
2KW

1
2

)
≤ (1 + ϵ)κ⋆,

assuming there exists a reweighting w⋆ ∈ Rd
≥0 such that above problem is feasible with conditioning

κ⋆. In other words, we assume we start with a matrix whose conditioning is within a 3-factor of the
optimum after rescaling, and wish to obtain a 1+ ϵ-approximation to the optimum. We show in the
next section how to use a homotopy method to reduce the outer scaling problem to this setting.

Our strategy is to apply the method of Theorem 13. To deal with the fact that we cannot
explictly access the matrix A, we give a custom analysis of the costs of Lines 6, 7, and 13 under
implicit access in this section, and prove a variant of Theorem 13 for this specific setting.

Estimating the smallest eigenvalue implicitly. We begin by discussing implicit implementa-
tion of Line 13. Our strategy combines the approach of Lemma 6 (applying the power method to
the negative exponential), with Lemma 19 since to handle products through random vectors.

Lemma 21. Given δ ∈ (0, 1), constant ϵ > 0, K ∈ Sd≻0 such that A := K
1
2 and κ(K) ≤ κscale, and

diagonal W ∈ Sd⪰0 such that M := AWA ⪯ O(κscale log d)I, we can compute a O(log d)-additive
approximation to λmin(M) with probability ≥ 1− δ in time

O

(
Tmv(K) ·

√
κscale · log2

dκscale

δ

)
.

Proof. The proof of Lemma 6 implies it suffices to compute a 0.2-multiplicative approximation to
the largest eigenvalue of P, a degree-∆ = O(

√
κscale log d) polynomial in M. Moreover, letting

31

∆′ = O(log d
δ) be the degree given by Fact 3 with δ ← δ

3 , the statement of the algorithm in Fact 3
shows it suffices to compute for a uniformly random unit vector u,∥∥P∆u

∥∥
2

and
∥∥P∆+1u

∥∥
2

to multiplicative accuracy
1

30
.

We demonstrate how to compute
∥∥P∆u

∥∥
2

to this multiplicative accuracy with probability at least
1 − δ

3 ; the computation of
∥∥P∆+1u

∥∥
2

is identical, and the failure probability follows from a union
bound over these three random events. Since P∆ is a degree-O(∆∆′) = O(

√
κscale log d log

d
δ)

polynomial in AWA, the conclusion follows from Lemma 19.

Estimating inner products with a negative exponential implicitly. We next discuss im-
plicit implementation of Line 6. In particular, we give variants of Lemmas 2 and 3 which are tolerant
to implicit approximate access of matrix-vector products.

Lemma 22. Given δ ∈ (0, 1), constant ϵ > 0, K ∈ Sd≻0 such that A := K
1
2 and κ(K) ≤ κscale,

and diagonal W ∈ Sd⪰0 such that M := AWA ⪯ O(κscale log d)I and λmin(M) = O(log d), we can
compute an ϵ-multiplicative approximation to Tr exp(−M) with probability ≥ 1− δ in time

O

(
Tmv(K) ·

√
κscale · log2

dκscale

δ

)
.

Proof. The proof of Lemma 2 shows it suffices to compute k = O(log d
δ) times, an ϵ

3 exp(−R)-
additive approximation to u⊤Pu where R = O(log d), for uniformly random unit u and P, a
degree-∆ = O(

√
κscale log d)-polynomial in M with ∥P∥2 ≤ ∥exp(−M)∥2+

ϵ
3 exp(−R) ≤ 4

3 exp(−R).
Applying Lemma 19 with ϵ← ϵ

4 to compute w, an approximation to Pu, the approximation follows:

|⟨w, u⟩ − ⟨Pu, u⟩| ≤ ∥w −Pu∥2 ≤
ϵ

4
∥P∥2 ≤

ϵ

3
exp(−R).

The runtime follows from the cost of applying Lemma 19 to all k random unit vectors.

Lemma 23. Given δ ∈ (0, 1), constant ϵ > 0, K ∈ Sd≻0 such that A := K
1
2 and κ(K) ≤ κscale,

and diagonal W ∈ Sd⪰0 such that M := AWA ⪯ O(κscale log d)I, we can compute (ϵ, O(1
κscaled

))-
approximations to all {〈

aia
⊤
i , exp(−M)

〉}
i∈[d]

,

with probability ≥ 1− δ in time

O

(
Tmv(K) ·

√
κscale · log2

dκscale

δ

)
.

Proof. The proof of Lemma 3 implies it suffices to compute k = O(log d
δ) times, for each i ∈ [d],

the quantity ⟨u,Pai⟩ to multiplicative error ϵ
2 , for uniformly random unit vector u and P, a degree-

∆ = O(
√
κscale log(κscaled))-polynomial in M. Next, note that since ai = Aei and P = ANA for

N an explicit degree-O(∆) polynomial in K and W, we have ⟨u,Pai⟩ = u⊤A (NKei). We can
approximate this by some ⟨w,NKei⟩ via Lemma 20 to the desired accuracy. The runtime comes
from applying Lemma 20 k times, multiplying each of the resulting vectors w by KN and stacking
them to form a k × d matrix Q̃, and then computing all ∥Q̃ei∥2 for i ∈ [d].

32

Implementing a packing oracle implicitly. Finally, we discuss implementation of Line 7 of Al-
gorithm 1. The requirement of Line 7 is a multiplicative approximation (and a witnessing reweight-
ing) to the optimization problem

max∑
i∈[d] wiMi⪯I

w∈Rd
≥0

v⊤w.

Here, v is explicitly given by an implementation of Line 6 of the algorithm, but we do not have
{Mi}i∈[d] explicitly. To implement this step implicitly, we recall the approximation requirements
of the solver of Proposition 1, as stated in [JLT20]. We remark that the approximation tolerance
is stated for the decision problem tester of [JLT20] (Proposition 5); once the tester is implicitly
implemented, the same reduction as described in Appendix A yields an analog to Proposition 1.

Corollary 4 (Approximation tolerance of Proposition 1, Theorem 5, [JLT20]). Let ϵ > 0 be a fixed
constant. The runtime of Proposition 1 is due to T = O(log(dδ) log d · log log

OPT+

OPT−
) iterations, each

of which requires O(1) vector operations and O(ϵ)-multiplicative approximations to

Tr (Mp) ,
{〈

Ai,M
p−1
〉}

i∈[d] for M :=
∑
i∈[d]

wiMi for an explicitly given w ∈ Rd
≥0, (26)

where p = O(log d) ∈ N is odd, and SI ⪯M ⪯ RI, for R = O(log d) and S = poly(1
nd , κ((

∑
i∈[n]Mi))

−1).

We remark that the lower bound S comes from the fact that the initial matrix of the [JLT20]
solver is a bounded scaling of

∑
i∈[n]Mi, and the iterate matrices are monotone in Loewner order.

We now demonstrate how to use Lemmas 19 and 20 to approximate all quantities in (26). Through-
out the following discussion, we specialize to the case where each Mi = aia

⊤
i , so M in (26) will

always have the form M = AWA for diagonal W ∈ Sd⪰0, and S = poly((dκscale)
−1).

Lemma 24. Given δ ∈ (0, 1), constant ϵ > 0, K ∈ Sd≻0 such that A := K
1
2 and κ(K) ≤ κscale, and

diagonal W ∈ Sd⪰0 such that SI ⪯ M := AWA ⪯ O(log d)I where S = poly((dκscale)
−1), we can

compute an ϵ-multiplicative approximation to Tr(Mp) for integer p in time

O

(
Tmv(K) ·

(
p+
√
κscale log

dκscale

δ

)
· log d

δ

)
.

Proof. As in Lemma 22, it suffices to compute k = O(log d
δ) times, an ϵ

N Sp-additive approximation
to u⊤Mpu, for uniformly random unit vector u and N = poly(d, δ−1). By applying Lemma 19 with
accuracy ϵ′ ← ϵSp

NRp to obtain w, an approximation to Mpu, we have the desired

|⟨u,Mpu⟩ − ⟨u,w⟩| ≤ ∥Mpu− w∥2 ≤ ϵ′ ∥Mpu∥2 ≤ ϵ′Rp ≤ ϵ

N
Sp.

The runtime follows from k applications of Lemma 19 to the specified accuracy level.

Lemma 25. Given δ ∈ (0, 1), constant ϵ > 0, K ∈ Sd≻0 such that A := K
1
2 and κ(K) ≤ κscale,

and diagonal W ∈ Sd⪰0 such that M := AWA ⪯ O(log d)I, we can compute an ϵ-multiplicative
approximation to all {〈

aia
⊤
i ,M

p−1
〉}

i∈[d]
where {ai}i∈[d] are rows of A,

where p is an odd integer, with probability ≥ 1− δ in time

O

(
Tmv(K) ·

(
p+
√
κscale log

dκscale

δ

)
· log d

δ

)
.

33

Proof. First, observe that for all i ∈ [d] it is the case that〈
aia

⊤
i ,M

p−1
〉
= (Aei)

⊤Mp−1 (Aei) ≥ Sp−1 ∥A∥22 κ
−2
scale.

Letting r = 1
2(p− 1) and following Lemma 23 and the above calculation, it suffices to show how to

compute k = O(log d
δ) times, for each i ∈ [d], the quantity ⟨u,Mrai⟩ to multiplicative error ϵ

2 , for
uniformly random unit vector u and N = poly(d, δ−1). As in Lemma 23, each such inner product
is u⊤A(NKei) for N an explicit degree-O(p) polynomial in K and W. The runtime follows from
applying Lemma 20 k times and following the runtime analysis of Lemma 23.

Putting it all together. Finally, we state our main result of this section, regarding rescaling
well-conditioned matrices, by combining the pieces we have developed.

Corollary 5. Given δ ∈ (0, 1), constant ϵ > 0, K ∈ Sd≻0 such that κ(K) ≤ 3κ⋆, and such that
κ⋆o(K) = κ⋆, we can compute diagonal W ∈ Sd⪰0 such that κ(W

1
2KW

1
2) ≤ (1+ϵ)κ⋆ with probability

≥ 1− δ in time

O

(
Tmv(K) · (κ⋆)1.5 · log6

(
dκ⋆

δ

))
.

Proof. The proof is essentially identical to the proof of Theorem 13 by way of Theorem 8. In
particular, we parameterize Theorem 8 with Mi = aia

⊤
i where A = K

1
2 is the positive definite

square root of K with rows {ai}i∈[d]. Then, running Algorithm 1 with an incremental search for the
optimal κ⋆ yields an overhead of Õ(κ⋆ log(dκ⋆)). The cost of each iteration of Algorithm 1 follows
by combining Lemmas 21, 22, 23, 24, 25, and Corollary 4.

5.2.3 Homotopy method

In this section, we use Corollary 5, in conjunction with a homotopy method similar to that of
Section 3.2, to obtain our overall algorithm for outer scaling. We state here three simple helper
lemmas which follow almost identically from corresponding helper lemmas in Section 3.2; we include
proofs of these statements in Appendix A for completeness.

Lemma 26. For any matrix K ∈ Sd≻0 and λ ≥ 0, κ⋆o(K+ λI) ≤ κ⋆o(K).

Lemma 27. Let K ∈ Sd≻0. Then, for λ ≥ 1
ϵλmax(K), κ(K+λI) ≤ 1+ϵ. Moreover, given a diagonal

W ∈ Sd⪰0 such that κ(W
1
2 (K+λI)W

1
2) ≤ κscale for 0 ≤ λ ≤ ϵλmin(K)

1+ϵ , κ(W
1
2KW

1
2) ≤ (1+ϵ)κscale.

Lemma 28. Let K ∈ Sd≻0, and let W ∈ Sd⪰0 be diagonal. Then for any λ > 0,

κ
(
W

1
2 (K+ λI)W

1
2

)
≤ 2κ

(
W

1
2

(
K+

λ

2
I

)
W

1
2

)
.

Theorem 14. Let ϵ > 0 be a fixed constant.13 There is an algorithm, which given full-rank K ∈ Sd≻0

computes w ∈ Rd
≥0 such that κ(W

1
2KW

1
2) ≤ (1 + ϵ)κ⋆o(K) with probability ≥ 1− δ in time

O

(
Tmv(K) · (κ⋆o(K))1.5 · log8

(
dκ⋆o(K)

δ

))
.

13We do not focus on the ϵ dependence and instead take it to be constant since, in applications involving solving
linear systems, there is little advantage to obtaining better than a two factor approximation (i.e., setting ϵ = 1).

34

Proof. We will assume we know the correct value of κ⋆o(K) up to a 1 +O(ϵ) factor throughout this
proof for simplicity, and call this estimate κ⋆. This will add an overall multiplicative overhead of
O(1) by using an incremental search as in Theorem 8. We will also assume that κ(K) = O((κ⋆)2)
by first applying the Jacobi preconditioner; see Appendix C for a proof.

Our algorithm follows the framework of Section 3.2 and runs in phases indexed by k for 0 ≤ k ≤
K for some K, each computing a scaling of K+ λkI with condition number (1 + ϵ)κ⋆; note that a
scaling with condition number κ⋆ is always feasible for any λk ≥ 0 by Lemma 26. We will define
λ0 = 1

ϵV where V is a constant-factor overestimate of λmax(K), which can be obtained by Fact 3
without dominating the runtime. We will then set

λk =
λ0

2k
, K = O (log κ⋆) .

Lemma 27 shows that we have a trivial scaling attaing condition number (1 + ϵ)κ⋆ for K + λ0I,
and that if we can compute rescalings for all λk where 1 ≤ k ≤ K, then the last rescaling is also a
(1 + ϵ)κ⋆-conditioned rescaling for K up to adjusting ϵ by a constant.

Finally, we show how to implement each phase of the algorithm, given access to the reweighting
from the previous phase. Note that Lemma 28 shows that the reweighting W computed in phase
k yields a rescaling W

1
2 (K + λk+1I)W

1
2 which is 3κ⋆-conditioned. By running the algorithm of

Corollary 5 on K←W
1
2 (K+λk+1I)W

1
2 , we compute the desired reweighting for phase k+1. The

final runtime loses one logarithmic factor over Corollary 5 due to running for K phases.

6 Statistical applications of diagonal scaling

In this section, we give a number of applications of our rescaling methods to problems in statistical
settings (i.e., linear system solving or statistical regression) where reducing conditioning measures
are effective. We begin by discussing connections between diagonal preconditioning and a semi-
random noise model for linear systems in Section 6.1. We then apply rescaling methods to reduce
risk bounds for statistical models of linear regression in Section 6.2.

6.1 Semi-random linear systems

Consider the following semi-random noise model for solving an overdetermined, consistent linear
system Axtrue = b where A ∈ Rn×d for n ≥ d.

Definition 1 (Semi-random linear systems). In the semi-random noise model for linear systems, a
matrix Ag ∈ Rm×d with κ(A⊤

g Ag) = κg, m ≥ d is “planted” as a subset of rows of a larger matrix
A ∈ Rn×d. We observe the vector b = Axtrue for some xtrue ∈ Rd we wish to recover.

We remark that we call the model in Definition 1 “semi-random” because of the following mo-
tivating example: the rows Ag are feature vectors drawn from some “nice” (e.g., well-conditioned)
distribution, and the dataset is contaminated by an adversary supplying additional data (a priori
indistinguishable from the “nice” data), aiming to hinder conditioning of the resulting system.

Interestingly, Definition 1 demonstrates in some sense a shortcoming of existing linear system
solvers: their brittleness to additional, consistent information. In particular, κ(A⊤A) can be ar-
bitrarily larger than κg. However, if we were given the indices of the subset of rows Ag, we could
instead solve the linear system bg = Agxtrue with iteration count dependent on the condition num-
ber of Ag. Counterintuitively, by giving additional rows, the adversary can arbitrarily increase the
condition number of the linear system, hindering the runtime of conditioning-dependent solvers.

35

The inner rescaling algorithms we develop in Section 5 are well-suited for robustifying linear
system solvers to the type of adversary in Definition 1. In particular, note that

κ⋆i (A) ≤ κ
(
A⊤WgA

)
= κ

(
A⊤

g Ag

)
= κg,

where Wg is the diagonal matrix which is the 0-1 indicator of rows of Ag. Our solvers for reweight-
ings approximating κ⋆i can thus be seen as trading off the sparsity of Ag for the potential of “mixing
rows” to attain a runtime dependence on κ⋆i (A) ≤ κg. In particular, our resulting runtimes scale
with nnz(A) instead of nnz(Ag), but also depend on κ⋆i (A) rather than κg.

We remark that the other solvers we develop are also useful in robustifying against variations on
the adversary in Definition 1. For instance, the adversary could instead aim to increase τ(A⊤A),
or give additional irrelevant features (i.e., columns of A) such that only some subset of coordinates
xg are important to recover. For brevity, we focus on the model in Definition 1 in this work.

6.2 Statistical linear regression

The second application we give is in solving noisy variants of the linear system setting of Definition 1.
In particular, we consider statistical regression problems with various generative models.

Definition 2 (Statistical linear regression). Given full rank A ∈ Rn×d and b ∈ Rd produced via

b = Axtrue + ξ, ξ ∼ N (0,Σ), (27)

where we wish to recover unknown xtrue ∈ Rd, return x so that (where expectations are taken over
the randomness of ξ) the risk (mean-squared error) E[∥x− xtrue∥22] is small.

In this section, we define a variety of generative models (i.e., specifying a covariance matrix Σ of
the noise) for the problem in Definition 2. For each of the generative models, applying our rescaling
procedures will yield computational gains, improved risk bounds, or both. We give statistical and
computational results for statistical linear regression in both the homoskedastic and heteroskedastic
settings. In particular, when Σ = σ2I (i.e., the noise for every data point has the same variance),
this is the well-studied homoskedastic setting pervasive in stastical modeling. When Σ varies with
the data A, the model is called heteroskedastic (cf. [Gre90]).

In most cases, we do not directly give guarantees on exact mean squared errors via our prepro-
cessing, but rather certify (possibly loose) upper bound surrogates. We leave direct certification of
conditioning and risk simultaneously without a surrogate bound as an interesting future direction.

6.2.1 Heteroskedastic statistical guarantees

We specify two types of heteroskedastic generative models (i.e., defining the covariance Σ in (27)),
and analyze the effect of rescaling a regression data matrix on reducing risk.

Noisy features. Consider the setting where the covariance in (27) has the form Σ = AΣ′A⊤,
for matrix Σ′ ∈ Sd⪰0. Under this assumption, we can rewrite (27) as b = A(xtrue + ξ′), where
ξ′ ∼ N (0,Σ′). Intuitively, this corresponds to exact measurements through A, under noisy features
xtrue + ξ′. As in this case b ∈ Im(A) always, regression is equivalent to linear system solving, and
thus directly solving any reweighted linear system W

1
2Ax∗ = W

1
2 b will yield x∗ = xtrue + ξ′.

We thus directly obtain improved computational guarantees by computing a reweighting W
1
2

with κ(A⊤WA) = O(κ⋆i (A)). Moreover, we note that the risk (Definition 2) of the linear system
solution x∗ is independent of the reweighting:

E
[
∥x∗ − xtrue∥22

]
= E

[∥∥ξ′∥∥2
2

]
= Tr

(
Σ′) .

36

Hence, computational gains from reweighting the system are without statistical loss in the risk.

Row norm noise. Consider the setting where the covariance in (27) has the form

Σ = σ2diag
({
∥ai∥22

}
i∈[n]

)
. (28)

Intuitively, this corresponds to the setting where noise is independent across examples and the size
of the noise scales linearly with the squared row norm. We first recall a standard characterization
of the regression minimizer.

Fact 5 (Regression minimizer). Let the regression problem ∥Ax− b∥22 have minimizer x⋆, and
suppose that A⊤A is invertible. Then,

x⋆ =
(
A⊤A

)−1
A⊤b.

Using Fact 5, we directly prove the following upper bound surrogate holds on the risk under the
model (27), (28) for the solution to any reweighted regression problem.

Lemma 29. Under the generative model (27), (28), letting W ∈ Sn⪰0 be a diagonal matrix and

x⋆w := argminx

{∥∥∥W 1
2 (Ax− b)

∥∥∥2
2

}
,

we have

E
[
∥x⋆w − xtrue∥22

]
≤ σ2 Tr

(
A⊤WA

)
λmin (A⊤WA)

.

Proof. By applying Fact 5, we have that

x⋆w =
(
A⊤WA

)−1
A⊤W (Axtrue + ξ) = xtrue +

(
A⊤WA

)−1
A⊤Wξ.

Thus, we have the sequence of derivations

E
[
∥x⋆w − xtrue∥2A⊤WA

]
= E

[∥∥∥∥(A⊤WA
)−1

A⊤Wξ

∥∥∥∥2
A⊤WA

]

= E
[〈

W
1
2 ξξ⊤W

1
2 ,W

1
2A
(
A⊤WA

)−1
A⊤W

1
2

〉]
= σ2

〈
diag

({
wi ∥ai∥22

})
,W

1
2A
(
A⊤WA

)−1
A⊤W

1
2

〉
≤ σ2Tr

(
A⊤WA

)
.

(29)

The last inequality used the ℓ1-ℓ∞ matrix Hölder inequality and that W
1
2A
(
A⊤WA

)−1
A⊤W

1
2 is

a projection matrix, so ∥W
1
2A
(
A⊤WA

)−1
A⊤W

1
2 ∥∞ = 1. Lower bounding the squared A⊤WA

norm by a λmin(A
⊤WA) multiple of the squared Euclidean norm yields the conclusion.

We remark that the analysis in Lemma 29 of the surrogate upper bound we provide was loose
in two places: the application of Hölder and the norm conversion. Lemma 29 shows that the risk
under the generative model (28) can be upper bounded by a quantity proportional to τ(A⊤WA),
the average conditioning of the reweighted matrix.

Directly applying Lemma 29, our risk bounds improve with the conditioning of the reweighted
system. Hence, our scaling procedures improve both the computational and statistical guarantees
of regression under this generative model, albeit only helping the latter through an upper bound.

37

6.2.2 Homoskedastic statistical guarantees

In this section, we work under the homoskedastic generative model assumption. In particular,
throughout the covariance matrix in (27) will be a multiple of the identity:

Σ = σ2I. (30)

We begin by providing a risk upper bound under the model (27), (30).

Lemma 30. Under the generative model (27), (30), let x⋆ := argminx{∥Ax− b∥22}. Then,

E
[
∥x⋆ − xtrue∥2A⊤A

]
= σ2d =⇒ E

[
∥x∗ − xtrue∥22

]
≤ σ2d

λmin(A⊤A)
. (31)

Proof. Using Fact 5, we compute

x⋆ − xtrue =
(
A⊤A

)−1
A⊤b− xtrue

=
(
A⊤A

)−1
A⊤ (Axtrue + ξ)− xtrue =

(
A⊤A

)−1
A⊤ξ.

Therefore via directly expanding, and using linearity of expectation,

E
[
∥x∗ − xtrue∥2A⊤A

]
= E

[∥∥∥∥A(A⊤A
)−1

A⊤ξ

∥∥∥∥2
2

]

= E
[〈

ξξ⊤,A
(
A⊤A

)−1
A⊤
〉]

= σ2

(
A
(
A⊤A

)−1
A⊤
)

= σ2d.

The final implication follows from λmin(A
⊤A) ∥x∗ − xtrue∥22 ≤ ∥x∗ − xtrue∥2A⊤A.

Lemma 30 shows that in regards to our upper bound (which is loose in the norm conversion
at the end), the notion of adversarial semi-random noise is at odds in the computational and
statistical senses. Namely, given additional rows of the matrix A, the bound (31) can only improve,
since λmin is monotonically increasing as rows are added. To address this, we give guarantees
about recovering reweightings which match the best possible upper bound anywhere along the
“computational-statistical tradeoff curve.” We begin by providing a weighted analog of Lemma 30.

Lemma 31. Under the generative model (27), (30), letting W ∈ Sn⪰0 be a diagonal matrix and

x⋆w := argminx

{∥∥∥W 1
2 (Ax− b)

∥∥∥2
2

}
,

we have
E
[
∥x⋆w − xtrue∥22

]
≤ σ2d ·

∥w∥∞
λmin (A⊤WA)

. (32)

Proof. By following the derivations (29) (and recalling the definition of x⋆w),

E
[
∥x⋆w − xtrue∥2A⊤WA

]
= E

[〈
ξξ⊤,WA

(
A⊤WA

)−1
A⊤W

〉]
= σ2Tr

(
WA

(
A⊤WA

)−1
A⊤W

)
.

(33)

38

Furthermore, by W ⪯ ∥w∥∞ I we have A⊤W2A ⪯ ∥w∥∞A⊤WA. Thus,

Tr
(
WA

(
A⊤WA

)−1
A⊤W

)
=

〈
A⊤W2A,

(
A⊤WA

)−1
〉
≤ ∥w∥∞ Tr(I) = d ∥w∥∞ .

Using this bound in (33) and converting to Euclidean norm risk yields the conclusion.

Lemma 31 gives a quantitative version of a computational-statistical tradeoff curve. Specifically,
we give guarantees which target the best possible condition number of a 0-1 reweighting, subject to
a given level of λmin(A

⊤WA). In the following discussion we assume there exists Ag ⊆ A, a subset
of rows, satisfying (for known κg, νg, and sufficiently small constant ϵ ∈ (0, 1))

κg ≤ κ
(
A⊤

g Ag

)
≤ (1 + ϵ)κg,

1

λmin
(
A⊤

g Ag

) ≤ νg. (34)

Our key observation is that we can use existence of a row subset satisfying (34), combined with a
slight modification of Algorithm 1, to find a reweighting w such that

κ
(
A⊤WA

)
= O (κg) ,

∥w∥∞
λmin (A⊤WA)

= O(νg). (35)

Lemma 32. Consider running Algorithm 1, with the modification that in Line 7, we set

xt ← an
ϵ

10
-multiplicative approximation of argmax∑

i∈[n] wiÃi⪯I

x∈Rn
≥0

⟨κvt, w⟩ ,

where for all i ∈ [n], Ãi :=

(
Ai 0d×n

0n×d diag
(
κg

νg
ei

)) .

(36)

Then, if (34) is satisfied for some A ∈ Rn×d and row subset Ag ⊆ A, Algorithm 1 run on κ← κg
and {Ai = aia

⊤
i }i∈[n] where {ai}i∈[n] are rows of A will produce w satisfying (35).

Proof. We note that each matrix Ãi is the same as the corresponding Ai, with a single nonzero
coordinate along the diagonal bottom-right block. The proof is almost identical to the proof of
Lemma 1, so we highlight the main differences here. The main property that Lemma 1 used was
that Line 9 did not pass, which lets us conclude (15). Hence, by the approximation guarantee on
each xt, it suffices to show that for any Yt ∈ Sd⪰0 with Tr(Yt) = 1, (analogously to (14)),

max∑
i∈[n] wiÃi⪯I

x∈Rn
≥0

κg

〈
Yt,

∑
i∈[n]

wiAi

〉
≥ 1−O(ϵ). (37)

However, by taking w to be the 0-1 indicator of the rows of Ag scaled down by λmax(A
⊤
g Ag), we

have by the promise (34) that∑
i∈[n]

wiÃi =
1

λmax(A⊤
g Ag)

⪯ I ⇐= 1

λmax(A⊤
g Ag)

A⊤
g Ag ⪯ I,

κg
νg
· 1

λmax(A⊤
g Ag)

≤ 1. (38)

Now, it suffices to observe that (38) implies our indicator w is feasible for (37), so

max∑
i∈[n] wiÃi⪯I

x∈Rn
≥0

κg

〈
Yt,

∑
i∈[n]

wiAi

〉
≥

λmin
(
A⊤

g Ag

)
λmax

(
A⊤

g Ag

) · κg ≥ 1−O(ϵ).

39

The remainder of the proof is identical to Lemma 1, where we note the output w satisfies∑
i∈[n]

wiÃi ⪯ I,
∑
i∈[n]

wiAi ⪰
1−O(ϵ)

κg
I,

which upon rearrangement and adjusting ϵ by a constant yields (35).

By running the modification of Algorithm 1 described for a given level of νg, it is straightforward
to perform an incremental search on κg to find a value satisfying the bound (35) as described in
Theorem 13. It is simple to verify that the modification in (36) is not the dominant runtime in any
of Theorems 13 or 14 since the added constraint is diagonal and Ãi is separable. Hence, for every
“level” of νg in (34) yielding an appropriate risk bound (32), we can match this risk bound up to a
constant factor while obtaining computational speedups scaling with κg.

Acknowledgements

AS was supported in part by a Microsoft Research Faculty Fellowship, NSF CAREER Award CCF-
1844855, NSF Grant CCF-1955039, a PayPal research award, and a Sloan Research Fellowship.
KS was supported by a Stanford Data Science Scholarship and a Dantzig-Lieberman Operations
Research Fellowship. KT was supported by a Google Ph.D. Fellowship, a Simons-Berkeley VMware
Research Fellowship, a Microsoft Research Faculty Fellowship, NSF CAREER Award CCF-1844855,
NSF Grant CCF-1955039, and a PayPal research award.

We would like to thank Huishuai Zhang for his contributions to an earlier version of this project,
Moses Charikar and Yin Tat Lee for helpful conversations, and anonymous reviewers for feedback
on earlier variations of this paper.

40

References

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update
method: a meta-algorithm and applications. Theory Comput., 8(1):121–164, 2012.

[AJSS19] AmirMahdi Ahmadinejad, Arun Jambulapati, Amin Saberi, and Aaron Sidford.
Perron-frobenius theory in nearly linear time: Positive eigenvectors, m-matrices, graph
kernels, and other applications. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, Jan-
uary 6-9, 2019, pages 1387–1404, 2019.

[AK07] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidef-
inite programs. In Proceedings of the 39th Annual ACM Symposium on Theory of
Computing, San Diego, California, USA, June 11-13, 2007, pages 227–236, 2007.

[AKK+20] Naman Agarwal, Sham M. Kakade, Rahul Kidambi, Yin Tat Lee, Praneeth Netrapalli,
and Aaron Sidford. Leverage score sampling for faster accelerated regression and ERM.
In International Conference on Algorithmic Learning Theory 2020, 2020.

[AKPS19] Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Iterative refine-
ment for ℓp-norm regression. In Proceedings of the Thirtieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January
6-9, 2019, pages 1405–1424, 2019.

[AL17] Zeyuan Allen-Zhu and Yuanzhi Li. Follow the compressed leader: Faster online learn-
ing of eigenvectors and faster MMWU. In Proceedings of the 34th International Confer-
ence on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
pages 116–125, 2017.

[All17] Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient meth-
ods. J. Mach. Learn. Res., 18:221:1–221:51, 2017.

[ALO16] Zeyuan Allen Zhu, Yin Tat Lee, and Lorenzo Orecchia. Using optimization to obtain a
width-independent, parallel, simpler, and faster positive SDP solver. In Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, January 10-12, 2016, pages 1824–1831, 2016.

[AO19] Zeyuan Allen-Zhu and Lorenzo Orecchia. Nearly linear-time packing and covering
LP solvers - achieving width-independence and -convergence. Math. Program., 175(1-
2):307–353, 2019.

[AQRY16] Zeyuan Allen Zhu, Zheng Qu, Peter Richtárik, and Yang Yuan. Even faster accelerated
coordinate descent using non-uniform sampling. In Proceedings of the 33nd Interna-
tional Conference on Machine Learning, ICML 2016, New York City, NY, USA, June
19-24, 2016, pages 1110–1119, 2016.

[ARV09] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric em-
beddings and graph partitioning. J. ACM, 56(2):5:1–5:37, 2009.

[AW21] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster
matrix multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 522–539.
SIAM, 2021.

41

[AZLOW17] Zeyuan Allen-Zhu, Yuanzhi Li, Rafael Oliveira, and Avi Wigderson. Much faster
algorithms for matrix scaling. In Proceedings of the 58th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 890–901, 2017.

[BBN13] Michel Baes, Michael Bürgisser, and Arkadi Nemirovski. A randomized mirror-prox
method for solving structured large-scale matrix saddle-point problems. SIAM J.
Optimization, 23(2):934–962, 2013.

[BCLL18] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, and Yuanzhi Li. An homotopy
method for lp regression provably beyond self-concordance and in input-sparsity time.
In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 1130–1137, 2018.

[BHV08] Erik G. Boman, Bruce Hendrickson, and Stephen A. Vavasis. Solving elliptic finite
element systems in near-linear time with support preconditioners. SIAM J. Numerical
Analysis, 46(6):3264–3284, 2008.

[BS95] Avrim Blum and Joel Spencer. Coloring random and semi-random k-colorable graphs.
J. Algorithms, 19(2):204–234, 1995.

[CDG19] Yu Cheng, Ilias Diakonikolas, and Rong Ge. High-dimensional robust mean estimation
in nearly-linear time. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019,
pages 2755–2771, 2019.

[CDST19] Yair Carmon, John C. Duchi, Aaron Sidford, and Kevin Tian. A rank-1 sketch for
matrix multiplicative weights. In Conference on Learning Theory, COLT 2019, 25-28
June 2019, Phoenix, AZ, USA, pages 589–623, 2019.

[CFB19] Yeshwanth Cherapanamjeri, Nicolas Flammarion, and Peter L. Bartlett. Fast mean
estimation with sub-gaussian rates. In Conference on Learning Theory, COLT 2019,
25-28 June 2019, Phoenix, AZ, USA, pages 786–806, 2019.

[CG18] Yu Cheng and Rong Ge. Non-convex matrix completion against a semi-random adver-
sary. In Conference On Learning Theory, COLT 2018, Stockholm, Sweden, 6-9 July
2018, pages 1362–1394, 2018.

[CKK+18] Michael B. Cohen, Jonathan A. Kelner, Rasmus Kyng, John Peebles, Richard Peng,
Anup B. Rao, and Aaron Sidford. Solving directed laplacian systems in nearly-linear
time through sparse LU factorizations. In 59th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages
898–909, 2018.

[CKM+11] Paul F. Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, and
Shang-Hua Teng. Electrical flows, laplacian systems, and faster approximation of
maximum flow in undirected graphs. In Proceedings of the 43rd ACM Symposium
on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages
273–282, 2011.

[CKM+14] Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard Peng,
Anup B. Rao, and Shen Chen Xu. Solving SDD linear systems in nearly mlog1/2n

42

time. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May
31 - June 03, 2014, pages 343–352, 2014.

[CKP+16] Michael B. Cohen, Jonathan A. Kelner, John Peebles, Richard Peng, Aaron Sidford,
and Adrian Vladu. Faster algorithms for computing the stationary distribution, simu-
lating random walks, and more. In IEEE 57th Annual Symposium on Foundations of
Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick,
New Jersey, USA, pages 583–592, 2016.

[CKP+17] Michael B. Cohen, Jonathan A. Kelner, John Peebles, Richard Peng, Anup B. Rao,
Aaron Sidford, and Adrian Vladu. Almost-linear-time algorithms for markov chains
and new spectral primitives for directed graphs. In Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 410–419, 2017.

[CMSV17] Michael B. Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. Negative-
weight shortest paths and unit capacity minimum cost flow in õ (m10/7 log W) time
(extended abstract). In Proceedings of the Twenty-Eighth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, Jan-
uary 16-19, pages 752–771, 2017.

[CMTV17a] Michael B. Cohen, Aleksander Madry, Dimitris Tsipras, and Adrian Vladu. Matrix
scaling and balancing via box constrained newton’s method and interior point methods.
In Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 902–913, 2017.

[CMTV17b] Michael B. Cohen, Aleksander Madry, Dimitris Tsipras, and Adrian Vladu. Matrix
scaling and balancing via box constrained newton’s method and interior point methods.
In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, pages 902–913, 2017.

[CMY20] Yeshwanth Cherapanamjeri, Sidhanth Mohanty, and Morris Yau. List decodable mean
estimation in nearly linear time. In 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages
141–148, 2020.

[DBL14] Aaron Defazio, Francis R. Bach, and Simon Lacoste-Julien. SAGA: A fast incre-
mental gradient method with support for non-strongly convex composite objectives.
In Advances in Neural Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, pages 1646–1654, 2014.

[DG03] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson
and lindenstrauss. Random Struct. Algorithms, 22(1):60–65, 2003.

[DHS11] John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of Machine Learning Research,
12:2121–2159, 2011.

[DKP+17] David Durfee, Rasmus Kyng, John Peebles, Anup B. Rao, and Sushant Sachdeva.
Sampling random spanning trees faster than matrix multiplication. In Proceedings of

43

the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017, pages 730–742, 2017.

[DS08] Samuel I. Daitch and Daniel A. Spielman. Faster approximate lossy generalized flow
via interior point algorithms. In Proceedings of the 40th Annual ACM Symposium on
Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages
451–460, 2008.

[DWZ23] Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmet-
ric hashing. In 64th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2023. IEEE, 2023.

[FK00] Uriel Feige and Robert Krauthgamer. Finding and certifying a large hidden clique in
a semirandom graph. Random Struct. Algorithms, 16(2):195–208, 2000.

[FK01] Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. J. Comput.
Syst. Sci., 63(4):639–671, 2001.

[FLS+17] Shaun Fallat, Steffen Lauritzen, Kayvan Sadeghi, Caroline Uhler, Nanny Wermuth,
and Piotr Zwiernik. Total positivity in markov structures. Ann. Statist., 45(3):1152–
1184, 06 2017.

[FS55] G. E. Forsythe and E. G. Straus. On best conditioned matrices. Proceedings of the
American Mathematical Society, 6(3):340–345, 1955.

[Gal14] François Le Gall. Powers of tensors and fast matrix multiplication. In International
Symposium on Symbolic and Algebraic Computation, ISSAC ’14, Kobe, Japan, July
23-25, 2014, pages 296–303. ACM, 2014.

[GHM15] Dan Garber, Elad Hazan, and Tengyu Ma. Online learning of eigenvectors. In Proceed-
ings of the 32nd International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, pages 560–568, 2015.

[GM12] Bernd Gartner and Jiri Matousek. Approximation Algorithms and Semidefinite Pro-
gramming. Springer, 2012.

[GO18] Ankit Garg and Rafael Oliveira. Recent progress on scaling algorithms and applica-
tions. Bulletin of EATCS, 2(125), 2018.

[GR89] A. Greenbaum and G. H. Rodrigue. Optimal preconditioners of a given sparsity pat-
tern. BIT Numerical Mathematics, 29(4):610–634, 1989.

[Gre90] William H. Greene. Econometric analysis. Prentice Hall, 1990.

[GW95] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. ACM,
42(6):1115–1145, 1995.

[HJS+22] Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Solving
SDP faster: A robust IPM framework and efficient implementation. In 63rd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO,
USA, October 31 - November 3, 2022, pages 233–244. IEEE, 2022.

44

[HMMT18] Jeremy G. Hoskins, Cameron Musco, Christopher Musco, and Charalampos E.
Tsourakakis. Learning networks from random walk-based node similarities. CoRR,
abs/1801.07386, 2018.

[HMT11] Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp. Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix decomposi-
tions. SIAM Review, 53(2):217–288, 2011.

[Jer92] Mark Jerrum. Large cliques elude the metropolis process. Random Struct. Algorithms,
3(4):347–360, 1992.

[JJUW11] Rahul Jain, Zhengfeng Ji, Sarvagya Upadhyay, and John Watrous. QIP = PSPACE.
J. ACM, 58(6):30:1–30:27, 2011.

[JKL+20] Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song.
A faster interior point method for semidefinite programming. In 61st IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,
November 16-19, 2020, pages 910–918, 2020.

[JLL+20] Arun Jambulapati, Yin Tat Lee, Jerry Li, Swati Padmanabhan, and Kevin Tian. Pos-
itive semidefinite programming: Mixed, parallel, and width-independent. In Proceed-
ings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC
2020, 2020.

[JLL+21] Arun Jambulapati, Yin Tat Lee, Jerry Li, Swati Padmanabhan, and Kevin Tian.
Positive semidefinite programming: Mixed, parallel, and width-independent. CoRR,
abs/2002.04830v3, 2021.

[JLM+21] Arun Jambulapati, Jerry Li, Christopher Musco, Aaron Sidford, and Kevin Tian. Fast
and near-optimal diagonal preconditioning. CoRR, abs/2008.01722, 2021.

[JLT20] Arun Jambulapati, Jerry Li, and Kevin Tian. Robust sub-gaussian principal compo-
nent analysis and width-independent schatten packing. In Advances in Neural Infor-
mation Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[JS19] Yujia Jin and Aaron Sidford. Principal component projection and regression in nearly
linear time through asymmetric SVRG. In Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 3863–3873, 2019.

[JS21] Arun Jambulapati and Aaron Sidford. Ultrasparse ultrasparsifiers and faster lapla-
cian system solvers. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 540–559,
2021.

[JSS18] Arun Jambulapati, Kirankumar Shiragur, and Aaron Sidford. Efficient structured
matrix recovery and nearly-linear time algorithms for solving inverse symmetric m-
matrices. CoRR, abs/1812.06295, 2018.

[JY12] Rahul Jain and Penghui Yao. A parallel approximation algorithm for mixed packing
and covering semidefinite programs. CoRR, abs/1201.6090, 2012.

45

[JZ13] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in Neural Information Processing Systems 26: 27th
Annual Conference on Neural Information Processing Systems 2013. Proceedings of a
meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pages 315–323,
2013.

[KB15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
Proceedings of the 3rd International Conference on Learning Representations (ICLR),
2015.

[KLM+14] Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sid-
ford. Single pass spectral sparsification in dynamic streams. In 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA,
October 18-21, 2014, pages 561–570, 2014.

[KLP+16] Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A. Spielman.
Sparsified cholesky and multigrid solvers for connection laplacians. In Proceedings of
the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
Cambridge, MA, USA, June 18-21, 2016, pages 842–850, 2016.

[KM09] Jonathan A. Kelner and Aleksander Madry. Faster generation of random spanning
trees. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2009, October 25-27, 2009, Atlanta, Georgia, USA, pages 13–21, 2009.

[KMP10] Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving
SDD linear systems. In 51th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 235–244,
2010.

[KMP11] Ioannis Koutis, Gary L. Miller, and Richard Peng. A nearly-m log n time solver for
SDD linear systems. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 590–598,
2011.

[KOSZ13] Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. A
simple, combinatorial algorithm for solving SDD systems in nearly-linear time. In
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pages 911–920, 2013.

[KR83] Samuel Karlin and Yosef Rinott. M-matrices as covariance matrices of multinormal
distributions. Linear Algebra and its Applications, 52-53:419 – 438, 1983.

[KRSS15] Rasmus Kyng, Anup Rao, Sushant Sachdeva, and Daniel A. Spielman. Algorithms
for lipschitz learning on graphs. In Proceedings of The 28th Conference on Learning
Theory, COLT 2015, Paris, France, July 3-6, 2015, pages 1190–1223, 2015.

[KRU14] Philip A. Knight, Daniel Ruiz, and Bora Uçar. A symmetry preserving algorithm for
matrix scaling. SIAM Journal on Matrix Analysis and Applications, 35(3):931–955,
2014.

46

[KS16] Rasmus Kyng and Sushant Sachdeva. Approximate gaussian elimination for laplacians
- fast, sparse, and simple. In IEEE 57th Annual Symposium on Foundations of Com-
puter Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New
Jersey, USA, pages 573–582, 2016.

[KV05] Adam Tauman Kalai and Santosh S. Vempala. Efficient algorithms for online decision
problems. J. Comput. Syst. Sci., 71(3):291–307, 2005.

[LMP13] Mu Li, Gary L. Miller, and Richard Peng. Iterative row sampling. In 54th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 127–136, 2013.

[LN93] Michael Luby and Noam Nisan. A parallel approximation algorithm for positive linear
programming. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory
of Computing, May 16-18, 1993, San Diego, CA, USA, pages 448–457, 1993.

[LS13] Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent methods
and faster algorithms for solving linear systems. In 54th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA,
USA, pages 147–156, 2013.

[LS14] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving
linear programs in õ(vrank) iterations and faster algorithms for maximum flow. In
55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014,
Philadelphia, PA, USA, October 18-21, 2014, pages 424–433, 2014.

[LS17] Yin Tat Lee and He Sun. An sdp-based algorithm for linear-sized spectral sparsifi-
cation. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 678–687,
2017.

[LSTZ20] Jerry Li, Aaron Sidford, Kevin Tian, and Huishuai Zhang. Well-conditioned meth-
ods for ill-conditioned systems: Linear regression with semi-random noise. CoRR,
abs/2008.01722, 2020.

[Mad13] Aleksander Madry. Navigating central path with electrical flows: From flows to match-
ings, and back. In 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 253–262, 2013.

[MM15] Cameron Musco and Christopher Musco. Randomized block krylov methods for
stronger and faster approximate singular value decomposition. In Advances in Neural
Information Processing Systems 28: Annual Conference on Neural Information Pro-
cessing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 1396–
1404, 2015.

[MMV12] Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Approx-
imation algorithms for semi-random partitioning problems. In Proceedings of the 44th
Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA,
May 19 - 22, 2012, pages 367–384, 2012.

[MPW16] Ankur Moitra, William Perry, and Alexander S. Wein. How robust are reconstruction
thresholds for community detection? In Proceedings of the 48th Annual ACM SIGACT

47

Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21,
2016, pages 828–841, 2016.

[MRWZ16a] Michael W Mahoney, Satish Rao, Di Wang, and Peng Zhang. Approximating the
solution to mixed packing and covering lps in parallel o (epsilonˆ{-3}) time. In 43rd
International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[MRWZ16b] Michael W. Mahoney, Satish Rao, Di Wang, and Peng Zhang. Approximating the
solution to mixed packing and covering lps in parallel Õ(ϵ−3) time. In 43rd Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2016, July
11-15, 2016, Rome, Italy, pages 52:1–52:14, 2016.

[MST15] Aleksander Madry, Damian Straszak, and Jakub Tarnawski. Fast generation of random
spanning trees and the effective resistance metric. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4-6, 2015, pages 2019–2036, 2015.

[OSV12] Lorenzo Orecchia, Sushant Sachdeva, and Nisheeth K. Vishnoi. Approximating the
exponential, the lanczos method and an õ(m)-time spectral algorithm for balanced
separator. In Proceedings of the 44th Symposium on Theory of Computing Conference,
STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 1141–1160, 2012.

[OV11] Lorenzo Orecchia and Nisheeth K. Vishnoi. Towards an sdp-based approach to spectral
methods: A nearly-linear-time algorithm for graph partitioning and decomposition. In
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages
532–545, 2011.

[PG90] Giorgio Pini and Giuseppe Gambolati. Is a simple diagonal scaling the best precon-
ditioner for conjugate gradients on supercomputers? Advances in Water Resources,
13(3):147–153, 1990.

[PS14] Richard Peng and Daniel A. Spielman. An efficient parallel solver for SDD linear
systems. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA,
May 31 - June 03, 2014, pages 333–342, 2014.

[PST95] Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Fast approximation algorithms
for fractional packing and covering problems. Math. Oper. Res., 20(2):257–301, 1995.

[PTZ16] Richard Peng, Kanat Tangwongsan, and Peng Zhang. Faster and simpler width-
independent parallel algorithms for positive semidefinite programming. CoRR,
abs/1201.5135v3, 2016.

[QGH+22] Zhaonan Qu, Wenzhi Gao, Oliver Hinder, Yinyu Ye, and Zhengyuan Zhou. Optimal
diagonal preconditioning: Theory and practice. CoRR, abs/2209.00809, 2022.

[QYZ20] Zhaonan Qu, Yinyu Ye, and Zhengyuan Zhou. Diagonal preconditioning: Theory and
algorithms. arXiv:2003.07545, 2020.

[RSL18] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Semidefinite relaxations for
certifying robustness to adversarial examples. In Advances in Neural Information

48

http://arxiv.org/abs/2003.07545

Processing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 10900–10910,
2018.

[RST09] Vladimir Rokhlin, Arthur Szlam, and Mark Tygert. A randomized algorithm for
principal component analysis. SIAM Journal on Matrix Analysis and Applications,
31(3):1100–1124, 2009.

[Sch18] Aaron Schild. An almost-linear time algorithm for uniform random spanning tree
generation. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 214–227,
2018.

[SH14] Martin Slawski and Matthias Hein. Estimation of positive definite m-matrices and
structure learning for attractive gaussian markov random fields. 473, 04 2014.

[Spi19] Daniel A. Spielman. Spectral and algebraic graph theory. Lecture notes, http://
cs-www.cs.yale.edu/homes/spielman/sagt/sagt.pdf, 2019.

[ST04] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. In Proceedings of the
36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-
16, 2004, pages 81–90, 2004.

[SV06] Thomas Strohmer and Roman Vershynin. A randomized solver for linear systems with
exponential convergence. In Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, 9th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems, APPROX 2006 and 10th Inter-
national Workshop on Randomization and Computation, RANDOM 2006, Barcelona,
Spain, August 28-30 2006, Proceedings, pages 499–507, 2006.

[SV14] Sushant Sachdeva and Nisheeth K. Vishnoi. Faster algorithms via approximation
theory. Foundations and Trends in Theoretical Computer Science, 9(2):125–210, 2014.

[Tre12] Lloyd N. Trefethen. Approximation Theory and Approximation Practice. Society for
Industrial and Applied Mathematics, USA, 2012.

[VB96] Lieven Vandenberghe and Stephen P. Boyd. Semidefinite programming. SIAM Review,
38(1):49–95, 1996.

[vdS69] A. van der Sluis. Condition numbers and equilibration of matrices. Numerische Math-
ematik, 14(1):14–23, 1969.

[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd.
In Proceedings of the 44th Symposium on Theory of Computing Conference, STOC
2012, New York, NY, USA, May 19 - 22, 2012, pages 887–898. ACM, 2012.

[WK06] Manfred K. Warmuth and Dima Kuzmin. Randomized PCA algorithms with regret
bounds that are logarithmic in the dimension. In Advances in Neural Information
Processing Systems 19, Proceedings of the Twentieth Annual Conference on Neural
Information Processing Systems, Vancouver, British Columbia, Canada, December 4-
7, 2006, pages 1481–1488, 2006.

49

http://cs-www.cs.yale.edu/homes/spielman/sagt/sagt.pdf
http://cs-www.cs.yale.edu/homes/spielman/sagt/sagt.pdf

[WSV00] Henry Wolkowicz, Romesh Saigal, and Lieven Vandenberghe. Handbook of Semidefinite
Programming: Theory, Algorithms, and Applications. Springer Nature, 2000.

[WXXZ23] Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds
for matrix multiplication: from alpha to omega. CoRR, abs/2307.07970, 2023.

[You01] Neal E. Young. Sequential and parallel algorithms for mixed packing and covering.
In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17
October 2001, Las Vegas, Nevada, USA, pages 538–546, 2001.

[ZLO15] Zeyuan Allen Zhu, Zhenyu Liao, and Lorenzo Orecchia. Spectral sparsification and
regret minimization beyond matrix multiplicative updates. In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, pages 237–245, 2015.

50

A Deferred proofs from Sections 3 and 5

A.1 Proof of Proposition 1

We give a proof of Proposition 1 in this section. First, we recall an algorithm for the testing variant
of a pure packing SDP problem given in [JLT20].

Proposition 5 (Theorem 5, [JLT20]). There is an algorithm, Atest, which given matrices {Mi}i∈[n]
and a parameter C, is an ϵ-approximate tester for the decision problem

does there exist w ∈ ∆n such that
∑
i∈[n]

wiMi ⪯ CI? (39)

The algorithm Atest succeeds with probability ≥ 1− δ and runs in time

O

(
Tmv

(
{Mi}i∈[n]

)
· log

2(nd(δϵ)−1) log2 d

ϵ5

)
.

Proof of Proposition 1. As an immediate result of Proposition 5, we can solve (11) to multiplicative
accuracy ϵ using a binary search. This reduction is derived as Lemma A.1 of [JLL+20], but we give
a brief summary here. We subdivide the range [OPT−,OPT+] into K buckets of multiplicative
range 1 + ϵ

3 , i.e., with endpoints OPT− · (1 + ϵ
3)

k for 0 ≤ k ≤ K and

K = O

(
1

ϵ
· log

(
OPT+

OPT−

))
.

We then binary search over 0 ≤ k ≤ K to determine the value of OPT(v) to ϵ-multiplicative
accuracy, returning the largest endpoint for which the decision variant in Proposition 5 returns
feasible (with accuracy ϵ

3). By the guarantees of Proposition 5, the feasible point returned by
Proposition 5 for this endpoint will attain an ϵ-multiplicative approximation to the optimization
variant (11), and the runtime is that of Proposition 5 with an overhead of O(logK).

A.2 Polynomial approximation to the square root

We give a proof of Fact 4.

Fact 4 (Polynomial approximation of
√
·). Let M ∈ Sd≻0 have µI ⪯ M ⪯ κµI where µ is known.

Then for any δ ∈ (0, 1), there is an explicit polynomial p of degree O(
√
κ log κ

δ) with

(1− δ)M
1
2 ⪯ p(M) ⪯ (1 + δ)M

1
2 .

Proof. We will instead prove the following fact: for any ϵ ∈ (0, 1), there is an explicit degree-
O
(√

κ log κ
ϵ

)
polynomial p satisfying

max
x∈[1

κ
,1]
|p(x)−

√
x| ≤ ϵ.

The conclusion for arbitrary scalars with multiplicative range [µ, κµ] will then follow from setting
ϵ = δκ−

1
2 (giving a multiplicative error guarantee), and the fact that rescaling the range [1κ , 1] will

preserve this multiplicative guarantee (adjusting the coefficients of the polynomial as necessary,
since µ is known). Finally, the conclusion for matrices follows since p(M) and M

1
2 commute.

51

Denote γ = 1
κ for convenience. We first shift and scale the function

√
x to adjust the region of

approximation from [γ, 1] to [−1, 1]. In particular, let h(x) =
√

1−γ
2 x+ γ+1

2 . If we can find some
degree-∆ polynomial g(x) with |g(x)− h(x)| ≤ ϵ for all x ∈ [−1, 1], then

p(x) = g

(
2

1− γ
x − 1 + γ

1− γ

)
provides the required approximation to

√
x.

To construct g, we take the Chebyshev interpolant of h(x) on the interval [−1, 1]. Since h is
analytic on [−1, 1], we can apply standard results on the approximation of analytic functions by
polynomials, and specifically Chebyshev interpolants. Specifically, by Theorem 8.2 in [Tre12], if
h(z) is analytic in an open Bernstein ellipse with parameter ρ in the complex plane, then:

max
x∈[−1,1]

|g(x)− h(x)| ≤ 4M

ρ− 1
ρ−∆,

where M is the maximum of |h(z)| for z in the ellipse. It can be checked that h(x) is analytic on
an open Bernstein ellipse with parameter ρ =

1+
√
γ

1−√
γ — i.e., with major axis length ρ+ ρ−1 = 21+γ

1−γ .

We can then check that M =
√
1 + γ ≤

√
2 and ρ− 1 ≥ 2

√
γ. Since for all γ < 1,(

1−√γ
1 +
√
γ

)1/2γ

≤ 1

e
,

we conclude that 4M
ρ−1ρ

−∆ ≤ ϵ as long as ∆ ≥ 1
2γ log

(
ϵ√
2γ

)
, which completes the proof.

A.3 Deferred proofs from Section 5.2

Lemma 18. Let B ∈ Rd×d and let A ∈ Sd≻0. Then min (∥AB∥2 , ∥BA∥2) ≥
1

κ(A) ∥B∥2 ∥A∥2.

Proof. We begin with the first entry in the above minimum. Let v be the unit vector with ∥Bv∥2 =
∥B∥∞, and note ∥ABv∥2 ≥

1
κ(A) ∥A∥∞ ∥Bv∥2 by definition of κ(A). Hence,

∥AB∥∞ ≥ ∥ABv∥2 ≥
1

κ(A)
∥A∥∞ ∥Bv∥2 =

1

κ(A)
∥A∥∞ ∥B∥∞ .

We move onto the second entry. Let v be a vector such that ∥Av∥2 and ∥BAv∥2 = ∥B∥∞; note
that ∥v∥2 ≤

κ(A)
∥A∥∞

. The conclusion follows from rearranging the following display:

κ(A) ∥BA∥∞
∥A∥∞

≥ ∥BA∥∞ ∥v∥2 ≥ ∥BAv∥2 = ∥B∥∞ .

Lemma 26. For any matrix K ∈ Sd≻0 and λ ≥ 0, κ⋆o(K+ λI) ≤ κ⋆o(K).

Proof. By scaling K by λ appropriately (since κ⋆o is invariant under scalar multiplication), it suffices
to take λ = 1. The definition of κ⋆o implies there exists a diagonal matrix W such that

I ⪯W
1
2KW

1
2 ⪯ κ⋆o(K)I ⇐⇒ W−1 ⪯ K ⪯ κ⋆o(K)W−1. (40)

Thus, to demonstrate κ⋆o(K+ I) ≤ κ⋆o(K) it suffices to exhibit a diagonal W̃ such that

W̃ ⪯ K+ I ⪯ κ⋆o(K)W̃.

We choose W̃ = W−1 + I; then, the above display follows from (40) and I ⪯ I ⪯ κ⋆o(K)I.

52

Lemma 27. Let K ∈ Sd≻0. Then, for λ ≥ 1
ϵλmax(K), κ(K+λI) ≤ 1+ϵ. Moreover, given a diagonal

W ∈ Sd⪰0 such that κ(W
1
2 (K+λI)W

1
2) ≤ κscale for 0 ≤ λ ≤ ϵλmin(K)

1+ϵ , κ(W
1
2KW

1
2) ≤ (1+ϵ)κscale.

Proof. To see the first claim, the largest eigenvalue of K + λI is at most λ + λmax(K) and the
smallest is at least λ, so the condition number is at most 1 + ϵ as desired.

To see the second claim, it follows from the fact that outer rescalings preserve Loewner order,
and then combining

K ⪯ K+ λI =⇒ λmax

(
W

1
2KW

1
2

)
≤ λmax

(
W

1
2 (K+ λI)W

1
2

)
,

K ⪰ 1

1 + ϵ
(K+ λI) =⇒ λmin

(
W

1
2KW

1
2

)
≥ 1

1 + ϵ
λmin

(
W

1
2 (K+ λI)W

1
2

)
.

Lemma 28. Let K ∈ Sd≻0, and let W ∈ Sd⪰0 be diagonal. Then for any λ > 0,

κ
(
W

1
2 (K+ λI)W

1
2

)
≤ 2κ

(
W

1
2

(
K+

λ

2
I

)
W

1
2

)
.

Proof. First, because outer rescalings preserve Loewner order, it is immediate that

K+
λ

2
I ⪯ K+ λI =⇒ λmax

(
W

1
2

(
K+

λ

2

)
W

1
2 I

)
≤ λmax

(
W

1
2 (K+ λI)W

1
2

)
.

Moreover, the same argument shows that

1

2
K+

λ

2
I ⪯ K+

λ

2
I =⇒ λmin

(
W

1
2

(
K+

λ

2
I

)
W

1
2

)
≥ 1

2
λmin

(
W

1
2 (K+ I)W

1
2

)
.

Combining the above two displays yields the conclusion.

B M-matrix and SDD matrix facts

Before proving Lemmas 15 and 16, we prove the following fact about the density of the inverses of
irreducible invertible symmetric M-matrices. Recall that a matrix M ∈ Rn×n is irreducible if there
does not exist a subset S ⊆ [n] with S /∈ {∅, [n]} such that Mij = 0 for all i ∈ S and j /∈ S.

Lemma 33 (Density of inverses of irreducible symmetric M-matrices). If M ∈ Rn×n is an irre-
ducible invertible symmetric M -matrix then [M−1]ij > 0 for all i, j ∈ [n].

Proof. Recall that M is an invertible M-matrix if and only if M = sI−A where s > 0, A ∈ Rn×n
≥0

and ρ(A) < s. In this case

[
M−1

]
ij
=

1

s

[(
I− 1

s
A

)−1
]
ij

=
1

s

∞∑
k=0

[(
1

s
A

)k
]
ij

.

Consider the undirected graph G which has A as its adjacency matrix, i.e., Aij is the weight of an
edge from i to j whenever Aij ̸= 0. Now [Ak]ij > 0 if and only if there is a path of length k from
i to j in G. However, by the assumption that M is irreducible we have that G is connected and
therefore there is a path between any two vertices in the graph and the result follows.

53

Lemma 15. Let M be an invertible symmetric M-matrix. Let x = M−1
1 and define X = diag (x).

Then XMX is a SDD Z-matrix.

Proof. XMX is trivially symmetric and therefore it suffices to show that (1) e⊤i XMXej < 0 for all
i ̸= j and (2) XMX1 ≥ 0 entrywise.

For (1) note for all i ∈ [n], Xii = e⊤i M
−1
1 ≥ 0 as M−1 is nonnegative by Lemma 33 and

Xei = Xiiei as X is diagonal. Using these two equalities for all i ̸= j we obtain e⊤i XMXej =
(XiiXjj) · e⊤i Mej ≤ 0 as Mij ≤ 0 by definition of M-matrices.

For (2) note X1 = M−1
1 and XMX1 = XMM−1

1 = X1 = M−1
1 ≥ 0 where again, in the

last inequality we used M−1 is entrywise nonnegative by Lemma 33.

Lemma 16. Let A be an invertible SDD Z-matrix. For any α ≥ 0, the matrix B = (A−1 + αI)−1

is also an invertible SDD Z-matrix.

Proof. B is clearly symmetric and therefore to show that B is a SDD Z-matrix it suffices to show
that (1) e⊤i Bej ≤ 0 for all i ̸= j and (2) B1 ≥ 0.

The claim is trivial when α = 0 so we assume without loss of generality that α > 0. To prove
the inequality we use that by the Woodbury matrix identity it holds that

B = α−1I− α−2
(
A+ α−1I

)−1
= A−A(α−1I +A)−1A.

Further, we use that A+α−1I is a M-matrix by definition and therefore
(
A+ α−1I

)−1 is an inverse
M-matrix that has entrywise nonnegative entries by Lemma 33.

Now for (1) by these two claims we have that for all i ̸= j it is the case that

e⊤i Bej = e⊤i

(
α−1I− α−2

(
A+ α−1I

)−1
)
ej =

1

α2
e⊤i
(
A+ α−1I

)−1
ej ≤ 0 .

For (2) we use the other Woodbury matrix equality and see that

B1 =
[
(α−1I +A)−A

]
(α−1I +A)−1A1 = α−1(α−1I +A)−1A1 ≥ 0 entrywise.

This final inequality follows from the fact that A1 ≥ 0 entrywise because A is a SDD Z-matrix and
hence (α−1I +A)−1(A1) ≥ 0 because (α−1I +A)−1 is entrywise nonnegative.

Lemma 17. If A† is a Laplacian of a connected graph, then (A+ αLKn)
† for any α > 0 is a

Laplacian matrix.

Proof. It is clear that (A+ αLKn)
† is symmetric, positive semidefinite, and has 1 in its kernel. By

standard algebraic manipulation and the Woodbury matrix identity we have,

(A+ αLKn)
† =

(
A+ αLKn + 2α11⊤

)−1
− 1

2αn2
11

⊤ =
(
A+ α11⊤ + αnI

)−1
− 1

2αn2
11

⊤

=

((
A† +

1

αn2
11

⊤
)−1

+ αnI

)−1

− 1

2αn2
11

⊤ =
1

αn

(
1

αn

(
A† +

1

αn2
11

⊤
)−1

+ I

)−1

− 1

2αn2
11

⊤

=
1

αn

((αnA† +
1

n
11

⊤
)−1

+ I

)−1

− 1

2n
11

⊤

 =
1

αn

[
I−

(
αnA† +

1

n
11

⊤ + I
)−1

− 1

2n
11

⊤

]

=
1

αn

[
I−

(
αnA† + I

)−1
]
.

The conclusion follows since αnA† + I is a positive definite SDD matrix: its inverse is entrywise
nonpositive on off-diagonals by Lemma 16, and thus (A+ αLKn)

† is a Z-matrix, and hence also a
Laplacian.

54

C Jacobi preconditioning

In this section, we analyze a popular heuristic for computing diagonal preconditioners. Given a
positive definite matrix K ∈ Sd≻0, consider applying the outer scaling

W
1
2KW

1
2 , where W = diag (w) and wi := K−1

ii for all i ∈ [d]. (41)

In other words, the result of this scaling is to simply normalize the diagonal of K to be all ones;
we remark W has strictly positive diagonal entries, else K is not positive definite. Also called the
Jacobi preconditioner, a result of Van de Sluis [GR89, vdS69] proves that for any matrix this scaling
leads to a condition number that is within an m factor of optimal, where m ≤ d is the maximum
number of non-zeros in any row of K. For completeness, we state a generalization of Van de Sluis’s
result below. We also require a simple fact; both are proven at the end of this section.

Fact 6. For any A,B ∈ Sd≻0, κ(A
1
2BA

1
2) ≤ κ(A)κ(B).

Proposition 6. Let W be defined as in (41) and let m denote the maximum number of non-zero’s
in any row of K. Then,

κ
(
W

1
2KW

1
2

)
≤ min

(
m,
√

nnz(K)
)
· κ⋆o (K) .

Note that m and
√

nnz(K) are both ≤ d, so it follows that κ(W
1
2KW

1
2) ≤ d · κ⋆o (K). While

the approximation factor in Proposition 6 depends on the dimension or sparsity of K, we show that
a similar analysis actually yields a dimension-independent approximation. Specifically, the Jacobi
preconditioner always obtains condition number no worse than the optimal squared. To the best of
our knowledge, this simple but powerful bound has not been observed in prior work.

Proposition 7. Let W be defined as in (41). Then,

κ
(
W

1
2KW

1
2

)
≤ (κ⋆o (K))2 .

Proof. Let W⋆ attain the minimum in the definition of κ⋆o, i.e., κ(K⋆) = κ⋆o(K) for K⋆ := W
1
2
⋆ KW

1
2
⋆ .

Note that since [W
1
2KW

1
2]ii = 1 by definition of W it follows that for all i

[W⋆W
−1]ii = [W⋆W

−1]ii · [W
1
2KW

1
2]ii = [K⋆]ii = e⊤i K⋆ei ∈ [λmin(K⋆), λmax(K⋆)]

where the last step used that λmin(K⋆)I ⪯ K⋆ ⪯ λmax(K⋆)I. Consequently, for W̃ := W−1
⋆ W it

follows that κ(W̃) = κ(W̃−1) ≤ λmax(K⋆)/λmin(K⋆) = κ(K⋆). The result follows from Fact 6 as

κ
(
W

1
2KW

1
2

)
= κ

(
W̃

1
2K⋆W̃

1
2

)
≤ κ

(
W̃
)
κ (K⋆) ≤ (κ⋆o)

2 .

Next, we demonstrate that Proposition 7 is essentially tight by exhibiting a family of matrices
which attain the bound of Proposition 7 up to a constant factor. At a high level, our strategy is
to create two blocks where the “scales” of the diagonal normalizing rescaling are at odds, whereas a
simple rescaling of one of the blocks would result in a quadratic savings in conditioning.

55

Proposition 8. Consider a 2d× 2d matrix M such that

K =

(
A 0
0 B

)
, A =

√
dI+ 11

⊤, B = I− 1√
d+ d

11
⊤,

where A and B are d× d. Then, defining W as in (41),

κ
(
W

1
2KW

1
2

)
= Θ(d), κ⋆o (K) = Θ

(√
d
)
.

Proof. Because W
1
2KW

1
2 is blockwise separable, to understand its eigenvalue distribution it suffices

to understand the eigenvalues of the two blocks. First, the upper-left block (the rescaling of the
matrix A) is multiplied by 1√

d+1
. It is straightforward to see that the resulting eigenvalues are

√
d√

d+ 1
with multiplicity d− 1,

√
d with multiplicity 1.

Similarly, the bottom-right block is multiplied by d+
√
d

d+
√
d−1

, and hence its rescaled eigenvalues are

d+
√
d

d+
√
d− 1

with multiplicity d− 1,

√
d

d+
√
d− 1

with multiplicity 1.

Hence, the condition number of W
1
2KW

1
2 is d +

√
d − 1 = Θ(d). However, had we rescaled the

top-left block to be a
√
d factor smaller, it is straightforward to see the resulting condition number

is O(
√
d). On the other hand, since the condition number of K is O(d), Proposition 7 shows that

the optimal condition number κ⋆o(K) is Ω(
√
d), and combining yields the claim. We remark that as

d→∞, the constants in the upper and lower bounds agree up to a low-order term.

Finally, we provide the requisite proofs of Fact 6 and Proposition 6.

Fact 6. For any A,B ∈ Sd≻0, κ(A
1
2BA

1
2) ≤ κ(A)κ(B).

Proof. It is straightforward from λmin(A)I ⪯ A ⪯ λmax(A)I that√
λmin(A) ∥u∥2 ≤

∥∥∥A 1
2u
∥∥∥
2
≤
√

λmax(A) ∥u∥2 ,

and an analogous fact holds for B. Hence, we can bound the eigenvalues of A
1
2BA

1
2 :

λmax

(
A

1
2BA

1
2

)
= max

∥u∥2=1
u⊤A

1
2BA

1
2Bu ≤ λmax(A) max

∥v∥2=1
v⊤Bv = λmax(A)λmax(B),

λmin

(
A

1
2BA

1
2

)
= min

∥u∥2=1
u⊤A

1
2BA

1
2Bu ≥ λmin(A) min

∥v∥2=1
v⊤Bv = λmin(A)λmin(B).

Dividing the above two equations yields the claim.

Proposition 6. Let W be defined as in (41) and let m denote the maximum number of non-zero’s
in any row of K. Then,

κ
(
W

1
2KW

1
2

)
≤ min

(
m,
√

nnz(K)
)
· κ⋆o (K) .

56

Proof. Throughout let κ⋆o := κ⋆o(K) for notational convenience. Let W⋆ obtain the minimum in

the definition of κ⋆o and let B = W
1
2
⋆ KW

1
2
⋆ . Also let WB be the inverse of a diagonal matrix with

the same entries as B’s diagonal. Note that κ(B) = κ⋆o and W
1
2
BBW

1
2
B = W

1
2KW

1
2 . So, to prove

Proposition 6, it suffices to prove that

κ

(
W

1
2
BBW

1
2
B

)
≤ min

(
m,
√

nnz(K)
)
· κ⋆o.

Let dmax denote the largest entry in W−1
B . We have that dmax ≤ λmax(B). Then let M =

(dmaxWB)
1
2B(dmaxWB)

1
2 and note that all of M’s diagonal entries are equal to dmax and κ (M) =

κ(W
1
2
BBW

1
2
B). Moreover, since dmaxWB has all entries ≥ 1, λmin(M) ≥ λmin(B). Additionally,

since a PSD matrix must have its largest entry on the diagonal, we have that ∥M∥2F ≤ nnz(M)d2max ≤
nnz(M)λmax(B)2. Accordingly, λmax(M) = ∥M∥2 ≤ ∥M∥F ≤

√
nnz(M)λmax(B).

From this lower bound on λmin(M) and upper bound on λmax(M), we have that

κ
(
W

1
2KW

1
2

)
= κ (M) ≤

√
nnz(M)λmax(B)

λmin(B)
=
√

nnz(M) · κ(B).

This proves one part of the minimum in Proposition 6. The second, which was already proven in
[vdS69] follows similarly. In particular, by the Gershgorin circle theorem we have that λmax(M) ≤
maxi∈[d] ∥Mi:∥1, where Mi: denotes the ith row for M. Since all entries in M are bounded by
dmax ≤ λmax(B), we have that maxi∈[d] ∥Mi:∥1 ≤ mλmax(B), and thus

κ
(
W

1
2KW

1
2

)
= κ (M) ≤ mλmax(B)

λmin(B)
= m · κ(B).

D Faster scalings with a conjectured subroutine

In this section, we demonstrate algorithms which achieve runtimes which scale as Õ(
√
κ⋆)14 matrix-

vector multiplies for computing approximately optimal scalings, assuming the existence of a suffi-
ciently general width-independent mixed packing and covering (MPC) SDP solver. Such runtimes
(which improve each of Theorems 14 and 13 by roughly a κ⋆ factor) would nearly match the cost of
the fastest solvers after rescaling, e.g. conjugate gradient methods. We also demonstrate that we
can achieve near-optimal algorithms for computing constant-factor optimal scalings for average-case
notions of conditioning under this assumption.

We first recall the definition of the general MPC SDP feasibility problem.

Definition 3 (MPC feasibility problem). Given sets of matrices {Pi}i∈[n] ∈ Sdp⪰0 and {Ci}i∈[n] ∈
Sdc⪰0, and error tolerance ϵ ∈ (0, 1), the mixed packing-covering (MPC) feasibility problem asks to
return weights w ∈ Rn

≥0 such that

λmax

∑
i∈[n]

wiPi

 ≤ (1 + ϵ)λmin

∑
i∈[n]

wiCi

 , (42)

14Throughout this section for brevity, we use κ⋆ to interchangeably refer to the quantities κ⋆
i or κ⋆

o of a particular
appropriate inner or outer rescaling problem.

57

or conclude that the following is infeasible for w ∈ Rn
≥0:

λmax

∑
i∈[n]

wiPi

 ≤ λmin

∑
i∈[n]

wiCi

 . (43)

If both (42) is feasible and (43) is infeasible, either answer is acceptable.

Throughout this section, we provide efficient algorithms under Assumption 1: namely, that
there exists a solver for the MPC feasibility problem at constant ϵ with polylogarithmic iteration
complexity and sufficient approximation tolerance. Such a solver would improve upon our algorithm
in Section 3 both in generality (i.e. without the restriction that the constraint matrices are multiples
of each other) and in the number of iterations.

Assumption 1. There is an algorithm MPC which takes inputs {Pi}i∈[n] ∈ Sdp⪰0, {Ci}i∈[n] ∈ Sdc⪰0,
and error tolerance ϵ, and solves problem (42), (43), in poly(log(ndρ), ϵ−1) iterations, where d :=

max(dp, dc), ρ := maxi∈[n]
λmax(Ci)
λmax(Pi)

. Each iteration uses O(1) n-dimensional vector operations, and
for ϵ′ = Θ(ϵ) with an appropriate constant, additionally requires computation of

ϵ′-multiplicative approximations to

〈
Pi,

exp
(∑

i∈[n]wiPi

)
Tr exp

(∑
i∈[n]wiPi

)〉 ∀i ∈ [n],

(
ϵ′, e

− log(ndρ)

ϵ′ Tr(Ci)
)

-approximations to

〈
Ci,

exp
(
−
∑

i∈[n]wiCi

)
Tr exp

(
−
∑

i∈[n]wiCi

)〉 ∀i ∈ [n],

(44)

for w ∈ Rn
≥0 with λmax

(∑
i∈[n]wiPi

)
, λmin

(∑
i∈[n]wiCi

)
≤ R for R = O(log(ndρ)ϵ).

In particular, we observe that the number of iterations of this conjectured subroutine depends
polylogarithmically on ρ, i.e. the runtime is width-independent.15 In our settings computing optimal
rescaled condition numbers, ρ = Θ(κ⋆); our solver in Section 3 has an iteration count depending
linearly on ρ. Such runtimes are known for MPC linear programs [MRWZ16a], however, such rates
have been elusive in the SDP setting. While the form of requirements in (44) may seem somewhat
unnatural at first glance, we observe that this is the natural generalization of the error tolerance
of known width-independent MPC LP solvers [MRWZ16a]. Moreover, these approximations mirror
the tolerances of our width-dependent solver in Section 3 (see Line 6 and Corollary 4).

We first record the following technical lemma, which we will repeatedly use.

Lemma 34. Given a matrix 0 ⪯ M ⪯ RI for some R > 0, sufficiently small constant ϵ, and
δ ∈ (0, 1), we can compute ϵ-multiplicative approximations to the quantities〈

aia
⊤
i , exp(M)

〉
for all i ∈ [n], and Tr exp(M)

in time O((Tmv(M)R+ nnz(A)) log n
δ), with probability at least 1− δ.

Proof. We discuss both parts separately. Regarding computing the inner products, equivalently,
the goal is to compute approximations to all

∥∥exp(12M)ai
∥∥2
2

for i ∈ [n]. First, by an application of

15The literature on approximate solvers for positive linear programs and semidefinite programs refer to logarithmic
dependences on ρ as width-independent, and we follow this convention in our exposition.

58

Fact 2 with δ = ϵ
8 exp(−2R), and then multiplying all sides of the inequality by exp(R), there is a

degree-O(R) polynomial such that(
1− ϵ

8

)
exp

(
1

2
M

)
⪯ exp

(
1

2
M

)
− ϵ

8
I ⪯ p

(
1

2
M

)
⪯ exp

(
1

2
M

)
+

ϵ

8
I ⪯

(
1 +

ϵ

8

)
exp

(
1

2
M

)
=⇒

(
1− ϵ

3

)
exp(M) ⪯ p

(
1

2
M

)2

⪯
(
1 +

ϵ

3

)
exp(M).

This implies that
∥∥p(12M)ai

∥∥2
2

approximates
∥∥exp(12M)ai

∥∥2
2

to a multiplicative ϵ
3 by the definition of

Loewner order. Moreover, applying Fact 1 with a sufficiently large k = O(log n
δ) implies by a union

bound that for all i ∈ [n],
∥∥Qp(12M)ai

∥∥2
2

is a ϵ-multiplicative approximation to
∥∥exp(12M)ai

∥∥2
2
. To

compute all the vectors Qp(12M)ai, it suffices to first apply p(12M) to all rows of Q, which takes
time O(Tmv(M) · kR) since p is a degree-O(R) polynomial. Next, once we have the explicit k × d
matrix Qp(12M), we can apply it to all {ai}i∈[n] in time O(nnz(A) · k).

Next, consider computing Tr exp(M), which by definition has

Tr exp(M) =
∑
j∈[d]

∥∥∥∥∥
[
exp

(
1

2
M

)]
j:

∥∥∥∥∥
2

2

.

Applying the same Q and p as before, we have by the following sequence of equalities

∑
j∈[d]

∥∥∥∥∥Q
[
exp

(
1

2
M

)]
j:

∥∥∥∥∥
2

2

= Tr
(
exp

(
1

2
M

)
Q⊤Q exp

(
1

2
M

))

= Tr
(
Q exp (M)Q⊤

)
=
∑
ℓ∈[k]

∥∥∥∥exp(1

2
M

)
Qℓ:

∥∥∥∥2
2

,

that for the desired approximation, it instead suffices to compute∑
ℓ∈[k]

∥∥∥∥p(1

2
M

)
Qℓ:

∥∥∥∥2
2

.

This can be performed in time O(Tmv(M) · kR) as previously argued.

A straightforward modification of this proof alongside Lemma 19 also implies that we can com-
pute these same quantities to p(AWA), when we are only given K = A2, assuming that K is
reasonably well-conditioned. We omit the proof, as it follows almost identically to the proofs of
Lemmas 34, 22, and 23, the latter two demonstrating how to appropriately apply Lemma 19.

Corollary 6. Let K ∈ Sd≻0 such that K = A2 and κ(K) ≤ κscale. Let W be a diagonal matrix such
that λmax(AWA) ≤ R. For δ, ϵ ∈ (0, 1), we can compute ϵ-multiplicative approximations to〈

aia
⊤
i , exp(AWA)

〉
for all i ∈ [n], and Tr exp(AWA)

with probability ≥ 1− δ in time O
(
Tmv(K) ·R ·

(
R+
√
κscale log

dκscale
δ

)
log n

δ

)
.

D.1 Approximating κ⋆ under Assumption 1

In this section, we show that, given Assumption 1, we obtain improved runtimes for all three types
of diagonal scaling problems, roughly improving Theorems 14 and 13 by a κ⋆ factor.

59

Inner scalings. We first demonstrate this improvement for inner scalings.

Theorem 15. Under Assumption 1, there is an algorithm which, given full-rank A ∈ Rn×d for
n ≥ d computes w ∈ Rn

≥0 such that κ(A⊤WA) ≤ (1 + ϵ)κ⋆i (A) for arbitrarily small ϵ = Θ(1), with
probability ≥ 1− δ in time

O

(
nnz(A) ·

√
κ⋆i (A) · poly log

nκ⋆i (A)

δ

)
.

Proof. For now, assume we know κ⋆i (A) exactly, which we denote as κ⋆i for brevity. Let {ai}i∈[n]
denote the rows of A, and assume that ∥ai∥2 = 1 for all i ∈ [n]. By scale invariance, this assumption
is without loss of generality. We instantiate Assumption 1 with Pi = aia

⊤
i and Ci = κ⋆i aia

⊤
i , for

i ∈ [n]. It is immediate that a solution yields an inner scaling with the same quality up to a 1 + ϵ
factor, because by assumption (43) is feasible so MPC cannot return “infeasible.”

We now instantiate the primitives in (44) needed by Assumption 1. Throughout, note that ρ = κ⋆i
in this setting. Since we run MPC for poly(log nκ⋆i) iterations, we will set δ′ ← δ · (poly(nκ⋆i))

−1 for
the failure probability of each of our computations in (44), such that by a union bound all of these
computations are correct.

By Lemma 34, we can instantiate the packing gradients to the desired approximation quality
in time O(nnz(A) · poly log nκ⋆

i
δ) with probability 1 − δ′. By Lemmas 2 and 3, we can instantiate

the covering gradients in time O(nnz(A)
√

κ⋆i · poly log nκ⋆
i

δ) with probability 1 − δ′. In applying
these lemmas, we use the assumption that λmin(

∑
i∈[n]wiCi) = O(log nκ⋆i) as in Assumption 1,

and that the covering matrices are a κ⋆i multiple of the packing matrices so λmax(
∑

i∈[n]wiCi) =
O(κ⋆i log nκ

⋆
i). Thus, the overall runtime of all iterations is

O

(
nnz(A) ·

√
κ⋆i · poly log

nκ⋆i
δ

)
for ϵ = Θ(1). To remove the assumption that we know κ⋆i (A), we can use an incremental search on
the scaling multiple between {Ci}i∈[n] and {Pi}i∈[n], starting from 1 and increasing by factors of
1+ ϵ, adding a constant overhead to the runtime. Our width will never be larger than O(κ⋆i (A)) in
any run, since MPC must conclude feasible when the width is sufficiently large.

Outer scalings. We next discuss the case where we wish to symmetrically outer scale a matrix
K ∈ Sd≻0 near-optimally (i.e. demonstrating an improvement to Theorem 14 under Assumption 1).

Theorem 16. Under Assumption 1, there is an algorithm which, given K ∈ Sd≻0 computes w ∈ Rd
≥0

such that κ(W
1
2KW

1
2) ≤ (1 + ϵ)κ⋆o(K) for arbitrarily small ϵ ∈ Θ(1), with probability ≥ 1 − δ in

time
O

(
Tmv(K) ·

√
κ⋆o(K) · poly log

dκ⋆o(K)

δ

)
.

Proof. Throughout we denote κ⋆o := κ⋆o(K) for brevity. Our proof follows that of Theorem 14, which
demonstrates that it suffices to reduce to the case where we have a K ∈ Sd≻0 with κ(K) ≤ κscale :=

3κ⋆o, and we wish to find an outer diagonal scaling W ∈ Sd≻0 such that κ(W
1
2KW

1
2) ≤ (1 + ϵ)κ⋆o.

We incur a polylogarithmic overhead on the runtime of this subproblem, by using it to solve all
phases of the homotopy method in Theorem 14, and the cost of an incremental search on κ⋆o.

To solve this problem, we again instantiate Assumption 1 with Pi = aia
⊤
i and Ci = κ⋆oaia

⊤
i ,

where {ai}i∈[d] are rows of A := K
1
2 . As in the proof of Theorem 14, the main difficulty is to

60

implement the gradients in (44) with only implicit access to A , which we again will perform to
probability 1 − δ′ for some δ′ = δ · (poly(nκ⋆o))−1 which suffices by a union bound. Applying
Lemmas 22 and 23 with the same parameters as in the proof of Theorem 14 (up to constants)
implies that we can approximate the covering gradients in (44) to the desired quality within time

O

(
Tmv(K) ·

√
κ⋆o · poly log

nκ⋆o
δ

)
.

Similarly, Corollary 6 implies we can compute the necessary approximate packing gradients in the
same time. Multiplying by the overhead of the homotopy method in Theorem 14 gives the result.

D.2 Average-case conditioning under Assumption 1

A number of recent linear system solvers depend on average notions of conditioning, namely the ratio
between the average eigenvalue and smallest [SV06, LS13, JZ13, DBL14, AQRY16, All17, AKK+20].
Normalized by dimension, we define this average conditioning as follows: for M ∈ Sd≻0,

τ (M) :=
Tr(M)

λmin(M)
.

Observe that since Tr(M) is the sum of eigenvalues, the following inequalities always hold:

d ≤ τ (M) ≤ dκ (M) . (45)

In analogy with κ⋆i and κ⋆o, we define for full-rank A ∈ Rn×d for n ≥ d, and K ∈ Sd≻0,

τ⋆i (A) := min
diagonal W⪰0

τ
(
A⊤WA

)
, τ⋆o (K) := min

diagonal W⪰0
τ
(
W

1
2KW

1
2

)
. (46)

We give an informal discussion on how to use Assumption 1 to develop a solver for approximating
τ⋆i to a constant factor, which has a runtime nearly-matching the fastest linear system solvers
depending on τ⋆i after applying the appropriate rescalings.16 Qualitatively, this may be thought of
as the average-case variant of Theorem 15. We defer an analogous result on approximating τ⋆o (with
or without a factorization) to future work for brevity.

To develop our algorithm for approximating τ⋆i , we require several tools. The first is the rational
approximation analog of the polynomial approximation in Fact 2.

Fact 7 (Rational approximation of exp [SV14], Theorem 7.1). Let M ∈ Sd⪰0 and δ > 0. There is
an explicit polynomial p of degree ∆ = Θ(log(δ−1)) with absolute coefficients at most ∆O(∆) with

exp(−M)− δI ⪯ p

((
I+

M

∆

)−1
)
⪯ exp(−M) + δI.

We also use the runtime of the fastest-known solver for linear systems based on row subsampling,
with a runtime dependent on the average conditioning τ . Our goal is to compute reweightings W
which approximately attain the minimums in (46), with runtimes comparable to that of Fact 8.

Fact 8 ([AKK+20]). There is an algorithm which given M ∈ Sd≻0, b ∈ Rd, and δ, ϵ ∈ (0, 1) returns
v ∈ Rd such that

∥∥v −M−1b
∥∥
2
≤ ϵ

∥∥M−1b
∥∥
2

with probability ≥ 1− δ in time

O

((
n+

√
dτ(M)

)
· d · poly log

nτ(K)

δϵ

)
.

16We remark that these problems may be solved to high precision by casting them as an appropriate SDP and
applying general SDP solvers, but in this section we focus on fast runtimes.

61

Remark. The runtime of Fact 8 applies more broadly to quadratic optimization problems in M,
e.g. regression problems of the form ∥Ax− b∥22 where A⊤A = M. Moreover, Fact 8 enjoys runtime
improvements when the rows of M (or the factorization component A) are sparse; our methods in
the following discussion do as well as they are directly based on Fact 8, and we omit this discussion
for simplicity. Finally, [AKK+20] demonstrates how to improve the dependence on

√
dτ(M) to a

more fine-grained quantity in the case of non-uniform eigenvalue distributions. We defer obtaining
similar improvements for approximating optimal rescalings to interesting future work.

We now give a sketch of how to use Facts 7 and 8 to obtain near-optimal runtimes for computing
a rescaling approximating τ⋆i under Assumption 1. Let A ∈ Rn×d for n ≥ d be full rank, and assume
that we known τ⋆i := τ⋆i (A) for simplicity, which we can approximate using an incremental search
with a logarithmic overhead. Denote the rows of A by {ai}i∈[n]. We instantiate Assumption 1 with

Pi = ∥ai∥22 , Ci = τ⋆i aia
⊤
i , for all i ∈ [n], (47)

from which it follows that (43) is feasible using the reweighting W = diag (w) attaining τ⋆i :

λmax

∑
i∈[n]

wiPi

 = λmax

∑
i∈[n]

wi ∥ai∥22

 = Tr
(
A⊤WA

)
,

λmin

∑
i∈[n]

wiCi

 = τ⋆i λmin

∑
i∈[n]

wiaia
⊤
i

 = τ⋆i λmin

(
A⊤WA

)
.

(48)

Hence, if we can efficiently implement each step of MPC with these matrices, it will return a
reweighting satisfying (42), which yields a trace-to-bottom eigenvalue ratio approximating τ⋆i to a
1+ϵ factor. We remark that in the algorithm parameterization, we have ρ = τ⋆i . Moreover, all of the
packing gradient computations in (44) are one-dimensional and hence amount to vector operations,
so we will only discuss the computation of covering gradients.

Next, observe that Assumption 1 guarantees that for all intermediate reweightings W computed
by the algorithm and R = O(log nτ⋆i), λmax(

∑
i∈[n]wiPi) = Tr(A⊤WA) ≤ R. This implies that

the trace of the matrix involved in covering gradient computations is always bounded:

Tr

∑
i∈[n]

wiCi

 = τ⋆i Tr
(
A⊤WA

)
≤ τ⋆i R. (49)

To implement the covering gradient computations, we appropriately modify Lemmas 2 and 3 to
use the rational approximation in Fact 7 instead of the polynomial approximation in Fact 2. It is
straightforward to check that the degree of the rational approximation required is ∆ = O(log nτ⋆i).

Moreover, each of the ∆ linear systems which Fact 7 requires us to solve is in the matrix

M := I+

∑
i∈[n]wiCi

∆
,

which by (49) and the fact that I has all eigenvalues 1, has τ(M) = O(τ⋆i). Thus, we can apply
Fact 8 to solve these linear systems in time

O

((
n+

√
dτ⋆i

)
· d · poly log

nτ⋆i
δ

)
.

62

Here, we noted that the main fact that e.g. Lemmas 2 and 3 use is that the rational approximation
approximates the exponential up to a poly(n−1, (τ⋆i)

−1) multiple of the identity. Since all coefficients
of the polynomial in Fact 7 are bounded by ∆O(∆), the precision to which we need to apply Fact 8
to satisfy the requisite approximations is ϵ = ∆−O(∆), which only affects the runtime by polyloga-
rithmic factors. Combining the cost of computing (44) with the iteration bound of Assumption 1,
the overall runtime of our method for approximating τ⋆i is

O

((
n+

√
dτ⋆i (A)

)
· d · poly log

nτ⋆i (A)

δ

)
,

which matches Fact 8’s runtime after rescaling in all parameters up to logarithmic factors.

63

	Introduction
	Diagonal preconditioning
	Robust linear algebra for structured matrices
	Our framework: matrix-dictionary recovery
	Comparison to prior work
	Organization

	Preliminaries
	Efficient matrix-dictionary recovery
	Identity constraints
	General constraints

	Graph structured systems
	Perturbed Laplacian solver
	M-matrix recovery and inverse M-matrix solver
	Laplacian recovery and Laplacian pseudoinverse solver

	Diagonal scaling
	Inner scaling
	Outer scaling

	Statistical applications of diagonal scaling
	Semi-random linear systems
	Statistical linear regression

	References
	Deferred proofs from Sections 3 and 5
	Proof of Proposition 1
	Polynomial approximation to the square root
	Deferred proofs from Section 5.2

	M-matrix and SDD matrix facts
	Jacobi preconditioning
	Faster scalings with a conjectured subroutine
	Approximating under Assumption 1
	Average-case conditioning under Assumption 1

