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Abstract

Performance is not enough when it comes to deep neural networks (DNN5); in real-
world settings, computational load or efficiency during training and adversarial secu-
rity are just as or even more important. Often there are critical trade-offs to consider
when prioritizing one goal over the others. Instead, we propose to concurrently target
Performance, Efficiency, and Robustness, and ask just how far we can push the envelope
on simultaneously achieving these goals. Our algorithm, CAPER, follows the intuition
that samples that are highly susceptible to noise strongly affect the decision boundaries
learned by DNNs, which in turn degrades their performance and adversarial robustness.
By identifying and removing such samples, we demonstrate increased performance and
adversarial robustness while using only a subset of the training data, thereby improving
the training efficiency. Through our experiments, we highlight CAPER’s high perfor-
mance across multiple Dataset-DNN combinations, and provide insights into the com-
plementary behavior of CAPER alongside existing adversarial training approaches to
increase robustness by over 11.6% while using up to 4% fewer FLOPs during training.

1 Introduction

The ability to learn patterns from large-scale data while not requiring explicit analytical
modelling has made deep neural networks (DNNs) quite popular in recent years. Increasing
performance has been the de facto emphasis when developing DNN-based solutions. How-
ever, to deal with the rigors of the real world, DNNs should not only be 1) highly accurate,
but 2) efficient to develop, and 3) robust to adversaries as well. Since each of these properties
fulfill unique targets they are often handled separately, with known trade-offs when priori-
tizing one property over the others. Ideally, by jointly constraining the development process

to satisfy Performance (P), Efficiency (E). and Robustness (R), or PER goals, we can deliver

highly accurate, more secure DNNs faster and at a lower computational cost.
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To the best of our knowledge, there are no works that simultaneously address all three
PER goals. Often, DNN solutions focus on improving a chosen performance metric while
efficiency and adversarial robustness become afterthoughts. Among approaches that focus
on efficiency, distributed training [8, 25] techniques often assume the availability of large-
scale hardware while low-precision computations [12, 33] rarely match the potential of their
high-precision counterparts. In the adversarial domain, multiple works under the umbrella of
adversarial training acknowledge the trade-off between improving robustness to adversaries
and maintaining high performance [7, 26]. Only a small subset of works within this domain
attempt to address the idea of efficiently imparting robustness [29, 38, 40]. The scope of
these works is restricted to the choice of the algorithm used to generate adversaries while
retaining the entire training dataset in memory. This leads to overheads during loading,
preprocessing, and training. A common theme across these different categories of solutions
is their focus on tackling at most two of the three desired PER goals.

Using our algorithm CAPER we propose to Concurrently Achieve Performance, Effi-
ciency, and Robustness. Our algorithm is built on the assumption that there exists a subset
of the original training data that negatively impacts the learning process of the model being
trained [20]. In CAPER, we identify and remove this subset of data which leads to a direct
improvement in efficiency during the training phase. By using a function of the distance
between features, specifically between the original inputs and their noise-perturbed coun-
terparts, we identify the subset of data that is highly susceptible to noise. We hypothesize
that samples that are highly susceptible to noise force irregular behaviours in the DNN and
have a strong impact on the learning process. By removing these samples, we regularize the
learning process and encourage improvements in generalization and robustness of the model.
In addition, we highlight the difference between how robustness is imparted to a DNN when
using CAPER and standard adversarial training [3, 24, 36], and how they can be combined.
To summarize, our contributions in this paper are,

* CAPER, a new methodology that simultaneously targets improved performance, effi-

ciency in the training phase, and robustness to adversarial attacks,

* Improved robustness and clean accuracy across a variety of settings and adversaries,

* Complementary behavior alongside adversarial training regimes to boost robustness.

2 Related Works

2.1 General Curriculum Learning

CAPER’s idea of retaining a subset of the training data draws inspiration from conventional
curriculum learning, which is defined as an approach to organizing and presenting data to
machine learning models to improve their learning process and performance. Initially, a
crucial point of emphasis was their fast convergence to a high-quality solution [1, 11]. Sub-
sequent works focused on various ways to organize and schedule data while relaxing the
constraint on faster convergence [10, 13, 17, 44]. More recently, there has been a strong
emphasis on using feedback from the model being trained to modify the training regime and
reduce the data used to train the model [45, 46]. In general, curriculum-based approaches
emphasize improvements in generalization performance, with lower attention on adversarial
robustness. In this work, we consider adversarial robustness a key trait required of DNNs.
From a methodological point of view, our approach uses additive noise to identify and re-
move samples that create adversarial vulnerability. This is distinct from the use of gradients,


Citation
Citation
{Devlin, Chang, Lee, and Toutanova} 2019

Citation
Citation
{Rajbhandari, Rasley, Ruwase, and He} 2020

Citation
Citation
{Gupta, Agrawal, Gopalakrishnan, and Narayanan} 2015

Citation
Citation
{Sun, Wang, Chen, Ni, Agrawal, Cui, Venkataramani, Elprotect unhbox voidb@x protect penalty @M  {}Maghraoui, Srinivasan, and Gopalakrishnan} 2020

Citation
Citation
{Cui, Liu, Wang, and Jia} 2021

Citation
Citation
{Rice, Wong, and Kolter} 2020

Citation
Citation
{Shafahi, Najibi, Ghiasi, Xu, Dickerson, Studer, Davis, Taylor, and Goldstein} 2019

Citation
Citation
{Wang, Zhang, Zheng, and Ruan} 2021

Citation
Citation
{Wong, Rice, and Kolter} 2020

Citation
Citation
{Lapedriza, Pirsiavash, Bylinskii, and Torralba} 2013

Citation
Citation
{Carlini and Wagner} 2017{}

Citation
Citation
{Madry, Makelov, Schmidt, Tsipras, and Vladu} 2018

Citation
Citation
{Tram{è}r, Kurakin, Papernot, Goodfellow, Boneh, and McDaniel} 2018

Citation
Citation
{Bengio, Louradour, Collobert, and Weston} 2009

Citation
Citation
{Graves, Bellemare, Menick, Munos, and Kavukcuoglu} 2017

Citation
Citation
{Ganesh and Corso} 2020

Citation
Citation
{Hacohen and Weinshall} 2019

Citation
Citation
{Jiang, Zhou, Leung, Li, and Fei-Fei} 2018

Citation
Citation
{Zhou and Bilmes} 2018

Citation
Citation
{Zhou, Wang, and Bilmes} 2020

Citation
Citation
{Zhou, Wang, and Bilmes} 2021


RAVI GANESH, CORSO, SEKEH: PERFORMANCE, EFFICIENCY AND ROBUSTNESS 3

loss value, predictions, or a change in those values to identify difficult samples [22, 31, 35,
44]. Additionally, in CAPER we use hard sampling to permanently remove samples from the
training set instead of recycling them during the training phase [45]. Our approach is similar
to the hard sampling performed in Lapedriza et al. [20] and Chitta ez al. [5], without the need
to train a proxy network to learn which samples need to be removed [32]. Furthermore, since
our approach focuses on differences in the feature space as the primary means to highlight
and remove samples, it is easily extensible to different architectures and applications.

2.2 Adversarial Training

Adpversarial training approaches expose a DNN to a variety of adversarial perturbations dur-
ing the training phase to increase its robustness [24, 42]. Examples of such adversarial
training approaches include gradually increasing the strength of adversaries to improve ro-
bustness [2], using the least adversarial data among confidently misclassified samples [43],
and others [39]. Often such methods provide insufficient time or efficiency comparisons
and have strong trade-offs on their performance on clean testing data. A small subset of
works focus on balancing the trade-off between clean and robust accuracies by using early
stopping [26] or a student-teacher setup to learn from smooth logit distributions [7]. While
these approaches focus on improving both clean and robust accuracies, their test bed does
not cover a wide range of adversaries, thus limiting the scope of their study. In this work,
we evaluate them against several different adversaries and contrast their performance against
our algorithm from both a performance and efficiency standpoint.

A more recent line of works tackle the problem of efficient adversarial training. Wang et
al. [38] propose a dynamic and efficient adversarial training methodology that automatically
learns to adjust the magnitude of perturbations during the training process. Although their
work is insightful, their results are limited to fixed DNN backbones. Shafahi et al. [29] offer
an inexpensive alternative to recycling gradient computations performed during backpropa-
gation to generate adversarial examples. Wong et al. [40] review FGSM-based adversarial
training and offer multiple suggestions that extend FGSM’s viability to quickly obtain highly
robust DNNs. Each of the above methods that propose a more efficient adversarial training
approach focus on modifying the algorithm used to generate adversaries while retaining the
complete training set. However, in CAPER we address training efficiency by directly re-
ducing the training data available, thus offering a complementary approach that can work
alongside any traditional or efficient adversarial training algorithm.

3 CAPER

3.1 Proposed Algorithm

CAPER focuses on removing a subset of the training data that negatively impacts perfor-
mance; see Fig. 1 for an overview. We begin by training a DNN using the complete training
dataset up to T epochs. At the chosen epoch 7 << E, where E is the total number of train-
ing epochs, we compare the distance between features of standard inputs and their noise-
perturbed counterparts. Here, the noise-perturbed counterparts are generated using additive
gaussian noise on the input images.

It is well known that DNNs are excellent function approximators but struggle to extrap-
olate to data points at the decision boundaries or outside of a known domain. Following
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Figure 1: CAPER: At a chosen epoch T << E, we compare the feature embeddings between
original inputs and their noise perturbed counterparts. A larger distance between feature
embeddings indicates samples highly susceptible to noise. We remove such samples, update
the dataset and continue training using the remaining subset of data.

this intuition, we know that DNNs respond irregularly when they encounter data they can-
not comprehend well. By injecting noise into the input and measuring the distance between
features, pre-, and post-injection, we can identify samples that have a strong disparity in re-
sponses from the DNN. Such responses are characteristic of data points that are close to the
decision boundaries and have a strong impact on shaping them. The notion of injecting noise
to assess the quality of samples has been used previously to detect OOD [21] and adversarial
examples [23] when provided with a trained model. However, we distinguish our work by
using noise-injection as a method to refine a given dataset during the training phase, thus
affecting the evolution of the DNN and improving the overall robustness of a model trained
from scratch.

In our algorithm, since a large distance between features readily identifies samples that
are susceptible to noise, removing them allows the DNN to learn better decision boundaries
from a more regularized set of data, leading to improved generalization and adversarial ro-
bustness. In our approach, we use the distance values to generate a binary mask and remove
those samples from the dataset while we continue training using the remaining subset of data.
It is important to note that we do not make an assertion about a change in loss/prediction val-
ues when comparing the distance between features. Instead, we opt for a relative comparison
between feature distances to remove a total of y samples.

3.1.1 Basic Setup

In CAPER, we remove the noisy subset of samples from the training data which in turn re-
duces the total amount of data stored and used during training. Mathematically, we describe
this process as masking contributions from the noisy subset of data after epoch t:

N
Y mile(F (xi),yi)- €]

i=1

1
L(X,Y)=min—7-—
W |lmlo

Here, {(x;,y;)}Y; ~ (X,Y), denote the input variables, where N represents the total number
of samples, F(-) denotes the output of the entire DNN, /¢ is the cross-entropy loss modified
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by label smoothing [34] and m € {0, I}N is the binary mask vector defined using our heuris-
tic, based on the distance between features. Once we determine the value of m at epoch
T, it remains fixed throughout the remaining training epochs. A small value of 7, e.g., 1
or 2, would force the capture of features that are not coherent while large values of 7, like
200, would significantly reduce the efficiency gain we expect. Instead, we choose a rela-
tively small but balanced value for T to obtain coherent features and maximize our gain in
efficiency.

3.1.2 Noise Injection: Capturing Feature Disparity

To ascertain the value of m, we begin by capturing the distance between features, specifically
between the original input and their noise-perturbed counterparts, at a chosen epoch T across
a chosen layer in the DNN. To generate the noise-perturbed counterparts, we apply additive
gaussian noise to the input. We denote the capture of features from a desired layer [ as,

FOY = owOxD 4 p®y, FOY 1+ 5) = oW +5) + D). )

Here, assuming an activation function & (), f ) ¢ RV XO(])Xh(Z)XW(Z), where O1) denotes the
output dimension of layer /, h(l), w(l), W(l), and p\) represent the output height, width,
weights and biases of layer /, respectively. In addition, & ~ N(0,0.5), with dimensionality
matching the input. Note: To avoid inconsistencies between the effects of applying &; in-
dependently at multiple layers, we apply &; to the image directly and observe its effects at
downstream layers. We drop the layer superscript to improve readability hereon.

Once we obtain the features from the chosen layer, we compute the distance D(.) between
corresponding pairs of features as,

Af(i) = D(H(f(xi),H(f (xi+ ) = |[H(f (xi)) = H(f (xi + &) ]2, 3)

where H(.) is a projection function that maps the features into a lower dimensional space, and
Af(i) e RP*O"  The function # : ROV <k _y ROUP \where p << h) x () and OV
denotes the filter counts from layer /. While Eq. 3 depicts the /,-norm version of the distance
function, the formulation itself is not limited to it. Beyond capturing the distance, we further
normalize Af (i) values across samples to ensure that the distances remain comparable. We
propose normalizing them on a channel-wise basis using the following equation,

Af(i.q)— min Af(n,q)

nel,...,

Af(i,q) = — . 4)
né‘fﬂ’.‘,NAf(”"I)_ min Af(n,q)

nel,...,

Here,ic {1,2,...,N}, g€ {1,2,...,00}, and Af(i,q) € [0,1].

3.1.3 Binary Mask Computation

While Af captures the distance between features from filters of a specific layer, we need a
simple measurable value that compares the susceptibility of various samples to noise. For
this purpose, we include &, the instability of a sample measured as the average Af across
filters in a given layer.

12 Af(g)

Si o0

,ie{l,...,N}. (5)
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Using the instability values, we compute m as:

(6)

0 if & is in the top ¥ values of &

m; =
I ow .

By controlling 7y, we use m; to reduce the amount of the training data held in memory as well

as the overall FLOPs required during training. Once m is applied, the DNN is then trained

with the remaining subset of data from epochs 7 to E.

4 Experimental Results

4.1 Setup

Datasets and DNNs We use four primary datasets to evaluate our proposed method, CIFAR-
10, CIFAR-100 [19], minilmagenet [37] and ILSVRC2012 [27]. Among these datasets, we
restrict our adversarial robustness comparisons to CIFAR-10/100 to match existing literature.
For minilmagenet, we use a custom-generated and balanced training-and-testing split that we
will make available with our code. We use four DNN architectures to evaluate CAPER in the
context of standard curriculum learning, VGG16 [30], MobileNet [28], DenseNet [15, 16]
and ResNet50 [14]. In addition to these architectures, we use ResNet18 and PreActResNet18
in adversarial robustness comparisons. We choose these networks to help represent a wide
variety of architectural backbones. Each of the four main DNNs have two distinct versions,
one suitable for the CIFAR datasets and another for the remaining datasets.'

Adversarial Attacks And Metrics We explore the effect of a variety of adversarial attacks
like MIFGSM [9], FFGSM [40], DI2FGSM [41], APGDDLR [6], APGDCE, PGD [24] and
CW [4] using the code from [18, 43]. To measure the performance of various algorithms,
we use standard Accuracy(%) over the testing set. For adversarial robustness we measure
Robust Accuracy(%) over the perturbed testing set, illustrated by the radius of polar plots.
Finally, we use total FLOPs, measured as 1 pass over the entire DNN scaled across the entire
training phase, to compare the improvement in efficiency across different training methods.
Across all experiments, we provide average statistics over 5 trials, with the exception of
Rice et al. [26]-, Cui et al. [7]- and Shafahi et al. [29]-based experiments, with numbers in
bold referring to the best performance and underline referring to the second best.

CAPER: Hyper-parameters Within CAPER, 7 is an extremely important parameter that
influences the amount of efficiency gain we expect. For experiments in Sec. 4.2, we set
T = 50 for all DNN-Dataset combinations except ResNet50-CIFAR-10, for which we set it
to 100. Results on ILSVRC12 were generated using 7 = 15. Experiments under Sec. 4.3 use
T = 35 and 15 when comparing against Rice ef al. [26] and Cui et al. [7] respectively, and
the remaining use T = 50. Throughout our experiments, we fix H(.) as the mean value across
the A x w(!) channels and capture features from the last convolution layer. The value of y
is listed in () within each experimental subsection.

Detailed descriptions of these model variants are provided in our code base https://github.com/
MichiganCOG/Q_TART.
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DNN Algorithm CIFAR-10 CIFAR-100 minilmagenet
Mini-batch SGD 94.04 74.23 70.95
Random 93.19 71.63 67.57
VGGl6 DIHCL 94.03 72.89 66.07
CAPER(Ours)  94.44 (y=2.5k) 74.97 (y=1.25k) 71.23 (y=2.5k)
Mini-batch SGD 93.50 72.75 64.62
. Random 9231 71.15 62.11
MobileNet DIHCL 88.97 61.58 49.37
CAPER(Ours)  93.62 (y=125) 7349 (y=10k)  65.96 (y=5k)
Mini-batch SGD 95.13 76.95 73.78
DenseNet Random 93.88 74.18 71.23
DIHCL 94.72 76.03 64.34
CAPER(Ours)  95.20 (y=100) 77.39 (y=1.25k)  74.69 (y=5kK)
Mini-batch SGD 95.63 79.27 68.76
Random 95.27 76.71 64.69
ResNet50 DIHCL 95.83 79.71 66.86
CAPER(Ours) 9579 (y=1k)  79.39 (y=1.25k) 69.54 (y = 2.5k)

Table 1: Across most datasets CAPER achieves the best performance when compared against
Mini-batch SGD, DIHCL and Random baselines.

DNN Algorithm ILSVRC2012
Mini-batch SGD 76.32
ResNet50 DIHCL 76.33*
CAPER (Ours)  76.62 (y=11.7k)

Table 2: CAPER achieves the best performance after we remove 11700 samples across 10
classes.* indicates numbers from authors. ILSVRC2012 results are from 1 trial.

4.2 Curriculum Comparison

In this experiment, our main goal is to compare the performance of CAPER against mini-
batch SGD training and highlight how we can improve performance while only retaining a
subset of our training data. Additionally, we compare against a top performing curriculum
learning method DIHCL [45] which prioritizes the removal of samples throughout the train-
ing process. From Table 1, across all combinations of datasets and DNN architectures, we
observe that CAPER easily outperforms mini-batch SGD, using a subset of the training data.
To ensure a fair comparison, we used a common hyper-parameter setup.

More interestingly, when we observe the performance of DIHCL adapted to our selec-
tion of Dataset-DNN pairs we see that it consistently exhibits strong performances on the
ResNet architectures. This, in conjunction with DIHCL’s propensity to perform significantly
worse than even randomly removing the same number of samples as in CAPER (marked in
Table as Random) across the other tested architectures points toward a strong affinity of the
training setup used in DIHCL to residual architectures. Despite this, alongside the starkly
different training setup used in DIHCL (cyclic learning rate, a teacher-like copy of the DNN,
etc.), CAPER still improves upon DIHCL in most cases. This improvement is further high-
lighted when applying CAPER to the ILSVRC2012 dataset (Table 2), where we are able to
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Figure 2: Curriculum-based Comparison: CAPER matches and often significantly improves
upon the adversarial robustness of mini-batch SGD (Baseline) training and DIHCL. Methods
with the largest area of plot are preferred.
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Figure 3: Alongside both standard adversarial training (Top) and efficient adversarial train-
ing (Bottom), CAPER improves the overall robustness. Largest improvements from adver-
sarial training are observed for MIFGSM, FFGSM, DI2FGSM, APGDCE, and PGD attacks.
Bottom 7y values are for CAPER+Wong et al. [40] / CAPER+Shafahi et al. [29] across
VGG16, MobileNet, DenseNet and ResNet50 respectively.

significantly outperform DIHCL and mini-batch SGD, even after removing 11700 samples.

4.3 Adversarial Robustness

Curriculum-based Comparison Using results from Fig. 2 we establish two main obser-
vations, 1) in multiple instances DIHCL reduces the robustness of DNNs when compared
to mini-batch SGD training, and more importantly 2) CAPER significantly improves the ro-
bustness of DNNs to multiple adversarial attacks. We hypothesize two possible reasons why
DIHCL reduces the adversarial robustness of a variety of DNNs. First, the repeated sam-
pling with replacement and steady decline in the number of available samples does not allow
for a stable learning environment to help address adversarial robustness. Secondly, the use
of gradients/loss/prediction values or their change has a direct impact on the set of samples
removed and therefore the final adversarial robustness. A deeper dive into the correlation
between the selection procedure and the final outcomes could help provide more insight.
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A TFLOPs Reduced (% of original)
CIFAR-10 CIFAR-100  minilmagenet

VGG16 197 (4.17%) 59 (1.88%) 1840 (4.17 %)
MobileNet  3.55(0.21%) 142 (15.0%)  43.2 (7.50%)
DenseNet  2.90 (0.15%) 40.3 (2.08%) 2550 (8.33%)
ResNetS0 260 (1.33%) 406 (2.08%) 472 (4.17%)

DNN

Aleorith A TFLOPs Reduced
gorithin VGGI16 MobileNet DenseNet ResNet50
CAPER + Wong e al. [40]  9.83 3.55 1.61 3.9
CAPER + Shafahi ef al. [29]  35.4 3.55 0.161 8.13

Table 3: Illustration of the improvement in efficiency offered by CAPER during the training
phase for (Top) Curriculum-based, and (Bottom) Efficient Adversarial training. Baseline
number of FLOPs is calculated using a forward pass through the DNN.

Standard Adversarial Training Comparison We use Rice et al. [26], with settings cor-
responding to their validation-based early stopping setup on CIFAR-10, and Cui e al. [7],
with settings corresponding to ResNet18 for both natural and robust models on CIFAR-100,
as representatives for standard adversarial training. When using CAPER alongside standard
adversarial training, we observe an improvement in performance over the original adversar-
ial training methods across most adversarial attacks, as shown in Fig. 3. We emphasize that
these improvements are in addition to an increase in Accuracy(%), from 82.66% to 83.14%
for PreActResNet18 and from 69.22% to 69.65% for ResNet18. While the original methods
emphasize a balanced improvement in Robust Accuracy(%) and Accuracy(%), the addition
of CAPER atop these methods allows us to maintain their original benefits while further
improving on their efficiency and adversarial robustness.

Efficient Adversarial Training Comparison Our first observation based on the bottom
row of Fig. 3 is the high level of robustness shown by all DNNs to APGDDLR and APGDCE
attacks across both efficient adversarial training and CAPER-based training. In addition,
when using CAPER-based adversarial training, DI2FGSM, MIFGSM, and FFGSM consis-
tently show the largest magnitude of improvement. Finally, similar to the previous scenario’s
results on standard adversarial training, adding CAPER atop common efficient adversarial
training approaches further boosts their performance against all adversarial attacks.

4.4 Time Efficiency Comparison

To understand the impact of CAPER on efficiency, we observe the number of FLOPs re-
duced by CAPER where for each Algorithm-Dataset-DNN triplet the FLOPs are computed
using their respective hyper-parameter settings listed in the supplementary materials. From
Table 3 we observe a strong increase in the number of FLOPs reduced across a variety of
Dataset-DNN combinations when compared to standard mini-batch training. This includes
the ILSVRC2012 dataset, where we save 4.08 PFLOPs or close to an entire epoch of train-
ing. Under the adversarial robustness setting, we observe a maximum reduction of 22.5
TFLOPs when combined with standard adversarial training algorithms and 35.5 TFLOPs
when combined with efficient adversarial training algorithms (bottom Table 3). Overall,
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%
DNN' 155 250 500 1250 2500

VGG16 7140 7150 7152 71.52 71.23
ResNet50 69.77 69.70 69.63 69.68 69.54

Table 4: Holding € = 0.1, we observe CAPER improves accuracy over mini-batch SGD
(70.95 and 68.76) as we vary Y on the minilmagenet dataset.

CAPER successfully combines the benefits of performance, efficiency, and robustness.

5 Discussion

Y Selection  With the values of € and 7 set to fixed number, we investigated ¥ € {15000, 10

000, 5000, 1250,500, 250, 125,50,25,12}. Typically, we obtain improved performance across
most ¥ values up to the limit indicated in Tables 1 and 2. In Table 4 we present an abridged

version of results indicating this behavior. Overall, the selection of 7 is primarily guided by

the choice of dataset, with minilmageNet and ILSVRC2012 showcasing a high amount of
redundant samples while CIFAR-like datasets offer less flexibility, with a secondary influ-

ence from the choice of DNN. We deem the exploration of more efficient search strategies

to identify ¥ and the variation of 7 along the frontier of efficiency as part of future work.

Adversarial Response When comparing the performance of CAPER, with and without
the addition of other adversarial training regimes, we find their performance across FFGSM,
MIFGSM and DI2FGSM extremely similar, often within 5% of each other. The importance
of this observation is further highlighted by the fact that we do no expose the model to any
adversarial input during training. This outcome suggests that our approach could provide an
inexpensive alternative to boosting performance across FGSM-based attacks while comple-
menting existing adversarial training approaches.

6 Conclusion

Overall, we establish CAPER as an algorithm that simultaneously tackles improvements in
performance, efficiency and adversarial robustness. The use of noise-injection in CAPER
to identify and remove noisy samples helps modify the embeddings learned by DNNs in
a favorable manner. In doing so, there is a strong improvement in classification accuracy
achieved via a more efficient training process. We also establish high adversarial robustness
by incorporating CAPER like a plug-and-play module atop existing adversarial training. An
important direction of future work is exploring a variety of metrics to assess a comprehensive
way to identify noisy samples. In addition, we plan to expand on the contributions from
multiple layers of the DNN to study the impact of feature hierarchy on the final performance.
Our goal is to jointly target PER in an effort to develop more cost and resource efficient
training protocols, with a view to reducing the environmental impact of developing DNNs.
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