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Abstract

We formalize and study the natural approach of designing convex surrogate loss functions via
embeddings, for discrete problems such as classification, ranking, or structured prediction.
In this approach, one embeds each of the finitely many predictions (e.g. rankings) as a
point in R?, assigns the original loss values to these points, and “convexifies” the loss in
some way to obtain a surrogate. We establish a strong connection between this approach
and polyhedral (piecewise-linear convex) surrogate losses: every discrete loss is embedded
by some polyhedral loss, and every polyhedral loss embeds some discrete loss. Moreover,
an embedding gives rise to a consistent link function as well as linear surrogate regret
bounds. Our results are constructive, as we illustrate with several examples. In particular,
our framework gives succinct proofs of consistency or inconsistency for existing polyhedral
surrogates, and for inconsistent surrogates, it further reveals the discrete losses for which
these surrogates are consistent. We go on to show additional structure of embeddings,
such as the equivalence of embedding and matching Bayes risks, and the equivalence of
various notions of non-redudancy. Using these results, we establish that indirect elicitation,
a necessary condition for consistency, is also sufficient when working with polyhedral
surrogates.

Keywords: Statistical consistency, surrogate loss functions, calibration, property elicitation

1. Introduction

In supervised learning, one tries to learn a hypothesis which fits labeled data as judged
by a target loss function. Minimizing the target loss directly is typically computationally
intractable for discrete prediction tasks like classification, ranking, and structured prediction.
Instead, one typically minimizes a surrogate loss which is convex and therefore efficiently
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minimized. After learning a surrogate hypothesis, a link function then translates back to the
target problem. To ensure the surrogate and link properly correspond to the target problem,
the surrogate must be consistent, meaning that minimizing the surrogate loss over enough
data will also minimize the target loss.

While a growing body of work seeks to design and analyze consistent convex surrogates
for particular target loss functions, to date much of this work has been ad-hoc. We
lack general tools to systematically construct consistent convex surrogates, much less an
understanding of the full class of consistent surrogates. For example, in multiclass and top-k
classification, several proposed surrogates were proposed and adopted but later proved to
be inconsistent (Yang and Koyejo, 2020; Crammer and Singer, 2001; Rifkin and Klautau,
2004). This state of affairs is even more dire for structured prediction, where in addition
to convexity and consistency, one often requires a low prediction dimension (the dimension
of the surrogate prediction space) as the label set can grow exponentially large. Clever
constructions like the binary-encoded predictions (BEP) surrogate for multiclass classification
with an abstain option (Ramaswamy et al., 2018), which achieves logarithmic prediction
dimension, are the exception rather than the rule. In all of these settings, we lack a unifying
framework that moves from a given target problem to a convex consistent surrogate and
link function.

To address this shortcoming, we introduce a new framework motivated by a particularly
natural approach for finding convex surrogates, wherein one “embeds” a discrete loss.
Specifically, we say a convex surrogate L embeds a discrete target loss ¢ if there is an
injective function, which we call an embedding, from the target reports (predictions) to
R? such that (i) the surrogate loss values match the target at the embedded reports, and
(ii) a target report is f-optimal if and only if its embedded report is L-optimal. (See § 2.4.)
Common examples of this general construction include hinge loss as a surrogate for 0-1 loss
and the BEP surrogate mentioned above (Ramaswamy et al., 2018).

Using this framework, we give several constructive results to design new consistent
surrogates, as well as a suite of tools to analyze existing surrogates. As a first step, in § 3,
we show that such an embedding scheme is intimately related to the class of polyhedral loss
functions, i.e., those that are piecewise-linear and convex.

Theorem 1 FEwvery discrete loss £ is embedded by some polyhedral loss L, and every polyhedral
loss L embeds some discrete loss .

Crucially, we go on in § 4 to show that an embedding gives rise to a calibrated link function,
and is therefore consistent with respect to the target loss.

Theorem 2 Given any polyhedral loss L, let ¢ be a discrete loss it embeds. There exists a
link function ¢ such that (L,4) is calibrated with respect to €.

Beyond consistency, we show in § 4.3 that any polyhedral surrogate achieves a linear surrogate
regret bound, which allows one to translate generalization bounds from the surrogate to the
target. Our results are constructive: given a discrete target loss, we show how to define a
surrogate and construct a calibrated link, and given a polyhedral surrogate, we show how to
find a discrete loss that it embeds.

We demonstrate the constructiveness of our framework in § 5 with several applications,
many of which are subsequent to our work. In addition to constructing new surrogates, we
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illustrate the power of our framework to analyze previously proposed polyhedral surrogates.
For example, while we know that the inconsistent top-k polyhedral surrogates mentioned
above are not consistent for top-k classification, our framework illuminates the problems for
which they are consistent; it also yields restrictions on the underlying distribution which
would render these surrogates top-k consistent (§ 5.5).

Underpinning our results are several observations, outlined in § 6, which formalize the
idea that polyhedral losses “behave like” discrete losses. In particular, any polyhedral loss L
has a finite representative set S of reports, such that for all distributions, some report in &
is L-optimal. We show that L embeds the discrete loss ¢ = L|s given by restricting L to
just the reports in S. To go from a discrete loss to a polyhedral surrogate, we prove that
the conditions of an embedding are equivalent to matching Bayes risks (Proposition 22),
and use the fact that discrete losses and polyhedral losses both have polyhedral Bayes risks.

Finally, we also provide several observations beyond what is needed to prove our main
results, which we view as conceptual contributions (§ 6, 7). Using tools from property
elicitation, we show an equivalence between minimum representative sets (those of minimum
cardinality) and “non-redundancy”, wherein no report is dominated by another. We further
show that, while a minimum representative set is not always unique, the loss values associated
with it are unique, giving rise to a natural “trim” operation on losses. The paper concludes
with an interesting observation (Theorem 32): while indirect property elicitation is generally
a strictly weaker condition than consistency, the two are equivalent when restricting to the
class of polyhedral surrogates.!

Taken together, we view our contributions as both conceptual and practical. We uncover
the remarkable structure of polyhedral surrogates, deepening our understanding of the
relationship between surrogate and discrete target losses. This structure leads to a powerful
new framework to design and analyze surrogate losses. As we illustrate with several examples,
this framework has already been applied to solve open questions by designing new surrogates,
to uncover the behavior of existing surrogates, and to construct link functions in complex
structured problems. We conclude with several directions for future work.

2. Setting

For discrete prediction problems like classification, the given (discrete) loss is often compu-
tationally intractable to optimize directly. Therefore, many machine learning algorithms
instead minimize a surrogate loss function with better optimization qualities, such as convex-
ity. To ensure that this surrogate loss successfully addresses the original target problem, one
needs to establish statistical consistency, a minimal requirement that is a prerequisite for
generalization bounds. Consistency roughly says that, in the limit as one obtains more and
more data, the learned hypothesis approaches the best possible. Consistency also depends
crucially on the choice of link function that maps surrogate reports (predictions) to target
reports; see the discussion following Definition 8.

In this section, we introduce notation and concepts related to consistency that we use
throughout. Consistency is often a difficult condition to work with directly, but in finite
prediction settings, it is equivalent the simpler notion of calibration (Definition 6) which
depends solely on the conditional distribution over the labels (Bartlett et al., 2006; Tewari

1. This result is also implicit in Ramaswamy and Agarwal (2016, Theorem 8); see § E.
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and Bartlett, 2007; Ramaswamy and Agarwal, 2016). Even simpler than calibration is
indirect elicitation, a weaker condition only requiring that optimal surrogate reports link to
optimal target reports. Finally, we introduce a new precise notion of embedding, a special
case of indirect elicitation, which forms the backbone of our approach.

2.1 Notation and Losses

Let Y be a finite label space, and throughout let n = |Y|. Define ]Rjyr to be the nonnegative
orthant in RY, i.e., Rﬁ ={zeRY:VyeYVua,>0}. Let Ay={pe R{ 2 |lpll1 = 1} be the
set of probability distributions on ), represented as vectors. We will primarily focus on
conditional distributions p € Ay, over labels, abstracting away the feature space X'; see § 2.3
for a discussion of the joint distribution over X x Y.

A generic loss function, denoted L : R — RY, maps a report (prediction) r from a set R
to the vector of loss values L(r) = (L(r)y)ycy for each possible outcome y € ). We write the
corresponding expected loss when Y ~ p as (p, L(r)). The Bayes risk of a loss L : R — R%:
is the function L : Ay — Ry given by L(p) := inf,cr (p, L(r)). When restricting the domain
of aloss L from R to R C R, we write L|r/.

We assume that the target prediction problem is given in the form of a target loss
:R— Rﬂj_ for some report set R. A discrete (target) loss is such an ¢ where R is a finite
set. Surrogate losses will take R = R? and be written L : R — ]R%}r, typically with reports
written u € R%.

For example, in binary classification, 0-1 loss is a discrete loss with R =Y = {—1,1}
given by o.1(r)y = 1{r # y}, with Bayes risk {o.1(p) = 1 — max,cy py. Two widely-used
surrogates for {p.; are hinge loss Lpinge(u)y = (1 — yu)4, where (z); = max(z,0), and
logistic loss L(u), = log(1 + exp(—yu)) for u € R. See Figure 1 for a visualization of the
Bayes risks of 0-1, hinge, and logistic losses, respectively.

Many of the surrogate losses we consider will be polyhedral, meaning piecewise linear and
convex; we briefly recall the relevant definitions. In R?, a polyhedral set or polyhedron is the
intersection of a finite number of closed halfspaces. A polytope is a bounded polyhedral set.
A convex function f : R? — R is polyhedral if its epigraph is polyhedral, or equivalently, if it
can be written as a pointwise maximum of a finite set of affine functions (Rockafellar, 1997).

Definition 3 (Polyhedral loss) A loss L : R? — RY s polyhedral if L(u), is a polyhedral
function of u for each y € ).

In the example above, hinge loss is polyhedral, whereas logistic loss is not.

2.2 Property Elicitation

We will frequently appeal to concepts and results from property elicitation (Savage, 1971;
Osband and Reichelstein, 1985; Lambert et al., 2008; Gneiting, 2011; Steinwart et al.,
2014; Frongillo and Kash, 2015a; Lambert, 2018). Here one studies properties, maps from
(conditional) label distributions to reports, and asks when a property characterizes the reports
that exactly minimize a loss. In our case, this map will at times be set-valued, meaning a
single distribution could yield multiple optimal reports. For example, when p = (1/2,1/2),
both » = 1 and r = —1 optimize 0-1 loss with (p, L(1)) = 1/2 = (p, L(—1)). We will use
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double arrow notation to denote a (non-empty) set-valued map, so that I' : Ay = R is
shorthand for T' : Ay — 2%\ {@}, where 2% denotes the power set of R.

Definition 4 (Property, level set) A property is a function T': Ay = R. The level set
of T' for report r is the set I'y := {p € Ay | r € T'(p)}. If R is finite, we call T' a finite

property.

Intuitively, I'(p) is the set of reports which optimize expected loss under a given distri-
bution p, and I';. is the set of distributions for which the report r optimizes the expected
loss. For example, the mode is the property mode(p) = arg max,cy py, and captures the set
of optimal reports for 0-1 loss: for each distribution over the labels, one should report the
most likely label. In this case we say 0-1 loss (directly) elicits the mode, as we formalize
below. literature (Savage, 1971; Osband and Reichelstein, 1985; Lambert et al., 2008), in
which a report r is elicited from some forecaster by scoring her with a loss on the observed
outcome y.

Definition 5 (Directly Elicits) A loss L : R — RY, (directly) elicits a property T :
Ay =R if
p € Ay, T(p) = argmin(p, L(r)) . (1)
re

If L elicits a property, that property is unique and we denote it prop[L].

Since we have defined a property I' to be nonempty, if the infimum of expected loss (p, L(-))
is not attained for some p € Ay, then L does not elicit a property. We say that a loss L is
minimizable if the infimum of (p, L(-)) is attained for all p € Ay. For example, hinge loss is
minimizable, whereas logistic loss is not (take p = (0,1) or (1,0)).

We will typically denote general properties and losses with I' and L, respectively. For
surrogate losses and properties, recall that we typically consider the report set R?. For
discrete target losses and properties, we will take R to be a finite set, and use lowercase
notation v and /¢, respectively.

2.3 Calibration and Links

To assess whether a surrogate and link function align with the original loss, we turn to the
common condition of calibration. Roughly, a surrogate and link are calibrated if the best
possible expected loss achieved by linking to an incorrect report is strictly suboptimal.

Definition 6 Let discrete loss £ : R — R{, proposed surrogate L : R — R{, and function
¢ : RT = R be given. In this context, v is called a link function. We say (L, 1)) is calibrated
with respect to ¢ if for all p € Ay,

inf ,L(u)) > inf (p, L(u)) . 2
I gpmpm(p)@ (w)) > inf (p, L(u)) (2)

If (L, %) is calibrated with respect to ¢, we call 1) a calibrated link.
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It is well-known in finite-outcome settings that calibration is equivalent to consistency,
as defined next (cf. Bartlett et al. (2006); Zhang (2004); Agarwal and Agarwal (2015)). Let
feature space X’ and label space ) be given. Intuitively, a surrogate and link pair (L, ) is
consistent with respect to ¢ if, for all data distributions D € A(X x Y), and all sequences
of surrogate hypotheses hy, ho, ... whose L-loss limits to the optimal surrogate loss L* (in
expectation over D), the ¢-loss of the sequence the linked hypotheses limits to the optimal
target loss £*.

Definition 7 Given a loss L : R — Rz and link  : R — R, the pair (L,1)) is consistent
with respect to a target loss { : R — ]RI if, for all D € A(X x Y) and all sequences of
measurable functions {h,, : X — R}, we have

Exy)~pL(hm(X),Y) = i%f E(x,y)~pL(h(X),Y)
=  Exy)~pl(¥ohn(X),Y)— ir]%fE(X,Y)NDE(w oh(X),Y) .

When working with a restricted hypothesis class H, as opposed to the set of all measurable
functions in Definition 7, then the corresponding notion of consistency (called H-consistency)
is no longer equivalent to calibration (Long and Servedio, 2013; Zhang et al., 2020; Kuznetsov
et al., 2014); see § 8 for further discussion.

Like the use of a surrogate and link pair in the calibration definition, one can also extend
the earlier definition of property elicitation to indirect (property) elicitation, in which one
applies a link to an elicited property to obtain a related property of interest.

Definition 8 Let minimizable loss L : R¢ — Rﬁ and link 1 : R* — R be given. The pair
(L) indirectly elicits a property v : Ay = R if for all u € R, we have T, C Vap(u), where
I' = prop[L]. Moreover, we say L indirectly elicits y if such a ¢ exists, i.e., if for all u € R?
there exists r € R such that I'y, C fyr.Q

Indirect elicitation is a weaker condition than calibration (Steinwart and Christmann,
2008; Agarwal and Agarwal, 2015; Finocchiaro et al., 2021); we briefly sketch the argument.
Suppose L is minimizable and (L, 1)) is calibrated with respect to ¢, and set I' = prop|L]
and v = prop[f]. Let u € R? and p € T',. From eq. (2), if ¥(u) ¢ v(p), then we would
have u ¢ T'(p), a contradiction to p € I'y. Thus, ¥(u) € v(p), s0 p € Yy(u)- In fact, indirect
elicitation is strictly weaker; take hinge loss with the link ¢(u) = —1 for u < 1 and ¢(u) =1
for w > 1.  While this pair indirectly elicits the mode, we can show it is not calibrated
with respect to 0-1 loss. Suppose p = (0,1) € Ay is the distribution putting all weight on
y = 1, and consider any sequence u,, — 1 with u,, < 1 for all m. Then the loss approaches
the Bayes optimal, L(1); = 0, but 9 (u,) = —1 for all n, violating calibration. Agarwal and
Agarwal (2015) were the first to formally connect property elicitation to calibration.

2.4 Embedding

We now formalize the sense in which a convex surrogate can embed a target loss ¢. Here one
maps each report (prediction) of ¢ to a point in R?, then constructs a convex loss on R

2. The elicitation literature often refers to this latter condition as one property “refining” another (Frongillo
and Kash, 2015b).
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that agrees with ¢ at these points. This approach captures several surrogates proposed in
the literature (e.g., Ramaswamy et al. (2015); Ramaswamy and Agarwal (2016); Lapin et al.
(2015); Wang and Scott (2020); see § 5).

An important subtlety is that it is not always necessary to map all target reports to
R?. Tt is often convenient to allow ¢ to have reports that are “redundant” in some sense.
(We explore redundancy further in § 6; see also Wang and Scott (2020).) Because of this
redundancy, we will only require an embedding map to be defined on a representative set: a
set of reports S such that, for all (conditional) label distributions, at least one report r € S
minimizes the conditional expected loss.

Definition 9 (Representative set) Let I' : Ay = R. We say S C R is representative
for T if we have T'(p) NS # 0 for all p € Ay. We further say S is a minimum representative
set if it has the smallest cardinality among all representative sets. Given a minimizable
loss L: R — R}i, we say S is a (minimum) representative set for L if it is a (minimum)
representative set for prop[L].

Wang and Scott (2020) first study the notion of minimum representative sets under the
name embedding cardinality.

We now define an embedding, which is a special case of indirect property elicitation. (This
fact is non-trivial; see Lemma 50.) In addition to matching loss values, as described above,
we require the original reports to be f-optimal exactly when the corresponding embedded
points are L-optimal. As we discuss following Proposition 12, this latter condition can be
more simply stated: the representative set for the target must embed into a representative
set for the surrogate.

Definition 10 (Embedding) A minimizable loss L : R — Rﬁ embeds a loss ¢ : R — RK
if there exists a representative set S for ¢ and an injective embedding ¢ : S — R¢ such that
(i) for all r € S we have L(p(r)) = €(r), and (ii) for all p € Ay,r € S we have

r € prop[{](p) <= ¢(r) € prop[L](p) . (3)
If S is a minimal representative set, we say L tightly embeds ¢.

To illustrate the idea of embedding, let us closely examine hinge loss as a surrogate for
0-1 loss in binary classification. Recall that we have R =) = {—1,+1}, with Lpinge(u)y =
(1 —uy)4 and lo.1(r)y = 1{r # y}, typically with link function ¢ (u) = sgn(u), where
sgn(0) = 1 without loss of generality. We will see that hinge loss embeds (2 times) 0-1 loss,
via the identity embedding ¢(r) = r. For condition (i), it is straightforward to check that
Lhinge((7))y = Lninge(7)y = 21{r # y} = 20o.1(r), for all 7,y € {—1,1}. For condition (ii),
let us compute the property each loss elicits, i.e., the set of optimal reports for each p € Ay:

[1700) b1 = 1

1 p1>1/2 1 pe(1/2,1)
prop[lo1](p) = { {-1,1} p1=1/2 prop[Lningel(p) = § [—1,1] p1=1/2
1 p1<1/2 1 p1 e (0,1/2)

(00, =1] p1=0
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Figure 1: Bayes risks L : p — inf,(p, L(u)) of 0-1, hinge, and logistic losses, respectively, plotted as a
function of p; = Pr[Y = 1]. Observe that the Bayes risks of 0-1 and hinge loss are both piecewise
linear and concave, while the Bayes risk of logistic loss is not piecewise linear. Proposition 22 states
that embedding is equivalent to matching Bayes risks, confirming that hinge loss (M) embeds twice
0-1 loss (L), but logistic loss (R) does not.

In particular, we see that —1 € prop[lo.1](p) < p1 € [0,1/2] <= —1 € prop|Luinge| (D),
and 1 € prop[lp.1](p) <= p1 € [1/2,1] <= 1 € prop[Lninge)(p). With both conditions of
Definition 10 satisfied, we can conclude that Lyinge embeds 2¢o.1 with the representative set
S ={-1,1}. By results in § 6.2, one could also show that Lyi,ge embeds 2¢y.; by the fact
that their Bayes risks match (Figure 1).

In this particular example, it is known (Lyinge,sgn) is calibrated with respect to 0-1
loss (Bartlett et al., 2006, Example 4). Beyond this simple case, however, it is not clear
whether an embedding will always yield a calibrated link. Indeed, while it is intuitively clear
that embedded points should link back to their original reports, via 1(¢(r)) = r, how to map
the remaining values is far from obvious. Using the strong connection between embeddings
and polyhedral surrogates in § 3, we give a construction to map the remaining values in § 4,
showing that embeddings from polyhedral surrogates always yield calibration.

While our notion of embedding is sufficient for calibration (and therefore consistency),
it is worth noting that an embedding is not necessary for these conditions. For example,
while logistic loss does not embed 0-1 loss, logistic loss and the sign link are still consistent
for 0-1 loss. When working with polyhedral surrogates, however, embeddings are necessary
for calibration in a strong sense, as we discuss in § 7: if a polyhedral surrogate L has a
calibrated link to some target ¢, then L must embed some discrete target ¢ which can then
be linked to /.

3. Embeddings and Polyhedral Losses

In this section, we establish a tight relationship between the technique of embedding and
the use of polyhedral (piecewise-linear convex) surrogate losses, culminating in Theorem 1.
We defer the question of when such surrogates are consistent to § 4.

A first observation is that if a loss L elicits a property I', then L restricted to some
representative set S, denoted L|g, elicits ' restricted to S. As a consequence, restricting to
representative sets preserves the Bayes risk. We will use these observations throughout.
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Lemma 11 Let L : R — R}i elicit T, and let S C R be representative for L. Then L|s
elicits v : Ay = S defined by v(p) = T'(p) N'S. Moreover, L = L|s.

Proof Let p € Ay be fixed throughout. First let r € v(p) =T'(p) NS. Then r € I'(p) =
argmin, . (p, L(u)), so as r € S we have in particular r € argmin,cs(p, L(u)). For the
other direction, suppose r € argmin,cg(p, L(u)). As S is representative for L, we must have
some s € I'(p)NS. On the one hand, s € I'(p) = argmin, ¢ (p, L(u)). On the other, as s € S,
we certainly have s € argmin,cg(p, L(u)). But now we must have (p, L(r)) = (p, L(s)), and
thus r € argmin,cr (p, L(u)) = I'(p) as well. We now see r € I'(p) N'S. Finally, the equality
of the Bayes risks min,er (p, L(u)) = min,es(p, L(u)) follows immediately by the above, as
0 £T(p)NS CT(p) for all p € Ay. [ |

Lemma 11 leads to the following useful tool for finding embeddings: if a surrogate has a
finite representative set, it embeds its restriction to the representative set.

Proposition 12 Let a minimizable surrogate loss L : R — RK be given. If L has a finite
representative set S C R, then L embeds the discrete loss Lis.

Proof Let I' = prop|L] and v = prop|L|s|. Define ¢ : S — S to be the identity embedding.
Condition (i) of an embedding is trivially satisfied, as L|s(u) = L(u) for all u € S. Now let
u € §. From Lemma 11, for all p € Ay we have u € y(p) <= uweI'(p)NS <= u e T(p).
We conclude condition (ii) of an embedding. [ |

Proposition 12 reveals an equivalent definition of an embedding which can be more
convenient. Given a representative set S for ¢, an injection ¢ : S — R? is an embedding if:
(i) the loss values match as in Definition 10(i), and (ii) ¢(S) is representative for L. This
new definition is clearly implied by Definition 10; for the converse, Proposition 12 states
that L embeds L|,(s), which by (i) is the same loss as £ up to relabeling via .

With Proposition 12 in hand, we now shift our focus to polyhedral (piecewise-linear and
convex) surrogates. While polyhedral surrogates do not directly elicit finite properties, as
their report sets are infinite, they do elicit properties with a finite range, meaning the set of
possible optimal report sets is finite.

Lemma 13 Let L : R — RK be a polyhedral loss. Then L is minimizable and elicits a
property T' := prop[L]. Moreover, the range of T', given by T'(Ay) := {T'(p) CR%:p € Ay},
s a finite set of closed polyhedra.

Proof [Sketch]| See § A for the full proof. As L is bounded from below, L is minimizable
from Rockafellar (1997, Corollary 19.3.1) . With Y finite, there are only finitely many
supporting sets over Ay. For p € Ay, the power diagram induced by projecting the epigraph
of expected loss onto R? is the same for any p of the same support (Lemma 40). Moreover,
we have I'(p) is exactly one of the faces of the projected epigraph since the hyperplane
u > (u, (p, L(u))) supports the epigraph of the expected loss at exactly the property value;
moreover, since the loss is polyhedral the supporting hyperplane must support a face of the
epigraph. Since this epigraph has finitely many faces as it is polyhedral, the range of T’
is then a subset of elements of a finitely generated (finite supports) set of finite elements
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(finite faces). Moreover, each element of I'(Ay) is a closed polyhedron since it corresponds
exactly to a closed face of a polyhedral set. |

From Lemma 13, one can simply select a point from each of the finitely many optimal sets
to obtain a finite representative set. Plugging this finite representative set into Proposition 12
then yields an embedding.

Theorem 14 FEvery polyhedral loss L embeds a discrete loss.

Proof Let L : R — R{ be a polyhedral loss, and I" = prop[L]. By Lemma 13, T'(Ay) is
a finite set. For each U € I'(Ay), select uy € U, and let S = {uy : U € I'(Ay)}, which is
again finite. For any p € Ay then, let U = I'(p). We have U € I'(Ay) by definition, and
thus some uy € S; in particular, uy € U = I'(p). We conclude that S is representative for
L. Proposition 12 now states that L embeds L|s. |

We now turn to the reverse direction: which discrete losses are embedded by some
polyhedral loss? Perhaps surprisingly, we show in Theorem 15 that every discrete loss is
embeddable by a polyhedral surrogate. In the proof, we apply a result we will prove in
§ 6: a minimizable surrogate embeds a discrete loss if and only if their Bayes risks match
(Proposition 22).

Theorem 15 Every discrete loss £ : R — Rz is embedded by a polyhedral loss.

Proof Let n = |Y|, and let C : R™ — R be given by (—£)*, the convex conjugate of —/.
From standard results in convex analysis, C' is polyhedral as —£ is, and C' is finite on all of
RY as the domain of —¢ is bounded (Rockafellar, 1997, Corollary 13.3.1). Note that —£ is a
closed convex function, as the infimum of affine functions, and thus (—£)** = —£. Define
L:R" - RY by L(u) = C(u)1 — u, where 1 € RY is the all-ones vector. As C'is polyhedral,
so is L. We first show that L embeds ¢, and then establish that the range of L is in fact RI,
as desired.

We compute Bayes risks and apply Proposition 22 to see that L embeds ¢. Observe that
¢ is polyhedral as ¢ is discrete. For any p € Ay, we have

L(p) = inf (p,C(u)l —u)

u€R”
= ulen]Rf" C(u) — (p,u)
= — sup (p,u) — C(u)
ueR”

=—C*(p) = —(—Lp))™" = Lp) .

It remains to show L(u), > 0 for all u € R", y € Y. Letting d, € Ay be the point distribu-
tion on outcome y € ), we have for all uw € R", L(u), > inf,/epn L(u'), = L(0,) = £(dy) > 0,
where the final inequality follows from the nonnegativity of ¢. |

Combining Theorems 14 and 15, we have Theorem 1.
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Theorem 1 FEwvery discrete loss £ is embedded by some polyhedral loss L, and every polyhedral
loss L embeds some discrete loss £.

The proof of Theorem 15 uses a construction via convex conjugate duality similar to
many constructions in the literature. For example, the min-max objective in the literature
on adversarial prediction (Asif et al., 2015; Farnia and Tse, 2016; Fathony et al., 2016,
2018) is a special case of this construction when one unfolds the definition of the convex
conjugate of —¢. Reid et al. (2012) construct a canonical link function for proper losses with
differentiable Bayes risks; the link maps a report p € Ay to the gradient of the Bayes risk at
p, which uses the same duality as above. Duchi et al. (2018, Proposition 3) give essentially
the same construction as ours, but only comment on the calibration of surrogates under
such constructions for multiclass classification tasks given by strictly concave losses, which
excludes polyhedral surrogates. Finally, a similar construction also appears in the design of
prediction markets (Abernethy et al., 2013) and in connections between proper losses and
mechanism design (Frongillo and Kash, 2014, 2021).

4. Consistency and Linear Regret Transfer via Separated Links

We have seen that every polyhedral loss embeds some discrete loss. The embedding itself
tells us how to link the embedded points back to the discrete reports: link ¢(r) back to
r. But it is not clear how to extend this to yield a full link function ¢ : R* — R, and
whether such a 1 can lead to consistency. In this section, we prove Theorem 2, restated
below, via a construction to generate calibrated links for any polyhedral surrogate. Recalling
that calibration is equivalent to consistency for discrete targets, this result implies that an
embedding always yields consistency.

The key idea behind our construction is the notion of separation, a condition which is
equivalent to calibration for discrete prediction problems. Roughly, given a surrogate L and
discrete target ¢, a link is e-separated if the distance between any L-optimal point in R¢,
and any point that links to an ¢-suboptimal report, is at least e. We also show how this
characterization also leads to linear regret transfer or surrogate regret bounds.

4.1 Separation

Recall that for indirect elicitation, any point u € I'(p) must link to a report ¢ (u) € y(p). In
terms of losses, u minimizing expected L-loss implies that ) (u) minimizes expected ¢-loss,
with respect to p. The idea of separation is that points in the neighborhood of u must also
link to to a report in y(p). Furthermore, there must be a uniform lower bound € on the size
of any such neighborhood.

Definition 16 (Separated link) Let properties T : Ay =2 R? and  : Ay = R be given.
We say a link ¢ : R — R is e-separated with respect to I and ~ if for allu € R?, p € Ay
with ¥(u) & v(p), we have do(u,T(p)) > €, where doo(u, A) = infeca ||u — al|loo.® Similarly,

3. Frongillo and Waggoner (2021) define e-separation with a strict inequality doo(u,'(p)) > €; we adopt
a weak inequality as it is more natural in applications. For example, taking hinge loss for binary
classification, the sign link is 1-separated under the weak inequality, but only (1 — )-separated for § > 0
under the strict inequality.

11
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we say 1 is e-separated with respect to L and ¢ if it is e-separated with respect to prop[L]
and propl[/].

Theorem 17 Let polyhedral surrogate L : R — R{, discrete loss { : R — RY, and link
Y : RY = R be given. Then (L,) is calibrated with respect to ¢ if and only if 1 is e-separated
with respect to L and ¢ for some ¢ > 0.

Intuitively, calibration of a polyhedral surrogate and separated link follows from two
facts. First, Lemma 13 states that a polyhedral surrogate has only a finite set of “optimal
report sets” I'(Ay) := {I'(p) : p € Ay}. Second, for a given p, the expected surrogate loss
for a suboptimal point scales with the distance from the optimal set I'(p) at some minimum
linear rate o > 0; this rate is related to Hoffman constants. Combining with the first fact
gives a universal minimum constant « for all p. Now bringing in e-separation, any surrogate
report linking to a suboptimal target report has expected surrogate loss at least a-€ > 0. On
the other hand, if a link is not separated, then the same two facts imply that, for a sequence
of surrogate reports that get arbitrarily close to an optimal report set while linking to a
suboptimal target report, this sequence has conditional expected loss approaching optimal,
violating calibration. See § B for the proof.

4.2 Consistency

To prove Theorem 2, that embedding implies calibration, we now show how to construct a
calibrated link from an embedding. In light of Theorem 17, it now suffices to show that for
any polyhedral L embedding some /¢, there exists a separated link 1 with respect to L and /.
Construction 1, discussed next, “thickens” a given embedding to produce a link. Theorem
18 states that, for a small enough choice of e, that link is separated. See § D for the proof.
We also discuss a more general construction in § 7, and an alternate approach using results
from Ramaswamy and Agarwal (2016) in § E.

Theorem 18 Let polyhedral surrogate L : R¢ — R{ embed the discrete loss £ : R — R}:.
Then there exists eg > 0 such that, for all 0 < € < €y, Construction 1 for L,l e, | -| produces
a nonempty set of links, all of which are e-separated with respect to L and £.

Theorem 2 Given any polyhedral loss L, let ¢ be a discrete loss it embeds. There exists a
link function ¢ such that (L,%) is calibrated with respect to €.

Proof From Theorem 18, since L embeds /¢, there exists € > 0 such that Construction 1
yields a link ¢ which is e-separated with respect to L and ¢. By Theorem 17, since 1 is
e-separated for L and ¢, the pair (L,)) is calibrated with respect to ¢. |

To set the stage for Construction 1, we sketch the two main steps in proving Theorem 18:
(i) showing that one can define a link ¢ on all possible optimal points of L; (ii) “thickening”
1) so that it is separated.

For (i), given the embedding ¢ : § — R?, begin by linking each embedding point
back to its original report, so that ¥(p(r)) = r. Now we wish to determine ¢ (u) for

12
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non-embedding points u € R? which optimize L for some distribution. Let T' = prop[L]
and define U = I'(Ay) := {I'(p) | p € Ay} to be the set of all possible optimal sets. For
each U € U, we can define Ry = {r € S | ¢(r) € U} to be the set of target reports which,
by definition of embedding, are ¢-optimal when U is L-optimal. We would like to restrict
Y(U) C Ry, so that optimal surrogate reports are mapped to optimal target reports. The
challenge is that we could have a point u € U N U’ for two optimal sets U,U’ € U, and
a priori, it could be that Ry N Ry = (). The first step of the proof is to show that this
scenario cannot arise.

vu' cu, npewU #0 = Nuew Ry #0 . (4)

Thus, for any u € UyeyU, we have a nonempty set of valid choices for ¢(u). (Eq. (4) may
appear similar to indirect elicitation; in fact the two conditions are equivalent, as we discuss
in§7.)

For (ii), we show that this link can be “thickened” by some positive ¢, as described
next. Let U € U. By the above, 1 is already correct on U. Now, we “thicken” U to obtain
Ue ={u: ||u — U|| < €}. Then we require that all points in U, are linked to some element of
Ry. For e > 0, this condition directly implies separation.

It is not clear that this linking is possible, however, because a point v may be in the
intersection of several thickened sets Ue, U/, etc., corresponding to I'(p), I'(p’), etc. Therefore,
we need to take each possible collection U, U’, etc., show that their intersection (if nonempty)
contains a legal choice for the link, and then thicken their intersection in an analogous way.

To do so, given u € U.NU.N ..., we define a link envelope ¥(u) which encodes the
remaining legal choices for 1(u) after imposing the requirements for each such set U, U/,
etc. The key claim is that, for small enough € > 0, ¥(u) is nonempty: at least one permitted
value for 1(u) remains. This claim follows from a geometric result (Lemma 52) that, for
all small enough €, a subset of thickenings U, intersect if and only if the U sets themselves
intersect. When they do intersect, eq. (4) implies that there exists a permitted choice of
link for the intersection of the thickenings. It is crucial that, by Lemma 13, polyhedral
surrogates only have finitely many sets of the form U = I'(p). Together, these observations
yield a single sufficiently small € such that the key claim is true for all u € R%.

Given the above proof sketch, the following construction is relatively straightforward.
We initialize the link using the embedding points and optimal report sets, then adjust ¥ to
narrow down to only legal choices; we then pick from (u) from ¥(u) arbitrarily. Theorem
18 implies that, for all small enough e, the resulting link v is well-defined at all points, and
e-separated.

Construction 1 (e-thickened link) Let L : R? — R}:, l:R — R{, € >0, and a norm
| - || be given, such that L is polyhedral and embeds ¢ via the embedding ¢ : S — R for a
representative set S C R. Define I' = prop[L] and U = {T'(p) | p € Ay}. For allU € U,
define Ry = {r € S | ¢(r) € U}. The e-thickened link ) is constructed as follows. First,
initialize the link envelope W : R? — 25 by setting W(u) = S for all u. Then for each U € U,
for all points u such that inf,«cy ||u* — ul| < €, update ¥(u) = V(u) N Ry. If we have
U(u) # 0 for all u € R?, then the construction produces a link ¢ € U pointwise, breaking
ties arbitrarily.
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In § 7 we generalize this construction beyond embeddings, where we only require that L
indirectly elicits prop[f]. There we will see that, perhaps surprisingly, this construction
recovers every possible calibrated link.

Applying Construction 1 also enables one to verify the consistency of a given proposed
link ¢*. For a given € and norm || - ||, suppose one follows the routine of Construction 1
until the last step in which values for the link ¥ are selected. Instead, we can simply test
whether the proposed link values are contained in the valid choices, i.e., if ¥*(u) € ¥(u) for
all u € R?. If so, then the proposed link 1* is calibrated. See § 5.5 for an illustration of this
test. On the other hand, if ¢* cannot be produced from Construction 1, then it cannot be
a calibrated link. This impossibility can be shown, for example, if there exists a point u
where ¥(u) is empty for all € > 0.

Construction 1 is not necessarily computationally efficient as the number of labels n
grows. In practice this potential inefficiency is not typically a concern, as the family of
losses typically has some closed form expression in terms of n, and thus the construction
can proceed at the symbolic level. We illustrate this formulaic approach in § 5.2.

4.3 Surrogate regret bounds

Recall that the approach of surrogate risk minimization is to learn a hypothesis A that
minimizes expected surrogate loss, then output hypothesis ) o h, which hopefully minimizes
expected target loss. We would like surrogates where a bound on surrogate loss of h
immediately implies a bound on target loss of ¥ o h. One can formalize this problem in
terms of regret, as follows. Fix a data distribution D. The surrogate regret Ry of h and the
target regret Ry of the implied hypothesis ¢ o h, are given by

Ry (h:D)=E pL(h(X — inf E LW (X ,
L(h;D) = Ex y)ypL(h(X))y i By~ (R'(X))y

Ry(¢ 0 h; D) = E(x yyupl(Y(W(X)))y — inf Exy)pl(g'(X))y ,

g X—=R

where the infimum is taken over all measurable functions. The infimum represents the risk of
the Bayes optimal hypothesis, so regret can be viewed as excess risk under the assumption
that the learner’s hypothesis class contains the Bayes optimal.

Consistency (Definition 7) means that if the surrogate regret of h converges to zero, then
the target regret of 1 oh does as well; in other words, Ry (h; D) — 0 implies Ry(¢ o h; D) — 0.
Consistency is therefore a minimal requirement; in general, we are also interested in the rate
at which the target regret diminishes, as a function of the number of data points m. A regret
transfer bound, also called a surrogate regret bound, gives a guarantee on the relationship
between the rates of convergence of Ry, and Ry. For example, a surrogate with a fast rate of
convegence Ry — 0 as m — oo is not very useful if we nevertheless have a slow rate Ry — 0.

We show that, for any polyhedral surrogate, the transfer is linear: if surrogate regret
diminishes at a rate of O(f(m)), then the target rate is also O(f(m)). In particular, fast
convergence in surrogate regret implies fast convergence in target regret.

Theorem 19 Let (L,v) be consistent for a discrete loss ¢, and L polyhedral. Then there
exists ¢ > 0 such that, for all measurable hypotheses h and data distributions D, we have
Ry(¢ o h;D) < c- Rp(h; D).
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In the proof (§ C), we further show that the constant ¢ can be decomposed in terms of
three constants, which depend on L, v, and /¢, respectively. Specifically, we may write
c = CyHp /ey, where Hp, is the Hoffman constant for L, €, the separation of ¢, and Cy the
maximum loss gap of /. This expression gives the intuition that larger link separation is
generally better for performance. In some cases, this bound can be tightened, as we discuss
in § C.2. See Frongillo and Waggoner (2021) for a quadratic lower bound on the rate transfer
for sufficiently non-polyhedral surrogates.

5. Application to Specific Surrogates

Our results give a framework to construct consistent polyhedral surrogates and link functions
for any discrete target loss, as well as to verify consistency or inconsistency for specific
surrogate and link pairs. Below, we illustrate the power of this framework with specific
examples from the literature. To warm up, we study the abstain surrogate given by Ra-
maswamy et al. (2018), which is an embedding, and show how to rederive their link function
and surrogate regret bounds (§ 5.2). We then give three examples of subsequent works
that use our framework, in the context of structured binary classification (§ 5.3), multiclass
classification (§ 5.4), and top-k classification (§ 5.5). In each of these latter three examples,
our framework illuminates the behavior of inconsistent surrogates by revealing the discrete
losses they embed, i.e., the true targets for which they are consistent. In structured binary
classification and top-k classification, our framework also gives new consistent surrogates
and link functions which appear challenging to derive otherwise.

5.1 Applying the embedding framework

When using our framework to study the consistency or inconsistency of an existing surrogate
L:R?— R{, often the first step is determining the loss it embeds. To do so, we suggest
the following general approach. First, for each y € Y, divide R? into a finite number of
polyhedral regions on which L(-), is an affine function. Second, identify the vertices of
these polyhedral regions.* Third, conclude that the union of these vertices, S C R, is a
finite representative set for L. Now L embeds L|s from Proposition 12. From here one can
further remove redundant reports until arriving at a tight embedding if desired, or re-label
embedded reports to a more intuitive form; call this resulting embedded loss /.

Once the embedded discrete loss ¢ is known, the behavior of the surrogate L becomes
more clear. In particular, we learn what problem L is actually solving, as captured by
(. If this problem ? is not the desired target problem /¢, we can still derive restrictions
on conditional distributions (e.g., P C Ay) for which L is P-calibrated for ¢ (i.e., the
inequality holds for all p € P). Any level set of the embedded property 4 = prop[@] which
spans multiple level sets of the target property v = prop[¢] will lead to inconsistency for ¢
(Figure 2). To obtain consistency with respect to a desired target, therefore, it suffices to
restrict to the union of level sets of 4 which are each fully contained in some level set of ~.

With an embedding in hand, Construction 1 provides a calibrated link function from L
to £. This construction is especially beneficial in cases where the most intuitive link functions

4. In some cases, these regions do not have vertices, such as the top-k surrogates in § 5.5 which are invariant
in the all-ones direction; here one can restrict to a subspace, or otherwise select among equivalent reports.
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Figure 2: Using an embedding to show inconsistency. Let L be a surrogate
embedding K and let ¢ be a desired target; here L = Lggp, /= Labs
(§ 5.2) and ¢ is 0-1 loss for multiclass classification. Let I" = prop[L],
4 = propl[f], and v = prop[f] be the properties elicited by these losses;
here v = mode, as 0-1 loss elicits the mode. The level sets of 4 are
given in solid black lines, and those of + in dashed blue lines. To exhibit
non-calibration, take distributions p,p’ in the relative interior of the blue
cell 47 (here # = L for £a1,5) but in different cells of v. These distributions
will satisfy 4(p) = 4(p’), and thus T'(p) NS = T'(p’) NS by definition
of embedding, but v(p) Ny(p') = 0. Taking u € T'(p) = T'(p'), it is
impossible to define ¥ (u) to satisfy calibration, as ¥ (u) cannot be in
~(p) and y(p') simultaneously. In particular, even though u is L-optimal
1 D3 for both p and p’, ¥ (u) will be ¢-suboptimal for at least one, violating
calibration. We may impose restrictions on the conditional distributions
to remove the blue cell, however, in order to satisfy calibration. For this
example, the Lggp is classification-calibrated if one restricts to the set of
distributions where at least one label y € Y has probability p, > %

P2

are not calibrated, and no known calibrated link is known; see § 5.3 for a somewhat intricate
example. Surrogate regret bounds then follow from Theorem 19, as we illustrate in § 5.2.
In particular, our results imply the existence of linear regret transfer bounds bounds for
several applications where no such bounds were known (§ 5.3, 5.4, 5.5).

Finally, our link construction can even be useful in cases where the search for consistent
surrogates has been restricted to those accommodating a particular canonical link function
1. For example, one typically uses the sign link for binary classification, and the argmax
link (the k largest coordinates) for top-k classification (§ 5.5). As we show in Proposition 57,
Construction 1 fully characterizes the set of possible calibrated link functions for a polyhedral
embedding via the link envelope V¥, so v is calibrated if and only if it is contained in ¥ for
some € > (0. We demonstrate this approach for top-k classification in § 5.5. More generally,
however, while such canonical link functions may be intuitive for a given problem, our results
suggest that researchers should consider setting them aside and instead let Construction 1
determine the link.

5.2 Consistency of abstain surrogate and link construction

Several authors consider a variant of binary and multiclass classification, with the addition
of an abstain option (Bartlett and Wegkamp, 2008; Ramaswamy et al., 2018; Madras et al.,
2018; El-Yaniv and Wiener, 2010; Cortes et al., 2016). Ramaswamy et al. (2018) study the
1088 Labs : YU{ L} — RY defined by laps(r), = 0if r =y, 1/2if r = L, and 1 otherwise. The
report L corresponds to “abstaining” to predict, in exchange for a constant loss regardless
of outcome y. Ramaswamy et al. give the polyhedral binary encoded predictions (BEP)
surrogate Lggp, and the link 1> which they show is calibrated for £,ps. Letting d = [log, |V|],
their surrogate Lggp : RY — R}: is given by

Lpgp(u)y = max (1= o)jui)y » (5)
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where ¢ : Y — {—1,1}? is an injection.® Observe that Lpgp is exactly hinge loss when

|Y| = 2 and thus d = 1. The authors show that the link ¢*° is calibrated, where

> (u) = (6)

L min;eq [ui| < 1/2
¢ !(sgn(u)) otherwise 7
and they go on to establish linear surrogate regret bounds for (Lggp, ).

Using our framework, one can show that Lggp embeds (2 times) £,ps, with the embedding
given by ¢ above where we define (L) = 0 € R%. (Following the general procedure outlined
above, the regions where Lygp is affine all have vertices in the set {—1,1}¢ U {0}, meaning it
is representative, and Lpgp restricted to that set is precisely 2aps 0 0 1)

As an illustration, one can use the fact that Lggp embeds £, to verify that Lggp is
inconsistent for multiclass classification, i.e., with respect to 0-1 loss. In particular, since the
abstain report L is {as-optimal whenever max,cy p, < 1/2, by the definition of embedding,
the origin 0 € R? is Lpgp-optimal for the same distributions. Recalling that 0-1 loss elicits
the mode, one can now find two distributions with different modes but for which 0 is
Lgpp-optimal, violating calibration (Figure 2).

Moreover, as we illustrate in Figure 3(L), the link /> proposed by Ramaswamy et al.
can be recovered from Construction 1 by choosing the norm || - ||, and € = 1/2 (or smaller).
Hence, our framework could have simplified the process of finding °°, and the corresponding
proof of consistency. It also could have simplified the derivation of surrogate regret bounds
(§ 4.3); we show how to recover the tight bound of Ramaswamy et al. for the BEP surrogate
in § C.2.

To illustrate these points further, consider the alternate link 1* in Figure 3(R), given by

L lully <1
o 1(sgn(u)) otherwise

v (u) = { (7)

This link is the result of Construction 1 for norm || - ||; and the choice ¢ = 1, which
proves calibration of (Lggp, ') with respect to f,s. Aside from its simplicity, one possible
advantage of ¢! is that it assigns | to much less of the surrogate space R%.

5.3 Lovéasz hinge and the structured abstain problem

Many structured prediction settings can be thought of as making multiple predictions at
once, with a loss function that jointly measures error based on the relationship between
these predictions (Hazan et al., 2010; Gao and Zhou, 2011; Osokin et al., 2017). In the case
of k binary predictions, these settings are typically formalized by taking the predictions and
outcomes to be R = Y = {—1,1}*, with the ith coordinate giving the result for the ith binary
prediction. A natural family of losses are those which are functions of the misprediction or
disagreement set dis(r,y) = {i € [k] | 7; # y;}, meaning we may write ¢/ (r), = f(dis(r,y))
for some set function f : 2[¥ — R. For example, Hamming loss is given by f(S) = |S|. In
an effort to provide a general convex surrogate for these settings when f is a submodular
function, Yu and Blaschko (2018) introduce the Lovdsz hinge surrogate LY : R¥ — RY

5. To translate our notation to that of Ramaswamy et al. (2018), take B = —¢.
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Figure 3: Designing links for Lggp with d = 2 using Construction 1. The embedding is shown in bold
labeled by the corresponding reports. (L) The link envelope ¥ resulting from Construction 1 using
Il oo and € = 1/2, and a possible link ¢) which matches eq. (6) from Ramaswamy et al. (2018). (M)
An illustration of the thickened sets for two sets U, U’ € U, using || - ||; and e = 1. (R) The envelope
¥ and link v using || - || and € = 1.
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Figure 4: Links ¢* and ¥° such that (Lf,v*) and ¢° are calibrated with respect to ¢ for all

abs
suitable f. Points in each region link to the embedding point contained in the region. Both are

constructed via the link envelope ¥ from Construction 1, which yields possible choices for calibrated
links.

which leverages the well-known convex Lovasz extension of submodular functions. While
the authors provide theoretical justification and experiments, they leave open whether the
Lovész hinge is actually consistent for ¢7.

Finocchiaro et al. (2022b) use our embedding framework to resolve the consistency of
L7, showing that it is inconsistent with respect to ¢/ outside of the trivial case where f
is modular (in which case ¢/ is a weighted Hamming loss). Moreover, they show that L/
embeds a variant Kf:bs of ¢/ where one is allowed to abstain on a set of indices A C [k], which
they call the structured abstain problem. The inclusion of abstain options is natural when
observing that the BEP surrogate Lggp, for multiclass classification with an abtain option
(§ 5.2), is the special case of L/ where f(S) = 1{S # 0}.
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To derive the discrete loss Eg:bs that L/ embeds, the authors follow an approach similar
to § 5.1 to show that the set V = {—1,0,1}* is representative for L/, for any choice
of submodular and increasing f. From Proposition 12, they conclude that L/ embeds
Egbs := L'|y. Letting abs(v) = {i € [k] | v; = 0} denote the “abstain” set, we may write

Egbs A R{ as
¢l W)y = f(dis(v,y) \ abs(v)) + f(dis(v,y)) - (8)

(Observe that abs(v,%) C dis(v,y), since y € {—1,1}*.) By Theorem 2, then, there is a link
function such that the Lovasz hinge is consistent with respect to the structured abstain loss
Eibs'

As Finocchiaro et al. observe, actually deteriving a calibrated link function in this case
is nontrivial. Simple threshold links like for the BEP surrogate in § 5.2 are not always
calibrated, thus casting doubt that a trial-and-error approach for finding the link would be
successful. Instead, the authors leverage our thickened link construction (Construction 1) to
derive two links 9* and °, which have somewhat intricate geometric structure (Figure 4).
Perhaps surprisingly, by deriving the link envelope ¥ which is contained in the envelopes for
LS for all submodular and increasing f, they prove that ¢*(u) C ¥(u) and 1°(u) C ¥(u)
for all u € R%. Thus, both (L7, *) and (Lf,4°) are simultaneously calibrated with respect

to Eibs for all such f.

5.4 Embedding ordered partitions via Weston-Watkins hinge

As the hinge loss is one of the most common surrogates for binary support vector machines
(SVMs), original extensions to the multiclass setting included a one-vs-all reduction to the
binary problem via hinge loss, generating (g) hyperplanes for n labels. Proposing a more
efficient solution, Weston and Watkins (1999) give an alternate surrogate for multiclass SVM
prediction, defined as follows for predictions u € R",

Lyw(u)y = Y (1= (uy —ui))+ - (9)

1€V Ay

This surrogate Lyww was later shown to be inconsistent with respect to 0-1 loss (Tewari and
Bartlett, 2007; Liu, 2007).

Wang and Scott (2020) use our embedding framework to show that the Weston—-Watkins
hinge embeds an ordered partition loss £op, as defined below. In turn, they recover the result
of incomnsistency with respect to 0-1 loss. The report space for op can be defined in terms of
nested subsets of [n] := {1,...,n}, as follows.°

T={(Ty,....Ty) | s> 1,0 =Ty CT1 C ... C Ty = [n]} .

The ordered partition target loss fop : T — ]RX is then defined

S

lop(T)y = Z (1G] - H{y ¢ Ti-a}) — 1.

=1

6. To recover the partition of Wang and Scott (2020), take S; = T; \ Ti—1.
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Figure 5: Level sets of prop[¢op] (solid lines) juxta-
posed against the level sets of mode (dashed lines).
For the same reason as in Figure 2, the level sets
of prop[lop] whose relative interiors span multiple
cells of the mode, colored blue, cannot be properly
linked to the mode. These offending cells corre-
spond to reports whose highest partition has more
than one element, where in the white cells, the
“highest” element of the partition is well-defined.

prop[L?)] prop[L¥]
P2
o~ 23
Il 14
e
P1 D3
P2 D2
/ \ 124 234
v AN
e
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P b3

—

yan p3

Table 1: Visualizations of the properties elicited by the losses (embedded by) L@ L3 LW studied
by Yang and Koyejo (2020) and Finocchiaro et al. (2022a), and L* in eq. (10). We take n = 4 and
k € {2,3}, and visualize in 2 dimensions by fixing py = 1/4. The blue-filled regions are cells of the
surrogate property which cross the dashed blue lines of the target property, exhibiting inconsistency
(see Figure 2). Intuitively, the inconsistency arises from ambiguity in the top k elements of the
optimal surrogate report.

The loss op can be interpreted as a variation of 0-1 loss incorporating confidence: reports
are a nested sequence of sets, and the penalty upon seeing label y is the cardinality of the
first set containing y, plus the cardinality of all earlier sets.

Upon showing that Ly embeds ¢op, Wang and Scott then characterize prop[lop].
In the same manner as Figure 2, knowledge of the level sets of prop[lop] clarifies which
conditional distributions are the source of inconsistency for classification. Removing these
distributions gives a set P C Ay such that Lww and the canonical argmax link ¢ (u) : u +—
r € argmax, (ey, u) are calibrated with respect to 0-1 loss on P C Ay (i.e., such that eq. (2)
holds for all p € P). See Figure 5 for an illustration.
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5.5 Surrogates for top-k classification

In settings like object recognition and information retrieval, it is natural to predict a set .S of
labels. In top-k classification, one requires |S| = k, and given the true label y, the target loss
is (P k(S), = 1{y ¢ S} (Lapin et al., 2015, 2016, 2018; Yang and Koyejo, 2020; Berrada
et al., 2018; Rastegari et al., 2011; Reddi et al., 2019). In the literature on surrogates for
top-k classification, one goal has been to find a surrogate satisfying the following three
desiderata: convexity, consistency, and piecewise linear (“hinge-like”) structure. Yang and
Koyejo (2020) show that a number of previously proposed polyhedral losses, i.e., those
which are convex and hinge-like, are inconsistent. They further conjecture that perhaps no
surrogate could satisfy all three properties.

Finocchiaro et al. (2022a) apply the general approach outlined above to each of the
polyhedral surrogates shown to be inconsistent by Yang and Koyejo, and determine the
target problems they do solve, i.e., the discrete losses they embed. Each of the examined
surrogates embeds a discrete loss which can be viewed as a variant of the top-k problem,
allowing the algorithm to express varying levels of “confidence” on the top k labels or report
fewer than k labels. The conditional distributions for which these optimal reports differ
from the optimal top-k reports are shown in Table 1 with n = 4 and k € {2,3}. (Recall
n = |Y|, the number of labels.)

For example, one of the surrogates is L) (u), = (1 —uy + 1 Zle(u\y)[i])Jr, where wu;

denotes the ith largest element of u € R™. The authors show that L*) embeds ¢*)(T), =
%_ﬁﬂ]l{y ¢ T}, where T is a set of at most k labels. These embedded losses may
therefore be useful in top-k settings where choosing smaller sets may have some benefit,
such as a search engine that can use unused space for advertisements. Using the losses each
proposed surrogate embeds, using the same technique from Figure 2, the authors go on
to derive constraints on the conditional distributions under which the proposed surrogates
are actually consistent for top-k classification; these constraints are tighter than previous

constraints (Yang and Koyejo, 2020).

Beyond analyzing the previously proposed surrogates, Finocchiaro et al. also use our
framework to derive the first consistent polyhedral surrogate for ¢t°P%,

k 1 &
(U)y fax (U[l], me{g}eﬁ(m} [ m * m z:zl UM‘|> Uy ( )

That is, they show that a hinge-like surrogate does exist which is both convex and consistent.
In light of our framework, this fact is unsurprising: Theorems 1 and 2 imply that every
discrete loss has a consistent polyhedral surrogate. This new surrogate LF is given directly
by the construction from the proof of Theorem 15 and applying Theorem 2 to obtain
consistency. While Theorem 2 guarantees the existence of some consistent link function, the
authors further ask whether the canonical argmax link function v*, which returns the k
largest elements of u, is calibrated. They indeed confirm its consistency using our framework,
showing that ¥ is e-separated for L* and ¢*°P% for any e < % (Finocchiaro et al., 2022a,
Theorem 4.4).
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Interestingly, by choosing k = 1, one obtains what appears to be a novel surrogate for
0-1 loss in multiclass settings,

1 1 —
Ll(u)y:< max }1—H+E2u[i]>—uy.
i=1

me{l,...,n

In particular, this surrogate is consistent with respect to 0-1 loss using the canonical argmax
link. By contrast, recall that the Weston-Watkins hinge is not consistent for any link (§ 5.4),
despite being proposed as a surrogate for 0-1 loss.

6. Additional Structure of Embeddings

We have shown in § 3 a close connection between embeddings and polyhedral losses. Here we
go beyond polyhedral losses, showing a more general necessary condition for an embedding:
a surrogate embeds a discrete loss if and only if it has a polyhedral Bayes risk, or equivalently,
a finite representative set (Lemma 20). This result implies that the embedding condition
simplifies to matching Bayes risks (Proposition 22). We also use this result to understand
deeper structure of embeddings, and the geometry of the underlying properties. In particular,
we study a natural notion of a “trimmed” loss function (Definition 23), and connect this notion
to tight embeddings, and to non-redundancy from property elicitation (Proposition 24).

6.1 Structure of polyhedral Bayes risks

While we have focused on polyhedral losses thus far, many of our results extend to losses
with polyhedral Bayes risks, a strictly weaker condition. (We say a concave function is
polyhedral if its negation is a polyhedral convex function.) To see that every polyhedral loss
has a polyhedral Bayes risk, recall that Theorem 14 constructs a finite representative set S
for any polyhedral loss L, and thus L = L|s by Lemma 11, which is polyhedral. Conversely,
however, a Bayes risk may be polyhedral even if the loss itself is not. For example, a modified
hinge loss L(r), = max(r? — 1,1 —ry) as shown in Figure 6, which matches hinge loss on the
interval [—1, 1] but is strictly convex outside the interval [—2, 2], still embeds twice 0-1 loss.

Much of our embedding framework relies on the existence of finite representative sets.
Our main structural result is that a minimizable loss has a finite representative sets if and
only if its Bayes risk is polyhedral. The proof looks at the facets (full-dimensional faces) of
the Bayes risk, argues that each facet is generated by the loss at a particular report, and
shows the (finite) set of these reports is representative. Along the way, we identify several
other useful facts deriving from this same geometry; for example, a discrete loss tightly
embedded by a loss are unique up to relabeling, any set-wise minimal representative set
must be minimum in cardinality, and the level sets of the corresponding property are unique
and full-dimensional. Together, these facts form Lemma 20, which we use throughout this
section. See § F for omitted proofs.

Lemma 20 Let L: R — R{ be a minimizable loss with a polyhedral Bayes risk L. Then
L has a finite representative set. Furthermore, letting I' = prop[L], there exist finite sets
Y C R{ and © = {0, C Ay | v € V}, both uniquely determined by L alone, such that

1. A set R C R is representative if and only if V C L(R').
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Figure 6: (L) Expected modified hinge loss for fixed distribution; (R) Bayes risk of modified hinge
still matches the Bayes risk of hinge.

2. A set R' C R is minimum representative if and only if L(R') = V.

3. A set R' C R is representative if and only if © C {T', | r € R'}.

4. A set R C R is minimum representative if and only if {T'y |7 € R'} = ©.

S

. Every representative set for L contains a minimum representative set for L.

D

. The set of full-dimensional level sets of T is exactly ©.

7. For any r € R, there exists 0 € © such that I, C 0.

Co

. L tightly embeds ¢ : R' — Rz if and only if ¢ is injective and ((R') = V.

Lemma 20 now allows us to observe the relationship between embeddings, finite repre-
sentative sets and polyhedral Bayes risks.

Corollary 21 The following are equivalent for any minimizable loss L : R — R{.
1. L is polyhedral.
2. L has a finite representative set.
3. L embeds a discrete loss.

Proof If L is polyhedral, then Lemma 20 implies that L has a finite representative set. For
any surrogate L with a finite representative set S, Proposition 12 implies that L embeds
L|s, which is finite. Finally, if L embeds a discrete loss, then by definition L has a finite
representative set S, and Lemma 11 implies that L = L|s, which is polyhedral as the
pointwise minimum of a finite set of affine functions. o [ |
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From Corollary 21, L having a finite representative set is an equivalent condition to
L being minimizable and L being polyhedral. (Recall that having a finite representative
set already implies minimizability.) As it is also a more succinct condition, we will use the
former in the sequel. In particular, the implications of Lemma 20 follow whenever L has a
finite representative set.

6.2 Equivalent condition: matching Bayes risks

Lemma 20 leads to another appealing equivalent condition to an embedding: a surrogate
embeds a discrete loss if and only if their Bayes risks match. The proof follows by mapping
the two conditions of an embedding onto the geometric structure revealed by Lemma 20: (ii)
if the properties have the same level sets, the Bayes risks have the same projections onto Ay,
and (i) if the loss values match, then the slopes of the Bayes risk must be identical as well.

Proposition 22 Let discrete loss ¢ and minimizable loss L be given. Then L embeds { if
and only if L = 0.

Proof Define I" := prop[L] and ~ := prop[f]. Suppose L embeds ¢, so we have some S C R
which is representative for ¢ and an embedding ¢ : S — R?; take U := (S). Since S is
representative for ¢, by embedding condition (ii) we have {75 |s € S} ={Ty, |u €U}, soU
is representative for L. By Lemma 11, we have ¢ = ¢|s and L = L|y;. As L(¢(-)) = ¢(-) by
embedding condition (i), for all p € Ay, we have o -

Up) = tls(p) = min(p, £(r)) = minp, L(p(r))) = min(p, L(w)) = Llu(p) = L(p) -

For the reverse implication, assume L = ¢, which are polyhedral functions as ¢ is discrete.
From Lemma 20(2), we have some set V C R%ﬁ and minimum representative sets R* C R
and U* C U, for ¢ and L respectively, such that ((R*) =V = L(U*). As R* and U* are
miniumum, they cannot repeat loss vectors, and thus |R*| = [¢(R*)| and |L(U*)| = |U*|.
We conclude that R* and * are both in bijection with V. The map ¢ : R* — R?, given by
o(r) = u € U* where {(r) = L(u), is therefore well-defined. Condition (i) of an embedding is
immediate. From Proposition 12, ¢ embeds ¢|z+ and L embeds L|j+, both via the identity
embedding. Using condition (ii) from both embeddings, for all p € Ay and r € R*, we have

r € y(p) <= 1 € propl{|r+|(p) <= ¢(r) € prop[L|y+|(p) <= ¢(r) € prop[L](p) ,

giving condition (ii). [ |

We use this fact in the proof of Theorem 15 to show that every discrete loss is embedded
by some polyhedral surrogate. See Figure 1 for an illustration.

6.3 Trimming a loss

Central to the structural results in Lemma 20 is the existence of a canonical set of loss
vectors V which match the loss vectors of any minimum representative set. This fact may
seem surprising when one considers that losses may have many mimimum representative
sets. For example, consider hinge loss with a spurious extra dimension, i.e., L : R? — RY,
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L((r1,7r2))y = max(0,1 —ryy) for Y = {—1,+1}. Here the minimum representative sets

are exactly the two-element sets of the form {(—1,a),(1,b)} for any a,b € R. Lemma 20(2)

states that, while the minimum representative set is not unique, its loss vectors are.
Motivated by this observation, let us define the “trim” of a loss to be this unique set V

of loss vectors induced by any minimum representative set, which again is well-defined by
Lemma 20(2).

Definition 23 (Trim) Given a loss L : R — RX with a finite representative set, we define
trim(L) = {L(r) | r € R*} given any minimum representative set R* for L.

Using this notion of trimming a loss, we can again recast our embedding condition: a
loss embeds another if and only if they induce the same loss vectors, or have the same trim.

Proposition 24 Let L : RY — R%: have a finite representative set, and let £ : R — R}: be
a discrete loss. Then L embeds ¢ if and only if trim(L) = trim(¢). Furthermore, L tightly
embeds ¢ if and only if € is injective and trim(L) = ¢(R).

Proof As L has a finite representative set, it is minimizable. Proposition 22 gives L embeds
¢if and only if L = ¢. If L = ¢, Lemma 20(2) gives trim(L) = trim(¢). For the converse,
suppose trim(L) = trim(¢) =: V. Define the discrete loss liyim : V — V, v — v. Then iy, is
injective and li, (V) = V, so from Lemma 20(8), both L and ¢ tightly embed fi,. We
conclude L = liiyy = £ from Proposition 22. The second statement also follows directly from
Lemma 20(8). [

In a strong sonse, the trim operation reduces a loss to its core: the unique minimal
set of loss vectors that drive its statistical behavior. One can therefore think of designing
consistent convex surrogates as trying to “fill out” this minimal set with additional loss
vectors so that one attains convexity while keeping trim the same.

6.4 Minimum representative sets and non-redundancy

The condition that a representative set be minimum implies that one has identified exactly
the “active” reports of a loss, in some sense. We now relate this condition to another natural
notion from the property elicitation literature: non-redundancy (Frongillo and Kash, 2014;
Lambert, 2018). Intuitively, a loss is non-redundant if no report is weakly dominated by
another report.

Definition 25 (Non-redundancy) A loss L: R — RY elicitingT" : Ay = R is redundant
if there are reports r,v" € R with r # r' such that T, C T',s, and non-redundant otherwise.

From the structural result of Lemma 20, we can see that in fact these two notions are
equivalent when L has a polyhedral Bayes risk.

Proposition 26 Let L : R — R}i have a finite representative set R'. Then R’ is a minimum
representative set for L if and only if L|g: is non-redundant.
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Proof Let I' = prop[L]|. Suppose first that L|: is redundant. Then there exist r, 7" € R’
such that I, C T',v. Thus, for all p € T, we have {r,r'} C I'(p). Therefore R’ \ {r} still a
representative set, so R’ is not minimum.

Now suppose L|g: is non-redundant. As R’ is a representative set, Lemma 20(5) gives
some minimum representative set S C R’. Suppose we had some r € R'\' S. Now
Lemma 20(4,7) gives some s € S such that I', C I'y, which contradicts L|zs being non-
redundant. We conclude L(S) = L(R’), meaning R’ is a minimum representative set. W

Corollary 27 Let loss L : R — Ri with finite representative set R’ be given. Then L
tightly embeds L|gr: if and only if L|g: is non-redundant.

In fact, we can show something stronger: the reports in minimum representative sets
are precisely those which are not strictly redundant. To formalize this statement, given
I': Ay =R, let red(T) :={re R | I €R, ' T '} be the set of strictly redundant
reports. Similarly, for minimizable L, let red(L) := red(prop[L]).

Proposition 28 Let L : R — R{ have a finite representative set. Let R' be the union of
all minimum representative sets for L. Then R’ = R \ red(L).

Proof Let I' = prop[L]. Let & be a minimum representative set for L, and let s € S.
Suppose for a contradiction that s € red(I'). Then we have some r € R with T’y C T',.
From Lemma 20(4,7) we have some s’ € S such that ', C T'y. But now I's C T, C Ty,
contradicting S being a minimum representative set. Thus & C R \ red(T"), which implies
R’ C R\ red(T).

For the reverse inclusion, let » € R \ red(T"). Let S again be a minimum representative
set for L. From Lemma 20(4,7), we have some s € S such that I, C I's. By definition
of red(L), we conclude T', = T's. Now take &’ = (S\ {s}) U {r}, that is, the same set
of reports with r replacing s. We have {I'; | s € S} = {I'y | s € §’'}, and thus &’ is a
minimum representative for L by Lemma 20(4). Asr € §’, we have r € R’ and we are done. B

As a corollary, we can state another characterization of trim in terms of redundant
reports. The result follows immediately from the definition of trim.

Corollary 29 Let L : R — R{ have a finite representative set. Then trim(L) = L(R\
red(L)).

This result motivates the analogous definition for properties, trim(I") := {T', | r €
R\ red(I")}. We leverage this definition next, to study embeddings at the property level.

6.5 A property elicitation perspective on trimmed losses

We conclude this section with a structural result similar to Lemma 20, but for properties.
To do so, we must first generalize the definition of embeddeding to properties. We say a
property I' : Ay = R? embeds a finite property v : Ay = R if condition (ii) of Definition 10
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holds. In other words, I' embeds « if we have some representative set S C R for v and
embedding ¢ : S — R? such that for all s € S we have v, = Lo

Roughly, our result is as follows. First, if I' embeds ~, the level sets of I' must all be
redundant relative to «y. In other words, I' is exactly the property v up to relabelling reports,
but potentially with other reports “filling in the gaps” between the embedded reports of
~v. When working with convex surrogates, extra reports often arise in the convex hull of
the embedded reports. In this sense, we can regard embedding as only a slight departure
from direct elicitation: if a loss L directly elicits I' which embeds v, we can almost think
of L as eliciting ~ itself. Finally, we have an important converse: if I' has finitely many
full-dimensional level sets, or equivalently, if trim(I") is finite, then I" must embed some finite
elicitable property with the same full-dimensional level sets.

The proof relies heavily on Lemma 20. The statements about level sets use the following
corollary of Proposition 24 for properties.

Corollary 30 Let I' : Ay == R be an elicitable property with a finite representative set.
Then trim(T") is the set of full-dimensional level sets of T.

Proof Let L elicit I'. From Lemma 20(4,6), for any finite minumum representative set
S C R, the set {I's | s € S} is exactly the set of full-dimensional level sets © of T
From Proposition 26, we have r € R \ red(T") if and only if 7 is an element of some mini-
mum representative set. As I' has at least one minimum representative set, we conclude
trim(T) = {T, | r € R\ red(T")} = O. [ ]

Proposition 31 LetT': Ay = R? be an elicitable property. The following are equivalent:

1. T’ embeds a elicitable finite property v : Ay = R.
2. trim(T") is a finite set.
3. There is a finite minimum representative set U for I

4. There is a finite set of full-dimensional level sets © of T', and U© = Ay.

Moreover, when any of the above hold, trim(v) = trim(T') = {T, | u € U} = O.

Proof Let L be a fixed loss eliciting I', so that in particular L is fixed. By definition of
elicitable properties, L is minimizable. In each case, we will show that L is polyhedral
(or equivalently, that L has a finite representative set), and thus Lemma 20 will give us
the set © of full-dimensional level sets of I', uniquely determined by L. We will prove
1=2=3=4=1, and in each case show that the relevant set of level sets is equal to O,
giving the result.

1 = 2: Let S be the representative set for v and ¢ : S — R? the embedding. Since S is
finite, ¢(S) is a finite representative set for I' (and L; thus, L is polyhedral). Corollary 30
now gives trim(I") = ©, which is finite, showing Case 2.

2 = 3: If trim(T") is finite, then in particular we have a finite set of reports S C R? such
that trim(T") = {T's | s € S}. As T is elicitable, R is representative for I'. By definition of
trim, we have Ay = U, cpal’; = Utrim(I") = UsesT', and therefore S is representative for T
and for L. As S is finite, we have L polyhedral. From Lemma 20(5), we have some minimum
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representative set Y C S for L and T', implying statement 3. Moreover, Lemma 20(4,6) gives
{Tuluel}=0.

3 = 4: Let U be a finite minimum representative set for I'. Then L = L|;; is polyhedral.
Lemma 20(4,6) once again gives {T', | u € U} = ©. We simply let O = O, giving statement
4 as U is representative.

4= 1: Let S C R such that {T'y | s € S} = ©. Then & is representative for ' and L, as
ud = Ay. Again, this yields a finite representative set for L. Lemma 11 now states that
L embeds Ll|s, so " embeds v := p — I'(p) NS, giving Case 1. Finally, Corollary 30 gives
trim(y) = ©. [

As a final observation, recall that a property I' elicited by a polyhedral loss has a finite
range, in the sense that there are only finitely many optimal sets I'(p) for p € Ay (Lemma 13).
Proposition 31 shows a complementary statement: there are only finitely many level sets 'y,
for u € R?. In other words, both I" and I'"! have a finite range as multivalued maps.

7. Polyhedral Indirect Elicitation Implies Consistency

As we have observed, consistency, and therefore calibration, implies indirect elicitation
(§ 2.3). In general, indirect elicitation is simpler and weaker than calibration, since it only
depends on the loss through the property it elicits, i.e., its exact minimizers. Surprisingly,
for polyhedral surrogates, we show the converse: indirect elicitation implies calibration, and
therefore consistency.

Theorem 32 Let L : R — R%: be a polyhedral loss which indirectly elicits a finite property
v. For any loss { eliciting v, there exists a link 1 such that (L,v) is calibrated with respect
to £.

One technical detail is that the link function may have to change. That is, we will show
that if (L,) indirectly elicits prop[¢], then there exists some potentially different link 1’
such that (L,v') is calibrated with respect to . To see why this change may be necessary,
consider again the example from § 2.3: hinge loss with the link 1 (u) = —1 for u < 1 and
¥(u) =1 for u > 1. Here indirect elicitation is achieved, since we have ¢((—o0, —1]) = {—1}
and ¢([1,00)) = {1}, but the link is not e-separated for any € > 0. In general, it is not clear
whether one can always adjust the link in this case to achieve separation, and therefore
calibration. Fortunately, for polyhedral surrogates, one can always “thicken” a given link to
achieve separation.

We give two proofs of Theorem 32. The first is direct: we show, as foreshadowed in
§ 4, that our thickened link construction can be generalized for indirect elicitation. In fact,
we will further prove that our general construction recovers every possible calibrated link
function. The second proof highlights the central role that embeddings play when reasoning
about polyhedral surrogates. Specifically, we will show that if a polyhedral surrogate
indirectly elicits a finite property, the link function must “pass through” an embedding,
giving calibration through Construction 1.

Finally, a third proof of Theorem 32 is implicit in Ramaswamy and Agarwal (2016, Theo-
rem 8). The authors use an entirely different link construction involving the superprediction
set of the surrogate loss. We discuss their result and how it relates to our work in § E.
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7.1 Generalizing the thickened link construction

Given that Construction 1 uses the embedding ¢ : S — R? in a crucial role, it is not
immediately clear how to generalize the construction beyond embeddings. Specifically, this
crucial role is in the definition of Ry, the set of target reports which must be optimal
whenever a given surrogate report set U C R? is optimal. Using the embedding, we can
simply define Ry = {r € S | ¢(r) € U}, since the definition of embedding means that those
are exactly the target reports (among the representative set §) which are optimal when U is.

Now suppose we merely know that L indirectly elicits some finite property v : Ay = R.
In § D, we give Construction 2, which is the same as Construction 1 but with the following
modification of Ry to Ry. Let T' = prop[L] and U = {I'(p) | p € Ay} as before. Then for
all U € U, we define Ry := {r € R | Ty C 7}, where Ty := {p € Ay | U = '(p)} is the set
of distributions for which U is the surrogate optimal set. In words, Ry is the set of reports
r which may be linked to from points in U, in the sense that U being L-optimal implies
r is f-optimal. For the special case where L embeds /, it is straightforward to verify that
Ry=RynNS. Asa result, Construction 1 is the special case of Construction 2 where one is
given an embedding and restricts to the representative set S (Lemma 49).

The main result of § D is that, if a polyhedral surrogate indirectly elicits a finite property,
then for small enough ¢ > 0, Construction 2 always produces a link (Proposition 56).
Combined with the fact that, by design, the construction and our choice of }A?,U enforce
separation, we have the following.

Proposition 33 Let L be a polyhedral surrogate which indirectly elicits a finite property
~v. Then there exists eg > 0 such that for all 0 < e < ¢y, Construction 2 for L,7v,€, | - |loo
produces a separated link from prop[L] to 7.

Since separation is equivalent to calibration for polyhedral surrogates (Theorem 17), we now
have Theorem 32: indirect elicitation implies calibration for polyhedral surrogates.

In fact, we can show something stronger: RU enforces separation exactly, and therefore
every possible calibrated link must arise from Construction 2.

Theorem 34 A link v is calibrated for a given polyhedral surrogate L and discrete target £ if
and only if there exists € > 0 such that v is produced by Construction 2 for L,prop[l], e, || - |

7.2 Centrality of embeddings

To derive another proof of Theorem 32, we now show that, for polyhedral surrogates, indirect
elicitation must always pass through an embedding. That is, if L indirectly elicits 7, then
there is some loss ¢ which L embeds, such that ¢ indirectly elicits v. This result holds more
generally whenever L has a finite representative set, as in § 6.

Lemma 35 Let L : R — Rf_ be polyhedral. Then L indirectly elicits a property v if and
only if L tightly embeds a discrete loss £ that indirectly elicits ~y.

Proof Let ' = prop[L]. From Lemma 20(8), L tightly embeds a discrete loss. Furthermore,
Lemma 20(4,7,8) implies that L indirectly elicits 4 := prop[¢] for any discrete loss ¢ that L
tightly embeds. The link is any function 1) : u + 7 such that I';, C 4. for all u € R?.
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We will prove the stronger statement that, for any property 7, and any loss ¢ : R — Rﬁ
that L tightly embeds, L indirectly elicits « if and only if ¢ indirectly elicits . If £ indirectly
elicits v via the link ¥, then L indirectly elicits v by transitivity of subset inclusion, as
r. €% (w) € Yo D) for all v € R Conversely, suppose L indirectly elicits v via the
link ¢. As L tightly embeds ¢, from Lemma 20(4,8), the level sets of 4 are contained in
the set {I', | u € R?}. Letting the map 1) : R — R? exhibit this containment, we have
A = Fw(r) S Vo) for all r € R. |

Proof [Alternate proof of Theorem 32] Let R be the range of 7, S0 that v : Ay = R, and let
¢ elicit v. By Lemma 35, L tightly embeds a discrete loss (R — R such that ¢ indirectly
elicits Vs let 7 R — R be the corre%pondlng link function. Let 4 := prop[ﬁ] be the property
that ¢ directly elicits. Then for all 7 € R and p € - Ay we have r € §(p) = YR(r) € y(p).
Moreover, Construction 1 gives a link function ¢ : R — R such that (L ,&) is calibrated
with respect to /.

Consider ¢ := ¢® 0 ) and fix p € Ay. For any u € R?, if ¢)(u) € 4(p), then h(u) =
YR otp(u) € y(p) by definition of 1) and . Contrapositively, 1(u) ¢ v(p) = ¥ (u) & 3(p).
Thus, we have

{ue R | P(u) € 7(p)} S {u € R [4(u) #A(n)} -
Combined with the fact that (L, 1/3) is calibrated with respect to f, we have

inf p, L(u)) > inf p, L(w)) > inf (p, L(u)) ,
ueRd:¢(U)€v(p)< () ueRd:@@(u)ga(p)< (W) ueRd< )

showing calibration of . |

8. Conclusion

In this work, we introduce an embedding framework to design and analyze consistent, convex
surrogates for discrete prediction tasks. Our results are constructive; as we outline in § 5,
they can be fruitfully applied to a range of tasks, from designing new surrogates and link
functions to understanding the consistency or inconsistency of existing surrogates. Beyond
these tools, our results shed light on fundamental questions about the design of consistent
surrogates.

Perhaps the most pressing open direction is simply to apply our framework to prediction
problems of interest. We hope that the discussion in § 5.1, and the detailed examples in
subsequent works, serve as useful guidelines for doing so. A particularly promising domain to
apply our framework is structured prediction, where relatively few consistent surrogates are
known. Indeed, our framework has already been applied to submodular structured problems
(§ 5.3) and to max-margin losses (Nowak et al., 2022).

Beyond applying our framework, we see several interesting directions for theoretical
research. Below we outline several such directions.

Prediction dimension It can be important for applications to understand the minimum
prediction dimension d of a consistent convex surrogate L : RY — Rz for a given target
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problem, also called its convex elicitation complexity (Frongillo and Kash, 2021). Theorem 15
constructs a consistent surrogate for any discrete loss, with prediction dimension d = n := |Y|.
In some settings, such as structured prediction and information retrieval, a prediction
dimension of d = n can be prohibitively large. For example, in § 5.3 we discuss structured
problems which decompose as k simple subproblems, like pixel classification for image
segmentation. The Lovasz hinge has prediction dimension k for this problem, whereas our
construction would give one with d = n = 2, an impractical number even for relatively small
images. While one could achieve d = n — 1 with a simple modification to our construction,’
it is unclear when and how the prediction dimension could be further lowered.

Beyond studying convex elicitation complexity directly (Ramaswamy and Agarwal, 2016;
Finocchiaro et al., 2021; Frongillo and Kash, 2021), one promising approach to this question
is to first understand the minimum d for which a polyhedral surrogate L : R? — Rﬁ embeds
¢, called the embedding dimension of £, and then relate this dimension to polyhedral, or
general convex, elicitation complexity. One reason this approach may be fruitful is that
embeddings have much more structure than general convex losses, such as the fact that
calibrated links arise automatically (Theorem 18). Yet from § 7 and similar observations, it
may well be that the lowest possible prediction dimension is achieved by an embedding.

In previous work, we introduce and present some bounds for embedding dimension
based on optimality conditions (Finocchiaro et al., 2020). We show in particular that a
target loss has embedding dimension 1 if and only if it hase convex elicitation complexity 1,
underscoring the possibility that these quantities may be the same for all discrete losses. It
is unclear if these bounds are tight or if they can be improved by leveraging information
about adjacent level sets of an embedded property. Moreover, beyond the fact that the
embedding dimension upper bounds convex elicitation complexity, it remains to understand
the relationship between these two quantities in dimensions greater than 1.

Polyhedral vs. smooth surrogates The literature on convex surrogates focuses mainly
on smooth surrogate losses (Crammer and Singer, 2001; Bartlett et al., 2006; Bartlett and
Wegkamp, 2008; Duchi et al., 2018; Williamson et al., 2016; Reid and Williamson, 2010;
Menon et al., 2019; Zhang et al., 2020; Bao et al., 2020). In practice, minimizing such
surrogates often implicitly fits a model to the full conditional label distributions. On the
other hand, Ramaswamy et al. (2018, Section 1.2) contend that optimizing nonsmooth losses
may enable reduction of the prediction dimension while maintaining consistency relative
to smooth losses, improving downstream efficiency of the learning algorithm.®  While
generalization rates may suffer for nonsmooth losses, polyhedral surrogates achieve linear
regret transfer bounds (§ 4.3), so the target generalization rates may remain the same;
see also Frongillo and Waggoner (2021). Even further, Lapin et al. (2016) suggest that
optimizing a nonsmooth loss that directly captures the target problem of interest, rather
than a smooth one that implicitly fits to the full conditional label distributions, can improve
performance in limited data settings. We would like to verify this intuition, with specific
cases or broad results comparing smooth and polyhedral losses.

7. One can always reduce to d = n — 1 in Theorem 15 via a linear transformation from R"™ to R"~! which is
injective on Ay; redefining the surrogate appropriately, the Bayes risks will still match.

8. Polyhedral losses may be more challenging to optimize in some cases than smooth losses, so the prediction
dimension may need to be much smaller, as in the BEP surrogate, until one sees a computational benefit.
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Indirect elicitation as a condition for consistency It is well-known that consistency is
equivalent to calibration (Definition 6) for discrete target problems. As calibration is a much
easier condition to work with, and in particular only involves the conditional distributions,
calibration is the main tool in the literature on consistency for discrete target problems.
It is easy to verify that calibration in turn implies indirect elicitation, meaning that exact
minimizers of the surrogate loss are linked to exact minimizers of the target. In § 7, we show
that, when restricting to the class of polyhedral surrogates, indirect elicitation is actually
equivalent to calibration, and therefore consistency. As indirect elicitation is an even simpler
condition than calibration, an important line of future work is to identify other classes of
surrogates for which this equivalence holds.

Extensions to H-consistency Throughout, we rely heavily on the fact that calibration is
equivalent to consistency when the hypothesis class H in question is the set of all measurable
functions. Calibration is no longer equivalent to consistency, however, when the hypothesis
class H is restricted. Consistency in this case is called H-consistency. In classification,
calibration can fail to be sufficent for H-consistency even in the realizable setting (Long and
Servedio, 2013; Kuznetsov et al., 2014; Awasthi et al., 2021a,b). Realizability and similar
assumptions often rule out the conditional label distributions causing inconsistency issues
in § 5. Under such assumptions, H-consistency essentially reduces to an alignment of the
surrogate hypothesis class and the target class H, as mediated by the link function (Zhang
and Agarwal, 2020). We expect that our link construction (§ 4.2) and characterization
(§ 7.1) could help extend these results beyond classification when using polyhedral surrogates.
Work has also begun to derive surrogate regret bounds for restricted classes H, called
H-consistency bounds (Awasthi et al., 2022a,b). Here we expect that the linear surrogate
regret bounds we derive (§ 4.3) could be applied.

Superprediction sets An interesting direction is to understand consistent surrogates by
studying their superprediction sets, as has been done for proper losses (Williamson, 2014).
The superprediction set of a loss is the set of loss vectors weakly dominated by the range
of the loss: {v € RY | 3r L(r) < v}, where the inequality holds pointwise. One appealing
aspect of the superprediction set is that it ignores the surrogate reports and focuses directly
on the set of loss vectors, in a similar fashion to the trim operation in § 6.3. In particular,
taking inspiration from Ramaswamy and Agarwal (2016), it may be that questions about
the required prediction dimension (see above) could be more readily answered by trying to
find low-dimensional structures in the superprediction set of the target loss.

Convex envelope Finally, recall that we motivated the idea of an embedding as a way to
“convexify” a discrete loss. It is not clear, however, how embeddings relate to the convex
envelope operation, which is perhaps the most direct way to perform this convexification
given the map ¢. For example, suppose L : R? — R{ embeds ¢ : R — Ri via the
embedding ¢ : R — R?, and consider the (polyhedral) surrogate L' : R¢ — R}i given by
Li, = (Ly + 1,(R))*™, where here 1 denotes the convex indicator and (-)** the biconjugate.
(One might also consider similar operations that keep L’ finite-valued.) When is it the
case that L' also embeds ¢? Conversely, we would like to know when the construction in
Theorem 15 can be viewed as a convex envelope.
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Appendix A. Power diagrams

We begin with several definitions from Aurenhammer Aurenhammer (1987).

Definition 36 A cell complex in R? is a set C of faces (of dimension 0,...,d) which (i)
union to R?, (i) have pairwise disjoint relative interiors, and (iii) any nonempty intersection
of faces F,F'" in C is a face of F and F' and an element of C.

Definition 37 Given sites si,...,s; € R and weights w1, ..., w; > 0, the corresponding
power diagram is the cell complex given by

cell(s;) = {zx € R :Vj € {1,...,k} ||z — 55| —wi < ||z — 55> — w;} . (11)

Definition 38 A cell complez C in R? is affinely equivalent to a (convex) polyhedron
P C R f C is a (linear) projection of the faces of P.

Some of the convex polyhedra we study are the (negative) Bayes risks of loss functions,
whose projections onto Ay form the level sets of the property they elicit. The following
result from Aurenhammer (1987) therefore immediately applies to elicitable properties. We
also make use of the same structure for the loss itself; in particular, one can consider the
epigraph of a polyhedral convex function on R? and the projection down to R%. In either
case, we refer to the resulting power diagram as being induced by the convex function.

Theorem 39 (Aurenhammer (Aurenhammer, 1987)) A cell complex is affinely equiv-
alent to a convex polyhedron if and only if it is a power diagram.

We extend Theorem 39 to a weighted sum of convex functions, showing that the induced
power diagram is the same for any choice of strictly positive weights.

Lemma 40 Let fi,..., fm : RY — R be polyhedral convez functions. The power diagram
induced by "1 p; fi is the same for all p € inter(Ay).
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Proof For any polyhedral convex function g with epigraph P, the proof of Aurenhammer
(1987, Theorem 4) shows that the power diagram induced by g is determined by the facets
of P. Let F be a facet of P, and F' its projection down to R?. It follows that g|z is affine,
and thus ¢ is differentiable on inter(F’) with constant derivative d € R?. Conversely, for any
subgradient d’ of g, the set of points {z € R?: d’ € dg(x)} is the projection of a face of P;
we conclude that F = {(z,g(x)) € R :d € dg(x)} and F' = {x ¢ R? : d € dg(x)}.

Now let f := Y°F | fi with epigraph P, and f’' := ¥ | p;f; with epigraph P’. By
Rockafellar Rockafellar (1997), f, f' are polyhedral. We now show that f is differentiable
whenever f’ is differentiable:

k
0f(x) ={d} <= > 0fi(x) = {d}
i=1

— Vie{l,...,k}, Ofi(x) = {d;}
—= Vie{l,...,k}, Opifi(x) = {pids}

k k
= Y Opifilz) = {szdz}
i=1

=1
k
<~ 8f,($) = {szdl} .
=1

From the above observations, every facet of P is determined by the derivative of f at any
point in the interior of its projection, and vice versa. Letting x be such a point in the
interior, we now see that the facet of P’ containing (x, f’(x)) has the same projection, namely
{2/ € R?: Vf(x) € Of(z)} = {2’ € R : Vf'(x) € 0f'(«')}. Thus, the power diagrams
induced by f and f’ are the same. The conclusion follows from the observation that the
above held for any strictly positive weights p, and f was fixed. |

We now include the full proof of Lemma 13.

Lemma 41 Let L : R? — Rz be a polyhedral loss. Then L is minimizable and elicits a
property T := prop[L]. Moreover, the range of T, given by T'(Ay) := {T'(p) CRY:p € Ay},
s a finite set of closed polyhedra.

Proof First, observe that L : R — ]RX is finite and bounded from below (by 0), and thus its
infimum is finite. Therefore, we can apply Rockafellar (1997, Corollary 19.3.1) to conclude
that its infimum is attained for all p € Ay and is therefore minimizable. Thus, L elicits a
property.

For all p, let P(p) be the epigraph of the convex function u — (p, L(u)). From Lemma 40,
we have that the power diagram Dy induced by the projection of P(p) onto R? is the same
for any p € inter(Ay). Let Fy be the set of faces of Dy, which by the above are the set of
faces of P(p) projected onto R? for any p € inter(Ay).

We claim for all p € inter(Ay), that I'(p) € Fy. To see this, let u € I'(p), and
u' = (u, (p, L(u))) € P(p). The optimality of u is equivalent to u’ being contained in the face
F of P(p) exposed by the normal (0,...,0,—1) € R¥*L. Thus, I'(p) = arg min,ga(p, L(u))
is a projection of F' onto R%, which is an element of Fy.
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Now for p & inter(Ay), consider ' C Y, V' # (). Applying the above argument, we have
a similar guarantee: a finite set Fy» such that I'(p) € Fy» for all p with support exactly ).
Taking F = U{F|V' C Y,V # 0}, we have for all p € Ay that I'(p) € F, giving U C F.
As F is finite, so is U, and the elements of U are closed polyhedra as faces of Dy for some

Yy Ccy. ]

Appendix B. Equivalence of Separation and Calibration for Polyhedral
Surrogates

We recall that Theorem 2 states that, if a polyhedral L embeds a discrete ¢, then there
exists a calibrated link . Theorem 2 is directly implied by the combination of Theorem 17,
that calibration is equivalent to separation (Definition 16); and Theorem 18, existence of a
separated link. Theorem 17 is proven in this section and Theorem 18 is proven in Appendix
D.

Throughout we will work with the two regret functions: the surrogate regret Rp(u,p) =
(p, L(u)) — L(p), and similarly the target regret Re(r,p) = (p,¢(r)) — £(p). We will use these
functions again when we prove surrogate regret bounds (§ C).

We first show one direction: any calibrated link from a polyhedral surrogate to a discrete
target must be e-separated. The proof follows a similar argument to that of Tewari and
Bartlett (2007, Lemma 6).

Lemma 42 Let polyhedral surrogate L : R — R{, discrete loss € : R — RX, and link
¥ : RT = R be given such that (L)) is calibrated with respect to £. Then there exists ¢ > 0
such that v is e-separated with respect to prop[L] and prop[l].

Proof Let I' := prop[L] and ~ := prop|[¢]. Suppose that v is not e-separated for any € > 0.
Then letting ¢; := 1/i we have sequences {p;}; C Ay and {u;}; C R? such that for all i € N
we have both ¢(u;) ¢ v(p;) and doo (ui, I'(ps)) < €. First, observe that there are only finitely
many values for v(p;) and I'(p;), as R is finite and L is polyhedral (from Lemma 13). Thus,
there must be some p € Ay and some infinite subsequence indexed by j € J C N where for

all j € J, we have ¢ (u;) ¢ v(p) and I'(p;) = T'(p).
Next, observe that, as L is polyhedral, the expected loss (p, L(u)) is B-Lipschitz in || - ||eo
for some 8 > 0. Thus, for all j € J, we have
oo, T(p)) < ¢ = Fu* € T(p) [luy — u" s <
= [(p, L(uj)) — (p, L(u"))| < fBej
= |(p, L(uj)) — L(p)| < Pej -

Finally, for this p, we have

ww(g)léév(p)@/ () < JuelJ@ (uj)) = L(p)

contradicting the calibration of ). |

For the other direction, we will make use of Hoffman constants for systems of linear
inequalities. See Zalinescu (2003) for a modern treatment.
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Theorem 43 (Hoffman constant Hoffman (1952)) Given a matriz A € R™*", there
exists some smallest H(A) > 0, called the Hoffman constant (with respect to | - ||oc), Such
that for all b € R™ and all x € R™,

doo(,5(A, b)) < H(A)[[(Az — )1 [|oo (12)
where S(A,b) = {z € R" | Ax < b} and (u)+ := max(u,0) component-wise.
Lemma 44 Let L : R¢ — R%: be a polyhedral loss with I' = prop[L]. Then for any fized p,

there exists some smallest constant Hy, , > 0 such that doo(u,I'(p)) < Hp pRr(u,p) for all
u € RY,

Proof Since L is polyhedral, there exist ay,...,a, € R? and ¢ € R™ such that we may
write (p, L(u)) = maxj<j<m a;j - u + ¢j. Let A € R™*4 be the matrix with rows a;, and let
b= L(p)1l — ¢, where 1 € R™ is the all-ones vector. Then we have

S(A,b) :={uecR?| Au < b}
={ueR?| Au+c< L(p)1}
= {u e R?|Vi(Au+¢); < L(p)}
={ue R? | mzax (Au+c); < L(p)}
= {ueR?| (p,L(u)) < L(p)}
=T(p) -
Similarly, we have max; (Au —b); = (p, L(u)) — L(p) = Rr(u,p) > 0. Thus,
I(Au = b)+[loo = max ((Au —b)+);
= max((Au — b)1,..., (Au — b);,,0)
= max(mzax (Au —b);, 0)
= max (Au —b);
= Rp(u,p) .
Now applying Theorem 43, we have
doo(u,T'(p)) = doo(u, S(A, b))
< H(A) [I(Au = b) ¢ ]loo
= H(A) Rp(u,p) -

Given discrete loss £ : R — RI, define the constant Cp = max, »er yey €(r)y — £(r')y.
We are now ready to prove Theorem 17.

Theorem 17 Let polyhedral surrogate L : R — R{, discrete loss ¢ : R — sz and link
Y : R = R be given. Then (L,)) is calibrated with respect to ¢ if and only if 1 is e-separated
with respect to L and £ for some € > 0.
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Proof Let v = prop[¢] and " = prop[L]. From Lemma 42, calibration implies e-separation.
For the converse, suppose 9 is e-separated with respect to L and ¢. Fix p € Ay. To show
calibration, it suffices to find a positive lower bound for Ry (u,p) that holds for all u € R?

with ¢(u) & ~(p).
Applying the definition of e-separated and Lemma 44, ¢)(u) ¢ v(p) implies

H
€ < doo(u,T(p)) < HppRp(u,p) = 1< =Ry (u.p) .

Let Cy = max,, Re(r,p). Then Ry(¢(u),p) < Cp < CZIZL”J Ry (u,p).

If Hr,, = 0, then for all u € R? we have Ry(v(u),p) = 0, so calibration for this p is
trivial. Similarly, if Cy = 0, then Ry(r,p) = 0 for all » € R, so again Ry(¢(u),p) = 0 for all
u € R,

Now assume Cp > 0 and Hpj, > 0. Let C),, = min,¢,() Re(r,p) > 0. (As we assume
Cy > 0, we must have y(p) # R, so the minimum is attained.) Then for all u such that
Y(u) ¢ v(p), we have Ry()(u),p) > Cy . Rearranging, we have

Thus, inf .y (u)g(p) (L(w),p) > L(p). Since the above holds for all p € Ay, 1 is calibrated. W

Appendix C. Surrogate Regret Bounds
C.1 Proof of Theorem 19

Lemma 45 Suppose (L,1) indirectly elicits ¢ and let T' = prop[L]. Then for any fized
u,u* € R? and r € R, the functions Ry (u,-) and Ry(r,-) are linear in their second arguments
on T'yx.

Proof Let u* € R? and p € T',+. By definition, for all p € T+, L(p) = (p, L(u*)). So for
fixed u,

R (u,p) = (p, L(u)) — (p, L(u")) = (p, L(u) — L(u")),

a linear function of p on I'y». Next, by the definition of indirect elicitation, there exists r*
such that I'» C ~,«. By the same argument, for fixed r, Ry(r,p) = (p, {(r) — €(r*)), a linear
function of p on ~,» and thus on ['y+. |

Recall the definitions of Cy and Hy,,, from § B.

Lemma 46 Letl: R — R{ be a discrete target loss, L : R — RK be a polyhedral surrogate
loss, and ¢ : R — R a link function. If (L,v) indirectly elicit £ and 1 is e-separated, then

for all u and p,
CeH
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Proof If )(u) € v(p), then Ry(u,p) = 0 and we are done. Otherwise, applying the definition
of e-separated and Lemma 44,

€ < doo(u,I'(p))
< HL,pRL(uap)'

So Re(v(u),p) < Cp < S8L2 Ry (u, p). u

We can now restate and prove Theorem 19.

Theorem 47 (Theorem 19) Let { : R — R}i be discrete, L : RY — R{ polyhedral, and
YR — R. If (L,v) are consistent for ¢, then there exists constants €y, Hy, > 0 such that
CiH

(Vh,D) Ry(¢o ;D) <
€y

Ry (h; D) .

Proof Let T' = prop[L]. From Lemma 20, there is a finite set U C R? of predictions such that
(a) for each u € U, the level set ', is a polytope (see e.g. Lemma 75), and (b) U,epT'y = Ay.
For each u € U let Q,, C Ay be the finite set of vertices of the polytope I';,, and define the
finite set Q = Uycy Qu- Let Hy, := max,cg H 4.

By Lemma 42, v is e-separated for some € > 0; let €, = €. By Lemma 46, for each q € Q,

C vHr, CEH L

Ry(p(u),q) < —LRp(u,q) < Ry (u,q)
€y €y

for all u € R?. Now consider a general p € Ay, which is in some full-dimensional polytope

level set I';,. Write p = 3" o, B(q)q for some convex combination 8 € Ag,. By Lemma 45,

Ry, and Ry are linear in the second argument on I',, so for any u’ € R?,

Re(w(u'),p) = > Bla)Re(v(u),q)

qEQu

< > B)

qEQy
CyH

< 2N B(g)RL(,q)
€y qEQy

CyH
= LRL(u’,p).
€y

CiHyp,

€

RL (ula Q)

The result for D now holds by linearity of expectation over D. |

C.2 Tighter bounds

Our goal in proving Theorem 19 is to show a broad result that consistent polyhedral losses
always yield linear regret bounds. As one may expect given the generality of the result,
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however, the specific constant we derive may be loose in some cases. We now discuss some
techniques to further tighten the constant.

Let us consider the tightest possible constant ¢* for which R,(¢oh; D) < ¢*Rp,(h; D) for all
h and D. In general, for a fixed p, there is some smallest cj, such that Ry(1)(u),p) < ¢y RL(u,p)
for all u. It therefore follows from our results that ¢* = max,cgo c; for the finite set Q used
in the proof, i.e., the vertices of the full-dimensional level sets of I" = prop[L].

CyH
Above, we bounded ¢ < —=—Le

['(p), the optimal set, may link to a “bad” report r = 1 (u) ¢ v(p). The rate at which L
grows is at least Hp, p, so the surrogate loss at u may be as small as HETw, while the target
P

. The intuition is that some u at distance > ¢, from

regret may be as high as Cy = max, ,» Ry(r’,p’). The ratio of regrets is therefore bounded
by fLeCt,
n

The tightest possible bound, on the other hand, is ¢, = SUDy:4h (u) @y (p) %. This
bound can be smaller if the values of numerator and denominator are correlated across
u. For example, u may only be €y-close to the optimal set when it links to reports v (u)
with lower target regret; or L may have a smaller slope in the direction where the link’s
separation is larger than e.

To illustrate with a concrete example, consider the binary encoded predictions (BEP)
surrogate of Ramaswamy et al. (2018), which we discuss in § 5.2. The target loss here is
the abstain loss, £(r,y) = 3 if r = L, otherwise ¢(r,y) = 1{r # y}. Letting d = [log, | V],
the BEP surrogate L : R? — RY is given by L(u), = max;e(q (1 — ¢(y)ju;),, where
¢ Y — {—1,1}" is an injection. The associated link is ¢(u) = L if [jul| < %, otherwise
Y(u) = argmingey || B(y) — ul|oo-

One can show for p = ¢, the distribution with full support on some y € Y, that
L(u)y = doo(u,T(p)) exactly, giving Hy, = 1. It is almost immediate that e, = 3.
Meanwhile, Ry(r,p) < 1, giving us an upper bound ¢ < % = 2. The exact constant as
given by Ramaswamy et al., however, is ¢* = 1. The looseness stems from the fact that for
p = 0y, the closest reports u to the optimal set, i.e., at distance only ¢, = % away, do not
link to reports maximizing target regret; they link to the abstain report L, which has regret
only % With this correction, and an observation that all u linking to reports y’ # y are at
distance at least % from T'(p), we restore the tight bound ¢ < 1. A similar but slightly more
involved calculation can be carried out for the other vertices p € Q, which turn out to be all
vertices of the form %611 + %52/.

Finally, while we use || - ||« to define the minimum-slope Hy, and the separation €y,
in principle one could use another norm. One reason for restricting to || - ||« is that it is
more compatible with Hoffman constants. However, all definitions hold for other norms and
so does the main upper bound, as existence of an Hy, and € in || - | imply existence of
constants for other norms. These constants may change for different norms, and in particular,
the optimal overall constant may arise from a norm other than || - ||.

Appendix D. Existence of a Separated Link

In this section, we prove Theorem 18 from § 4, as discussed at the beginning of Appendix B:
embeddings give rise to separated links. The crux of the proof is showing that embeddings
imply eq. (4), the intersection condition on optimal sets, and that this condition is sufficient
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for the construction to produce a link. Calibration then follows by the fact every link
produced by Construction 1 is separated, and therefore calibrated.

In fact, we will show that the approach outlined above also suffices for the more general
case where the given polyhedral surrogate indirectly elicits a given finite property. This
more general setting will allow us to prove the results from § 7, and in particular, that
indirect elicitation implies calibration for polyhedral surrogates.

To relate back to embeddings, we split the first phase into two: (i) an embedding is a
special case of indirect elicitation (Lemma 50), and (ii) indirect elicitation is equivalent to
the intersection condition (Lemma 51). We will then reason instead about Construction 2, a
generalization of Construction 1 for indirect elicitation.

D.1 A more general construction

As described in § 7, the task of generalizing Construction 1 beyond embeddings reduces
to carefully generalizing the definition of Ry. Informally, Ry in Construction 1 is the set
of target reports which must be ¢-optimal whenever U is L-optimal. There we define Ry
simply as {r € § | ¢(r) € U} where S is the given representative set. For the more general
case, we can define Ry as follows.

Definition 48 For polyhedral loss L : R — Rz, and finite propert v : Ay =% R, we will
define

« T'=prop[L],

« U=A{T(p) |p € Ay},

e 'y:={peAy|U=T(p)} forallU €U,
e Ry:={reR|Ty Cn} forallU e U.

Construction 2 is essentially the same as Construction 1 but with the definition of Ry
above.

Construction 2 (General e-thickened link) Let L : R — RY, v : Ay = R, ¢ > 0,
and a norm || - || be given, such that L is polyhedral and indirectly elicits . Let U and Ry be
defined as in Definition 48. The e-thickened link v is constructed as follows. First, initialize
the link envelope ¥ : RY — 2R by setting ¥(u) = R for all u. Then for each U € U, for all
points u such that inf ey ||u* — ul| <€, update ¥(u) = VU(u) N Ry. If we have ¥(u) # O for
all u € R?, then the construction produces a link v € ¥ pointwise, breaking ties arbitrarily.

It is straightforward to show that Construction 1 is a special case of Construction 2.
Lemma 49 Let L : R? — Ri}_ be a polyhedral surrogate which embeds £ : R — RI via the
representative set S C R and embedding o : S — R%. Then for any ¢ > 0 and norm || - ||,

Construction 1 for L,l,¢, || - || is equivalent to Construction 2 for L,prop[l|s], e, || - ||

Proof Let v = prop[l|s], which is also given by 7 : p — prop[¢](p) N'S. Let U € U. Then
forreS,wehaver € Ry <= Ty Cv < Ty CTly, <= T(p)=U = ¢(r) €
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['(p)) < ¢(r) € U. As we have R = S in Construction 2 for L,prop[l|s],e, | - ||, we
conclude Ry = {r € S | ¢(r) € U}, exactly as in Construction 1 for L,l ¢, | -|. The
equivalence of the two constructions follows. |

D.2 Indirect elicitation and optimal set intersection

We first show (i), that embedding is a special case of indirect elicitation.
Lemma 50 If L embeds ¢, then L indirectly elicits prop[{].

Proof Let I' = prop[L] and v = prop[¢]. From Proposition 31, we have trim() = trim(I") =:
©. By definition of trim, for any u € R%, we have some § € © such that I, C 0. Since
trim(y) = ©, we have some r € R such that 6 = ~,, giving [';, C ~,. [ |

We next show (ii), the equivalence of indirect elicitation and the following intersection
condition.

Lemma 51 Let L : R? — ]Rz be polyhedral and v : Ay = R be a finite property. Let U and
Ry be defined as in Definition 48. Then L indirectly elicits v if and only if the following
condition holds

Proof First assume L indirectly elicits 7. As U is the range of I', we have for all v € R?
that Ty, = U{Ty | U € U,u € U}. Suppose Ny U # 0; let u € NyerU. As u € U for all
UcU', we have I'y C T, for all U € U’. By indirect elicitation, there exists some r € R
such that ", C ~,. Thus, for all U € U’, we have I'y C ~, and thus r € Ry. We conclude
Nvew Ry # 0.

For the converse, let u € R%. If 'y, = @, then T', C 7, for any € R. Otherwise, T, # 0,
and the set U, = {U € U | u € U} is nonempty. Moreover, N\U,, # ) as u € NU,,. Eq. (13)
now gives some r € {Ry | U € U,,}. By definition of Ry, for all U € U], we have T';(y,.
Thus 'y = U{T'y | U € U]} C +,, showing indirect elicitation. [ |

D.3 Convex geometry for separation

Let some norm || - || on R? be given. Given a set 7 C R? and a point u € R?, let
d(T,u) = infier ||t — ul|. Given two sets 7,7 C R% let d(T,T") = infierper |t — |
Finally, for T C R? and € > 0, let the “thickening” B(T,¢) be defined as

B(T,e) ={ueR :d(T,u) < e}

The goal of this subsection is to prove the first part of step (iii): for small enough € > 0, if
any set of e-thickened optimal sets intersect, then the optimal sets themselves must intersect.
We will conclude that, for small enough €, the link envelope ¥ is non-empty everywhere,
meaning there will be legal choices left over for the link.
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Lemma 52 Let U be defined as in Definition 48. There exists €g > 0 such that, for any
0 < e < e, for any subset {U; : j € T} of U, if N;U; =0, then N;B(Uj,€) = 0.

The next few geometric results build to Lemma 52.

Lemma 53 Let D be a closed, convex polyhedron in R%. For any ¢ > 0, there exists an
open, convez set D', the intersection of a finite number of open halfspaces, such that

D C D' C B(D,e).

Proof Let S be the standard open e-ball B({0},¢). Note that B(D,e) = D + S where
+ is the Minkowski sum. Now let S" = {u : ||ul|1 < §} be the closed ¢ ball in L; norm.
By equivalence of norms in Euclidean space (Boyd and Vandenberghe, 2004, Appendix
A.1.4), we can take § small enough yet positive such that S’ C S. By standard results,
the Minkowski sum of two closed, convex polyhedra, D" = D + S’ is a closed polyhedron,
i.e. the intersection of a finite number of closed halfspaces. (A proof: we can form the
higher-dimensional polyhedron {(z,y,2):x € D,y € S,z = x + y}, then project onto the z
coordinates.)

Now, if 7" C T', then the Minkowksi sum satisfies D +7" C D +T. In particular, because
f €S C S, we have

D C D" C B(D,e).

Now let D’ be the interior of D", i.e. if D" = {z : Ax < b}, then we let D' = {z : Az < b}.
We retain D' C B(D,€). Further, we retain D C D', because D is contained in the interior
of D" = D+ §'. (Proof: if x € D, then for some v, x + B({0},~) = B(x,) is contained in
D + S’.) This proves the lemma. [ ]

Lemma 54 Let {U; : j € J} be a finite collection of closed, convex sets with NjcyU; # 0.
Let § > 0 be given. Then there exists g > 0 such that, for all 0 < € < €y, N;B(Uj,€) C
B(ﬂjUj, J).

Proof We induct on |J|. If |[J| =1, set e = 4. If |[J| > 1, let j € J be arbitrary, let
U' = Njix;Ujr, and let C(e) = Njx;B(Uj,€). Let D = U; NU'. We must show that
B(Uj,e)nC(e) € B(D,0). By Lemma 53, we can enclose D strictly within a polyhedron
D’, the intersection of a finite number of open halfspaces, which is itself strictly enclosed in
B(D, ). (For example, if D is a point, then enclose it in a hypercube, which is enclosed in
the ball B(D,¢).) We will prove that, for all small enough €, B(Uj, €) N C(¢) is contained in
D’. This implies that it is contained in B(D, ).

For each halfspace defining D', consider its complement F', a closed halfspace. We prove
that FNB(Uj,e)NC(e) = 0. Consider the intersections of F' with U and U’, call them G and
G'. These are closed, convex sets that do not intersect (because D in contained in the com-
plement of F'). So G and G’ are separated by a nonzero distance, so B(G,v) N B(G',v) =10
for all small enough v. And B(G,~) = F N B(Uj,~) while B(G',~) = FNB(U',v). This
proves that F' N B(Uj,v) N B(U',v) = (. By inductive assumption, C(e) € B(U’,~) for
small enough € = ex. So FNB(U;,v)NC(e) = 0. We now let €y be the minimum over these
finitely many er (one per halfspace). [ |
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Figure 7: Illustration of a special case of the proof of Lemma 54 where there are two sets Uy, Us
and their intersection D is a point. We build the polyhedron D’ inside B(D,§). By considering
each halfspace that defines D', we then show that for small enough €, B(Uy,€) and B(Us,€) do not
intersect outside D’. So the intersection is contained in D', so it is contained in B(D, ).

B(D, 8)

Lemma 55 Let {U; : j € J} be a finite collection of nonempty closed, convex sets with
NjegU; = 0. Then there exists ey > 0 such that, for all 0 < € < €y, NjegB(Uj,€) = 0.

Proof By induction on the size of the family. Note that the family must have size at least
two. Let U; be any set in the family and let U’ = Njr.;U;s. There are two possibilities.

The first possibility, which includes the base case where the size of the family is two, is
the case U’ is nonempty. Because U; and U’ are non-intersecting closed convex sets, they are
separated by some distance 0. So B(U;,0/3) N B(U’,6/3) = (. By Lemma 54, there exists
€ > 0 such that Nj.;B(Uj,e) € B(U',/3) for all 0 < € < €. Pick ¢g = min{¢,d/3}.
Then for all 0 < € < €, the intersection of e-thickenings is contained in the (0/3)-thickening
of the intersection, which is disjoint from the (¢/3)-thickening of U;, which contains the
e-thickening of U;.

The second possibility is that U’ is empty. This implies we are not in the base case, as
the family must have three or more sets. By inductive assumption, for all small enough ¢ we
have Nj; B(Uj, €) = (), which proves this case. |

The proof of Lemma 52 now follows: for each U’ C U, Lemma 55 gives an ey(U’) > 0; we
take the minimum of €y(U’) over the finitely many choices of U’.

D.4 Separation of the general construction

We now prove the main results for link construction from § 4 and § 7. Specifically, we show
that indirect elicitation implies that Construction 2 produces a link, and moreover, a link is
produced if and only if it is separated. As we have established above that Construction 1 is
a special case, the results specific to embeddings will follow.

Proposition 56 Let L : R — R{ be polyhedral and v : Ay == R be finite. If L indirectly
elicits vy, then there exists g > 0 such that, for all 0 < € < €y, Construction 2 for L, 7, ¢,
| “ [|oos produces a link.

Proof Fix a small enough ¢ as promised by Lemma 52. Let u € R? and u, ={U €
U | deo(u,U) < €}. From Construction 2, we have ¥(u) = "{Ry | U € U]}. Since
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u € N{B(U,e) | U € U]} by definition, Lemma 52 and our choice of e give NU,, # (). By
Lemma 51, we have ¥(u) = N{Ry | U € U,,} # 0. [ |

Perhaps surprisingly, one can also show that every calibrated link from a polyhedral
surrogate to a discrete loss is produced by Construction 1. This result follows from the
fact, stated now, that Construction 1 with || - |« is exactly enforcing e-separation. From
Theorem 17, every calibrated link v is therefore output by the construction for some
sufficiently small €, in the sense that 1) is one of the valid choices within the link envelope.

Proposition 57 Let polyhedral surrogate L : R — R%:, finite property v : Ay = R, and
€ > 0 be given. Then Construction 2 for L,v,€,| - || produces a link ¢ if and only if 1 is
e-separated.

Proof Let U}, = {U € U | doo(u,U) < €}. Then we have the following chain of equivalences.
Vu € RY 4)(u) € U(u)

vueRYL U el,, ¢(u) € Ry

VueRY, U eld),, Ty C vy

VueRY peAyst. T(p)el,, pe Vap(ur)

Vu e RY, p e Ay st doo(u,T(p)) <€, ¥(u) € v(p)

1) is e-separated .

rreey

From the equivalence of calibration and separation for polyhedral surrogates (Theorem 17),
we now have Theorem 34: the construction produces exactly the set of calibrated links.
(The move from || - || to a general norm follows from norm equivalence in finite-dimensional
vector spaces.) Combined with Proposition 56, we also have Proposition 33: if L indirectly
elicits v, the construction produces a calibrated link.

Returning to embeddings, recall that Construction 1 is a special case of Construction 2
by Lemma 49. Moreover, embeddings are a special case of indirect elicitation (Lemma 50).
As Proposition 56 guarantees that Construction 2 produces a link, and Proposition 57 that
every link produced is separated, we now have Theorem 18 which we restate. (Note that the
converse need not hold for Construction 1, and indeed, that construction may miss some
separated links which make use of reports outside S.)

Theorem 18 Let polyhedral surrogate L : R — R{ embed the discrete loss £ : R — R%:.
Then there exists eg > 0 such that, for all 0 < € < €p, Construction 1 for L,l, ¢, | - | produces
a nonempty set of links, all of which are e-separated with respect to L and /.

Appendix E. Connection to Ramaswamy and Agarwal (2016)

Ramaswamy and Agarwal (2016) give an impressive array of consistency results for general
prediction tasks. Among them, in their Theorem 8, is a general sufficient condition for
consistency. We restate their result here in our notation.
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Theorem 58 (Ramaswamy and Agarwal (2016, Theorem 8)) Let ¢ : R — RY for
R finite, and L : R — Rj_i. Let v = prop[l] and T' = prop[L]. Suppose there exists a finite
set S C R? such that Uuwes T'u = Ay and for each u € S there exists r € R such that I', C ;.
Then L is calibrated with respect to L.

In other words, if there exists a finite representative set S C R? for L such that Ll|s
indirectly elicits v, then L is calibrated with respect to £. Of course, if L indirectly elicits ~
and has a finite representative set, then this condition holds. Thus, not only does this result
prove Theorem 32 for polyhedral surrogates, it also shows that the result extends to the
setting of § 6: surrogates with finite representative sets.

The crux of their result, as in ours, in the construction of a link function exhibiting
calibration. Their construction is quite different from our Construction 1, in that it operates
in the loss vector space RK rather than the surrogate report space R?. Specifically, it
operates on the superprediction set L(R?) 4+ RY, where the + here is Minkowski addition.
An arbitrary element of the superprediction set is decomposed into a convex combination of
elements of L(S), plus an element of RY. This convex combination is then thresholded at
1/|S], where the link function may output r € R if the weight on any v € § with T';, C 7,
is at least 1/|S|. One can see that this construction does achieve separation, but it is less
explicitly aligned with any norm in the surrogate report space. It would be interesting to
further compare the two constructions.

Appendix F. Proving Lemma 20
In this section, we give a careful treatment of the results on convex polyhedra needed to

prove Lemma 20.

F.1 General definitions for polyhedra
We begin with general definitions of polyhedra. See also Ziegler (2012) and Gallier (2008).

Definition 59 (Closed halfspace) A closed halfspace is a set of the form H(tu by = {z €
R | (z,w) > b} for some (w,b) € R? x R.

Definition 60 (Hyperplane) A hyperplane is a set of the form H,; = {v € R? |
(x,w) = b} for some (w,b) € R? x R.

Observe that H,; = 0H, (J{U b meaning the hyperplane H, ) is the boundary of
H ('Z} b)" Thus, for any halfspace HT, we have that H™ is one of the two closed halfspaces
corresponding to the hyperplane 0H T = H.
Definition 61 (Polyhedron halfspace representation (Ziegler, 2012)) A polyhedron
P is an intersection of a finite set of closed halfspaces H presented in the form P = NH.

Here, we say H is a halfspace representation for P.

Observe that by the halfspace representation, a polyhedron need not be bounded.
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Definition 62 (Supports) A hyperplane H supports the polyhedron P if (i) P C HT for
a halfspace H with H = OH™, and (ii) H N OP # (). Moreover, H supports P at x if
xr € HNOP.

Definition 63 (Face, facet) Let P C R? be a convex polyhedron. A face F of the polytope
P is any set of the form
F=PnNnH,

for a hyperplane H supporting P. The dimension of a face F' is the dimension of its affine
hull dim(F) := dim(afthull(F")). A face F with dim(F') = dim(affhull(P)) — 1 is called a
facet.

While one traditionally considers P to be a trivial face of itself, we exclude this case
throughout.

It is often useful to understand polyhedra in terms of their halfspace representations and
the set of hyperplanes generating facets of P. To find this set, we must first establish when
a halfspace representation is irredundant for a given polyhedron, as this irredundant set
corresponds to the facets of a polyhedron in a natural way.

Definition 64 (Irredundant; adapted from Gallier (2008)) Let P = NH for a finite
set of closed halfspaces H be a polyhedron. We say that NH is an irredundant decomposition
for P (and H is irredundant for P) if P cannot be expressed as P = NH' for some set of
closed halfspaces H' such that |H'| < |H|, and redundant otherwise. Moreover, we call H
irredundant for P if "H is an irredundant decomposition of P.

Gallier (2008) shows that every d-dimensional polyhedron P C R? has a unique and
irredundant halfspace representation H*, and each H™ € H* generates a facet of P.

Theorem 65 (Gallier (2008)) Given a d-dimensional polyhedron P C R?, (i) there is a
unique irredundant and finite set of closed halfspaces H* such that P = NH*, (ii)) {HN P |
HY € H*, H = 0H™"} is the set of facets of P, and (iii) for all finite sets of closed halfspaces
H such that P = NH, we have H* C H.

Proof Since P is d-dimensional in R?, it therefore has nonempty interior. As P has a
finite halfspace representation, it must have a smallest halfspace representation H*. That
is, |[H*| = min{|H| : P = NH,H finite}. As a smallest halfspace representation, H* is
irredundant by definition. Gallier (2008, Proposition 4.5(i)) then states that 7* is unique,
giving (i). Additionally, (ii) is shown by (Gallier, 2008, Proposition 4.5(ii)).

It remains to show (iii). Let A be a finite set of closed halfspaces such that P = NH.
As noted in the last sentence of the proof of (Gallier, 2008, Proposition 4.5), the hyper-
planes defining facets are unique: if F' is a facet of P and H, H' are hyperplanes with
F=HNP=H'NP, then it must be the case that H = H'. It therefore suffices to show
that, for each facet F of P, there is an HT € H such that F = H N P. Gallier (2008,
Proposition 3.17) observes that, for all z € 9P, there exists some hyperplane H such that
H supports P at x. Since x € relint(F’) is in exactly one face of P, namely F', there must
be a unique H* € H such that F = H N P. [ |
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F.2 Specializing to RY x R

Within this appendix, we use some self-contained notation to work in the function graph
space RY x R. We will later consider losses over a finite set of outcomes ); to make notation
consistent, we use RY throughout as shorthand for R and let d := Y|+ 1.

Given any v € RY, define H,;f := H(J;,—l) = {(z,c) e RY x R| (v,x) > c}. Similarly, we
denote H?j =H (t 0) for any y € Y; the latter will help us restrict a constructed polyhedron
to the nonnegative orthant. Extending to hyperplanes, we construct H, := H,,—1) and
observe that H, = OH" for v € RI and define Hy, := H ., o) so that H, = OH;'. Given a set
YV CRY we let Hy = {HJ | v € V} denote the set of halfspaces generated by V. Similarly,
let Hy = {H} |y eV}

For any S C R¥ let 6(- | S) : R¥ — R U {oo} be the convex indicator function, given by
d(z|S)=0if x € S and oo otherwise. Throughout, we will work with a concave function
gy generated by a set V C Rﬁ of the following form.

Definition 66 Given a set V C R{, define the function gy : RY — R U {—oc} by

gv(@) = inf (&) — 6(x | RY) .

We denote the hypograph of a function g : RY — R U {—oc0} by hypo(g) = {(z,¢) | ¢ <
g(z)} CRY xR,

A first observation is that the region generated by the intersection of the HyJr halfspaces
restricts the hypograph gy to be finite only on the nonnegative orthant for any ¥V C Rﬁ.

Lemma 67 Nty = RY x R.

Proof The result follows if we show = € R{ < (x,¢) € NHy for all ¢ € R.

= FixanyceR. x € RX <= x, > 0 for all y € Y. This means that for any y € V,
(z,¢) € {(z,¢) |, > 0} = H,f. As y and ¢ were arbitrary, this shows the forward direction.

<= (z,c) € NHy implies x, > 0 for all y € Y, and therefore x € Ri. [ |

F.3 Hypographs of extended Bayes risks

We now apply this polyhedral perspective to the Bayes risk of a loss function, extended
to “unnormalized distributions”, i.e., all of R{. Given a minimizable loss function L :
R — R'}:, define the 1-homogeneous extension of its Bayes risk as L, : RY - RU {0},
x> inf,er (z, L(r)) — d(z | RY). In other words, letting L(R) := {L(r) | r € R} CRY, we
have L = gr(g). Observe that L(R) and H ) may be infinite sets.

Claim 1 Suppose we are given a minimizable L : R — R%ﬁ with polyhedral extended risk
L. Then hypo(grr)) = N(Hy UHr(w))-
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Proof Observe that z € RY <= (z,¢) € NHy. Let z € RY.

(z,¢) € hypo(grr)) == gr(r)(z) > definition of hypograph
< L,(z)>c 9rLr) = L
< (v,z) > c Vv e L(R) definition of L
< (z,¢) € Hf Vv e L(R) definition of H,
= (z,¢) € NMHp)
Combining the two equalities, we have hypo(gr(r)) = N(Hy U H(r))- [ |

F.4 Finding the unique smallest subset of loss vectors

Lemma 68 Consider a loss L : R — ]RX with polyhedral extended risk L, . There is a
unique irredundant set H* of closed halfspaces such that hypo(gL(R)) = NH*. Moreover, for
each HT € H* and H such that H = OH™, the face hypo(gr(r)) N H is a facet. Moreover,
Hy C H*.

Proof As gr,g) is nonnegative on RY, the set hypo(gr(r)) therefore contains {(z,c) | z €
R{, ¢ < 0}, which is (|]Y| + 1)-dimensional. Therefore hypo(gz)) is full-dimensional. Take
H* to be the unique irredundant and finite set of closed halfspaces such that hypo(g L(R)) =
NH* from Theorem 65(i). Now, hypo(gr)) N H for any H € H* being a facet follows
immediately from Theorem 65(ii) and (iii).

To show that Hy C H*, it suffices from Theorem 65(ii) to show that each F, := H, N
hypo(gr(r)) for y € YV is a facet. From Claim 1, since Hy+ € My, we have hypo(gr(r)) € H;
We have F,, = H, N hypo(gr(r)) = {(z,c) |z € RY, 2, = 0,¢ < gy (@)} 2 {(z,0) |z €
Rz,xy = 0,c < 0} as gpr)(x) > 0. Thus, F, is a nonempty face of hypo(grr)), and
contains a |)|-dimensional set, so must be a facet. [

We now use the above result about the unique irredundant halfspace decomposition of
hypo(gy) to observe a unique finite set of loss vectors generating these halfspaces.

Corollary 69 Given a minimizable loss L : R4 — ]RX with polyhedral extended risk, consider
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