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Abstract—The deep learning revolution has strongly impacted
low-level image processing tasks such as style/domain transfer,
enhancement/restoration, and visual quality assessments. Despite
often being treated separately, the aforementioned tasks share
a common theme of understanding, editing, or enhancing the
appearance of input images without modifying the underlying
content. We leverage this observation to develop a novel disen-
tangled representation learning method that decomposes inputs
into content and appearance features. The model is trained in a
self-supervised manner and we use the learned features to develop
a new quality prediction model named DisQUE. We demonstrate
through extensive evaluations that DisQUE achieves state-of-the-
art accuracy across quality prediction tasks and distortion types.
Moreover, we demonstrate that the same features may also be
used for image processing tasks such as HDR tone mapping,
where the desired output characteristics may be tuned using
example input-output pairs.

Index Terms—Disentangled Representation Learning, Domain
Transfer, Quality Assessment, High Dynamic Range, Example-
Guided Image Processing.

I. INTRODUCTION

Recent years have witnessed an explosion in the amount of
image and video content being shared over the internet. These
images and videos are captured, often by uncertain hands,
using cameras of various capabilities that may introduce dis-
tortions such as blur, noise, under/overexposure, etc. Following
capture, they are commonly subjected to distortions such as
compression, scaling, and brightness or contrast distortions
during the transmission and display processes. Moreover,
images and videos may also be edited by artists to modify their
appearance, by making images brighter or darker, changing
colors and color saturation, boosting contrast, etc.

At the same time, more sophisticated imaging and display
modalities such as high dynamic range (HDR), high frame rate
(HFR), and immersive media are rapidly growing. In particu-
lar, HDR enables the capture and representation of a wider
range of brightnesses and colors, thereby enabling a more
realistic reproduction of natural scenes as compared to legacy
Standard Dynamic Range (SDR) imaging systems. However,
a substantial portion of existing displays are not capable of
displaying brightnesses above 1000 nits, which is essential
for HDR [1]. So, HDR images and videos must be down-
converted to SDR using a process called tone-mapping, so that
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they may be displayed on legacy displays. Although several
algorithms have been proposed to automatically perform tone
mapping [2] [3], color grading by human experts remains the
gold standard.

Therefore, in both of the aforementioned scenarios, corre-
sponding to the handling of SDR and HDR images/videos,
two tasks must be effectively conducted to reliably transmit
high-quality videos to consumers. First, objective models are
needed that predict subjective opinions regarding the visual
quality of images and videos. Such models may be used
to control the quality of ingested content on social media
websites and identify poor-quality content, which may affect
downstream recommendation decisions. Quality models have
also been used extensively to optimize processing parameters
such as compression and resolution while trading off storage
and transmission costs against perceptual quality [4].

Secondly, to control the quality of streamed content, image
processing methods are also needed that can enhance specified
aspects of images, such as brightness, contrast, color, etc.
Typically, such fine-grained editing requires the use of special-
ized algorithms that provide “tunable knobs” corresponding to
various image features. Indeed, this approach has led to the
development of many tone-mapping algorithms that contain
parameters to control aspects of the appearance of tone-
mapped images. For example, the photographic tone repro-
duction method [5], which we refer to as “Reinhard02” here,
uses a “desaturation” parameter to correct oversaturated colors.
However, a human expert who is performing tone-mapping or
evaluating its quality does not target a “desaturation level.”
Rather, a colorist tunes image properties manually to achieve a
desired “look,” which may depend on the colorist’s experience
and preferences, and their perception of consumers’ demands.
We posit that such specifications are best described using
examples, rather than analytical metrics. This motivates the
task of “example-guided” image processing, in general, or
tone-mapping in particular. More examples of tone-mapping
methods and their tunable parameters are provided in Section
IV-A.

Here, we propose a Disentangled Representation Learning
(DRL) framework to create a deep neural network model that
can be used to tackle both image quality prediction and image
processing tasks simultaneously. The general framework for
using a common deep model for both quality assessment and
image processing tasks is illustrated in Fig. 1.

First, an input image is decomposed into two feature sets,
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Fig. 1. Performing both quality prediction and image processing using the same disentangled representation learning model.

each describing the “image content” and “image appearance.”
During quality modeling, the appearance feature is compared
against a reference appearance feature, to predict subjective
quality. For example, when measuring the visual quality of
a tone-mapped HDR video frame, its appearance feature is
compared against the appearance feature of the source HDR
video frame. We call this model the Disentangled Quality
Evaluator (DisQUE).

The input image may then be edited or enhanced by
modifying the appearance feature of the input image to a
“desired appearance feature,” followed by reconstructing it
using a decoder. We obtain the desired appearance feature
using a pair of input images that are used as an example of
(in this case) the desired tone-mapping behavior. We term this
“example-guided tone mapping” (EGTM).

The remainder of this paper is organized as follows. In
Section II, we discuss relevant prior work in the fields of visual
quality assessment (VQA) and DRL and explain the novelty of
our proposed model. Section III provides a detailed description
of our proposed DisQUE model, including the learning objec-
tive, deep neural network architecture, and feature extraction
protocol for quality prediction. In Section IV, we describe
the training and evaluation datasets corresponding to the two
domains in which we evaluate DisQUE. Specifically, we
describe the datasets used by DisQUE to predict the quality
of tone-mapped and compressed HDR videos, and to predict
the quality of SDR images. We present training details in
Section V-A and the results of quality modeling experiments
in Section V-B. Furthermore, we demonstrate the ability of the
DRL model to perform example-guided HDR tone-mapping in
Section V-C. Finally, we present a summary of our findings
and identify avenues for future work in Section VI.

II. BACKGROUND AND NOVELTY

A. Visual Quality Assessment

Objective models of visual quality may be broadly classified
into “classical” (or hand-crafted) or “deep” (data-driven deep
networks) methods. Full-reference (FR) quality models com-
pare “distorted” test pictures/videos against their “pristine”
reference counterparts to predict their visual quality. Models
like SSIM [6], VIF [7], and ST-RRED [8] are examples

of general-purpose classical FR quality models. By contrast,
models such as DLM [9], VMAF [10], and FUNQUE [11]
[12] are task-specific models designed to predict the quality
of scaled and compressed videos.

FR models targeting similar applications have also been
developed for HDR pictures and videos. Examples of such
quality models include HDRMAX-VMAF [13] and HDR-
FUNQUE+ [14]. In addition, quality models such as TMQI
[15], FSITM [16], and Cut-FUNQUE [17] compare HDR and
SDR pictures and videos to assess the quality of HDR tone
mapping.

Deep FR quality modeling may be performed using deep
networks pre-trained on large datasets such as ImageNet. For
example, LPIPS [18], DISTS [19], and DeepWSD [20] all
utilize ImageNet-pretrained models.

When pristine reference content is not available, No-
reference (NR) quality models are employed. Examples of
classical NR models include BRISQUE [21], DIIVINE [22],
TLVQM [23], HIGRADE [24], and ChipQA [25]. Deep NR
models may be trained either in a supervised or a self-
supervised manner. Examples of supervised deep NR models
include CNN-based models such as PaQ-2-PiQ [26], Patch-
VQ [27], and QFM-IQM [28], and transformer-based models
such as MUSIQ [29], RKIQT [30], LoDA [31], and SaTQa.

Recently, a number of high-performing self-supervised NR
models have been introduced, including CONTRIQUE [32],
Re-IQA [33], and ConViQT [34], and may also be used for NR
quality prediction. All three self-supervised methods utilize
ResNet-50 backbones and contrastive learning techniques such
as SimCLR [35] and MoCo [36] [37] to learn quality-aware
representations. The predicted features from test images/videos
may be used for NR quality modeling, while the differences in
predicted features between the reference and test images may
be used for FR quality modeling.

B. Disentangled Representation Learning
Disentangled representation learning (DRL) refers to rep-

resentation learning techniques that impose a notion of inde-
pendence between subsets of the learned features. A survey
of DRL methods and various taxonomic classifications are
provided in [38]. Consider a network learning a vector of fea-
tures. The disentanglement condition may be applied to each
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dimension of the feature vector, which reflects the assumption
that each dimension encodes one generative factor of the
data distribution being modeled. Examples of dimension-wise
disentangling include variational autoencoder (VAE) methods
such as FactorVAE [39] and β-TCVAE [40], generative adver-
sarial network (GAN) methods such as InfoGan [41], PS-SC
GAN [42] and OroJaR GAN [43], and Barlow Twins [44],
which is a self-supervised representation learning method.

Rather than disentangling feature vectors dimension-wise,
their subsets may be disentangled to separate specific as-
pects of the data distribution. For example, DR-GAN [45]
separates face and pose information to conduct pose-invariant
face retrieval, while MAP-IVR [46] disentangles content and
motion information from videos to conduct image-to-video
retrieval. Feature subsets may be disentangled using cosine
distances [46], minimizing correlations [44], or by minimizing
mutual information using techniques such as CLUB [47] or
adversarial losses [48].

Two key applications of DRL to image processing that are
relevant here are style transfer and domain adaptation. The
goal of DRL in such tasks is to decompose an image into a
feature set that is common across domains, typically encoding
“content,” and one that is domain-specific, typically encoding
“style.” Examples of such methods include DRIT++ [49] and
[50].

Efforts have also been made to combine image restoration
and image quality assessment tasks, both with and without
disentangled representations. QAIRN [51] uses a residual
attention mechanism to gate encoder and decoder signals in
image restoration networks. Due to the gating effect, the
attention maps in QAIRN have been shown to learn local
quality-aware feature maps. QD-Net [52] uses disentangled
representations to perform no-reference (NR) quality predic-
tion and enhancement of tone-mapped HDR images. QD-
Net is trained in a supervised manner using ground-truth
subjective ratings, while the enhancement network is trained
using predefined enhancement targets. Alhough the “amount
of enhancement” may be varied, the exact nature of the
enhancement, such as improving color, brightness, or contrast,
cannot be controlled. Therefore, if the desired enhancement
targets change, for example, due to changes in consumer
preferences, the enhancement network must be retrained.

Similar to DQ-Net, DRIQA [53] targets joint supervised
quality assessment and restoration of SDR images. In this
work, the “content encoder” extracts representations that do
not contain distortion information. Therefore, the output of
the content encoder is used directly for restoration, while the
appearance encoder captures only distortion-related informa-
tion. The outputs of the distortion encoder are used to augment
a Siamese network [54] designed for quality assessment. Once
again, the restoration targets are fixed and the decoder must
be retrained if the restoration behavior is to be modified.

C. Novelty of the Proposed DRL Method

Our proposed DRL method differs from prior work in
the following key aspects. First, prior work on disentangled
domain transfer either uses different encoders/decoders for

each domain [50] and/or categorical inputs to specify the target
domain [49] for multi-domain adaptation. By contrast, we use
a fixed pair of networks to disentangle features, and the
predicted appearance features are used directly to specify the
target domain for image processing.

Secondly, both DQ-Net and DRIQA solve restoration tasks
using pre-defined restoration targets. We instead adopt an
“example-guided image processing” (EGIP) framework that
learns general appearance-related representations at training
time. During inference, the desired processing behavior is
expressed using a pair of example images that include a source
image and its processed version. The DRL model infers the
desired transform from the example and applies it to the input
source image to be processed.

Thirdly, we propose a novel method for adapting images
across domains called “appearance mixing,” as an alternative
to “appearance replacement” methods used in prior work [49]
[50] [52]. We observed that appearance replacement led to
inaccurate adaptation across domains due to the presence
of “confounding appearance features” (CAFs) in the source
image. We demonstrate the effects of CAFs in Section V-C
and show that they may be mitigated by using appearance
mixing.

Finally, both DQ-Net and DRIQA-NR were trained in
a supervised manner using ground-truth subjective quality
scores. By contrast, DisQUE is trained in a self-supervised
manner without the need for subjectively annotated data.

III. DISQUE

Here, we describe our proposed disentangled representation
learning algorithm, which we use to develop DisQUE. The
goal of the learning algorithm is to decompose an input
image into its “content” and “appearance” components. In
prior models such as ReIQA [33], “content” features are
extracted to identify semantic content, such as objects in the
image. To achieve high object detection accuracy, these models
are designed to be robust to small changes in structure and
orientation. By contrast, small changes in structure are visible
to the human eye and perceptually important, as evidenced by
advancements in restoration tasks such as image deblurring.

Here, we interpret the content to be the “high-resolution”
intrinsic structure of the image, which acts as a scaffolding that
is modulated by “appearance.” Appearance, on the other hand,
are properties that vary slowly across an image and include
aspects such as color, contrast, brightness, and sharpness.
Modeling content and appearance under these assumptions is
similar to the decomposition of scenes into reflectance and
illumination components [55].

A. Learning Objective

Consider a dataset of images X = {xi} and a bank of
image transforms T = {Tj} that alter one or more aspects of
the appearance of input images. Examples of such transforms
include blurring, brightening, compression, color changes,
or tone-mapping operators for HDR. A list of transforms
commonly used in HDR and SDR experiments is presented
in Section IV. We sample two image patches x1, x2 ∼ X and
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Fig. 2. Visualizing the disentangled representation learning objective.

a transform t ∼ T . Applying the transform to both images,
we obtain two views of each image:

x11 = x1, x12 = t (x1) , x21 = x2, x22 = t (x2) . (1)

Let Cθ and Aθ denote two parameterized encoders that
map input images to their content and appearance features
respectively:

cij = Cθ(xij), aij = Aθ(xij). (2)

Finally, let Dθ denote a parameterized decoder that maps
content and appearance features to images. When content and
appearance features extracted from an image are reconstructed,
we expect to recover the input image. We term this the
self-reconstruction objective. The reconstruction loss is a
weighted sum of pixel-domain and frequency-domain losses,
as used in MAXIM [56]. That is, let

yij = Dθ (cij , aij) , (3)

Lself =
∑
ij

Lchar(xij , yij) + λfLfreq(xij , yij), (4)

where Lchar denotes the Charbonnier loss

Lchar(x, y) =

√
∥x− y∥2 + ϵ2 (5)

and Lfreq denotes the frequency loss, which uses the discrete
Fourier transform, denoted by F

Lfreq(x, y) = ∥F {x} − F {y}∥1 . (6)

The main contribution of our proposed disentangled repre-
sentation learning algorithm, which enables the separation of
content and appearance features, is the cross-reconstruction
objective. The goal of cross-reconstruction is to predict an
image xij using features from images other than xij . For ex-
ample, suppose we wish to predict x12. Since c11 encodes the
content in image 1 and a22 encodes appearance after applying
transformation t, one may predict x12 as Dθ (c11, a22). Such
a cross-reconstruction method has been used in prior work,
such as DRIT [49], to disentangle content and appearance.

However, the appearance feature a22 includes information
not only about the effect of t, but also of the source image
x2. Such “confounding” appearance features (CAFs) may be
transferred if cross-reconstruction is performed in this manner.
For example, if x1 is a picture of a green field and x2 is that of
a yellow flower, Dθ (c11, a22) may yield a field with a yellow
hue.

To remove the effect of CAFs, we adopt a novel “ap-
pearance mixing” method. We first note that the difference
between xi1 and xi2 is only the effect of the transform t.
Therefore, ∆ai = ai2 − ai1 captures the effect of t while
eliminating CAFs from image xi. This difference is then
“mixed into” other appearance features to add or remove
the effect of t and yield cross-reconstructed images. Hence,
the crossed appearance features after undergoing appearance
mixing are

ã11 = a12 −∆a2,

ã12 = a11 +∆a2,

ã21 = a22 −∆a1,

ã22 = a21 +∆a1. (7)

To obtain crossed reconstructions, we apply content shuf-
fling to replace content features across domains, yielding the
following crossed content features

c̃11 = c12,

c̃12 = c11,

c̃21 = c22,

c̃22 = c21. (8)

The crossed content and appearance features are used to obtain
cross-reconstruction predictions

ỹij = Dθ (c̃ij , ãij) , (9)

which are evaluated using the cross-reconstruction objective

Lcross =
∑
ij

Lchar(xij , ỹij) + λfLfreq(xij , ỹij). (10)
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The effect of using appearance mixing to mitigate the effect
of CAFs is illustrated in Section V-C.

Since xi∗ are views of the same image, we expect content
representations generated by a good content encoder to satisfy

c11 ≈ c12, c21 ≈ c22. (11)

Moreover, since the two input images were transformed by the
same transformation t, we expect appearance representations
generated by a good appearance encoder to satisfy

∆a1 ≈ ∆a2. (12)

We guide the networks to learn these properties using a
symmetrized InfoNCE [57] contrastive loss, as in MoCov3
[58]. InfoNCE loss aims to maximize the similarity between a
query-positive key pair (q, k+) while minimizing the similarity
between the query and a set of negative keys K−:

LInfoNCE (q, k
+,K−) = − log

exp (q · k+/τ)∑
{k+}∪K−

exp (q · k/τ)
. (13)

Given a batch of training samples, the “content contrastive
loss” Lc,InfoNCE is obtained by using ([c11, c21], [c12, c22])
from the same sample as positive query-key pairs and those
from different samples in the batch as negative pairs. Similarly,
the “appearance contrastive loss” La,InfoNCE is obtained by
using (∆a1,∆a2) from the same sample as positive query-key
pairs and those from different samples as negative pairs.

Lc,InfoNCE ∼ ([c11, c21], [c12, c22]) (14)

La,InfoNCE ∼ (∆a1,∆a2) (15)

Hence, the parameters of (Cθ, Aθ, Dθ) are trained to minimize
the overall learning objective

L = (Lself + Lcross)+β (Lc,InfoNCE + La,InfoNCE ) . (16)

A visualization of computation of the training objective is
depicted in Fig. 2.

B. Network Architecture

Following prior work [32] [33], we adopted a ResNet-50-
based architecture for both the content and appearance en-
coders, and a reversed ResNet-50 architecture for the decoder,
with key modifications. Due to the presence of two encoders
and one decoder, we term this architecture a “dual-head” U-
Net [59]. To limit the number of features used in downstream
picture quality assessment tasks, we adopted a ResNet-50 0.5x
architecture, i.e., one that uses half the number of channels
at each layer. The other departure from ResNet-50 was the
removal of batch normalization layers, since they have been
shown to hinder image-to-image translation performance [60]
[61].

Moreover, we introduced instance normalization (IN) [62]
layers to ResNet blocks in the content encoder to introduce the
effect of “appearance normalization.” IN layers normalize the
statistics of each channel of the input feature map. Consider

a feature map Fncij ∈ RN×C×H×W . Then, the output of the
IN layer is

F̃nchw =
Fnchw − µnc

σnc
, (17)

where
µnc =

1

HW

∑
ij

Fncij (18)

and

σnc =

√
1

HW

∑
ij

(Fncij − µnc)
2
. (19)

This follows prior work in style transfer that uses IN layers
for style transfer [62] [63], which demonstrated that mean
and standard deviations of layer activations may be used to
encode “style.” As a result, normalizing these statistics using
IN layers was found to improve style transfer performance.
Hence, we deploy IN layers to normalize appearance and retain
only content-related features.

By contrast, the appearance encoder does not include IN
layers since its goal is to capture appearance information.
This is achieved by average pooling intermediate layer feature
activations obtained from each ResNet block. Therefore, the
appearance of the input to the network is captured by a single
feature vector rather than a spatially-varying feature map. De-
spite being assumed to be slow-varying over space, appearance
is a non-stationary attribute of images. For example, one region
of an image may have bright objects while another has dark
objects. Hence, the dual-head U-Net is best applied on small
image patches, rather than on full images. Here, we use a patch
size of 128×128.

The decoder follows a typical U-Net structure, using skip
connections to introduce multi-level feature maps from the
content encoder. Appearance features are introduced into the
encoder using a product-based channel attention mechanism
CA(x, z) = x⊗a, similar to that used in residual attention net-
works [64]. We chose this mechanism since channel attention
may be considered an inverse of instance normalization that
re-introduces the desired appearance features, as evidenced by
Adaptive Instance Normalization [65]. The overall dual-head
U-Net structure of the proposed deep network is illustrated in
Fig. 3.

C. Visual Quality Assessment

After training, we use the appearance encoder to conduct FR
visual quality assessment. Because the encoder was trained
to disentangle appearance information from image content,
we term our quality predictor the Disentangled Quality
Evaluator (DisQUE).

Given a pair of reference and test images Iref and Idis,
we obtain feature maps from the output of each of the four
ResNet blocks in Aθ:

Aref = Aθ(Iref ), Adis = Aθ(Idis). (20)

We then characterized feature maps by computing both the
mean and standard deviation of each channel

aµ = E [A] , aσ =

√
E
[
(A− aµ)

2
]
. (21)
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Fig. 3. The dual-head U-Net architecture.

Alhough computing the mean is typical, standard deviations
of feature maps have also been used [66], albeit without
explicit justification. Here, we justify the use of standard
deviation by referring to one of the assumptions behind our
disentangled representation model. We posited that appearance
varies slowly over space, because of which we used spa-
tially constant appearance vectors to describe image patches.
However, since quality assessment is carried out over images,
the standard deviation captures variations in appearance over
space. Hand-crafted quality models such as ESSIM [67] and
GMSD [68] have also benefited from characterizing spatial
quality variations using standard deviations.

Following prior work [32] [33] [66], we captured multi-
scale appearance features by repeating the process using input
images rescaled to half resolution. The final feature vector
for the reference and test images (zref , zdis) was obtained by
concatenating mean and standard deviation-pooled features at
both scales. Since DisQUE is an FR quality model, the dif-
ference in features between the two images z = |zref − zdis|
was used to predict quality.

The use of multi-scale, multi-block features pooled spatially
using two methods yields a feature vector of size 8192. Finally,
a linear regressor model was used to map the appearance fea-
tures to subjective quality scores. Note that the self-supervised
appearance network was frozen during inference time, and
only the linear regressor was recalibrated on each evaluation
dataset. Ablation experiments studying the effects of multi-
scale features and the use of standard deviation pooling are
presented in Section V.

IV. DATASETS

A. HDR Datasets

To train DisQUE for HDR quality assessment, we used the
recently developed LIVE UGC-HDR database [69], which is
the first publicly available large-scale database of HDR videos.
The database consists of over 2,153 HLG-encoded [70] videos
filmed by amateur iPhone users, containing a diverse collection
of scenes, including indoor, outdoor, daytime, nighttime, static,
and dynamic scenes containing camera and object motion.

Since the proposed DRL method learns from images, we
first sampled video frames from the set of HDR videos. To
introduce sufficient content diversity, we sampled video frames
at 2-second intervals, yielding a total of 19060 frames at an
average of 8.85 frames per video. Since the dataset contains
both 1080p and 4K videos, we rescaled all videos to 1080p
using Lanczos rescaling. Finally, since the PQ [71] standard
can represent a wider range of brightnesses, we re-encoded all
sampled frames to 10-bit PQ from 10-bit HLG.

As described earlier, we aimed to train DisQUE to predict
the quality of tone-mapped and compressed HDR videos. So,
we used a bank of transforms (called T in Section III-A)
consisting of the following ten open-source tone-mapping
operators (TMOs), with their parameters varied to generate
a diverse set of tone mapping-related distortions.

• Hable [3] - A parameter-free pointwise non-linear trans-
form originally designed for use in the video game
Uncharted 2. A desaturation parameter was varied to
control how colorful tone-mapped images would appear.

• Reinhard02 [5] - A point non-linearity to map lumi-
nances from HDR to SDR. A desaturation parameter was
varied to control how colorful tone-mapped images would
appear.
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• Durand02 [72] - Uses a “fast bilateral filter” to decom-
pose the luminances of HDR frames into “base” and
“detail” layers. A contrast parameter was varied to control
the degree of global contrast, i.e., the difference between
the visibilities of bright and dark regions.

• Shan12 [73] - Uses an edge-aware stationary wavelet
transform (SWT) [74]. The number of wavelet levels was
varied, which affected contrast.

• Reinhard12 [75] - Uses color-appearance models applied
in a local manner. The assumed viewing conditions were
varied, which introduced color distortions.

• Eilertsen15 [76] - Applies a “fast detail extraction”
method to obtain a base-detail decomposition and applies
a dynamic tone-curve. The coarseness of the tone curve
was varied, which led to contrast distortions.

• Oskarsson17 [77] - Uses Dynamic Programming to
cluster values in the input image channels. The number
of clusters was varied, which introduced quantization
artifacts such as banding.

• Rana19 [78] - Uses a Generative Adversarial Network
(GAN) to create a fully-convolutional, parameter-free
TMO. A desaturation parameter was varied to control
how colorful tone-mapped images appeared.

• Yang21 [79] - Uses a deep convolutional neural network
(CNN) to transform a multi-scale Laplacian pyramid
decomposition of each input HDR frame. A desatura-
tion parameter was varied to control how colorful tone-
mapped images appeared.

• ITU21 [2] - A parameter-free TMO proposed by the
ITU in Recommendation BT.2446 (“Approach A”). The
nominal HDR luminance was varied, which affected the
brightness and contrast of tone-mapped images.

Furthermore, we introduced compression distortions by ap-
plying lossy JPEG compression at four levels to the tone-
mapped images. Therefore, each transform in the bank T
consists of tone-mapping using one of the aforementioned
TMOs followed by JPEG compression.

We tested the efficacy of DisQUE on the LIVE Tone-
Mapped HDR (LIVE-TMHDR) subjective database [80],
which is the first public database of subjectively annotated
tone-mapped and compressed HDR videos. LIVE-TMHDR
consists of 15,000 distorted videos that were generated from
40 source contents (20 each encoded using PQ and HLG) using
13 tone-mapping methods and compressed using libx264 [81]
at three quality levels. The 13 tone-mapping methods include
the 10 TMOs discussed here, Dolby Vision tone-mapping [82],
the Color Space Transform (CST) method used for gamut/tone
mapping by colorists, and manual tone-mapping by a human
expert colorist. Moreover, the TMOs were applied to videos
using three “temporal modes,” which varied the degree of
temporal distortions.

B. SDR Datasets

To demonstrate the versatility of DisQUE, we also evaluated
its performance on SDR FR quality assessment. We followed
a similar approach as prior work [33], [32] to create a training
dataset of SDR images from the following diverse sources.

• KADIS-700k [83] - ∼140K images
• AVA [84] - ∼ 255K images
• CERTH-Blur [85] - ∼ 2.5K images
• VOC [86] - ∼ 33K images
• COCO [87] - ∼ 330K images
• Places [88] - ∼ 2.2M images

In total, we obtained nearly 3M images from these data
resources. As we will describe below, the bank of transforms
used for SDR training includes color and contrast distortions.
So, we excluded grayscale images and those having significant
over/under-exposed regions to create a training dataset of
nearly 1.8M training images.

The bank of transforms for SDR training was constructed
using the following set of 25 distortions borrowed from [33],
which may be applied at five degrees of severity each.

• NNResize - Downscale the image and upscale it back to
its original resolution using nearest neighbor interpola-
tion.

• BilinearResize - Downscale the image and upscale it
back to its original resolution using bilinear interpolation.

• BicubicResize - Downscale the image and upscale it back
to its original resolution using bicubic interpolation.

• LanczosResize - Downscale the image and upscale it
back to its original resolution using Lanczos interpola-
tion.

• MotionBlur - Simulate motion blur by filtering using
directional blur kernels.

• GaussianBlur - Filter using a Gaussian kernel.
• LensBlur - Filter using a circular kernel.
• MeanShift - Add a constant value to all pixels.
• Contrast - Modify contrast using a sigmoidal non-linear

transformation.
• Compress - Apply JPEG compression
• UnsharpMasking - Increase sharpness of the image.
• ColorBlock - Replace regions of images with small

randomly colored patches.
• Jitter - Apply small random offsets to pixels.
• PatchJitter - Apply small random offsets to patches.
• RGBNoise - Add white noise to RGB pixels.
• YUVNoise - Add white noise in YUV space.
• ImpulseNoise - Add salt and pepper noise.
• SpeckleNoise - Multiply by speckle noise.
• Denoise - Add Gaussian noise and blur to denoise it.
• Brighten - Apply non-linear curve to increase brightness
• Darken - Apply non-linear curve to decrease brightness
• ColorDiffuse - Apply Gaussian blur to the a∗ and b∗

channels in CIELAB color space.
• ColorShift - Offset color channels.
• HSVSaturate - Multiply the saturation channel of HSV

representation by a factor.
• LABSaturate - Multiply the a∗ and b∗ channels of the

CIELAB representation by a factor.

Each of the aforementioned methods typically modifies only
one aspect of each image, such as color, brightness, etc.
However, the real world may present complex combinations of
distortions. To simulate these scenarios, we constructed each
transform in T as a composition of one to three randomly
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TABLE I
EVALUATION OF QUALITY PREDICTION MODELS ON LIVE-TMHDR

Model PCC SROCC RMSE
Y-FUNQUE+ [12] 0.4524 0.4343 9.4352

BTMQI [93] 0.4705 0.4663 9.2238
FSITM [16] 0.4813 0.4626 8.9212
NIQE [94] 0.4805 0.4746 9.5563

BRISQUE [21] 0.4811 0.4833 8.9869
DIIVINE [22] 0.4794 0.4925 9.2879

TMQI [15] 0.5062 0.4956 8.6897
FUNQUE [11] 0.5082 0.4949 8.8863
TMVQI [95] 0.5198 0.4969 8.8697
FFTMI [96] 0.5298 0.5315 8.8559

3C-FUNQUE+ [12] 0.5817 0.5661 8.6568
RcNet [97] 0.5985 0.5824 8.2417

HIGRADE [24] 0.6682 0.6698 8.2619
Cut-FUNQUE 0.7783 0.7781 6.4187

CONTRIQUE [32] 0.7360 0.7230 6.8476
ReIQA [33] 0.7583 0.7812 7.2951
MSML [66] 0.7883 0.7740 6.8090

DisQUE 0.8160 0.8215 6.3241

chosen unit distortions, each applied at a randomly chosen
level of severity.

We evaluated the SDR DisQUE model on the four FR pic-
ture quality assessment datasets. The LIVE-IQA dataset [89]
consists of 29 reference images subjected to five distortions -
blur, noise, JPEG compression, JPEG2000 compression, and
bit errors in JPEG2000 bitstreams. This procedure yielded a
total of 982 distorted pictures. The CSIQ dataset [90] consists
of 866 test images generated from 30 source contents subjected
to six distortions - blur, noise, JPEG compression, JPEG2000
compression, pink Gaussian noise, and global contrast decre-
ments.

TID2013 [91] is a dataset of 3000 test images generated
by applying 24 impairments at five levels each to a dataset
of 25 images. The set of distortions includes blur, noise,
compression, bitstream errors, contrast and color distortions,
and spatial distortions such as jitter and color blocking. Finally,
KADID-10k [92] is the largest database on the list, containing
10,125 test images generated by subjecting 81 pristine images
to 25 distortions at five levels each. The types of distortions
in KADID-10k are similar to those in TID2013.

V. EVALUATION

A. Training

In both the HDR and SDR cases, the dual-head U-Net
models were trained using a batch size of 36, split across 9
NVIDIA A-100 GPUs. Note that each sample consists of four
randomly sampled and transformed (using t ∼ T ) 128× 128
image patches (x11, x12, x21, x22), as described in Section
III-A. The dual-head U-Net was trained for 400K steps using
an Adam optimizer configured with an initial learning rate of
0.0002. The learning rate was decayed by 0.99 every 1,000
steps, and the loss hyperparameters were set to λf = 0.1 and
β = 0.5.

B. Evaluating HDR and SDR Quality Prediction

We evaluated DisQUE’s HDR tone-mapping quality pre-
dictions on the LIVE-TMHDR video quality dataset, and

SDR quality prediction on four datasets - LIVE IQA, CSIQ,
TID2013, and KADID-10k. In all cases, as described in
Section III-C, DisQUE generated an 8192-dimensional fea-
ture vector by applying the appearance encoder to both the
reference and test pictures/video frames. For video quality
prediction on LIVE-TMHDR, we averaged the feature vector
obtained from each frame to yield a video-level feature vector.

We evaluated quality prediction accuracy on each dataset
using a 10-fold random cross-validation, where 80% of the
dataset was used to train the PLS projector and the Linear SVR
predictor, and 20% was used for testing. The hyperparameters
of the Linear SVR predictor were selected by performing five-
fold cross-validation on the training dataset of each random
cross-validation split. In addition to the combination of PLS
and Linear SVR, we also experimented with Lasso and Ridge
regressors, and the best regression model was chosen. Note
that all three approaches yield linear prediction models and
so, incur similar computational complexities at inference time.
The best regressor models and their hyperparameters were
identified by optimizing the average of the Pearson Correlation
Coefficient (PCC) and Spearman Rank Order Correlation
(SROCC) between the predicted and ground-truth subjective
scores on the validation datasets.

The quality prediction accuracies of various hand-crafted
and deep quality models on the LIVE-TMHDR database
are presented in Table I, while the SDR quality prediction
outcomes are presented in Table II. From the Tables, it may be
observed that DisQUE outperformed all the compared models
compared in Table I on the tone-mapping quality prediction
task, and achieved comparable state-of-the-art (SOTA) accu-
racy among the compared self-supervised models on the SDR
quality prediction task.

We further analyzed the effect of feature subsets of DisQUE
on quality prediction accuracy in an ablation study. As ex-
plained in Section III-C, DisQUE combines four subsets of
features generated by applying mean and standard deviation
pooling to the appearance encoder’s feature maps. The impact
of introducing each feature subset into DisQUE is quantified
in Table III. From this Table, it may be seen that both multi-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

TABLE II
EVALUATION OF QUALITY PREDICTION MODELS ON SDR QUALITY DATABASES

Type Model LIVE IQA CSIQ TID2013 KADID-10k
PCC SROCC PCC SROCC PCC SROCC PCC SROCC

Hand-crafted

PSNR 0.868 0.881 0.824 0.820 0.675 0.643 0.680 0.677
BRISQUE [21] 0.935 0.939 0.829 0.746 0.694 0.604 0.567 0.528

SSIM [6] 0.911 0.921 0.835 0.854 0.698 0.642 0.633 0.641
FSIM [98] 0.954 0.964 0.919 0.934 0.875 0.852 0.850 0.854

CORNIA [99] 0.950 0.947 0.776 0.678 0.768 0.678 0.558 0.516

Supervised Deep Nets

DB-CNN [100] 0.971 0.968 0.959 0.946 0.865 0.816 0.856 0.851
PQR [101] 0.971 0.965 0.901 0.872 0.798 0.740 - -

HyperIQA [102] 0.966 0.962 0.942 0.923 0.858 0.840 0.845 0.852
LoDA [31] 0.979 0.975 0.901 0.869 - - 0.936 0.931

DRF-IQA [103] 0.983 0.983 0.960 0.964 0.942 0.944 - -
RKIQT [30] 0.986 0.984 0.970 0.958 0.917 0.900 0.911 0.911
SaTQA [104] 0.983 0.983 0.972 0.965 0.948 0.938 0.949 0.946
DRIQA [53] 0.989 0.985 0.980 0.978 0.961 0.954 - -

Self-Supervised Deep Nets

LPIPS [18] 0.936 0.932 0.906 0.884 0.756 0.673 0.713 0.721
CONTRIQUE [32] 0.966 0.966 0.964 0.956 0.915 0.909 0.947 0.946

ReIQA [33] 0.974 0.973 0.965 0.961 0.915 0.905 0.903 0.901
DisQUE 0.972 0.970 0.956 0.961 0.909 0.922 0.921 0.934

TABLE III
ABLATION EXPERIMENTS STUDYING THE EFFECT OF MULTI-SCALE AND MULTI-POOLING FEATURES

DisQUE Variant LIVE-TMHDR LIVE IQA CSIQ TID2013 KADID-10k
PCC SROCC PCC SROCC PCC SROCC PCC SROCC PCC SROCC

Single-Scale, Mean Pooling 0.767 0.762 0.961 0.956 0.926 0.940 0.865 0.879 0.889 0.907
Multi-Scale, Mean Pooling 0.803 0.807 0.968 0.961 0.947 0.951 0.891 0.898 0.908 0.923

Single-Scale, Mean+Std Pooling 0.805 0.804 0.967 0.964 0.948 0.956 0.900 0.915 0.910 0.928
Multi-Scale, Mean+Std Pooling 0.816 0.822 0.972 0.970 0.956 0.961 0.909 0.922 0.921 0.934

scale features and standard-deviation pooling improved quality
prediction accuracy across databases.

C. Example-Guided Tone Mapping

A key element of training DisQUE is the use of appearance
mixing to yield crossed predictions ỹij . In addition to being
a representation learning framework, the DisQUE training
paradigm may also be used to perform example-guided image
processing (EGIP).

We define an EGIP task as consisting of three inputs -
the example source, the example target, and the input source
image. The EGIP model then processes the input source image
to induce a similar effect as shown by the example pair. For
example, if the example target is a blurred version of the
example source, an ideal EGIP network predicts the target
image as a blurred version of the input source. EGIP, as defined
here, may be seen as a task this is complementary to guided
image filtering [105], where content from a guidance image
(analogous to the example pair here) is transferred to the input,
rather than appearance.

Here, we demonstrate the EGIP capability of the disen-
tangling network by performing example-guided HDR tone
mapping (EGTM). Fig. 4 shows examples of using EGTM to
vary visual characteristics such as color, contrast, and bright-
ness of tone-mapped images. We achieved this by varying
the corresponding attribute of the example SDR image, and
it may be seen that the network was able to characterize the
differences between the example HDR and SDR images and
transfer those characteristics to the input HDR image to predict
the corresponding tone-mapped SDR image.

The EGTM results presented in Fig. 4 all use the appearance
mixing method described in Section III-A to improve their
robustness to CAFs. To demonstrate the usefulness of appear-
ance mixing, we illustrate the outputs of EGTM when using
the naive appearance replacement approach, also described
in Section III-A. From Fig. 5, it may be observed that the
green color of the wall in the source HDR, which is a CAF,
results in a green sky in the predicted SDR when using
appearance replacement. However, predicting the SDR image
using appearance mixing significantly reduced the effect of
the CAF, thereby improving prediction accuracy relative to
the “ground-truth” target SDR. Note that in this example, both
the example and target SDR images were generated using the
Hable TMO [3] with a desaturation parameter of 0.

VI. CONCLUSION AND DISCUSSION

We have developed a novel framework for disentangled
representation learning using a new “appearance mixing”
framework for adapting images across domains/appearance
classes. The DRL network learns to decompose an input image
into content and appearance-related features, which we used
for two downstream tasks - perceptual quality modeling and
example-guided image processing.

We found that our DRL-based quality model DisQUE
achieved state-of-the-art accuracy when predicting the quality
of tone-mapped and compressed HDR videos, and of synthet-
ically distorted SDR images. In addition, we demonstrated the
EGIP capabilities of the DRL model by performing example-
guided tone mapping. Specifically, we gave examples of how
particular image appearance features can be modulated using
appropriately chosen examples.
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(a) Example-guided contrast tuning (b) Example-guided color desaturation tuning

(c) Example-guided brightness tuning (d) Example-guided global hue tuning
Fig. 4. Examples of using example-driven tone mapping to vary tone-mapping characteristics

Fig. 5. Effect of confounding appearance features on EGTM.

Despite the promising performance of DisQUE and EGTM,
the proposed DRL model has some limitations. First, since
appearance mixing relies on differences between source and
target domain appearance features, DisQUE is only able to per-
form full-reference quality modeling. Existing self-supervised
methods such as CONTRIQUE and ReIQA can perform NR
quality modeling since the appearance features, and not their
differences, are used to distinguish between images. Combin-
ing these two methods may yield a network suitable for both

FR and NR quality modeling.

Moreover, one of the assumptions used to design the DRL
method was that appearance does not vary over image patches.
However, appearance does vary over larger spatial regions,
such as 1080p or 4K images. Therefore, the use of an average-
pooled constant appearance vector, rather than a spatially
varying feature map, limits the application of EGIP to patches.
To enable the example-guided processing of high-resolution
inputs, the appearance representation may be modified to
include spatial information.

Finally, we note that the EGTM results in Fig. 5 showed that
appearance mixing alone may not be sufficient for accurate
EGTM. In this example, the predicted SDR was still a different
shade of blue compared to the ground-truth target. This may be
attributed to the fact that the example and input HDR images
were significantly different in their visual characteristics - the
example is predominantly a green wall, while the input is
predominantly a blue sky. This suggests that a better approach
during inference may be to use a bag of example pairs, and
dynamically choose the most relevant example for every input
image to be processed. More generally, a similar idea may be
applied to the processing of high-resolution images by using
patch attention methods to exploit “good example patches”
from each example image pair.
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