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ODE TRANSFORMATIONS OF NONLINEAR DAE POWER SYSTEMS*

Mohamad H. Kazma, Graduate Student Member, IEEE and Ahmad F. Taha⋄, Member, IEEE

AbstractÐDynamic power system models are instrumental in
real-time stability, monitoring, and control. Such models are
traditionally posed as systems of nonlinear differential alge-
braic equations (DAEs): the dynamical part models generator
transients and the algebraic one captures network power flow.
While the literature on control and monitoring for ordinary
differential equation (ODE) models of power systems is indeed
rich, that on DAE systems is not. DAE system theory is less
understood in the context of power system dynamics. To that end,
this paper presents two new mathematical transformations for
nonlinear DAE models that yield nonlinear ODE models while
retaining the complete nonlinear DAE structure and algebraic
variables. Such transformations make (more accurate) power
system DAE models more amenable to a host of control and
state estimation algorithms designed for ODE dynamical systems.
We showcase that the proposed models are effective, simple, and
computationally scalable.

Index TermsÐTime-domain simulation, transient stability
analysis, nonlinear descriptor models, power systems.

I. INTRODUCTION

P
OWER systems monitoring, state estimation, control, and

transient stability analysis are all reliant on high-fidelity

models of multi-machine power systems. In power grids,

transient stability analysis determines how the power sys-

tem maintains synchronicity under time-varying conditions

and large uncertainties from load disturbances [1], [2]. Such

analysis relies on time-domain simulations of the system

that is expressed as a set of differential algebraic equations

(DAEs) [3], [4]. The differential-algebraic nature couples the

system dynamics with power flow constraints, thus resulting

in a more accurate model. Nonlinear DAEs are an extreme

case of stiff dynamical systems [5], meaning that the system

has time constants that span several orders of magnitude; in

particular, the algebraic constraints exhibit null time constants.

In general, nonlinear DAEs are solved using implicit dis-

cretization schemes [6]. Multi-step methods offer stable and

efficient schemes when dealing with nonlinear DAEs [7]. Such

discrete-time modeling methods include: backward differential

formulas (BDF) [8], [9], backward Euler (BE) method [9], and

trapezoidal implicit (TI) method [9], [10]. Simulating discrete-

time models requires an integrative time-step algorithm [11],
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and the solvability of power system DAEs under implicit

integration methods is well-established. The Newton-Raphson

(NR) method [9], [12] is generally implemented within power

system simulation packages to solve discretized DAEs [13].

Despite such well-developed time-domain numerical solutions,

from a systems’ theory perspective, the literature on nonlinear

DAE power networks is limitedÐunlike that of ordinary

differential equations (ODE models) [14].

Common modeling for systems’ control and estimation is

based on an ODE formulation; this is due to the aforemen-

tioned limitation on system theory for DAEs. Typically, the

formulation of ODE systems from DAE models is performed

by either neglecting the algebraic constraints or by formulating

a decoupled modeling approach [15]. The simplified models

potentially limit the transient stability simulations and, ulti-

mately, the estimation and control performance. Time-domain

simulations resulting from the full DAE models of a power

network can, for instance, give an accurate depiction of the

dynamics under topological changes triggered by faults and

be modeled to include uncertain loads from renewable energy

resources.

The limitation on model fidelity from a control and esti-

mation perspective is expressed in the form of the following

research question: How do we extend existing systems control

theory, developed for ODE dynamical systems, to accurately

apply it to DAE models? Descriptor systemsÐarising from

DAEs modelsÐappear in numerous applications, with a few

examples being chemical, electrical and mechanical systems.

For such reason, there is a rise in interest towards translating

control and stability theory to the analysis of descriptor

systems [16].

Recent studiesÐsee, [15]±[20] and reference thereinÐ

present literature on developing the state estimation and con-

trol theory of DAE systems, in particular that of linear DAEs.

However, in this paper, we aim to address the limitations on

state estimation, control, and transient stability analysis of

power systems by giving a new perspective on DAE to ODE

system modeling. Therefore, we instead attempt to address the

posed research question in the form of: Is there a methodology

to accurately restructure the DAE system into an ODE model

without loss of information and therefore exploit existing ODE

systems control theoretic?

To that end, in this paper we introduce two simple yet

effective methods to transform nonlinear DAE power system

models into ODEs. The idea is to formulate ODE-structured

representations of the network dynamics while depicting the

full nonlinear DAE structure along with the algebraic con-

straints. These transformations allow the utilization of the rich

literature on control and estimation of ODE models of power
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systems.The main contributions of this paper are:

• We present two mathematical transformations that retain

the complete nonlinear DAE dynamics while achieving

a nonlinear ODE-structure. The first transformation is

based on applying the implicit function theorem (IFT)

to reformulate the algebraic constraints into an ODE

model (Section II-A). The second transformation is

approximation-based; it yields an effective approxima-

tion towards ODE-structured algebraic constraints (Sec-

tion II-B).

• We show that it is viable to model and perform both

continuous and discrete time-domain simulations for tran-

sient stability analysis on the proposed systems. We

also illustrate that the resulting Hessian matrices com-

putations that arise when simulating the discretized IFT

transformed system can be approximated using finite

difference approximations (Section III).

• We assess the validity of the proposed models on standard

power networks under transient time-domain simulations

subject to load disturbances (Section IV).

We note that, in this paper, we do not focus on extending

DAE systems stability and control theory, or on formulating

new discretization techniques for such models, but rather on

introducing the aforementioned transformations onto the non-

linear DAE power system. The transformations’ significance

is accentuated by the fact that we obtain nonlinear ODE

structured models that retain the complete nonlinear DAE

structure along with the algebraic variables. Utilizing the ODE

structured models, the rich literature on control and monitoring

of ODE dynamical systems can be exploited.

II. PROPOSED NONLINEAR DAE TRANSFORMATIONS

In this paper, we consider a general nonlinear model of

multi-machine power system dynamics (N , E), where E ⊆
N × N is the set of transmission lines, N = G ∪ L is the

set of all buses in the network, while G and L are the set of

generator and load buses, respectively. The model represents

both the generator dynamics and algebraic constraints. Readers

can refer to [13, Ch. 7] for the full description of the power

network utilized within this work. Note that the theoretical

developments herein still apply to any semi-explicit nonlinear

DAE model of a power system written as

generator dynamics : ẋd = f(xd,xa,u), (1a)

algebraic constraints : 0 = g(xd,xa), (1b)

where the dynamic states of the generator are defined as xd :=
xd(t) ∈ R

nd , the algebraic states as xa := xa(t) ∈ R
na

and the system input as u := u(t) ∈ R
nu . Functions f(·) :

R
nd × R

na × R
nu → R

nd and g(·) : Rnd × R
na → R

na are

nonlinear and define the system dynamics and power flows.

The existence of a solution for nonlinear DAEs can be

determined by proving that a DAE is strangeness-free [21,

Hypothesis 4.2], i.e., the strangeness index is equal to zero.

This index is a generalization of the differentiation index of

DAEs. Refer to [21] for the detailed hypothesis that defines

the strangeness index of nonlinear DAEs.

Definition 1. The differentiation index [21]±[23] of descrip-

tor system refers to the number of differentiations required to

obtain ODEs using algebraic manipulations.

For linear DAE systems, a set of differential algebraic

equations is of index one if and only if it is regular. Regularity

is an important property for linearized DAEs; it is a condition

for the existence of a consistent unique solution for every

initial condition [14].

Definition 2. Regularity of a linearized DAE (1) around an

initial state can be characterized by matrix pair (E,A), such

that it is regular if and only if det(sE −A) ̸= 0 for s ∈ C.

The linearized representation around an operating point of

the power system DAE (1) can be rewritten as

Eẋ = Ax+Bu, (2)

where E ∈ R
nd+na represents the singular mass matrix that

has ones on its diagonal entry for the differential equations

and zeros for the algebraic equations. The constant state-space

matrices are defined as A ∈ R
nd+na and B ∈ R

nu .

In [15], it is shown that the linearized representation of

power system (1) has a differentiation index of one and is

regular. Such condition guarantees that for each consistent

initial condition, a unique solution exists. Under the linearized

model, this condition holds true if and only if there exist paths

whereby every load is connected to a generator bus. To prove

a solution is unique for nonlinear DAEs is rather complex

and still considered an open problem [14]. We note here that

proving the linearized dynamic system (2) is regular and of

index one is a prerequisite for providing evidence that the

nonlinear system can be strangeness-free. The differentiation

index, regularity and strangeness-free property of a nonlinear

DAE system ensure the solvability of the system. Considering

the aforementioned results from [15] and the complexity

of proving such condition for nonlinear DAEs, the following

assumption holds true within this paper.

Assumption 1. The DAE (1) is strangeness-free, of differ-

entiation index one and regular. Thus, under any consistent

initial conditions a unique solution exists and the partial

derivatives of f(·) and g(·) with respect to xd and xa are

non-singular [21].

The aforementioned assumption is mild and holds true for

the test cases considered in the numerical studies section.

Under such conditions, the two transformations that reformu-

late (1) into nonlinear ODEs can be posed.

Remark 1. The time-domain numerical solvability of the DAE

system (1) implies that a unique solution for different inputs

and consistent initial conditions exists [24].

Hence, the time-domain simulations presented in Section IV

validate Assumption 1 for the power system represented as (1)

and therefore provide explicit proof that the nonlinear power

system DAE is strangeness-free, of differentiation index one

and regular.
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A. IFT-Based Nonlinear DAE Model: ODE-DAE

The first transformation relies on applying the IFT [25,

Theorem 3.3.1] to resolve the algebraic constraints into ODEs

(ODE-DAE). This method entails differentiating the algebraic

constraints in (1b) with respect to time variable t.

Proposition 1. Consider the nonlinear descriptor system (1)

and that Assumption 1 holds true for any initial condition and

control input, then the descriptor system can be restructured

into a nonlinear ODE system by applying the IFT [25,

Theorem 3.3.1] to resolve the algebraic constraints into ODEs.

As such, the nonlinear descriptor system (1) can be rewritten

as

ẋd = f(xd,xa,u), (3a)

ẋa = −(Gxa
)−1Gxd

f(xd,xa,u) = g̃(xd,xa,u). (3b)

Proof. Under Assumption 1, the partial derivative
∂g(xd,xa)

∂xa

is non-singular, refer to [14], [15]. Then, implicitly differenti-

ating the algebraic constraints (1b) using the implicit function

theorem we obtain the following

0 =
∂g(xd,xa)

∂xd

∂xd

∂t
+

∂g(xd,xa)

∂xa

∂xa

∂t
. (4)

We define the Jacobian matrices of the implicit algebraic

constraints with respect to xa and xd as Gxa
:= ∂g(xd,xa)

∂xa

∈ R
nd×na and Gxd

:= ∂g(xd,xa)
∂xd

∈ R
na×nd . The time-

derivative ∂xd

∂t
:= ẋd = f(xd,xa,u), refer to (1a). As such,

the algebraic constraints (1b) can be rewritten as (3b).

The resulting ODE-DAE (3b) representing the algebraic

constraints (1b) is now a function of (1a) and therefore

depends on control input u. Nevertheless (1b) can be explicitly

formulated and then differentiated with respect to t, however

this requires the complex task of explicitly reconstructing

the algebraic equationsÐwhich is rather difficult to perform.

In contrast, the IFT method allows us to utilize the semi-

implicit system (1) along with all the dynamic and algebraic

relationships that are inherent to the system while also being

represented as a set of ODEs.

It is important to note that this index reduction approach

can be applied to nonlinear DAEs of differentiation index n.

In other words, this theoretical method can also be applied

for higher index DAEs, however it requires several rounds

of differentiation to reformulate the algebraic constraints into

a set of ODE equations. The application on DAE of index

greater than one is outside the scope of this paper and power

systems in generalÐpower systems are typically of index one.

B. Approximate Nonlinear DAE Model: Approx-DAE

The second transformation formulates an approximate DAE

model (Approx-DAE) that is based on introducing a pos-

itive scalar term, denoted by µ, to the DAE system at the

algebraic constraint equations level. In particular, the left-

hand side of (1b) is replaced by µẋa. The rationale behind

utilizing such simplistic alternative as compared to the first

transformation is evident at the discrete-time modeling level;

it offers an alternative to dealing with the Hessian matrix

Table I
DISCRETIZED DYNAMICS OF THE ALGEBRAIC CONSTRAINTS

DAE 0=

{
−h̃g(xk) for BDF

−h̃(g(xk) + g(xk−1)) for TI

ODE-DAE 0=

{
xa,k − Σ

kg

s=1αsxa,k−s − h̃g̃(zk) for BDF

xa,k − xa,k−1 − h̃(g̃(zk) + g̃(zk−1)) for TI

Approx-DAE 0=

{
µxa,k − Σ

kg

s=1αsµxa,k−s − h̃g(xk) for BDF

µxa,k − µxa,k−1 − h̃(g(xk) + g(xk−1)) for TI

computations that arise under the ODE-DAE approachÐrefer

to section III. Under such transformation, µ > 0 is defined as

a relatively small term that simulates the system’s dynamics

while satisfying the power flow constraints. As a result, the

descriptor system (1) can be rewritten as

ẋd = f(xd,xa,u), (5a)

µẋa = g(xd,xa) +O(µ), (5b)

where the approximation error O(µ) is of order µ, such that

as µ → 0 the error becomes null.

Remark 2. The proposed Approx-DAE model is not

the model reduction technique commonly referred to as the

singular perturbation technique [11], [26]±[28]. Singular per-

turbation is applied to dynamical systems that have multiple

time-scale dynamics, including electrical systems, to reduce

the number of simulated states; it results in a simplified model

representation.

Herein, we utilize the small positive scalar µ to reduce to

stiffness of the DAE model, i.e, transforming the null time-

scale constants for the existing algebraic constraints to become

of order µ. The introduced dynamic µẋa is an arbitrary

modification to the system’s behavior and depends highly on

the choice of µ. The value of µ contributes to the stiffness

of the system, i.e., the order of µ defines the time-scale for

the algebraic equations that are modeled as dynamic equations.

Such that as µ → 0, the time-scale becomes null, and therefore

the system reverts to having algebraic equations that are

extremely stiff.

III. TIME-DOMAIN MODELING FOR TRANSIENT

STABILITY ANALYSIS

The choice of discretization method must rely upon

the system’s stiffness, desired accuracy, and the performance

of computation resources. Stiff dynamical systems can be

identified from time constants on local subsystems that have

contrasting magnitudes by a large margin. Nonlinear dynamic

power systems under transient conditions are in practice

modeled as discrete-time state-space models and are solved

using numerical methods [24]. Nonlinear DAEs exhibit stiff

dynamics and are solved using implicit discretization methods

that offer stable computational methods as compared with

explicit methods [6].

In this work we approach discretizing the nonlinear DAE

system and the proposed transformations using BDF, BE, and
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Table II
VARIATIONS IN THE JACOBIAN OF ODE-TRANSFORMED SYSTEMS

ODE-DAE

[
−h̃G̃xd

(z
(i)
k

) Ina − h̃G̃xa (z
(i)
k

)

]

Approx-DAE

[
−h̃Gxd

(x
(i)
k

) µIna − h̃Gxa (x
(i)
k

)

]

TI discrete-time modeling methods. Specifically, we investi-

gate how the two transformations perform when embedded

within vintage discretization methods. BDF depends on its

discretization index denoted by kg , which is stable for 2 ≤
kg ≤ 5. We note that for kg = 1, BDF renders into the

BE method. For succinctness, we refer to BE as BDF while

designating the order of kg = 1. We start by discretizing

the differential dynamics (1a) that are common between the

presented models. To that end, the discrete-time representation

of the generator dynamics represented in (1a) can be written

as

0 =

{
xd,k − Σ

kg

s=1αsxd,k−s − h̃f(zk) for BDF,

xd,k − xd,k−1 − h̃(f(zk) + f(zk−1)) for TI,
(6)

where vector zk := [xd,k,xa,k,uk]
⊤ and xk := [xd,k,xa,k]

⊤

for time step k. The discretization time step size h̃ is defined as

h̃ := βh for BDF and 0.5h for TI, where h is the simulation

time step size.

The discretization constants β and αs for BDF method

depend on the order of index kg and are calculated as

β =
( kg∑

s=1

1

s

)−1

, αs = (−1)(s−1)β

kg∑

j=s

1

j

(
j
s

)
. (7)

The implicit discrete-time representation of the algebraic

constraints for the descriptor system (1) and the proposed mod-

els are summarized in Table I. Solving discrete-time models

requires an integrative time-step algorithm [11]. The Newton-

Raphson (NR) method [9], [12] is generally implemented to

solve the implicit discrete-time nonlinear descriptor dynamics.

To implement the NR method, the Jacobian pertaining to

the nonlinear dynamics is evaluated. At each time step k,

the increment ∆x
(i)
k defined as (8) is evaluated and used to

update the state variables x
(i+1)
k = x

(i)
k +∆x

(i)
k under the NR

iteration i until a convergence criterion is satisfied. Once NR

iteration converges, time step k advances until the dynamics

over time span t is simulated. The iteration increment ∆x
(i)
k

can be written as

∆x
(i)
k =

[
Ag(z

(i)
k )

]−1 [
φ(z

(i)
k )

]
, (8)

where z
(i)
k := [x

(i)
d,k,x

(i)
a,k,u

(i)
k ], and φ(z

(i)
k ) denotes the

discretized system dynamics, represented in (6) and Table I,

under the NR iteration index i. The Jacobian of φ(z
(i)
k ) is

defined as Ag(z
(i)
k ) :=

[
∂φ(z

(i)
k

)

∂xk

]
and can be written as

Ag(z
(i)
k )=

[
Ind

− h̃Fxd
(z

(i)
k ) −h̃Fxa

(z
(i)
k )

−h̃Gxd
(x

(i)
k ) −h̃Gxa

(x
(i)
k )

]
, (9)

where matrices Fxd
(·) ∈ R

nd×nd and Fxa
(·) ∈ R

nd×na

are the Jacobians of (6) with respect to xd and xa. Matrix

Ind
is an identity matrix of dimension similar to Fxd

(·).
Matrices Gxd

(·) and Gxa
(·) retain the same definition as

before, however under the discretized dynamics presented in

Table I.

0 2 4 6 8 10

376.9906

376.9908

376.991

376.9912

0 2 4 6 8 10
-0.015

-0.01

-0.005

0
(a) case-9

0 2 4 6 8 10

376.984

376.986

376.988

376.99

376.992

0 2 4 6 8 10
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05
(b) case-200

Figure 1. Transient differential and algebraic state trajectories under load
disturbance: (a) case-9 (αL = 2%) and (b) case-200 (αL = 15%).

10−8 10−7 10−6 10−5 10−4

µ-value

10−5

10−4

10−3

R
M

S
E

(a) case-9
Continous

BDF (kg = 1)

BDF (kg = 3)

TI

10−8 10−7 10−6 10−5 10−4

µ-value

10−4

10−3

10−2

R
M

S
E

(b) case-200

Figure 2. RMSE on dynamic and algebraic state trajectories for the Approx-
DAE model while changing µ-value.

Regarding the transformed discrete-time models, the Jaco-

bian of the differential equations remains the same, however,

that of the algebraic constraints summarized in Table I differs.
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The Jacobian of the algebraic equations of the transformed

systems are represented in Table II. For the Approx-DAE
system, the only difference is with the addition of a µIna

per-

turbation term, where Ina
is an identity matrix of dimension

similar to Gxa
(·).

For the ODE-DAE system, matrices G̃xd
(·) :=

∂g̃(xd,xa,u)
∂xd

∈ R
na×nd and G̃xa

(·) := ∂g̃(xd,xa,u)
∂xa

∈ R
na×na

define the Jacobian of the algebraic equations Table I, row 2

. For brevity, we define Jacobian G̃xd
(·) in (10) and leave

G̃xa
(·) for the reader to infer.

G̃xd
(z

(i)
k ) := −(−G−1

xa

∂Gxa

∂xd
G−1

xa
Gxd

f(·)

+G−1
xa

∂Gxd

∂xd
f(·) +G−1

xa
Gxd

Fxd
).

(10)

We note here that due to the existence of Jacobian matrices

within the state-space formulation (3b) of the IFT model,

Hessian matrices Gxa,d
:=

∂Gxa

∂xd
∈ R

na×nd and Gxd,d
:=

∂Gxd

∂xd
∈ R

na×nd appear under the NR iteration. To avoid the

computationally convoluted evaluation of Hessian matrices, we

refer to finite difference (FD) approximation techniques [29],

[30] to approximate the matrices. FD approximations are based

on Taylor series expansions of the system around a consistent

operating point. For the approximations herein, we refer to

the central difference approximation [30] which yields a lower

error than the other difference methods. As such Gxa,d
can

be approximated as (11) with difference variable m → 0.

Gxa,d
=

Gxa (x
(i)
d,k−m

,x
(i)
a,k

)−Gxa (x
(i)
d,k+m

,x
(i)
a,k

)

2m +O(m2), (11)

where Gxa,d
represents the central difference approxima-

tion [30], which yields a truncation error O(m2).

IV. CASE STUDIES

The main objective of transient time-domain simulations is

to trace the system’s trajectoryÐafter a disturbanceÐtowards

equilibrium [11]. Accordingly, we investigate the viability and

effectiveness of performing both continuous- and discrete-time

transient stability simulations of the proposed systems follow-

ing a load disturbance. Two networks of contrasting sizes are

chosen: Western System Coordinating Council (WSCC) 9-Bus

network (case-9), and ACTIVSg200-Bus network (case-200).

The transient time-domain simulations are performed in

MATLAB R2021b running on a Macbook Pro having an Apple

M1 Pro chip with a 10-core CPU and 16 GB of RAM. The

baseline model herein refers to the nonlinear DAE (1) and

is simulated using MATLAB ODE/DAE solver ode15s and

ode15i. The settings chosen for the solvers are: (i) absolute

tolerance as 1 × 10−06, (ii) relative tolerance as 1 × 10−05

and (iii) maximum step size equal to 0.001. For the transient

discrete-time domain simulations, the discretization step size

is set to h = 0.1 and the NR algorithm parameters are: (i)
absolute tolerance on L2±norm of iteration convergence as

10−2 and (ii) maximum iterations as 10.

Generator parameters are extracted from the power system

toolbox (PST). Regulation and chest time constants for the

generators are chosen as RDi = 0.2 Hz/pu and TCHi =

0.2 sec. The steady state initial conditions for the power

system are generated from the power flow solution obtained

using MATPOWER. The synchronous speed is set to ω0 =
120π rad/sec and a power base of 100 MVA is considered

for the power system.

Starting from the initial steady state conditions, a load

disturbance at t > 0 on initial load (P0
L,Q

0
L) is introduced.

The perturbed magnitude under a load disturbance (αL) is

computed as (P̃0
L, Q̃

0
L) = (1+ αL

100 )(P
0
L,Q

0
L). The load distur-

bance (αL) for case-9 is chosen within the range of {1%, 4%}
with respect to the original loads; for test case-200 the range

is between {5%, 20%}.

The continuous-time transient state trajectories representing

algebraic state θ (bus angle) and differential state ω (generator

synchronous rotor speed) for the DAE model and the proposed

transformations are depicted in Fig. 1. The proposed models

yield accurate transient state trajectory simulations as com-

pared to the baseline DAE model for both test cases.

Before moving forward, we investigate the choice of µ
on the accuracy of the Approx-DAE system as compared

with the baseline model. We calculate the root mean square

error (RMSE) of the transformed systems over time period

t as RMSE :=

√∑t
k=1 e2

k

t
, where ek := |x̂k − xk| is the

difference between the states of the baseline DAE model (1)

denoted as xk and the states of proposed systems as x̂k.

Fig. 2 presents RMSE for the Approx-DAE model when

varying the choice of µ between {1 × 10−04, 1 × 10−08}
under continuous and discrete time-domain simulations. It is

illustrated that for both test cases, the choice of µ affects

the error on state trajectories. For TI and BE discretization

method, the choice of µ does not alter the RMSE error.

Such methods are single step discretization methods which

are inherently less accurate than the multi-step method, BDF,

that is typically used for DAE systems. The RMSE for the

continuous and BDF case is lower and is influenced by the

choice of µ until it becomes asymptotic after a certain value of

µ. For the remainder of this work µ is chosen to be 1×10−06.

To assess the accuracy of the discrete time-domain simula-

tions, we compute the error norm ζ := ∥x̂k − xk∥2 between

the baseline states xk at time and the states resulting from the

proposed models x̂k. Fig. 3 illustrates the error resulting from

transient discrete time-domain simulation under the different

discretization methods. The proposed models accurately depict

the transient states; it can be noted that BDF method outper-

forms BE and TI for the DAE model and the proposed systems.

To further investigate the applicability of the methods, we vary

the load disturbance magnitude αL under the aforementioned

ranges. The RMSE for case-9 and case-200 under such load

disturbances are depicted in Fig. 4.

The performance of the transformed systems yields similar

results to that of the DAE system under the continuous

and discrete-time models while simulating the states under

different transient conditions. We note that the performance

under BDF discretization of the ODE-DAE model, suggests

that the BDF order kg might require changing to account

for the altered stiffness in the dynamics. Refer to Fig. 5

for the computational complexity resulting from simulating
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Figure 3. Error norm on discrete-time domain state trajectoriesÐunder load disturbanceÐfor the proposed model simulated under different discretization
methods: (a) case-9 (αL = 2%) and (b) case-200 (αL = 15%).
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Figure 4. RMSE on transient dynamic and algebraic states under varying
load disturbances.

the proposed transformations relative to the nonlinear DAE

system. The DAE and Approx-DAE models require the same

computational effort, however that of the ODE-DAE model

shows around a 100% to 200% increase in the computational

complexity under discrete-time techniques. This is primarily

due to the Hessian approximations (10), whereby such an

increase is not evident at the continuous time-domain level. An

alternative Taylor series approximation for (10) can be chosen

that requires less computational effort. Having provided the

above results, the validity and accuracy of the proposed models

are demonstrated, therefore proving their applicability for

transient time-domain simulations of multi-machine power

systems.

V. SUMMARY AND FUTURE WORK

This paper presents transformations that result in solu-

tions to nonlinear DAE power systems modeled as nonlinear

ODEs. The validity and accuracy of the two methods have
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Figure 5. Computational time for the different time-domain methods and
power system models.

been investigated. The proposed transformations yield accurate

depictions of the transient state-space models and can there-

fore be used in various feedback control or state estimation

algorithmsÐour future work on this topic.
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