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MULTILINEAR EXTENSIONS IN SUBMODULAR OPTIMIZATION FOR
OPTIMAL SENSOR SCHEDULING IN NONLINEAR NETWORKS

Mohamad H. Kazma and Ahmad F. Taha®

Abstract—Optimal sensing nodes selection in dynamic sys-
tems is a combinatorial optimization problem that has been
thoroughly studied in the recent literature. This problem can
be formulated within the context of set optimization. For
high-dimensional nonlinear systems, the problem is extremely
difficult to solve. It scales poorly too. Current literature
poses combinatorial submodular set optimization problems
via maximizing observability performance metrics subject to
matroid constraints. Such an approach is typically solved using
greedy algorithms that require lower computational effort yet
often yield sub-optimal solutions. In this paper, we address
the sensing node selection problem for nonlinear dynamical
networks using a variational form of the system dynamics,
that basically perturb the system physics. As a result, we show
that the observability performance metrics under such system
representation are indeed submodular. The optimal problem
is then solved using the multilinear continuous extension. This
extension offers a computationally scalable and approximate
continuous relaxation with a performance guarantee. The ef-
fectiveness of the extended submodular program is studied and
compared to greedy algorithms. We demonstrate the proposed
set optimization formulation for sensing node selection on
nonlinear natural gas combustion networks.

Index Terms—Sensing node selection, nonlinear dynamical
networks, observability, submodularity, multilinear extension

I. INTRODUCTION AND PAPER CONTRIBUTIONS

OR nonlinear dynamical systems, in particular high-
dimensional systems, it is often costly or impractical to
monitor the full state-space [1]. Thus a trade-off between
cost and performance warrants solving the sensing node
selection (SNS) problem posed as a constraint set optimization
problem. Optimal SNS in dynamic systems is considered a
combinatorial optimization problem that has been thoroughly
studied in the recent literature [2]-[10]. Such problems can
be formulated within the context of set optimization, where
the decision variables are discrete sets and not vectors or
matrices. There are two prominent approaches that quantify
the objective function of the SNS problem: (i) objectives that
are based on minimizing the state estimation error given a
subset of the measured states [4], [8], [11], [12], and (i7)
objectives that are based on metrics related to the system’s
observability Gramian [1], [3], [5], [13], [14].
A simple approach to solve the SNS problems in the
aforementioned brief literature is through brute force, that
is, testing all combinations of sensor nodes and selecting
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the subset that minimizes or maximizes the objective. This
approach is infeasible and thus there are various optimization
methods developed that can be used to solve the combinatorial
SNS problem. Such methods can be categorized accordingly:
convex relaxation heuristics [9], [15], mixed-integer semi-
definite programs [2], [16], and greedy algorithms [3], [6],
[17], [18].

One key property that is relevant to combinatorial
set optimization problems is that of submodularity; it is
a diminishing returns property which provides provable
performance guarantees that allow to solve the combinatorial
SNS problem via simple greedy algorithms [19]. This requires
posing the SNS problem as a submodular set optimization
problem of objective function f in the form

f* = naximize f(S), (D

where the set V represent a set of available sensor nodes to
choose from and the set Z represents matroid constraints. A
typical matroid constraint for SNS is the cardinality constraint
I, = {S CV :|S| = r} for some r that represents the feasible
number of sensing nodes. Such an approach is typically
solved for f using greedy algorithms that require lower
computational effort while achieving a (1 —1/¢) performance
guarantee. Given that (1 — 1/e) ~ 0.63, that is, f¥ is at least
0.63 times the optimal value f*.

In this paper, we address solving the SNS problem for
nonlinear dynamical systems via quantifying submodular
observability-based metrics while posing it as a submodular
maximization problem (1). For linear systems, Gramian
based observability quantification allows for scalable SNS
by exploiting modular and submodular observability notions
as demonstrated in [3]. As compared to nonlinear systems,
observability-based SNS for nonlinear systems remains a topic
of ongoing research [14]. Typically, quantifying nonlinear
system observability can be approached by considering
an empirical Gramian approach [20] or a Lie derivative
approach [21]. Both methods can become infeasible for large
scale systems when considering solving the SNS problem.
A variational approach can be considered to handle system
nonlinearities. This system can be viewed as a linear-time
varying model along the system trajectory and thus an
observability Gramian can be computed more efficiently [22].

Furthermore, the application of the aforementioned greedy
algorithm has been studied well-studied and investigated
throughout the literature for the cardinality constrained set
problem (1). Recently, there has been gained interest towards
extending such algorithm to handle other matroid constraints.
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In particular, the multilinear relaxation offers a powerful
continuous extension to handle various matroids and non-
monotone set functions [23]. The application of this extension
for submodular set maximization is introduced in [24]; its
applicability has gained recent interest within the litera-
ture [23], [25], [26]. The relaxed submodular maximization
in general can be solved using a continuous greedy algorithm
along with a pipage rounding algorithm while achieving a
(1 — 1/e) performance guarantee. Several algorithms have
been developed for this continuous view point, this includes
parallelization algorithms that can extensively reduce the
computational effort of the maximization problem [26].
Accordingly, in this paper we apply the multilinear extension
to solve the optimal SNS problem. To the best the authors’
knowledge, the application of such an extension has not been
applied within the context of observability-based SNS in linear
and nonlinear dynamical systems.

With that in mind, the main contributions of this paper are
as follows. (i) We show that the observability Gramian which
is based on the variational form of a nonlinear dynamical
system is a modular set function under the parametrized
sensor selection formulation. (i¢) We show that SNS problem
that is based on observability metrics under the action of
the variational Gramian are submodular and modular. In
particular, we show that the trace is modular, and both the
rank and log det are monotone submodular. This is analogous
to the case for a linear observability Gramian as demonstrated
in [3]. (%) We introduce and demonstrate a multilinear
continuous relaxation to the SNS maximization problem (1).
A continuous greedy algorithm along with a pipage rounding
algorithm are used to solve the optimal problem under the
cardinality constraint while achieving a worst case bound.
The validity of the proposed method is demonstrated on a
nonlinear combustion reaction network.

Broader Impacts. The multilinear continuous extension
enables posing (1) under different constraints while solving
using efficient algorithms. There are many other types of
constraints besides the cardinality constraint. For example,
Knapsack constraints can be considered in the context of SNS,
that is, we can assign budget constraints to the cardinality set
maximization problem as maxg f(S) s.t. > .y, ¢(s) < B
where B is a non-negative budget. The applicability of
the multilinear extension for such problem given parameter
€ > 0 results in (1 — 1/e — ¢) performance bounds; see
[26]. Accordingly, such an extension enables guaranteed
performance under various matroid constraints that can arise
when considering SNS applications.

Notation. Let N, R"™, and R™"*™ denote the set of natural
numbers, real-valued row vectors with size of n, and n-
by-m real matrices respectively. The symbol ® denotes the
Kronecker product. The cardinality of a set A is denoted
by |N]|. The operators logdet(A) returns the logarithmic
determinant of matrix A, trace(A) returns the trace of matrix.
The operator {z;} ; € RN" constructs a column vector that
concatenates vectors x; € R™ for all ¢ € {1,2,...,N}.
Paper Organization. The paper is organized as follows: Sec-
tion I provides preliminaries on nonlinear observability.

Section III introduces submodular set maximization functions
and formulates the multilinear extension for the SNS problem.
Section IV provides evidence regarding the submodularity
of the observability measures. The numerical results are
presented in Section V, and Section VI concludes this paper.

II. PRELIMINARIES ON NONLINEAR OBSERVABILITY

In this section, we formulate the nonlinear discrete-time
model of a dynamical system and present its variational
model representation. Subsequently, we introduce the concept
of variational observability Gramian, which is shown to be
equivalent to the linear observability Gramian.

A. Nonlinear Dynamical System Setup

Consider the following continuous nonlinear dynamical
system with parametrized measurement equation evolving on
the smooth manifold M which represents the state-space
under the action of system dynamics.

&(t) = f((t)),
y(t) = Cx(t),

where the system state vector evolving in M is denoted as
z(t) := x € R", and y(t) := y € R™ is the global output
measurement vector. The nonlinear mapping function f(-) :
M — R™ and nonlinear mapping measurement function
h(-) : M — R™ are smooth and at least twice continuously
differentiable. The parametrized measurement matrix C €
R™ %"= represents the mapping of output states under a
configuration of the sensors.

Discrete-time dynamics are more general than that in
continuous-time,such perspective is more natural when
considering measurement from sensors. As such, the
continuous-time nonlinear dynamics network system (2) can
be equivalently represented in discrete-time and compactly
written in the following form

(2a)
(2b)

(3a)
(3b)

Tp+1 = Tk + f(fl?k+1v Tk),

Yk :émlw

where the discretization period is denoted as 7" > 0 and
k € N is the discrete-time index, such that x;, = z(kT).
The nonlinear mapping function f(-) € R" depicts the
discretized mapping function f(-) for a given discretization
model. The nonlinear mapping function f(-) depends on the
choice of discretization method.

In this paper, we refer to the use of the implicit Runge-Kutta
(IRK) method [27]; it offers a wide-range of application to
systems with various degrees of stiffness. There are a plethora
of discretization methods that can be utilized to discretize
nonlinear systems and the choice of discretization method
relies on the stiff dynamics and the desired accuracy of the
discretization [28]. With that in mind, the nonlinear mapping
function f(-) is defined for the IRK method can be written as

FO) =L (F(Crr+1) +3F(Carr)) s 4)

where auxiliary state vectors (i x4+1,C2k+1 € R are
auxiliary for computing xp,1 provided that xj; is given.
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For brevity, we do not include auxiliary vectors {; x+1 and
G2, 115 refer to [28, Section 2] for the full description of the
IRK method. The following assumption states that  belongs
to a compact set X’ along the trajectory of the system.

Assumption 1. For a compact set X that contains the set
of all feasible solutions of system (2), the system trajectory
remains in X C M for any k > 0 and given any initial state
Ty € Xo.

B. Nonlinear Systems Observability: A Variational Approach

There are a plethora of different approaches for sensor
selection, and this is due to the fact that the quantification of
nonlinear observability lacks universal construction methods.
A typical approach to evaluate a dynamical system’s observ-
ability is to compute the empirical observability Gramian of
the system [29]-[31]. However, there is no clear methodology
for scaling the internal states and outputs measurements SO
that the Gramian’s eigenvalues captures the local variations
in states [32]. Lie derivative on the other hand are typically
not considered for assessing nonlinear observability under the
context of sensor selection for two reasons. (7) Lie derivatives
are computationally expensive and require the calculation
of higher order derivatives [33], and (ii) the resulting
observability measure is a rank condition that is qualitative in
nature [21], [32] and thus not suitable for sensor selection. A
moving horizon approach for discretized nonlinear dynamics
is introduced in [14] and further developed in our previous
work [28]; it offers a more tractable and robust solution
than empirical Gramian. However, the proposed approach
has no clear relation to the linear observability Gramian
and the notions of Lyapunov stability. Recently, observability
Gramians based on a variational system representation of the
nonlinear dynamics have been developed; see [22], [34]. As
claimed by [22], the proposed Gramians extends the linear
Gramian to nonlinear systems.

Consider two nearby trajectories xj and xj + dxy, resulting
from initial states @y and @y + dxg. Note that dxy € R" is
an infinitesimal perturbation € > 0 to initial conditions x( and
its exponential decay or growth for k € {0,1, --- ,N—1}
is denoted as dx;, € R™. Note that M is the discrete-time
interval from the simulation, thatis, N := ¢/T. To that end, the
variational system of the discrete-time nonlinear system (3)
can be written as

(SCEk = @g(m())dwo,
Sy = Wh(xo)dxo,

(52)

(5b)
where ®f(xg) = (In + %ﬁ:k*ﬂ) dai ¢ Ruexns de-
fines the variational mapping function, such that ®9(xo) = I,,
and matrix I,,, € R™*" is an identity matrix. The
variational parametrized measurement mapping function is
denoted as Wk(xzo) := C®L(xo) € R™*"=. Readers are
referred to [28], [34] for the derivation of the variational
system (5). For ease of notation, moving forward we remove
the dependency of ®f(xo) = ®f and ¥k(xg) = ¥§ on x.

Remark 1. Notice that ®F represents the derivative of (3)
with respect to xq for k € {0,1, --- N — 1}. This being

said, the transition matrix <I>’§ requires the knowledge of xj
for all k. As such, we can apply the chain rule to evaluate
®F for any discrete-time index k as

i=k

=) D;7) - BiR) = [[ 2L, (6)
1

Assumption 2.  Consider the variational system (5), the
State-transition matrix function <I>’§ is bounded, i.e.,

sup { H‘I>§H:k:€N}<oo.

The above assumption on the state-transition matrix is
similar to having a bound on the Jacobian of the nonlinear
dynamical system, that is, ||J(f(:))|| = |0 (-)/0zk|| < .

Given the variational dynamics (5), the observability
Gramian for the variational discrete-time system (5a) with
parametrized measurement model around initial state oy € X
satisfying assumptions land 2 can be expressed as

V,(S) =T W € R™*", (7)

where ¥ € RN"™X7"s denotes the observability matrix
that concatenates the variational observations dy; over
measurement horizon the observation horizon N for k €
{0, 1, --- , N — 1} and can be written as
LA 20 798 7S 7 o (8)

where W§ is the variational measurement mapping function
defined in (5b).

Considering the SNS problem in (1), the parametrized
variational observability Gramian around an initial state xg
for S C V can be defined as

N-1
Vo(S) =Y (Z (o) é}émé) :

jeS \i=0

€))

where ¢} represents the column vectors of matrix ¥X. Note
that the notation j € S corresponds to every activated sensor
in & C V, such that ¢; = 1 for a selected sensing node, and
¢; = 0 otherwise.

Theorem 1.  The variational observability Gramian (7)
reduces to the linear observability Gramian, denoted by W,,,
for a linear time-invariant system and is equivalent to the
Empirical Gramian when considering a general nonlinear
system.

Proof.  Refer to [22, Corollary 1 and Theorem 2] for the
proof. O

The above equivalence relation indicates that the nonlinear
system (2) is observable if and only if the \11’5' is the variational
measurement mapping function is full rank.

III. SUBMODULAR SET MAXIMIZATION

In this section, we provide a brief review of submodularity,
submodular set optimization, and present the multilinear
continuous extension.
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A. Submodularity and the Greedy Approach

Consider a finite set V and the set of all its subsets given
by 2V. Let a set function f(S) : 2¥ — R for any S C V, then
the modularity and submodularity of f is defined as follows

Definition 1. (/35]) The set function f is said to be modular
if for any S C V and weight function w : V — R it holds
true that

F(S) = w(®) + ) w(s), (10a)

sES

and f is said to be submodular if for any A,B C V and
A C B, it holds true that for all s ¢ B
FAULs)) = F(A) 2 F(BULs)) — f(B).  (10b)
The above definition (10b) shows the diminishing returns
property of a submodular set function. For additional
definitions refer to [36, Theorem 2.2]. The set function f
is said to be supermodular if the reverse inequality in (10b)
holds true for all s ¢ B. Based on (10a), a function is said to
modular if it is both super and submodular. We also say that
a set function is normalized if f(0) = 0.

Definition 2. (/35]) A set function f : 2V — R is called
monotone increasing if, for A, B C V, A C B implies
f(B) > f(A) and called monotone decreasing if A C B
implies f(A) > f(B).

A submodular function is the discrete analog to concave
functions. When a set function f is submodular, monotone
increasing and normalized, it can be referred to as a
polymatroid function [36]. Such functions are indicative of
information, meaning that, the functions tend to give a high
value from a set A C V that has a large amount of information
and give a lower value to a set C C V of equal cardinality to
A but has a smaller amount of information.

That being said, for a chosen objective function f(S)
that is a polymatroid function, in the context of the SNS
selection problem (1), the information gain is indicative
of the measurement information from a subset of sensors
j € S regarding the full state-space of the system. For
such a submodular set function, a greedy algorithm that is
summarized in Algorithm 1, offers a theoretical worst-case
bound according to the following theorem.

Theorem 2. ([37]) Let f : 2V — R be a polymatroid
Sfunction, f* be the optimal solution of SNS problem (1)
and f§ be the solution computed using the greedy algorithm.
Then, the following performance bound holds true

F5= 7@ = (1= 1) (= 7). with 70) 0.

We note that the above bound is theoretical, and generally a
greedy approach performs better in practice. It has been shown
that a 99% accuracy can be achieved for actuator placement;
see [3] and the many references that cite this work.

Algorithm 1: Greedy Algorithm

1 input: r, V

2 initialize: S < 0, k < 1

3 while : < r do

4 compute: G; = f(SU{a}) — f(S),YVae V\S
5 if G; < 0 then

6 | return: S

7 else

8 L assign: § + S U {arg MaX, e\ s gi}

9 | update:i<i+1

10 output: S

B. Submodular Maximization via a Multilinear Extension

As an alternative to the greedy algorithm approach
described in the aforementioned section, it is sometimes
useful to solve the submodular set maximization problem
continuously. This can be done by applying continuous
extensions to a submodular function, that is, extending f(S)
to a function F': [0,1]" — R that agrees with f(S) on the
hypercube vertices [38]. Extensions to submodular functions
include: (7) the Lovész extension [39] which is equivalent
to the exact convex closure of f(S) and the multilinear
extension [24] is equivalent to an approximate concave
closure.

For the purpose of submodular maximization, the mul-
tilinear extension is shown to be useful [24], whereas the
Lovdsz extension is applicable for submodular minimization
problems. The application of the multilinear relaxation in
the context of observability-based SNS problem, whether for
linear or nonlinear systems, has to the best of our knowledge,
not been applied. For a submodular function f : 2¥ — R, its
multilinear extension F : [0,1]™ — R, where n = |V|, in the
continuous space can be written as

F)= ) [T TT (1~ ),

Scv S€ES ¢S

€[0,1]™. (11)

We define Sy for any x € [0,1]™ such that each element
s € Visincluded in S with probability [x]s and not included
with probability 1 — [x]s. The multilinear extension F'(x)
thus extends the function evaluation over the space between
the vertices of the boolean hypercube {0, 1}" to that of the
vertices of hypercube [0, 1]™.

The computation of the multilinear extensions is not
straightforward. That being said, the extension F'(x) for any
submodular function f(S) can be approximated by randomly
sampling sets S to the probabilities in [x]; [40]. With that in
mind, F'(x) can be written as

F(x) =E[f (8],

where E[-] indicates the expected value. Taking the derivatives
of F(x) we obtain the following
OF(x)
I[x]s

(12)

=E[f (SxU{s}) = f(S\sD],  (13)
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Algorithm 2: Continuous Greedy Algorithm

1 input: multilinear extension F', ground set V), r
2 initialize: x <— 0, 7 < 1
3 while : < r do
4 sample: K times of S from V according to x
5 for s € V do
6 L estimate:
ws ~ E[f (Sx U {s}) = f(Sx\{s})]
7 solve for: S* = argmax ) | s ws

Sez
8 update: x < Xg»
9 t—1+1

Use pipage rounding to convert the fractional solution
x* to a discrete solution.

-
=)

and the second order derivative for and a,b € V with a # b
can be written as

PP _ S .
op,op, M (SxU{a b)) = f(Sc U {Ph{a})
= [ (SxU{a}\{b}) + f (Sx\{a, b}).

We note that, the partial derivative %F[;S]x ) > 0 if and only

8%F (x . . .
ﬁé[x)]b < 0 if and only if f is

(14)

if f is monotone and
submodular.

Considering the above, the multilinear relaxation of
the submodular set maximization problem (1) under the
application of the multilinear extension can be expressed
as

F§ := maximize F(x). (15)

SCV, S€Z.

Typically, F'(x) is concave in certain directions and convex
in others, meaning that (1) is not easily solvable even under
a simple cardinality constraint. In [23] a continuous greedy
algorithm was developed to solve (15). The developed method
solves for a fractional value of F'§ and then utilizes a rounding
algorithm to convert the fractional solution into a discrete
solution.

That being said, consider the following continuous greedy
algorithm that is detailed in Algorithm 2. The algorithm
defines a path x : [0,1] — Sk, where x(0) = 0 and x(1)
is the output of the algorithm. In the continuous algorithm,
x is defined by a differential equation, and the gradient of
x is chosen greedily in V to maximize F', meaning that, we
are maximizing $;x(1) = argmaxxesx%(x(l)). This is
equivalent to solving for

argmax » ws ~ E[f (Sx U{s}) = F (Sx\{s})],
Ser =%
as a consequence of the equality defined in (13).

The result obtained is fractional and thus a rounding
algorithm is employed to convert this fractional solution.
Randomly rounding the solution does not preserve the
feasibility of the constraints, in particular, equality constraints.
A pipage rounding algorithm has been shown to efficiently
round the fractional value to a discrete value without any

loss in the objective value. For brevity, we do not include
the pipage rounding algorithm; refer to [23, Section 3.2] for
a formal description of the pipage rounding algorithm. The
algorithm works by taking the fractional solution x* from the
continuous greedy algorithm and then gradually eliminating all
the fractional variables. This is done by minimizing along the
convex direction of the multilinear continuous set function.
The result iterates until it agrees with the vertices of the
hypercube {0,1}". The following Lemma 1 shows that a
discrete solution is solved in polynomial time.

Lemma 1. ([23]) Given x*, the pipage rounding algorithm
outputs in polynomial time a discrete solution S € Z. of
value E[f(S)] > F (x*).

The following theorem ensures a performance bound for
solving (15) via the continuous greedy algorithm.

Theorem 3. ([23]) Let f : 2¥ — R be a polymatroid
function and F : [0,1]" — R be its multilinear extension.
Let f* be the optimal solution of SNS problem (1) and F§ be
the solution computed using the continuous greedy algorithm.
Then, the following performance bound holds true

Fs= 1@ = (1= 1) (= £0), with 10) 0.

For both the presented submodular maximization frame-
works the 1/e guarantee holds true regardless of the size of
the initial set ) and which polymatroid function f is being
optimized. Given the aforementioned performance guarantees
of the presented algorithms for submodular set maximization,
the next section establishes the submodularity of certain
observability measures. The observability measures are based
on the parametrized variational observability Gramian (9) for
nonlinear systems.

IV. VARIATIONAL OBSERVABILITY GRAMIAN &
SUBMODULARITY

In this section, we show that certain observability metrics
that are based on the variational Gramian (7) for nonlinear
systems are indeed modular and submodular. This is analogous
to the linear case, where certain observability metrics (i.e.,
trace, rank, and logdet) based on the linear Gramian are
shown to be modular and submodular. Such submodularity
properties enable the use of a greedy algorithm along with its
continuous extensions to solve the SNS problem with provable
optimal error bound guarantees.

For SNS applications, network measures based on system
observability are often considered for quantifying information
gain from the allocation of sensor nodes within a dynamical
network. Observability-based network centrality measures
have key properties related to submodularity. Observability
measures based on the linear observability Gramian have
been shown to be submodular or modular, in particular,
log det and rank are submodular, while the trace is modular;
see [3]. Nevertheless, other observability measures such as
log det (W, 1) and Ay are non submodular. Such important
metrics have been shown to have provable guarantees when
solved using greedy algorithms; refer to [5]. In this paper, we
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consider only the metrics that have shown to have submodular
properties in the linear case. With that in mind, we show that
such properties hold also true for nonlinear dynamical systems
by considering such centrality measures under the action of
the variational observability Gramian (9).

Accordingly, the following theorem establishes that the
variational Gramian is linear matrix function with respect
to the selected sensing node 5 € S. Such, property shows
that the observability Gramian can be computed form the
sum of the individual contributions from each sensing node.
Theorem 4 is essential for the proofs related to the modularity
or submodularity of the observability-based measures.

Theorem 4. The parametrized variational observability
Gramian V,(S) for S CV is modular.

Proof. Forany S C V, observe that

N—
vi(§) =Y @ Tefe @)

JjE€S

=> V,(j)

JjE€S
where V,,(S) is a linear matrix function of with respect to ¢,
satisfying modularity as V,,(S) = Vo (0) + 3,5 Vo(4). O

Consequently, the following proposition shows that the
trace of the variational Gramian (9) is modular set function.

Proposition 1. Set function f :2Y —R characterized by
f(8) = trace (Vo(S)) ,
for S CV is modular.

Proof. Forany S C V, observe that

(16)

trace (V,(S)) = trace (Z c cjcp()) ,
JjES 0
1

= Z trace (V,(j))
jes

where the last equality is a due to the modularity of

the parametrized variational Gramian. This shows that

trace(V,(S)) is a linear matrix function and therefore is

a modular set function. O

The following result shows that the rank of the variational
Gramian (9) is submodular and monotone increasing.

Proposition 2. Set function f :2¥ =R characterized by
f(8) = rank (V,(S5)) , (17)
for § CV is submodular and monotone increasing.

Proof.  For any S C V, first we will show that f(S) in
(17) is submodular. First, define the derived set function
fo:2Y\Ms} S Rforaa eV as

[s(8) = F(Sufsh) = F({s}),

= rank (Vo (S U {s})) —rank (Vo ({s})) ,

= rank (V,(S) + V,({s})) —rank (V,({s})),
Vo({s}))

= rank (
— dim (image (V,(S)) Nimage (V,({s}))) ,

This indicates that f,(-) is monotone decreasing since
rank (V, ({a})) is constant while the dimension of
image (V,(8)) is increasing with S. This implies that f(-) in
(17) is submodular [3], [39]. Second, it is straightforward to
show that f(-) is also monotone increasing since for A C B

provided that A, B C V implies f(B) > f(A). O

The following result shows that the log det of the variational
Gramian (9) is submodular and monotone increasing.

Proposition 3. Set function f : 2¥ —R characterized by
F(8) = log det (V(S)) (18)
for § CV is submodular and monotone increasing.

Proof. Let f,
defined as

fs(8)

: 2V—1{s} 5 R denote a derived set function

= log detV, (S U {s}) — log detV,(S),
= logdet (V,(S) + Vo({s})) — log detV,(S).

We first show f5(S) that is monotone decreasing for any
s € V. That being said, let A C B C V — {s}, and let
Vo(€) = Vo(A) + é(V4(B) — V,(A)) for € € [0,1]. Then
for

f:(Vo(8))
we obtain the following
d - -
&fs(‘/o(c))
= trace| (V(8) + V2(S)) " = V(@) )
(Vo(B) = Vo(A) | 0.

— log det (V,(€) + V,(S)) — log det (V,())

-1
Such that ((Vo(é) FVS) T V@) < 0, and
(VL(B) — V,(A)) = 0, then the above inequality holds. Thus,
we have f, is monotone decreasing, and f(S) is submodular.
Then, by the additive property of V,(S) (see [3]) we have
f(8) being monotone increasing. The proof is analogous to [3,
Theorem 6] and [7, Lemma 3] O

The validity of the performance guarantees for both the
greedy and continuous greedy algorithms are contingent on
the modularity and monotone submodularity properties shown
in the aforementioned propositions and (16)—(18).

Remark 2. Notice that, for the logdet to be submodu-
lar and monotone increasing, the variational observability
Gramian can have zero eigenvalues.

In the study [7], the considered observability measures are
based on the Lie derivative matrix O, that being said, the
above submodular properties hold true if and only if Oy is full
rank. In this case when considering the variational Gramian,
there is no such restriction. The submodularity of the log det
still holds in rank deficient situations. Such situations can
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Figure 1. State Trajectories (53 states) of the combustion reaction network
after disturbance.

arise when not enough sensing nodes are chosen and thereby
the system is not yet fully observable. The ensuing section
demonstrates the validity of the SNS problem under the action
of the studied variational observability measures for nonlinear
dynamical systems.

V. NUMERICAL CASE STUDY

In this paper, we consider a nonlinear system that represents
a natural gas combustion reaction network of the form

x(t) = Oy (x(t))

where the polynomial functions of concentrations 1),
j = {1, 2, ... , N,} are concatenated in vector
Y (x) = [Y1 (x),¢2 (x),...,0,, (x)]T. The concentrations
of n, chemical species are denoted by vector x =
[1, x2, --- , Zn,|. The stoichiometric coefficients ¢;; and
wj; are defined by constant matrix © = [wj; —q;;] € R"«*Nr,
We denote the number of chemical reactions by N, and the
list of chemical reactions can be expressed as

19)

> qiRi =Y wiRi, jef{l,2, -, N,
i=1 i=1

where R;, i € {1, 2,
species.

The considered network is a natural gas combustion reaction
network GRI30 which has N, = 325 reactions and n, = 53
chemical species. For specifics regarding system parameters
and definitions, we refer the readers to [14, Section V].
The discretization constant is 7" = 1 - 10712 and observation
window of N = 1000 is chosen. The choice of discretization
constant is a result of analyzing the system’s initial condition
response. The data required to calculate the reaction rates
are taken from the reaction mechanisms database provided
with Cantera software files. The actual initial state g =
[0,0,0,2,---,1,--+,7.52,---,0]. Figure 1 depicts the state
trajectory of the system discrete-time dynamics after applying
a system disturbance. Meaning that, the system is simulated
based on g = xg + xg * ag where ag € R is a random
number between (0, 0.2).

We assess the applicability and validity of the extended
SNS problem (1) by comparing the state estimation error
based on measurements from the optimally selected nodes
to that obtained from the greedy algorithm. The optimality
of the selected sensor nodes is directly related to the state
estimation error. This is due to the underlying relations

, Mg} represents the chemical

[ 1Greedy
1 00 [ ]Multilinear 1 00

| | Hlﬂ Hl
26 31 37

Sensing Nodes r

State Estimation Error

Figure 2. State estimation error based on the optimal selected node obtained
from greedy algorithm (left) and continuous greedy algorithm (right).

between observability and the ability to infer system states
from limited measurement data.

Let S}, define the optimal sensor node location resulting
from solving (1) using Algorithm 2 and let &* define the
optimal sensor node location resulting from solving (1) using
Algorithm 1. That being said, let ®,ctyq; denote the state
estimate resulting from solving the following nonlinear state
estimation optimization problem expressed as

minimize  g(&o)' g(&o) (20)
XToEXp
subject to 5:6 <z < xf, 21)

where &), and £¢ are respectively the lower and upper bounds
of &o. The vector function g(-) : R" — RN" that is
defined as g(#9) := § — CZ represents the open-lifted
observer. The measurement vector § := {g; 1;]:]1 € RNny
and estimated state-vector & := {&;}};' € RN"=_ The above
least squares optimization problem is based on an open
observer framework introduced in [14]. It is solved using
the trust-region-reflective algorithm on MATLAB. The state
estimation error can we written as ||Zacwal — |5 / || Tactuat | o-
This validates the effectiveness of the solution obtained from
the relaxed problem, thereby achieving the performance bound
as indicated in Theorem 3.

The state estimation errors resulting from solving the SNS
problems based on the aforementioned algorithms is depicted
in Figure 2. The maximization problems are solved for sensor
nodes cardinality constraint S = r with r = [21, 26, 31, 37].
The SNS problem is solved for both methods by considering
20 generated simulations based on xy chosen randomly by
applying perturbation cy. The results show that the optimal
solution S}, yields similar state estimation values when
compared with the estimation values of optimal solution
S*. Consequently, the application of multilinear extension
for observability-based SNS can be further investigated under
different matroid constraints; see Section I.

VI. CONCLUSION

In this paper, we showed that the SNS problem for
nonlinear systems, modeled by considering the variational
dynamics, can be solved as a submodular set optimization
problem. In particular, we showed that metrics based on
the parametrized variational Gramian (i.e., trace, rank, and
log det), that extends the linear Gramian to nonlinear systems,
are modular and submodular. Furthermore, we introduced a
continuous extension to the submodular SNS problem. This
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multilinear extension presents a performance guarantee when
f(S) is monotone submodular. The resulting optimization
problem is then solved using a continuous greedy algorithm
and is compared to the well-known greedy algorithm that is
typically used to solve submodular SNS problems.

[1]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

K. Manohar, J. N. Kutz, and S. L. Brunton, “Optimal Sensor and Actu-
ator Selection Using Balanced Model Reduction,” IEEE Transactions
on Automatic Control, vol. 67, no. 4, pp. 2108-2115, 2022.

S. Joshi and S. Boyd, “Sensor selection via convex optimization,” [EEE
Transactions on Signal Processing, vol. 57, no. 2, pp. 451-462, 2009.
T. H. Summers, F. L. Cortesi, and J. Lygeros, “On Submodularity and
Controllability in Complex Dynamical Networks,” IEEE Transactions
on Control of Network Systems, vol. 3, no. 1, pp. 91-101, mar 2016.
S. Liu, S. P. Chepuri, M. Fardad, E. Masazade, G. Leus, and P. K.
Varshney, “Sensor selection for estimation with correlated measure-
ment noise,” IEEE Transactions on Signal Processing, vol. 64, no. 13,
pp- 3509-3522, 2016.

T. Summers and M. Kamgarpour, “Performance guarantees for greedy
maximization of non-submodular controllability metrics,” 2019 18th
European Control Conference, ECC 2019, pp. 2796-2801, 2019.

V. Tzoumas, A. Jadbabaie, and G. J. Pappas, “Sensor placement
for optimal Kalman filtering: Fundamental limits, submodularity, and
algorithms,” Proceedings of the American Control Conference, vol.
2016-July, pp. 191-196, 2016.

L. Zhou and P. Tokekar, “Sensor Assignment Algorithms to Improve
Observability while Tracking Targets,” IEEE Transactions on Robotics,
vol. 35, no. 5, pp. 1206-1219, 2019.

A. Kohara, K. Okano, K. Hirata, and Y. Nakamura, “Sensor placement
minimizing the state estimation mean square error: Performance guar-
antees of greedy solutions,” Proceedings of the IEEE Conference on
Decision and Control, vol. 2020-Decem, pp. 1706-1711, 2020.

A. Haber, “Joint Sensor Node Selection and State Estimation for
Nonlinear Networks and Systems,” [EEE Transactions on Network
Science and Engineering, vol. 8, no. 2, pp. 1722-1732, 2021.

A. P. Vinod, A. J. Thorpe, G. S. Member, P. A. Olaniyi, T. H. Summers,
M. M. K. Oishi, and S. Member, “Sensor Selection for Dynamics-
Driven User-Interface Design,” IEEE Transactions on Control Systems
Technology, vol. 30, no. 1, pp. 71-84, 2022.

S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE
Transactions on Signal Processing, vol. 57, no. 2, pp. 451-462, 2009.
V. Tzoumas, A. Jadbabaie, and G. J. Pappas, “Near-optimal sensor
scheduling for batch state estimation: Complexity, algorithms, and
limits,” 2016 IEEE 55th Conference on Decision and Control, CDC
2016, no. Cdc, pp. 2695-2702, 2016.

N. Mehr and R. Horowitz, “A Submodular Approach for Optimal
Sensor Placement in Traffic Networks,” Proceedings of the American
Control Conference, vol. 2018-June, pp. 6353-6358, 2018.

A. Haber, F. Molnar, and A. E. Motter, “State Observation and Sensor

Selection for Nonlinear Networks,” IEEE Transactions on Control of

Network Systems, vol. 5, no. 2, pp. 694-708, 2018.

T. Summers and I. Shames, “Convex relaxations and Gramian rank
constraints for sensor and actuator selection in networks,” [EEE
International Symposium on Intelligent Control - Proceedings, vol.
2016-Septe, pp. 5-10, 2016.

J. A. Taylor, N. Luangsomboon, and D. Fooladivanda, “Allocating
Sensors and Actuators via Optimal Estimation and Control,” IEEE
Transactions on Control Systems Technology, vol. 25, no. 3, pp. 1060—
1067, 2017.

K. Yamada, Y. Saito, K. Nankai, T. Nonomura, K. Asai, and
D. Tsubakino, “Fast greedy optimization of sensor selection in
measurement with correlated noise,” Mechanical Systems and
Signal Processing, vol. 158, p. 107619, 2021. [Online]. Available:
https://doi.org/10.1016/j.ymssp.2021.107619

A. Hashemi, M. Ghasemi, H. Vikalo, and U. Topcu, “Randomized
Greedy Sensor Selection: Leveraging Weak Submodularity,” IEEE
Transactions on Automatic Control, vol. 66, no. 1, pp. 199-212, 2021.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27

(28]

[29]

[30]

(31]

[32]

(33]

[34]

(35]

(36]

[37]

(38]

[39]

[40]

B. Guo, O. Karaca, T. Summers, and M. Kamgarpour, “Actuator
Placement under Structural Controllability Using Forward and Reverse
Greedy Algorithms,” IEEE Transactions on Automatic Control, vol. 66,

no. 12, pp. 5845-5860, 2021.
S. Lall, J. E. Marsden, and S. Glavaski, “Empirical model reduction

of controlled nonlinear systems,” IFAC Proceedings Volumes, vol. 32,
no. 2, pp. 2598-2603, 1999.

A. J. Krener and A. Isidori, “Linearization by output injection and
nonlinear observers,” Systems and Control Letters, vol. 3, no. 1, pp.
47-52, 1983.

M. H. Kazma and A. F. Taha, “Observability for Nonlinear
Systems: Connecting Variational Dynamics, Lyapunov Exponents,
and Empirical Gramians,” arXiv, 2024. [Online]. Available: http:
/larxiv.org/abs/2402.14711

G. Calinescu, C. Chekuri, M. Pdl, and J. Vondrdk, “Maximizing a
monotone submodular function subject to a matroid constraint,” SIAM
Journal on Computing, vol. 40, no. 6, pp. 1740-1766, 2011.

J. Vondrdk, “Optimal approximation for the Submodular Welfare
Problem in the value oracle model,” Proceedings of the Annual ACM
Symposium on Theory of Computing, pp. 67-74, 2008.

C. Chekuri, J. Vondrdk, and R. Zenklusen, “Submodular function
maximization via the multilinear relaxation and contention resolution
schemes,” STAM Journal on Computing, vol. 43, no. 6, pp. 1831-1879,
2014.

C. Chekuri and K. Quanrud, “Submodular function maximization in
parallel via the multilinear relaxation,” Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 303-322, 2019.
A. Iserles, A First Course in the numerical analysis of differential
equations, 2nd ed. Cambridge University Press, 2009.

M. H. Kazma, S. A. Nugroho, A. Haber, and A. F. Taha, “State-Robust
Observability Measures for Sensor Selection in Nonlinear Dynamic
Systems,” 2023 62nd IEEE Conference on Decision and Control
(CDC), no. Cdc, pp. 8418-8426, 2023.

J. Qi, K. Sun, and W. Kang, “Optimal PMU Placement for Power
System Dynamic State Estimation by Using Empirical Observability
Gramian,” IEEE Transactions on Power Systems, vol. 30, no. 4, pp.
2041-2054, jul 2015.

N. L. Brace, N. B. Andrews, J. Upsal, and K. A. Morgansen, “Sensor
Placement on a Cantilever Beam Using Observability Gramians,”
Proceedings of the IEEE Conference on Decision and Control, vol.
2022-Decem, no. Cdc, pp. 388-395, 2022.

L. Kunwoo, Y. Umezu, K. Konno, and K. Kashima, “Observability
Gramian for Bayesian Inference in Nonlinear Systems with Its Indus-
trial Application,” IEEE Control Systems Letters, vol. 7, pp. 871-876,
2023.

A.J. Krener and K. Ide, “Measures of unobservability,” Proceedings of
the IEEE Conference on Decision and Control, pp. 6401-6406, 2009.
A.J. Whalen, S. N. Brennan, T. D. Sauer, and S. J. Schiff, “Observabil-
ity and controllability of nonlinear networks: The role of symmetry,”
Physical Review X, vol. 5, no. 1, pp. 1-40, 2015.

Y. Kawano and J. M. Scherpen, “Empirical differential Gramians for
nonlinear model reduction,” Automatica, vol. 127, p. 109534, 2021.
F. Bach, “Convex Analysis and Optimization with Submodular
Functions: a Tutorial,” 2010. [Online]. Available: http://arxiv.org/abs/
1010.4207

J. Bilmes, “Submodularity In Machine Learning and Artificial Intelli-
gence,” 2022.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions-1,” Mathe-
matical Programming, vol. 14, no. 1, pp. 265-294, 1978.

W. Bai, W. S. Noble, and J. A. Bilmes, “Submodular maximization via
gradient ascent: The case of deep submodular functions,” Advances
in Neural Information Processing Systems, vol. 2018-Decem, no.
NeurIPS, pp. 7978-7988, 2018.

L. Lovasz, Submodular functions and convexity.
Springer Berlin Heidelberg, 1983, pp. 235-257.
A. Gupta and A. Roth, “Constrained Maximization of Non-Monotone
Submodular Functions,” pp. 1-10, 2009.

Berlin, Heidelberg:

Manuscript 1927 submitted to 2024 63rd IEEE Conference on
Decision and Control (CDC). Received March 22, 2024.



