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AbstractÐOptimal sensing nodes selection in dynamic sys-
tems is a combinatorial optimization problem that has been
thoroughly studied in the recent literature. This problem can
be formulated within the context of set optimization. For
high-dimensional nonlinear systems, the problem is extremely
difficult to solve. It scales poorly too. Current literature
poses combinatorial submodular set optimization problems
via maximizing observability performance metrics subject to
matroid constraints. Such an approach is typically solved using
greedy algorithms that require lower computational effort yet
often yield sub-optimal solutions. In this paper, we address
the sensing node selection problem for nonlinear dynamical
networks using a variational form of the system dynamics,
that basically perturb the system physics. As a result, we show
that the observability performance metrics under such system
representation are indeed submodular. The optimal problem
is then solved using the multilinear continuous extension. This
extension offers a computationally scalable and approximate
continuous relaxation with a performance guarantee. The ef-
fectiveness of the extended submodular program is studied and
compared to greedy algorithms. We demonstrate the proposed
set optimization formulation for sensing node selection on
nonlinear natural gas combustion networks.

Index TermsÐSensing node selection, nonlinear dynamical
networks, observability, submodularity, multilinear extension

I. INTRODUCTION AND PAPER CONTRIBUTIONS

FOR nonlinear dynamical systems, in particular high-

dimensional systems, it is often costly or impractical to

monitor the full state-space [1]. Thus a trade-off between

cost and performance warrants solving the sensing node

selection (SNS) problem posed as a constraint set optimization

problem. Optimal SNS in dynamic systems is considered a

combinatorial optimization problem that has been thoroughly

studied in the recent literature [2]±[10]. Such problems can

be formulated within the context of set optimization, where

the decision variables are discrete sets and not vectors or

matrices. There are two prominent approaches that quantify

the objective function of the SNS problem: (i) objectives that

are based on minimizing the state estimation error given a

subset of the measured states [4], [8], [11], [12], and (ii)
objectives that are based on metrics related to the system’s

observability Gramian [1], [3], [5], [13], [14].

A simple approach to solve the SNS problems in the

aforementioned brief literature is through brute force, that

is, testing all combinations of sensor nodes and selecting
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the subset that minimizes or maximizes the objective. This

approach is infeasible and thus there are various optimization

methods developed that can be used to solve the combinatorial

SNS problem. Such methods can be categorized accordingly:

convex relaxation heuristics [9], [15], mixed-integer semi-

definite programs [2], [16], and greedy algorithms [3], [6],

[17], [18].

One key property that is relevant to combinatorial

set optimization problems is that of submodularity; it is

a diminishing returns property which provides provable

performance guarantees that allow to solve the combinatorial

SNS problem via simple greedy algorithms [19]. This requires

posing the SNS problem as a submodular set optimization

problem of objective function f in the form

f∗ := maximize
S⊆V, S∈I

f(S), (1)

where the set V represent a set of available sensor nodes to

choose from and the set I represents matroid constraints. A

typical matroid constraint for SNS is the cardinality constraint

Ic = {S ⊆ V : |S| = r} for some r that represents the feasible

number of sensing nodes. Such an approach is typically

solved for f∗S using greedy algorithms that require lower

computational effort while achieving a (1−1/e) performance

guarantee. Given that (1− 1/e) ≈ 0.63, that is, f∗S is at least

0.63 times the optimal value f∗.

In this paper, we address solving the SNS problem for

nonlinear dynamical systems via quantifying submodular

observability-based metrics while posing it as a submodular

maximization problem (1). For linear systems, Gramian

based observability quantification allows for scalable SNS

by exploiting modular and submodular observability notions

as demonstrated in [3]. As compared to nonlinear systems,

observability-based SNS for nonlinear systems remains a topic

of ongoing research [14]. Typically, quantifying nonlinear

system observability can be approached by considering

an empirical Gramian approach [20] or a Lie derivative

approach [21]. Both methods can become infeasible for large

scale systems when considering solving the SNS problem.

A variational approach can be considered to handle system

nonlinearities. This system can be viewed as a linear-time

varying model along the system trajectory and thus an

observability Gramian can be computed more efficiently [22].

Furthermore, the application of the aforementioned greedy

algorithm has been studied well-studied and investigated

throughout the literature for the cardinality constrained set

problem (1). Recently, there has been gained interest towards

extending such algorithm to handle other matroid constraints.
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In particular, the multilinear relaxation offers a powerful

continuous extension to handle various matroids and non-

monotone set functions [23]. The application of this extension

for submodular set maximization is introduced in [24]; its

applicability has gained recent interest within the litera-

ture [23], [25], [26]. The relaxed submodular maximization

in general can be solved using a continuous greedy algorithm

along with a pipage rounding algorithm while achieving a

(1 − 1/e) performance guarantee. Several algorithms have

been developed for this continuous view point, this includes

parallelization algorithms that can extensively reduce the

computational effort of the maximization problem [26].

Accordingly, in this paper we apply the multilinear extension

to solve the optimal SNS problem. To the best the authors’

knowledge, the application of such an extension has not been

applied within the context of observability-based SNS in linear

and nonlinear dynamical systems.

With that in mind, the main contributions of this paper are

as follows. (i) We show that the observability Gramian which

is based on the variational form of a nonlinear dynamical

system is a modular set function under the parametrized

sensor selection formulation. (ii) We show that SNS problem

that is based on observability metrics under the action of

the variational Gramian are submodular and modular. In

particular, we show that the trace is modular, and both the

rank and log det are monotone submodular. This is analogous

to the case for a linear observability Gramian as demonstrated

in [3]. (iii) We introduce and demonstrate a multilinear

continuous relaxation to the SNS maximization problem (1).

A continuous greedy algorithm along with a pipage rounding

algorithm are used to solve the optimal problem under the

cardinality constraint while achieving a worst case bound.

The validity of the proposed method is demonstrated on a

nonlinear combustion reaction network.

Broader Impacts. The multilinear continuous extension

enables posing (1) under different constraints while solving

using efficient algorithms. There are many other types of

constraints besides the cardinality constraint. For example,

Knapsack constraints can be considered in the context of SNS,

that is, we can assign budget constraints to the cardinality set

maximization problem as maxS f(S) s.t.
∑

s∈V c(s) ≤ B
where B is a non-negative budget. The applicability of

the multilinear extension for such problem given parameter

ε > 0 results in (1 − 1/e − ϵ) performance bounds; see

[26]. Accordingly, such an extension enables guaranteed

performance under various matroid constraints that can arise

when considering SNS applications.

Notation. Let N, Rn, and R
n×m denote the set of natural

numbers, real-valued row vectors with size of n, and n-

by-m real matrices respectively. The symbol ⊗ denotes the

Kronecker product. The cardinality of a set N is denoted

by |N |. The operators log det(A) returns the logarithmic

determinant of matrixA, trace(A) returns the trace of matrix.

The operator {xi}
N
i=1 ∈ R

Nn constructs a column vector that

concatenates vectors xi ∈ R
n for all i ∈ {1, 2, . . . ,N}.

Paper Organization. The paper is organized as follows: Sec-

tion II provides preliminaries on nonlinear observability.

Section III introduces submodular set maximization functions

and formulates the multilinear extension for the SNS problem.

Section IV provides evidence regarding the submodularity

of the observability measures. The numerical results are

presented in Section V, and Section VI concludes this paper.

II. PRELIMINARIES ON NONLINEAR OBSERVABILITY

In this section, we formulate the nonlinear discrete-time

model of a dynamical system and present its variational

model representation. Subsequently, we introduce the concept

of variational observability Gramian, which is shown to be

equivalent to the linear observability Gramian.

A. Nonlinear Dynamical System Setup

Consider the following continuous nonlinear dynamical

system with parametrized measurement equation evolving on

the smooth manifold M which represents the state-space

under the action of system dynamics.

ẋ(t) = f(x(t)), (2a)

y(t) = C̃x(t), (2b)

where the system state vector evolving in M is denoted as

x(t) := x ∈ R
nx , and y(t) := y ∈ R

ny is the global output

measurement vector. The nonlinear mapping function f(·) :
M → R

nx and nonlinear mapping measurement function

h(·) :M→ R
ny are smooth and at least twice continuously

differentiable. The parametrized measurement matrix C̃ ∈
R

ny×nx represents the mapping of output states under a

configuration of the sensors.

Discrete-time dynamics are more general than that in

continuous-time,such perspective is more natural when

considering measurement from sensors. As such, the

continuous-time nonlinear dynamics network system (2) can

be equivalently represented in discrete-time and compactly

written in the following form

xk+1 = xk + f̃(xk+1,xk), (3a)

yk = C̃xk, (3b)

where the discretization period is denoted as T > 0 and

k ∈ N is the discrete-time index, such that xk = x(kT ).
The nonlinear mapping function f̃(·) ∈ R

nx depicts the

discretized mapping function f(·) for a given discretization

model. The nonlinear mapping function f̃(·) depends on the

choice of discretization method.

In this paper, we refer to the use of the implicit Runge-Kutta

(IRK) method [27]; it offers a wide-range of application to

systems with various degrees of stiffness. There are a plethora

of discretization methods that can be utilized to discretize

nonlinear systems and the choice of discretization method

relies on the stiff dynamics and the desired accuracy of the

discretization [28]. With that in mind, the nonlinear mapping

function f̃(·) is defined for the IRK method can be written as

f̃(·) := T
4 (f(ζ1,k+1) + 3f(ζ2,k+1)) , (4)

where auxiliary state vectors ζ1,k+1, ζ2,k+1 ∈ R
nx are

auxiliary for computing xk+1 provided that xk is given.
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For brevity, we do not include auxiliary vectors ζ1,k+1 and

ζ2,k+1; refer to [28, Section 2] for the full description of the

IRK method. The following assumption states that x belongs

to a compact set X along the trajectory of the system.

Assumption 1. For a compact set X that contains the set

of all feasible solutions of system (2), the system trajectory

remains in X ⊆M for any k ≥ 0 and given any initial state

x0 ∈ X0.

B. Nonlinear Systems Observability: A Variational Approach

There are a plethora of different approaches for sensor

selection, and this is due to the fact that the quantification of

nonlinear observability lacks universal construction methods.

A typical approach to evaluate a dynamical system’s observ-

ability is to compute the empirical observability Gramian of

the system [29]±[31]. However, there is no clear methodology

for scaling the internal states and outputs measurements so

that the Gramian’s eigenvalues captures the local variations

in states [32]. Lie derivative on the other hand are typically

not considered for assessing nonlinear observability under the

context of sensor selection for two reasons. (i) Lie derivatives

are computationally expensive and require the calculation

of higher order derivatives [33], and (ii) the resulting

observability measure is a rank condition that is qualitative in

nature [21], [32] and thus not suitable for sensor selection. A

moving horizon approach for discretized nonlinear dynamics

is introduced in [14] and further developed in our previous

work [28]; it offers a more tractable and robust solution

than empirical Gramian. However, the proposed approach

has no clear relation to the linear observability Gramian

and the notions of Lyapunov stability. Recently, observability

Gramians based on a variational system representation of the

nonlinear dynamics have been developed; see [22], [34]. As

claimed by [22], the proposed Gramians extends the linear

Gramian to nonlinear systems.

Consider two nearby trajectories xk and xk+δxk resulting

from initial states x0 and x0 + δx0. Note that δx0 ∈ R
nx is

an infinitesimal perturbation ε > 0 to initial conditions x0 and

its exponential decay or growth for k ∈ {0 , 1 , · · · ,N− 1}
is denoted as δxk ∈ R

nx . Note that M is the discrete-time

interval from the simulation, that is, N := t/T . To that end, the

variational system of the discrete-time nonlinear system (3)

can be written as

δxk = Φ
k
0(x0)δx0, (5a)

δyk = Ψ
k
0(x0)δx0, (5b)

where Φ
k
0(x0) :=

(

In + ∂f̃(xk,xk−1)
∂xk

)

∂xk

∂x0

∈ R
nx×nx de-

fines the variational mapping function, such that Φ0
0(x0) = In

and matrix Inx
∈ R

nx×nx is an identity matrix. The

variational parametrized measurement mapping function is

denoted as Ψ
k
0(x0) := C̃Φ

k
0(x0) ∈ R

ny×nx . Readers are

referred to [28], [34] for the derivation of the variational

system (5). For ease of notation, moving forward we remove

the dependency of Φk
0(x0) = Φ

k
0 and Ψ

k
0(x0) = Ψ

k
0 on x0.

Remark 1. Notice that Φk
0 represents the derivative of (3)

with respect to x0 for k ∈ {0 , 1 , · · · ,N − 1}. This being

said, the transition matrix Φ
k
0 requires the knowledge of xk

for all k. As such, we can apply the chain rule to evaluate

Φ
k
0 for any discrete-time index k as

Φ
k
0 = Φ

k
k−1Φ

k−1
k−2 · · · Φ

1
0Φ

0
0 =

i=k
∏

1

Φ
i
i−1. (6)

Assumption 2. Consider the variational system (5), the

state-transition matrix function Φ
k
0 is bounded, i.e.,

sup
{ ∥

∥Φ
k
0

∥

∥ : k ∈ N
}

<∞.

The above assumption on the state-transition matrix is

similar to having a bound on the Jacobian of the nonlinear

dynamical system, that is, ∥J(f̃(·))∥ = ∥∂f̃(·)/∂xk∥ <∞.

Given the variational dynamics (5), the observability

Gramian for the variational discrete-time system (5a) with

parametrized measurement model around initial state x0 ∈ X0

satisfying assumptions 1and 2 can be expressed as

Vo(S) := Ψ
⊤
Ψ ∈ R

nx×nx , (7)

where Ψ ∈ R
Nny×nx denotes the observability matrix

that concatenates the variational observations δyk over

measurement horizon the observation horizon N for k ∈
{0, 1, · · · , N− 1} and can be written as

Ψ :=
[

Ψ
0
0 ,Ψ

1
0 ,Ψ

2
0 , · · · ,Ψ

N−1
0

]⊤
, (8)

where Ψ
k
0 is the variational measurement mapping function

defined in (5b).

Considering the SNS problem in (1), the parametrized

variational observability Gramian around an initial state x0

for S ⊆ V can be defined as

Vo(S) =
∑

j∈S

(

N−1
∑

i=0

(

φi
0

)⊤
c̃⊤j c̃jφ

i
0

)

, (9)

where φi
0 represents the column vectors of matrix Ψ

k
0 . Note

that the notation j ∈ S corresponds to every activated sensor

in S ⊆ V , such that c̃j = 1 for a selected sensing node, and

c̃j = 0 otherwise.

Theorem 1. The variational observability Gramian (7)

reduces to the linear observability Gramian, denoted by Wo,

for a linear time-invariant system and is equivalent to the

Empirical Gramian when considering a general nonlinear

system.

Proof. Refer to [22, Corollary 1 and Theorem 2] for the

proof.

The above equivalence relation indicates that the nonlinear

system (2) is observable if and only if the Ψk
0 is the variational

measurement mapping function is full rank.

III. SUBMODULAR SET MAXIMIZATION

In this section, we provide a brief review of submodularity,

submodular set optimization, and present the multilinear

continuous extension.
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A. Submodularity and the Greedy Approach

Consider a finite set V and the set of all its subsets given

by 2V . Let a set function f(S) : 2V → R for any S ⊆ V , then

the modularity and submodularity of f is defined as follows

Definition 1. ([35]) The set function f is said to be modular

if for any S ⊆ V and weight function w : V → R it holds

true that

f(S) = w(∅) +
∑

s∈S

w(s), (10a)

and f is said to be submodular if for any A,B ⊆ V and

A ⊆ B, it holds true that for all s /∈ B

f(A ∪ {s})− f(A) ≥ f(B ∪ {s})− f(B). (10b)

The above definition (10b) shows the diminishing returns

property of a submodular set function. For additional

definitions refer to [36, Theorem 2.2]. The set function f
is said to be supermodular if the reverse inequality in (10b)

holds true for all s /∈ B. Based on (10a), a function is said to

modular if it is both super and submodular. We also say that

a set function is normalized if f(∅) = 0.

Definition 2. ([35]) A set function f : 2V → R is called

monotone increasing if, for A,B ⊆ V , A ⊆ B implies

f(B) ≥ f(A) and called monotone decreasing if A ⊆ B
implies f(A) ≥ f(B).

A submodular function is the discrete analog to concave

functions. When a set function f is submodular, monotone

increasing and normalized, it can be referred to as a

polymatroid function [36]. Such functions are indicative of

information, meaning that, the functions tend to give a high

value from a setA ⊆ V that has a large amount of information

and give a lower value to a set C ⊆ V of equal cardinality to

A but has a smaller amount of information.

That being said, for a chosen objective function f(S)
that is a polymatroid function, in the context of the SNS

selection problem (1), the information gain is indicative

of the measurement information from a subset of sensors

j ∈ S regarding the full state-space of the system. For

such a submodular set function, a greedy algorithm that is

summarized in Algorithm 1, offers a theoretical worst-case

bound according to the following theorem.

Theorem 2. ([37]) Let f : 2V → R be a polymatroid

function, f∗ be the optimal solution of SNS problem (1)

and f∗S be the solution computed using the greedy algorithm.

Then, the following performance bound holds true

f∗S − f(∅) ≥

(

1−
1

e

)

(f∗ − f(∅)) , with f(∅) = 0.

We note that the above bound is theoretical, and generally a

greedy approach performs better in practice. It has been shown

that a 99% accuracy can be achieved for actuator placement;

see [3] and the many references that cite this work.

Algorithm 1: Greedy Algorithm

1 input: r, V
2 initialize: S ← ∅, k ← 1
3 while i ≤ r do

4 compute: Gi = f(S ∪ {a})− f(S), ∀a ∈ V \ S
5 if Gi ≤ 0 then

6 return: S

7 else

8 assign: S ← S ∪
{

argmaxa∈V\S Gi
}

9 update: i← i+ 1

10 output: S

B. Submodular Maximization via a Multilinear Extension

As an alternative to the greedy algorithm approach

described in the aforementioned section, it is sometimes

useful to solve the submodular set maximization problem

continuously. This can be done by applying continuous

extensions to a submodular function, that is, extending f(S)
to a function F : [0, 1]n → R that agrees with f(S) on the

hypercube vertices [38]. Extensions to submodular functions

include: (i) the LovÂasz extension [39] which is equivalent

to the exact convex closure of f(S) and the multilinear

extension [24] is equivalent to an approximate concave

closure.

For the purpose of submodular maximization, the mul-

tilinear extension is shown to be useful [24], whereas the

LovÂasz extension is applicable for submodular minimization

problems. The application of the multilinear relaxation in

the context of observability-based SNS problem, whether for

linear or nonlinear systems, has to the best of our knowledge,

not been applied. For a submodular function f : 2V → R, its

multilinear extension F : [0, 1]n → R, where n = |V|, in the

continuous space can be written as

F (x)=
∑

S⊂V

f(S)
∏

s∈S

[x]s
∏

s/∈S

(1− [x]s) , x ∈ [0, 1]n. (11)

We define Sx for any x ∈ [0, 1]n such that each element

s ∈ V is included in S with probability [x]s and not included

with probability 1 − [x]s. The multilinear extension F (x)
thus extends the function evaluation over the space between

the vertices of the boolean hypercube {0, 1}n to that of the

vertices of hypercube [0, 1]n.

The computation of the multilinear extensions is not

straightforward. That being said, the extension F (x) for any

submodular function f(S) can be approximated by randomly

sampling sets S to the probabilities in [x]s [40]. With that in

mind, F (x) can be written as

F (x) = E [f (Sx)] , (12)

where E[·] indicates the expected value. Taking the derivatives

of F (x) we obtain the following

∂F (x)

∂[x]s
= E [f (Sx ∪ {s})− f (Sx\{s})] , (13)
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Algorithm 2: Continuous Greedy Algorithm

1 input: multilinear extension F , ground set V , r
2 initialize: x← 0, i← 1
3 while i ≤ r do

4 sample: K times of S from V according to x

5 for s ∈ V do

6 estimate:

ws ∼ E [f (Sx ∪ {s})− f (Sx\{s})]

7 solve for: S⋆ = argmax
S∈I

∑

s∈S ws

8 update: x← xS⋆

9 i← i+ 1

10 Use pipage rounding to convert the fractional solution

x
∗ to a discrete solution.

and the second order derivative for and a, b ∈ V with a ̸= b
can be written as

∂2F (x)

∂[x]a∂[x]b
=E [f (Sx ∪ {a, b})− f (Sx ∪ {b}\{a})

− f (Sx ∪ {a}\{b}) + f (Sx\{a, b}) .

(14)

We note that, the partial derivative
∂F (x)
∂[x]s

≥ 0 if and only

if f is monotone and
∂2F (x)

∂[x]a∂[x]b
≤ 0 if and only if f is

submodular.

Considering the above, the multilinear relaxation of

the submodular set maximization problem (1) under the

application of the multilinear extension can be expressed

as

F ∗
S := maximize

S⊆V, S∈Ic

F (x). (15)

Typically, F (x) is concave in certain directions and convex

in others, meaning that (1) is not easily solvable even under

a simple cardinality constraint. In [23] a continuous greedy

algorithm was developed to solve (15). The developed method

solves for a fractional value of F ∗
S and then utilizes a rounding

algorithm to convert the fractional solution into a discrete

solution.

That being said, consider the following continuous greedy

algorithm that is detailed in Algorithm 2. The algorithm

defines a path x : [0, 1] → Sx, where x(0) = 0 and x(1)
is the output of the algorithm. In the continuous algorithm,

x is defined by a differential equation, and the gradient of

x is chosen greedily in V to maximize F , meaning that, we

are maximizing d
dlx(l) = argmax

x∈Sx

∂F
∂[x]s

(x(l)). This is

equivalent to solving for

argmax
S∈I

∑

s∈S

ws ∼ E [f (Sx ∪ {s})− f (Sx\{s})] ,

as a consequence of the equality defined in (13).

The result obtained is fractional and thus a rounding

algorithm is employed to convert this fractional solution.

Randomly rounding the solution does not preserve the

feasibility of the constraints, in particular, equality constraints.

A pipage rounding algorithm has been shown to efficiently

round the fractional value to a discrete value without any

loss in the objective value. For brevity, we do not include

the pipage rounding algorithm; refer to [23, Section 3.2] for

a formal description of the pipage rounding algorithm. The

algorithm works by taking the fractional solution x
∗ from the

continuous greedy algorithm and then gradually eliminating all

the fractional variables. This is done by minimizing along the

convex direction of the multilinear continuous set function.

The result iterates until it agrees with the vertices of the

hypercube {0, 1}n. The following Lemma 1 shows that a

discrete solution is solved in polynomial time.

Lemma 1. ([23]) Given x
∗, the pipage rounding algorithm

outputs in polynomial time a discrete solution S ∈ Ic of

value E[f(S)] ≥ F (x∗).

The following theorem ensures a performance bound for

solving (15) via the continuous greedy algorithm.

Theorem 3. ([23]) Let f : 2V → R be a polymatroid

function and F : [0, 1]n → R be its multilinear extension.

Let f∗ be the optimal solution of SNS problem (1) and F ∗
S be

the solution computed using the continuous greedy algorithm.

Then, the following performance bound holds true

F ∗
S − f(∅) ≥

(

1−
1

e

)

(f∗ − f(∅)) , with f(∅) = 0.

For both the presented submodular maximization frame-

works the 1/e guarantee holds true regardless of the size of

the initial set V and which polymatroid function f is being

optimized. Given the aforementioned performance guarantees

of the presented algorithms for submodular set maximization,

the next section establishes the submodularity of certain

observability measures. The observability measures are based

on the parametrized variational observability Gramian (9) for

nonlinear systems.

IV. VARIATIONAL OBSERVABILITY GRAMIAN &

SUBMODULARITY

In this section, we show that certain observability metrics

that are based on the variational Gramian (7) for nonlinear

systems are indeed modular and submodular. This is analogous

to the linear case, where certain observability metrics (i.e.,

trace, rank, and log det) based on the linear Gramian are

shown to be modular and submodular. Such submodularity

properties enable the use of a greedy algorithm along with its

continuous extensions to solve the SNS problem with provable

optimal error bound guarantees.

For SNS applications, network measures based on system

observability are often considered for quantifying information

gain from the allocation of sensor nodes within a dynamical

network. Observability-based network centrality measures

have key properties related to submodularity. Observability

measures based on the linear observability Gramian have

been shown to be submodular or modular, in particular,

log det and rank are submodular, while the trace is modular;

see [3]. Nevertheless, other observability measures such as

log det
(

W−1
o

)

and λmin are non submodular. Such important

metrics have been shown to have provable guarantees when

solved using greedy algorithms; refer to [5]. In this paper, we
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consider only the metrics that have shown to have submodular

properties in the linear case. With that in mind, we show that

such properties hold also true for nonlinear dynamical systems

by considering such centrality measures under the action of

the variational observability Gramian (9).

Accordingly, the following theorem establishes that the

variational Gramian is linear matrix function with respect

to the selected sensing node j ∈ S . Such, property shows

that the observability Gramian can be computed form the

sum of the individual contributions from each sensing node.

Theorem 4 is essential for the proofs related to the modularity

or submodularity of the observability-based measures.

Theorem 4. The parametrized variational observability

Gramian Vo(S) for S ⊆ V is modular.

Proof. For any S ⊆ V , observe that

Vo(S)=
∑

j∈S

{

Φ
k
0

⊤
c̃⊤j c̃jΦ

k
0

}N−1

k=0
=
∑

j∈S

Vo(j),

where Vo(S) is a linear matrix function of with respect to c̃j
satisfying modularity as Vo(S) = Vo(∅) +

∑

j∈S Vo(j).

Consequently, the following proposition shows that the

trace of the variational Gramian (9) is modular set function.

Proposition 1. Set function f : 2V→R characterized by

f(S) = trace (Vo(S)) , (16)

for S ⊆ V is modular.

Proof. For any S ⊆ V , observe that

trace (Vo(S)) = trace





∑

j∈S

(

N−1
∑

i=0

(

φi
0

)⊤
c̃⊤j c̃jφ

i
0

)



 ,

=
∑

j∈S

(

trace

(

N−1
∑

i=0

(

φi
0

)⊤
c̃⊤j c̃jφ

i
0

))

,

=
∑

j∈S

(trace (Vo(j))) ,

where the last equality is a due to the modularity of

the parametrized variational Gramian. This shows that

trace(Vo(S)) is a linear matrix function and therefore is

a modular set function.

The following result shows that the rank of the variational

Gramian (9) is submodular and monotone increasing.

Proposition 2. Set function f : 2V→R characterized by

f(S) = rank (Vo(S)) , (17)

for S ⊆ V is submodular and monotone increasing.

Proof. For any S ⊆ V , first we will show that f(S) in

(17) is submodular. First, define the derived set function

fs : 2
V\{s} → R for a a ∈ V as

fs(S) = f (S ∪ {s})− f ({s}) ,

= rank (Vo(S ∪ {s}))−rank (Vo({s})) ,

= rank (Vo(S) + Vo({s}))−rank (Vo({s})) ,

= rank (Vo({s}))

− dim (image (Vo(S)) ∩ image (Vo({s}))) ,

This indicates that fa(·) is monotone decreasing since

rank (Vo ({a})) is constant while the dimension of

image (Vo(S)) is increasing with S . This implies that f(·) in

(17) is submodular [3], [39]. Second, it is straightforward to

show that f(·) is also monotone increasing since for A ⊆ B
provided that A,B ⊆ V implies f(B) ≥ f(A).

The following result shows that the log det of the variational

Gramian (9) is submodular and monotone increasing.

Proposition 3. Set function f : 2V →R characterized by

f(S) := log det (V (S)) , (18)

for S ⊆ V is submodular and monotone increasing.

Proof. Let fs : 2V−{s} → R denote a derived set function

defined as

fs(S) = log detVo (S ∪ {s})− log detVo(S),

= log det (Vo(S) + Vo({s}))− log detVo(S).

We first show fs(S) that is monotone decreasing for any

s ∈ V . That being said, let A ⊆ B ⊆ V − {s}, and let

Vo(c̃) = Vo(A) + c̃ (Vo(B)− Vo(A)) for c̃ ∈ [0, 1]. Then

for

f̃s(Vo(c̃)) = log det (Vo(c̃) + Vo(S))− log det (Vo(c̃)) ,

we obtain the following

d

dc̃
f̃s(Vo(c̃))

= trace
[ (

(Vo(c̃) + Vo(S))
−1 − Vo(c̃)

−1
)

(Vo(B)− Vo(A))
]

≤ 0.

Such that
(

(Vo(c̃) + Vo(S))
−1 − Vo(c̃)

−1
)−1

⪯ 0, and

(Vo(B)− Vo(A)) ⪰ 0, then the above inequality holds. Thus,

we have fs is monotone decreasing, and f(S) is submodular.

Then, by the additive property of Vo(S) (see [3]) we have

f(S) being monotone increasing. The proof is analogous to [3,

Theorem 6] and [7, Lemma 3]

The validity of the performance guarantees for both the

greedy and continuous greedy algorithms are contingent on

the modularity and monotone submodularity properties shown

in the aforementioned propositions and (16)±(18).

Remark 2. Notice that, for the log det to be submodu-

lar and monotone increasing, the variational observability

Gramian can have zero eigenvalues.

In the study [7], the considered observability measures are

based on the Lie derivative matrix Ol, that being said, the

above submodular properties hold true if and only ifOl is full

rank. In this case when considering the variational Gramian,

there is no such restriction. The submodularity of the log det
still holds in rank deficient situations. Such situations can
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Figure 1. State Trajectories (53 states) of the combustion reaction network
after disturbance.

arise when not enough sensing nodes are chosen and thereby

the system is not yet fully observable. The ensuing section

demonstrates the validity of the SNS problem under the action

of the studied variational observability measures for nonlinear

dynamical systems.

V. NUMERICAL CASE STUDY

In this paper, we consider a nonlinear system that represents

a natural gas combustion reaction network of the form

ẋ(t) = Θψ (x(t)) , (19)

where the polynomial functions of concentrations ψj

j = {1, 2, . . . , Nr} are concatenated in vector

ψ (x) = [ψ1 (x) , ψ2 (x) , . . . , ψnr
(x)]T . The concentrations

of nx chemical species are denoted by vector x =
[x1, x2, · · · , xnx

]. The stoichiometric coefficients qji and

wji are defined by constant matrix Θ = [wji−qji] ∈ R
nx×Nr .

We denote the number of chemical reactions by Nr and the

list of chemical reactions can be expressed as

nx
∑

i=1

qjiRi ⇄

nx
∑

i=1

wjiRi, j ∈ {1, 2 , · · · , Nr},

where Ri, i ∈ {1, 2, · · · , nx} represents the chemical

species.

The considered network is a natural gas combustion reaction

network GRI30 which has Nr = 325 reactions and nx = 53
chemical species. For specifics regarding system parameters

and definitions, we refer the readers to [14, Section V].

The discretization constant is T = 1 · 10−12 and observation

window of N = 1000 is chosen. The choice of discretization

constant is a result of analyzing the system’s initial condition

response. The data required to calculate the reaction rates

are taken from the reaction mechanisms database provided

with Cantera software files. The actual initial state x0 =
[0, 0, 0, 2, · · · , 1, · · · , 7.52, · · · , 0]. Figure 1 depicts the state

trajectory of the system discrete-time dynamics after applying

a system disturbance. Meaning that, the system is simulated

based on x0 = x0 + x0 ∗ αd where αd ∈ R is a random

number between (0, 0.2).
We assess the applicability and validity of the extended

SNS problem (1) by comparing the state estimation error

based on measurements from the optimally selected nodes

to that obtained from the greedy algorithm. The optimality

of the selected sensor nodes is directly related to the state

estimation error. This is due to the underlying relations

21 26 31 37

10
-2

10
0

10
-2

10
0

Figure 2. State estimation error based on the optimal selected node obtained
from greedy algorithm (left) and continuous greedy algorithm (right).

between observability and the ability to infer system states

from limited measurement data.

Let S∗M define the optimal sensor node location resulting

from solving (1) using Algorithm 2 and let S∗ define the

optimal sensor node location resulting from solving (1) using

Algorithm 1. That being said, let xactual denote the state

estimate resulting from solving the following nonlinear state

estimation optimization problem expressed as

minimize
x̃0∈X0

g(x̃0)
⊤
g(x̃0) (20)

subject to x̃l
0 ≤ x̃0 ≤ x̃

u
0 , (21)

where x̃l
0 and x̃u

0 are respectively the lower and upper bounds

of x̃0. The vector function g(·) : R
nx → R

Nny that is

defined as g(x̃0) := ỹ − C̃x̃ represents the open-lifted

observer. The measurement vector ỹ := {ỹi}
N−1
i=1 ∈ R

Nny

and estimated state-vector x̃ := {x̃i}
N−1
i=1 ∈ R

Nnx . The above

least squares optimization problem is based on an open

observer framework introduced in [14]. It is solved using

the trust-region-reflective algorithm on MATLAB. The state

estimation error can we written as ∥xactual − x̃∥2 / ∥xactual∥2.

This validates the effectiveness of the solution obtained from

the relaxed problem, thereby achieving the performance bound

as indicated in Theorem 3.

The state estimation errors resulting from solving the SNS

problems based on the aforementioned algorithms is depicted

in Figure 2. The maximization problems are solved for sensor

nodes cardinality constraint S = r with r = [21, 26, 31, 37].
The SNS problem is solved for both methods by considering

20 generated simulations based on x0 chosen randomly by

applying perturbation αd. The results show that the optimal

solution S∗M yields similar state estimation values when

compared with the estimation values of optimal solution

S∗. Consequently, the application of multilinear extension

for observability-based SNS can be further investigated under

different matroid constraints; see Section I.

VI. CONCLUSION

In this paper, we showed that the SNS problem for

nonlinear systems, modeled by considering the variational

dynamics, can be solved as a submodular set optimization

problem. In particular, we showed that metrics based on

the parametrized variational Gramian (i.e., trace, rank, and

log det), that extends the linear Gramian to nonlinear systems,

are modular and submodular. Furthermore, we introduced a

continuous extension to the submodular SNS problem. This
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multilinear extension presents a performance guarantee when

f(S) is monotone submodular. The resulting optimization

problem is then solved using a continuous greedy algorithm

and is compared to the well-known greedy algorithm that is

typically used to solve submodular SNS problems.
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