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Abstract—To provide real-time visibility of physics-based
states, phasor measurement units (PMUs) are deployed through-
out power networks. PMU data enable real-time grid monitoring
and control—and is essential in transitioning to smarter grids.
Various considerations are taken into account when determining
the geographic, optimal PMU placements (OPP). This paper
focuses on the control-theoretic, observability aspect of OPP. A
myriad of studies have investigated observability-based formu-
lations to determine the OPP within a transmission network.
However, they have mostly adopted a simplified representation
of system dynamics, ignored basic algebraic equations that model
power flows, disregarded including renewables such as solar
and wind, and did not model their uncertainty. Consequently,
this paper revisits the observability-based OPP problem by
addressing the literature’s limitations. A nonlinear differential al-
gebraic representation (NDAE) of the power system is considered
and implicitly discretized—using various different discretization
approaches—while explicitly accounting for uncertainty. A mov-
ing horizon estimation approach is explored to reconstruct the
joint differential and algebraic initial states of the system, as
a gateway to the OPP problem which is then formulated as a
computationally tractable integer program (IP). Comprehensive
numerical simulations on standard power networks are con-
ducted to validate various aspects of this approach and test its
robustness to various dynamical conditions.

Index Terms—Power system modeling, phasor measurements,
nonlinear differential algebraic models, nonlinear observability,
moving horizon estimation, optimal PMU placement

I. INTRODUCTION, MOTIVATION AND PAPER
CONTRIBUTIONS
A. Motivation

ITHIN recent years, there has been a trend of shifting from
fuel-based energy generation to fuel-free, renewables.

This transition has imposed a challenge on preserving stable
grid operations [1]. To enable stable and secure power system
operations, grid monitoring is performed by the supervisory
and data acquisition (SCADA) system. [2]. However, SCADA
measurements cannot fully capture the dynamics of the power
system under transient conditions due to slow system update
rates [3]-[5]. As such, more elaborate real-time system monitor-
ing is required to perform state estimation and control. Dynamic
state estimation (DSE) from real-time measurements allows
for reconstructing system dynamics, thereby enabling stability
predictions and control. In order to achieve an observable
system for DSE, Phasor measurement units (PMUs) are installed
within the grid in order to provide real-time high-resolution
measurements [6]. Albeit a system can have PMUs allocated
to each bus and achieve complete observability, this is not
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economical [7]. Thus, it is necessary to solve for optimal PMU
placement (OPP) posed as a constraint optimization problem
whilst achieving observability [4].

Previous studies have focused on the PMU placement prob-
lem considering steady state estimation (SSE). Nonetheless,
such methods that are based on steady state operating conditions
are unsuitable for power systems for-which exhibit considerable
dynamic changes [8]. Moreover, SSE based sensor placement
is mainly based on topological observability and therefore,
neglects important parameters [5]. A comprehensive survey on
the different approaches that deal with OPP under topological
observability in power systems are presented in [9], [10].

Herein, we focus on formulating the OPP from an
observability-theoretic perspective. Meaning that the placement
problem is posed so that the system is observable and therefore,
control and stability predictions under DSE is achievable [11].
Howbeit, current literature that has addressed the combinato-
rial observability-based PMU placement problem in nonlinear
power networks establish that such sensor selection problem (4)
is not well understood and is solved via a heuristics methods
that becomes unfeasible for large networks [12] and (¢4) is still
considered an open problem for a nonlinear representation of the
power system [13]—given the complexity of the nonlinearities
that are evident in the observability analysis of the system.

B. Literature review

A primary step in developing an OPP program is quantifying
the observability of the dynamic system. This quantification
for nonlinear networks can be approached under several for-
mulations. One approach is substituting the nonlinearities by
first order linear approximations [14], [15]. This approach
yields inaccurate observability-based analysis under uncertain-
ties that change the operating conditions for which the linearized
dynamics are valid. Other prevalent approaches include the
use of Lie derivatives and differential embedding to construct
the observability matrix [16], [17]. However, such formula-
tions do not guarantee optimal sensor selection for network
observability [13]. Furthermore, quantifying observability in
nonlinear networks can be based on the empirical observability
Gramian [18]-[20]. The positive semi-definite matrix structure
of the empirical observability Gramian which relates energy no-
tions of controllability and observability quantitative metrics—
trace, determinant, rank, etc.—allows for sensor selection [12].

In [21], the optimal sensor placement for a nonlinear network
is posed as a maximization of the empirical observability
Gramian’s determinant, however for systems that are marginally
observable, this metric results in numerical problems. Moreover,
the formulation results in a mixed integer nonlinear program
which is computationally complex and nontrivial for large
networks. Similarly for a nonlinear power system, the study [5]



poses the PMU selection problem based on empirical observ-
ability Gramian metrics and albeit good observability under the
optimal PMU placement is obtained however, the OPP (7) is
nonetheless performed under typical flow conditions and then
the robustness of the optimal solution is examined, (#¢) is limited
to estimation of dynamic states and not the joint dynamic and
algebraic state estimation, and (44¢) is posed as a nonconvex
mixed integer program that is computationally exhaustive. To
tackle the computational complexity of the OPP, the authors
in [12] approach solving the OPP problem by introducing the
idea of leveraging observability Gramian metrics’ submodu-
larity properties. However, this approach yields sub-optimal
placements given it was solved using a greedy approach.

Others studies [22]-[28] have approached the observability-
based OPP problem based on the formulations similar to those
introduced in the survey above [5], [12], [21], while also not con-
sidering all the aforementioned drawbacks. In power systems
control, typically the differential equations are considered in the
system representation of the model, whereas the algebraic equa-
tions are neglected due to the computational burden and overall
stability implications [29]. A complete representation of a power
system includes both differential and algebraic equations. The
advantages of simulating the dynamics of the system under a
complete nonlinear differential algebraic equations (NDAE) for-
mulation are: (4) linking of network dynamics with power flow
equations resulting in an accurate dynamics representation [30],
(#4) modeling load and renewable uncertainties in DSE routines
as a result of incorporating renewables in the system [31],
and (i77) expanding the set of potential measurement buses to
include non-generator buses.

C. Paper contributions and organization

Motivated by the aforementioned limitations, the objective
of this work is to develop an OPP formulation for an NDAE
representation of power system while (¢) achieving full observ-
ability under uncertainty from loads and renewables, (i) jointly
estimating both dynamic and algebraic states of the transmission
network and, and (4i7) posing the OPP under a computationally
efficient formulation. It is to the best of our knowledge that
observability-based OPP in power systems that are represented
as a NDAE has not yet been investigated.

Accordingly, we approach formulating the OPP problem on
the basis of leveraging the modularity of the observability
matrix. The main contributions of this work are as follows

« We introduce and validate a structure preserving transfor-
mation that retains the complete NDAE representation while
achieving a nonlinear ordinary differential equations (ODE)
formulation. By using this model—denoted as pu-NDAE—
we show that the observability matrix can be defined for
the NDAE power system considered. We also showcase this
model for three different implicit discrete-time modeling
methods: backward differential formula (BDF), backward
Euler (BE) and trapezoidal implicit (TT).

o As a stepping stone for the OPP problem, we reconstruct
the joint dynamic and algebraic initial states by adopting a
moving horizon (MHE) framework. The state estimation is
posed as a nonlinear least-squares problem which we solve
numerically using the Gauss-Newton algorithm.

o We leverage the modularity property of the observability
matrix to pose the OPP as a convex integer program (IP).
Based on the modularity of the observability matrix, a priori
observability information from each PMU placement is ex-
tracted prior to solving the OPP. Such approach extenuates
the computational complexity of an optimization instance
resulting in a computationally tractable approach for PMU
placement in lager networks.

« The validity and effectiveness of this approach are studied
on standard power networks. We show the validity of the
u-NDAE model under several discretizations and we prove
that the optimal PMU placements for a specific number of
PMUs are subsets of that for a larger number of PMUs, thus
indicating modularity.

A preliminary and partial version of this paper appeared
in [32] without proofs; it included a small case study on the
viability of the proposed OPP approach. In this paper, we
include several theoretical and numerical developments by (4)
extending the proposed approach under 3 implicit discretization
methods, (i¢) providing detailed proofs and explicit Jacobian
formulations for building the observability measures for each
method, (¢7¢) and extending the numerical studies to include
OPP on larger power networks.

The remainder of this paper is organized as follows. In Section
II, we introduce the NDAE power system and it’s state-space
formulation. In Section III, we present the different implicit
discretizations of the NDAE system and the ;-NDAE system.
In Section IV, initial state estimation based on a MHE approach
is developed. In Section V, the OPP problem is formulated. The
proposed OPP is studied for several standard power networks
in Section VI. Finally, Section VII concludes the paper.
Paper’s Notation: Let N, R, R™, and RP*? denote the set of
natural numbers, real numbers, and real-valued row vectors with
size of n, and p-by-q real matrices respectively. The symbol ®
denotes the Kronecker product. The cardinality of a set A is
denoted by |N|. The operators det(A) returns the determinant
of matrix A, trace(A) returns the trace of matrix of matrix A
and blkdiag(A) constructs a block diagonal matrix.

II. NONLINEAR POWER NETWORK DAE MODEL

A power system (A, £) can be represented graphically, where
E C N x N are the set of transmission lines, N' = G U L is
the set of all buses in the network, while G and L are the set of
generator and load buses respectively.

In this work, a NDAE formulation of a power system is
studied. We consider the standard two axis 4'" order transient
model of a synchronous generator [33]. This model excludes
exciter dynamics and turbine governor, meaning that each of
the generators has 4 states and 2 control inputs. The dynamics
of a synchronous generator 7 € G can be written as (1)

52’ = W; — Wo (13)
M;w; = Tnviy — Pai — Di(wi — wo) (1b)
Tc/iOiE; = 755511' E; + Mvi cos(6; — 0;) + Era; (lc)
Lyi Ly;
. 1
TewniTv = T — (wi —wo) + Tris (1d)

Rp;



where the time varying components in (1) are: d; the rotor
angle (rad), w; generator rotor speed (rad/sec), E; generator
transient voltage (pu), Th; generator mechanical torque (pu).
Generator inputs are: Frq; generator internal field voltage (pu),
T,; governor reference signal (pu). Constants in (1) are: M; is
the rotor inertia constant (pu x sec?), D; is the damping coef-
ficient (pu x secQ), 2q; and x4; are the direct-axis synchronous
reactance (pu), &;; is the direct-axis transient reactance (pu),
T(;Oi is the direct-axis open-circuit time constant (sec), Top; is
the chest valve time constant (sec), Rp; is the speed governor
regulation constant (Hz/sec), and wy is the synchronous speed
(1207 rad/sec).

The algebraic constraints of the power system represent the
relation between the internal states of a synchronous generator
and it’s generated power Pg; and QQg; i.e, real and reactive
power. The algebraic constraints of the nonlinear descriptor
system can be written as (2) withi € G

’
;o i—zh o .
Po; =~ Byvi sin(d; — 0;) — S22t sin(2(5 — 6:)) - (22)
o diar
’
_ 1 Tataig?
Qi =Bl cos(6i — 07) — Bt
’ / (2b)
Tqi —Tq; ,,2
- i cos(2(6, - 0).

The power balance between the set of generator and load
buses with ¢ € G U L can be written as (3) such that, N := ||
is the number of buses within the transmission network while,
G := |G| and L := |L| are the number of generator and load

buses.
N

PGi + PLi, = Zvivj(Gij COS Hij + BU sin 923)
7j=1

(3a)

N
QGi + QLi = Z ViV (G” COs 01']' — Bi]‘ sin 0,']'), (3b)
j=1
where 0,; = 6; — 0; is the bus angle, v; is the bus voltage (pu),
(Gij, Bij) denote respectively the conductance and susceptance
between bus ¢ and j.

Having presented (1)—(3), which depict the physics based
components of the electromechanical transients—representing
both the generator dynamics and algebraic constraints—the
state space formulation of the nonlinear descriptor power system
can be written as (4)

generator dynamics : &4 = f(xq, Ta,u) (4a)

(4b)
where the dynamic states of the synchronous machine can
be defined as x4 = x4(t) = [0 w' E' '] €
R*¢, the algebraic states can be defined as =, := x,(t) =
[Pl QL v' 0T]T € R2G+2N and the input of the system
can be defined as u := u(t) = [E; T,']T € R?“. Matrix

functions f(-) and g(-) are nonlinear mapping functions such
that, () : R x R2¢ x R?2¢ — R*¢ and g() : R*¢ x
R2¢ x R2N — R2G+2N_ Based on the NDAE model of the
power network presented above, the next section formulates the
discrete-time model of the NDAE power system.

III. IMPLICIT DISCRETE-TIME MODELING OF POWER
NETWORKS

algebraic constraints : 0= g(xq,x,),

In this section, we introduce the NDAE formulation referred

to in this work as the u-NDAE system. The impact of how the
choice of discretization method is on the solution to the OPP is
unclear and to that end we investigate the use of several implicit
discrete-time modeling techniques and embed them with the
OPP formulation.

DAE solvability have been thoroughly presented and investi-
gated in literature. MATLAB is capable of solving DAEs with
the DAE solvers—odelbi and odelbs [34]. However, given the
discrete-time modeling approach that the observability-based
OPP is herein based on, we refer to the use of numerical
methods for simulating the NDAE power system. DAEs are
considered unequivocally stiff and in particular, nonlinear power
system models exhibit stiff dynamics [35]. Implicit discretiza-
tion methods when used to simulate stiff dynamics offer a stable
and computational efficient solution as compared with explicit
discretization techniques. Implicit techniques previously used
in the context of discrete-time modeling of power systems
include: backward differential formulas (BDF) known as Gear’s
method [36], implicit Runge-Kutta (IRK) method [13], [37] and
trapezoidal implicit (TT) method [38], [39]. The IRK method is
the most numerically involved. BDF and TT methods have been
shown to be an efficient methods for simulating power systems
for transient stability analysis [40].

A. Discrete-time representation of NDAESs

With that in mind, we investigate the use of three implicit
time-modeling methods (backward Euler (BE), TI, and BDF)—
that account for the stiffness and complexity of the NDAEs—
for solving the dynamics of system (4). Solving NDAEs using
implicit numerical techniques requires finding a solution to
a set of implicit nonlinear equations, which we implement
using the Newton-Raphson (NR) method. In this section, we
will showcase the discrete-time modeling approach for Gear’s
method.

Gear’s k-step discretization method is generally stable for
BDF discretization index kg, in the range of 2 < k; < 5.
For k; = 1, Gear’s method represents BE. Thus, Gear’s
backward differential discretization is a generalization of BE’s
discretization. Accordingly, the discrete-time representation
of (4) under Gear’s method can be written as (5) for time step
k with step size h, such that @) := x,. We define vectors
2 = [Tk, Tak, ur)' and T = [Tk, Tax]' for time
step k, and BDF discretization constant h = Bh

kg
€ — —q Qg —s
d,k Zszl d,k f(zk) (5)

0 = g(x), (5b)

k . .
where the term > .7, a,@q—s represents k, previous time
steps, and discretization constants 5 and a5 that depend on order
of index k, are calculated as

N1y gl (i
6:(5225) , oy = (—1) 1)ﬁjz=;j<5)- (6)

B. Structure-preserving u-NDAE Representation

Before introducing the methodology under which we solve
the NDAE system—also referred to as a descriptor system. We
present a mathematical structural transformation to the NDAE,



that involves transforming the system in (4) from a NDAE into
a nonlinear ODE representation. A descriptor system’s index
plays an important role in the complexity of the numerical
simulation, whereby the higher an index, the more difficult it is
to run the system [31]. The index of the NDAE system is related
to it’s algebraic equations and refers to the overall equivalency
a NDAE has to an ODE [41]. The index-n of a NDAE system
can be defined as 1.

Definition 1. The descriptor system (1)-(3) is said to be of
index-1 if, the DAEs can be converted into a system of ODEs
by differentiating the system with respect to independent time
variable (t) only once. That being said, the index-n of the
descriptor system is the number of times needed to differentiate
the DAEs to obtain system of ODEs.

For the descriptor system (1)-(3), it can be shown that the
system is of index-1 [30], [40]. The implicit function theorem
can be used to transform system (4) from a DAE to an ODE
structure [42]. Applying the aforementioned theorem and differ-
entiating (4b) with respect to time we can obtain a NDAE model
that is structurally equivalent to an ODE model and written as (7)

i‘,d = f(wda Lq, u) (73.)
T, :g(wdawaau) = _(Gma)_led.f(mdeavu)> (7b)
where matrix G, = %‘if“) and matrix G, = %‘if“)

With that in mind, we now discuss the rationale behind
introducing an approximate transformation rather than the for-
mulation presented in (7). We note here that the notion of
transforming the NDAE system into an nonlinear ODE model
is for reasons beyond numerical simulation and solvability.
Howbeit a plethora of numerical methods have been developed
to solve DAE systems particular DAEs of index-1 [43]. Herein,
we are concerned with the aspect of observability for descrip-
tor systems. In [44] the concept of algebraic observability
is introduced, which formed a local observability definition
for DAEs. The study related algebraic observability and local
observability through a concept of regulating trajectory. This
requires linearizing the NDAE system and writing it in an
equivalent ODE system. Another study [45] tackled observer
design within descriptor systems and formulated the concept of
observability using Lie derivatives, however this was validated
on a small scale system and was considered to be mathematically
limited.

Granted that there is no conventional method in studying ob-
servability of NDAEs, we approach assessing the observability
of a descriptor system (4) by representing the dynamics in an
approximate ODE formulation that we refer to as u-NDAE.
Instead of using the implicit function theorem to represent the
power system as (7)—that is computational expensive due to the
existence of the partial derivative G, and its inverse—the left
hand side is replaced in equation (4b) by ux, such that p is a
relatively small number which simulates the system’s dynamics
with a negligible error between the two representations while
satisfying the power flow constraint equations. Therefore, the
stability of the y-NDAE is directly related to the value of u
chosen and does not depend on algebraic constraints g(-), since
g(-) is of zero value. This means that the error that bounds the

1-NDAE is linearly proportional to the value of p.

With the proposed approximation, the system is represented
as an ODE, albeit without formulating unnecessary computa-
tions. The plausibility of such approximation is viable given
the low index of the power system model—i.e, requiring one
order of differentiation to become an ODE. The validity of such
approximation is presented in Section VI for the implicit time-
models under which the discretized dynamics are simulated.

Given such p-NDAE approximation, the discrete-time repre-
sentation of the power system in (5) can be rewritten in implicit
form as (8) denoted by ¢(zy, xr—_s) := ¢(z) such that,

0=xq1 — E’;g:1asxd,k—s — hf(zx) (8a)

A N
0=pxar — p1E,210:%q k—s — hg(Ty). (8b)

C. NDAE numerical solvability: Newton-Raphson Method

The solvability of the discretized system in (8) involves
finding a solution to a set of implicit nonlinear equations that is,
finding x4 and x, for each time step k. The NR method [40],
[46] is implemented at each time-step to solve the set of
equations under iteration index (7). The method is iterated until a
relatively small error on the £o—norm of the iteration increment
is achieved.

Based on such implicit nature of the p-NDAE, we move
forward with solving the system using NR method. First we
represent (8) as (9) that is under iteration index (i) which
depicts the convergence of NR’s method. We denote (9) as

(4) o (@) @ . @ @ )
Dz xp—s) = P(z;7), where z;7 = [z, T,%, uy|
thereby retaining the same definition as zy however now under
the NR iteration index (i),

0= wfil)k — 2N @ — hf(2)) (%a)
0= pal), — pSr a@a s — hgl(ay)).  (9b)

To ensure solution convergence for each time step, the
Jacobian of the nonlinear dynamics in (8) is evaluated. Such that,
at each time step k the increment Aa:l(;)—which is a function
of the Jacobian—is evaluated and then is used to update state
variable mgﬂ) = :L';;) + A:cgj) for each iteration (i) until the
convergence criterion is satisfied. Once NR method converges,
time step & advances until the dynamics over time span (t) is

simulated. The iteration increment Aasgj) can be written as (10)

N1 ,
4,0 (o]
where the Jacobian Ag(z,(ci)
as (11)

Ay (Zl(ci)) = [

A = (10)

) = [%} can be represented

I, — hFy,(2")

: ~hFy, (zl(ci))
_BGwd (33](;)) .

pl,, — hGoy, (:c,(;))

(11)
We define ng := 4G as the number of differential states, n, :=
2G + 2N as the number of algebraic states, n := ng + ng
as the number of differential and algebraic states. The matrix
F,, € R"¢*™4 represents the Jacobian of (9a) with respect to
state variable x4, matrix Fy,, € R™4*"e represents the Jacobian
of (9a) with respect to algebraic variables x,, matrix G5, €
R™=*"d represents the Jacobian of (9b) with respect to state
variables 4 and matrix G, € R™+* "™ represents the Jacobian
of (9b) with respect to algebraic variables x,. Matrix I,,, is



an identity matrix of dimension similar to F,, and I, is an
identity matrix of size similar to G,,.

The discrete-time models under BE and TI discretization
methods are presented in A. The methodology for solving the
NDAE representation of the power system that will be later used
to validate the u-NDAE approximation is presented in B.

IV. INITIAL STATE ESTIMATION: A MHE APPROACH

In this section, we develop the framework for moving
horizon state estimation (MHE) that is the basis of the OPP
problem. Based on the discretized time-models developed in
Section III, the discrete-time power system dynamics with
measurements can be represented as

E, x;_+ hI, F(z) for BE,
g(z)
E,x,. = E,> " a.x) . + b, Flze) for BDF,
) g(zk)
Eyapi +hI, [T @y
9(zi) + g(TK-1)
(12a)
yi = Cxj, + Loy, (12b)

where E, € R"*" is a diagonal matrix that has ones on its
diagonal for x4 and p for x,. Diagonal matrix I" defines the
placement of PMUs within the network such that T := diag(~y,)
and v, = [0,1]? whereby, 7, = 1, if a PMU bus is selected
and v, = 0, otherwise. Under such measurement model, we
define NV, C N as the set of buses at which PMUs can be
installed, such that |\, | := N,. We emphasize that since a full
representation of the power system is being modeled—then,
N, = N—and thus includes both generator and non-generator
buses. The matrix C := I'C' € R"»*™ represents the mapping
of states variables under the selected PMU configuration. For
the measurement model herein, C measures npstates[v' 67]7
where n,, := 2N, represents the number of measured states.
Variable p < N,, denotes the number of selected PMUs within
the transmission network and vy € R" is the measurement
noise. Discretization constant i for BE and TI discretization
methods is defined in A.

Considering the discretized state-space measurement model
with PMU placement presented in (12), we now introduce
the MHE framework under which the observability-based OPP
is postulated. The OPP program under the MHE framework
utilized is based on the concept of observability for stiff
nonlinear networks developed in [13]. The rationale behind
referring to this approach is that it (¢) adopts an simple open-
loop MHE formulation, (i7) allows to study the influence
of observation horizon window on state estimation accuracy,
(4i7) is intrinsically robust against measurement noise [47] and
(iv) as compared with empirical observability Gramian and
other approaches mentioned earlier in Section I, this method—
as argued by [13]—is the most scalable approach for sensor
selection within stiff nonlinear networks. Such approach has
also been investigated on traffic networks applications, refer
to [48].

To that end, we develop the observability based analysis
through a MHE approach. To begin, we define an observation

window equal to N, discrete measurements. Then, we introduce
a nonlinear vector function of the initial state h(T,xg) :=
h(zg) : R"™ x R™ — R"». The objective is to minimize the
nonlinear least-square error on h(-) which is posed as P1

(P1) minimize ||h(xo)||3 (13a)
o
subject to x, < xg < T, (13b)

where x, and Z are the lower and upper bounds on initial state
variables. For power systems, the upper and lower bounds on
algebraic variables are obtained from MATPOWER [49]. The
vector function h(-) represented in (14) is defined as h(xz¢) :=
y(xo) —w(T, xo). Such that, the set of observations over N,, of
the discretized -NDAE is represented by vector y(zg) € R™»
and the nonlinear mapping vector function of the dynamics and
algebraic states is represented by w(I', o) := w(xp) : R x
R™ — R™», as such vector function h(-) can be written as

h(xo) Yo C:’mO
h(azl) Y1 C.')cl
. = . - . . (14)
h’(wNofl) YN,—1 éa?NO,l
Remark 1. The vector g(-) in is in fact a function of initial
state g := x(0), since the k-th state xj = x(k)—as can

be observed from (12b)—is coupled to initial state x through
the postulated discrete state-space representation.

Indeed for every initial condition x, it holds true that
h(zo) = 0 such that, y(xg) = w(xp). Therefore, we can
define the observability of a system with respect to the selected
PMU buses as Definition 2.

Definition 2. Uniform observability of system (12) under the
prescribed PMU placement holds true, if for all inputs u(k)
and under a finite measurement horizon N, the mapping g(-)
defined in (14) is injective with respect to x.

That being said, we can say that for the system to be observ-
able, initial state gy under a selected sensor placement has to
be uniquely determined for a set of measurements y(xo) over
horizon N,,. A sufficient condition for g(-) to be injective with
respect to initial state @, is that the Jacobian of g(-) around xg
is full rank, that is, rank(J (T, @¢)) = ng +ne = n ¥ xq [50].

A. Gauss-Newton for moving horizon estimation

Under such conditions, we can now solve the nonlinear
least squares objective function (13) by exploiting the discrete
nature of the system. We approach solving the least-squares
optimization problem numerically using the Gauss-Newton
(GN) algorithm. Such algorithm has been demonstrated on
power systems for DSE [24], [51]. The reasons for referring
to a numerical approach rather than utilizing already developed
least-square solvers are two-fold. The first, is that GN algo-
rithm is more computationally efficient and leads to solution
converges faster and second, under the latter existing solvers
approach while considering large networks—i.e, ACTIVSg200-
bus case—MATLAB Isgminorm solver could not converge to
an initial state estimate.



With that in mind, first to solve P1 using GN we reformulate
the objective and pose it as the minimization of the Lo—norm of
the residual function vector 7 (T, q) that is concatenated from
(i) the measurement equation (12b) and (i¢) the discretized
1-NDAE model (12a). The redefined optimization problem is
posed as P2

(P2) minimize ||r(T,q)||3, (15)
q0

where the vector g € RNo™ is the concatenation of the dynamic
and algebraic systems simulated over horizon N,,, whereby, can

be written as q := [, €40, -+, Ton,_ 1> Tan,_1) - AS
such, the residual vector 7(T', q) := r(q) € RNem»tNom jg
written as
r
r(q) = { y} ) (16)
Ty
where vector 7y := h(xzg) = [r, ... g, ] € RN

is the residual function of the measurement equation for N,
observations that is defined as (17), such that &;, € RNe” is
the vector representing the estimated differential and algebraic
states

Ty =Y — Cy,

a7
and vector 14 1= ¢p(xo) = [r) ... v

2 o i) € RNo™ s the
residual of the discretized u-NDAE model, where 7, for time

step (k) is defined as

E, (&), — &;_1) — hI, f(”::’“) for BE,
g(&x)
To, =1 B, () — Zf"zl QsBp_s) — hI, f(Ak) for BDF,
g(&)
E, (xy — &p—1) — hl, [f{(l(gi)—:féfi;)} for TL.
(18)

Having formed the residual function that is the objective of
optimization problem P2, we move forward with solving the
minimization problem using GN iterative method by updating
state vector g such that (15) is minimized. The GN update for
iteration (4) is given as (19) with a GN step size denoted by hy.
g™ =g — by (7,(a") Ty (a)) " Ty(@?) (@),

(19)

The Jacobian matrix in (19) of the residual function r(q) is
defined as (20)

5,9 = 3,0 = 7]
where Jacobian matrix of residual function 7, is denoted by
M and defined as M := blkdiag(—C) € RNem»xNom
while the Jacobian matrix of residual function 7, is denoted
by IN and defined as IN := blkdiag(A,) € RNem*No™ Here
A, € R™™ is the Jacobian of the discretized ;i-NDAE (12a)
which is evaluated for observation horizon N, and is therefore
dependent on the discretization method. Such that for BE and
BDF discretization method the Jacobian matrix A, is defined
as (11) and for TI method A, is defined in A. With the iteration
update defined, Gauss-Newton iterative method is performed
until the Lo—norm of the residual (16) is minimized. Algorithm 1
outlines the proposed MHE for initial state estimation using GN
method.

(20)

Algorithm 1: MHE via Gauss-Newton Iterations

Input: hg, xo, uog, I, tolerance

Output: x(
1 Set 2 = 1 as GN iteration index
2 while Lo—norm of the residual > tolerance do
3 Simulate the system dynamics with initial states x
Build the residual function r(q) represented in (16)
Calculate the Jacobian J,(g?) in (20)
Perform the GN iteration update on ¢**! in (19)
Update GN iteration index ¢ =7 + 1
Update initial states xo — Xg
Calculate Lo—norm of the residual (16)

NI R - 7 T N

V. OBSERVABILITY-BASED PMU PLACEMENT PROBLEM IN
POWER NETWORKS

In this section, we formulate the observability-based OPP
that is based on the discretized system dynamics and MHE
framework developed in Sections III and IV.

To quantify observability of the ;-NDAE representation of
the power system, the concept of observability through the
observability Gramian is used. Observability metrics that allow
us to numerically quantify observability taking into account
different aspects of the observability Gramian include: the
condition number, rank, smallest eigenvalue, trace and deter-
minant. Interested readers are referred to [5], [12] both of
which presented a more elaborate discussion on the different
metrics that quantify observability of the Gramian matrix. For
the placement problem within the scope of this work, the trace
of the observability Gramian is considered. The trace similar
to the determinant quantifies the average observability in all
directions of the state-space. The determinant is usually also
considered since it is able to measure observability in the noise
space. However, given the MHE approach that the placement
formulation is built upon, redundancy towards noise is already
considered prior to building the observability matrix.

Remark 2. Additional consideration should be given if the
observability Gramian has a large condition number, i.e,
near zero eigenvalues. This implies that observability is ill-
conditioned and that any perturbation to initial state xy would
change the observability rather significantly.

As such, it is said that the observability Gramian is sen-
sitive to uncertainties. Considering that, we pose OPP as a
maximization of the trace of the observability matrix, while
checking for near-zero eigenvalues. We implement the OPP on
standard optimization interfaces such as YALMIP [52] along
with Gurobi [53] solver. The OPP problem on the discretized
state space measurement model (12) can be defined for a fixed

number of sensors—denoted by p—as P3
— trace (W, (T, zg)) (21a)

(P3) minilgnize

subject to Z’yi =p, 7 € {0,1}7,

i=1
where W, (-) € R"*™ is the observability Gramian of the non-
linear discretized pi-NDAE system. The observability Gramian

21b)



for a nonlinear descriptor system under a MHE formulation with
PMU placement can be written as

W,(T,z0) = J' (T, 20)J (T, z0), (22)
where J(-) € RNe»*" represents the Jacobian of function

h(-) = 0 around x for the MHE observation horizon N, and
can be defined as

I,

Oz

~ ox
J(T, ) := [I, ® C] “ (23)

8301\1.071
Oz
where

Ofutt = D%t forj={0,1,...,Ng—1}.  (24)

The observability formulation herein maps the sensor place-
ment problem under a quantitative measure of DSE. That being
said, the mapping of sensor location is represented by the matrix
C, where under full sensor placement—that is when all states
are measured—the observability Gramian W, (I, () is max-
imum, Hence, the objective function is minimum. Conversely,
under zero sensing—that is C is equal to a zero matrix—a
maximum error of zero is achieved.

As for calculating the Jacobian in (23), knowledge of
xp ¥V j ={1,...,N, — 1} is required. This can be obtained
by simulating the discrete-time p-NDAE dynamics over N,,. To

calculate the partial derivatives terms in (23), that is % =
J

aw]“ |z, for j ={0,1,.
to the j-th partial derlvatlve as follows g:] = 5 gié
However given the implicit nature of the dlscretlzed - NDAE
system, the representation of d for the power system is
not straightforward and depends on the discretization method
followed [13]. For Gear’s method we use the chain rule as
presented in (25). The rationale behind the approach used for
BDF method is described in D.

8wj B 858]‘

81130 N 8@']—,;%

Moreover, computing the Jacobian J(-) for NDAEs is non-

trivial. This is due to calculating the partial derivative of
algebraic states whereby an explicit representation of the partial
derivative % for the algebraic states is non-trivial unless
the system dynam1cs are reformulated into an ODE representa-
tion (7). For brevity we show this result in C. We note here that
if we had referred to the use of the NDAE system instead of
the approximate u-NDAE representation—that retains an ODE

— 1}. We apply the chain rule

ij

Oz, 25)
85130 '

Bac
structure—the process of expressing 7 in explicit form for
1

the algebraic variable would have been ndn trivial and hence the
main rationale for such approximate transformation. With that
in mind, we have opted to simulate the dynamics under the
approximate p-NDAE formulation presented in Section I1I. We
present the Jacobian for the different discrete time-models (12a)
that originate from the implicit state-space equations in C. In
specific, we express the partial derivative aa]“ in explicit form
for each of the discrete time-models under study

Having formulated the observability Gramian we now discuss
reformulating the OPP problem P3. One approach for tackling
the combinatorial class of sensor selection problems within
networks, is posing such problem as a set function optimization

problem where for a submodular' objective function, solving
a set maximization problem is a common approach. Intrinsi-
cally, submodularity is considered to be a diminishing returns
property [54]. Accordingly, the OPP in P3 can be posed as
a set function optimization program denoted by P4. The set
of selected sensors is denoted by Z C A,. The mapping of
selected PMUs in set Z is encoded by the matrix C.

— trace (W,(Z, zg)) (262)
—p, ZCN,, (26b)

Submodular set maximization problem is still considered an
NP-hard integer program. A common computationally tractable
approach that achieves a sub-optimal solution for maximizing
monotone increasing” submodular functions can be performed
by a greedy heuristics approach. Solving the OPP under a
greedy approach yields sub-optimal solutions that are at least
(1 —1/e) = 63% of the optimal solution [55].

Considering the above, we revisit the OPP posed in P4 that
is solved as a submodular set optimization program and instead
poseitas an a priori set optimization program. The idea is based
on the a priori observability knowledge from individual sensor
measurements. The proposed framework involves computing
prior singular contribution resulting from each PMU placement
on the observability matrix. After saving such a priori infor-
mation regarding observability contributions, the OPP that is
then posed as a convex integer program (IP) is solved. The
plausibility of such approach stems from the fact that the
observability Gramian W, (-) is a modular® set function. In the
context of linear systems, [12] showed that the observability
matrix retains a modular set function structural property. With
regards to the nonlinearities of model under study in this work,
we prove that the observability matrix under PMU placement
is modular with respect to to decision variable I'. The idea
of considering the modularity of the observability Gramian is
that a modular function forms positive linear combinations of
the single elements in the modular set. This intuitively can be
explained in the sense that modular function and linear functions
are analogous whereby, each element within the set that forms
the modular function has an independent contribution to the
function value. With that in mind, the next proposition formu-
lates the observability matrix W,,(+) as a linear combination of
it’s individual elements.

(P4) minimize
Z

subject to | Z]|

Proposition 1.  The Observability matrix W,(-) can be
written as a linear combination of individual observability
matrices that are based on the individual contribution from
each singular PMU placement as follows

NP
= Z Wa,i(l‘i, :I:o).

i=1

WO(F7 CBO)

A function F : 2V — R is submodular if for every A, B C V, and e €
V\B it holds that A(e|A) > A(e|B). Equivalently, a function F : 2V — R
is submodular if for every A, B C V it holds that F(ANB)+F(AUB) <
F(A) + F(B)

2A set function F : 2V — R is monotone increasing if V A, B C V the
following holds true; A C B — F(A) < F(B)

3 A set function is modular if it is both submodular and supermodular, such
that V A, B C V the following holds true; F(A N B) + F(AU B) =
F(A) + F(B). Supermodularity of a set function F(-) holds true if —F(-)
is submodular.



Accordingly, for each element in set Np we evaluate,
W,,i(Ti,xo) V i = {1, ..., Np}, prior to solving the
OPP problem. The proof for Proposition 1—modularity of the
observability matrix—is presented as follows.

Proof. First we consider W, (T, zo) under full PMU placement
that is C' = C then, the observability matrix can be written as

W,(T, z¢) =J 7 (T, ) J (T, ) (27a)
I, 1" I,
omy oy
—| ™| Lecd [Lec | ™
é):cN.D,l (9931\1.071
o " 27)

We now reformulate (27) to show that it is analogous to a
linear modular function. To do that, we refer to the distributive
property of transpose over the Kronecker product, and thus we
can write [I,, ® C] = (I, ® CT], then by using the mixed-
product property of the Kronecker product we can write

Il eCT][I,&C]=[IlI,|]2[CTC].
——  ——
I, C,
Replacing (28) in (27) and again with the use of the mixed-
product property we can write

(28)

I, 1 I
W,(T, xg) = ol eo,| [Ine @)
Bwl\;o 1 BwI\;O 1
Oxg dxo

we note here that matrix C,, € R"*"™ has I’s on the diago-
nal corresponding to the measured algebraic states and zeros
elsewhere. As such C,, = blkdiag(04¢+26, Ion). With that in
mind, (29) can be rewritten as

T
C’n ITL
oz Oy
Cnamo (91:0
W,(Tzo)= | ol 6o
OTN, 1 oxTN, 1
Cn amo amo

where the only variable in the optimization matrix W (-) is
matrix C = C,, which is a binary diagonal matrix mapping
sensor locations within the power network. With that in mind,
it is now evident that the observability matrix in (30) is linear
with respect to to matrix C,.

As such, we define A as matrix C,, when bus no. 1 is
measured and B as matrix C,, when bus no. 2 is measured.
Then, C,L(A) = blkdiag(04G+QG,IQ,02N_2) and Cn(B) =
blkdiag(04G+26, 02, Iz, 02n_4). Intuitively, the intersection
of the two cases is zero and their union is their sum since C,
has only ones and zeros on it’s diagonal. This concurs with the
definition of modularity and thus the proof is complete. |

Considering the above, the a priori set optimization program
for optimal PMU placement denoted by PS5 can be posed as

(P5) minizmize — trace (W, (Z,z0)) (31a)

subjectto |Z| =p, Z CN,, (31b)

| Steps for the Proposed OPP Program | | Toolbox / Algorithm |

Step 1: Extract network description MATPOWER and
and generator parameters PST

Step 2: Run Optimal power flow to

obtain initial conditions under actual MATPOWER ‘

and assumed disturbances

Step 3: Simulate assumed discrete

. p— Newton-Raphson ‘
system dynamics

Step 4: Estimate actual states under

MHE framework Gauss-Newton ‘

Step 5: Simulate actual system

conditions and build Observability — Newton-Raphson ‘
Gramian
Step 6: Perform OPP f— BNB using Gurobi ‘

Figure 1. Implementation of optimal PMU placement framework for a NDAE
representation of power systems.

where W1(Z,xz9) = vazpl W,.i(Z;, o). Here Z; corre-
sponds to the selected i-th sensor that is encoded in matrix c
that is, Z; is a binary set that has a value of 1 at the i-th selected
sensor location and zeros elsewhere, as such | Z;| = 1.

The concept of a priori optimization has been proposed
before in optimization, in particular combinatorial optimization.
Maros [56] introduced the concept of a priori optimization for
optimizing randomly distributed networks in a computationally
efficient manner. This concept encompasses attaining instance
contributions knowledge prior to solving the combinatorial
problem without having exponentially complex computations
being performed during each optimization instance, i.e, at each
optimization instance the complex computations are already
evaluated. This allows one to perform combinatorial optimiza-
tion with minimal computing power.

Having provided a priori information on an particular in-
stance which in our case is possible given the modular nature
of the observability matrix, P5 which is categorized as a
convex integer program (IP) is considered computational less
exhaustive and therefore scalable to large power networks.

With such formulation, PS can be solved efficiently given
that the observability metric (31a) is evaluating a linear combi-
nation of the individual pre-calculated contributions from each
of selected PMUs. The implementation of this approach for
OPP problem for a power system represented as a NDAE is
summarized in Fig. 1. The validity and effectiveness of this
approach is studied in the subsequent section of this paper.

VI. CASE STUDIES: VALIDATION AND RESULTS

In this section, we first validate the discrete-time u-NDAE
system developed in Section III and then we evaluate various

aspects of the proposed OPP problem PS. The objective is to
obtain an optimal PMU placement for a specified sensor fraction
p that yields an observable system under load/renewables uncer-
tainty. As such, we attempt to answer the following questions:

e Q1: What is an appropriate value for p that offers a good
compromise between numerical stability and accuracy in
simulating system dynamics?



Table T
RSME VALUE OF THE SYSTEM STATES BETWEEN MATLAB odel5i AND
THE DIFFERENT DISCRETIZATION METHODS UTILIZED TO SIMULATE THE
NDAE POWER SYSTEM.

Network Disturbance RSME
ar, BE BDF TRAP
2% 0.0022 | 1.2857 x 10~° | 0.0022
case-9 3% 0.0049 | 2.0379 x 107° | 0.0048
4% 0.0126 | 9.5091 x 10~° | 0.0122
3% 0.2109 0.0134 0.1998
case-39 5% 0.2171 0.0139 0.1908
7% 0.2418 0.0172 0.2053
10% 0.0129 | 1.1396 x 10~° | 0.0131
case-200 15% 0.0185 0.0010 0.0186
20% 0.0227 0.0014 0.0228

e Q2: How does the choice of discretization method affect the
power system simulation, and ultimately, the optimal PMU
placements?

e Q3: Are the optimal PMU placements robust against
load/renewables uncertainty and measurement noise?

e Q4: Does the framework under which we pose the OPP
problem result in modular PMU placements and what is the
significance of such modularity?

The simulations and optimization problem are performed in
MATLAB R2021b running on a Macbook Pro having an Apple
M1 Pro chip with a 10-core CPU and 16 GB of RAM. The
PMU placement program is interfaced on MATLAB through
YALMIP [52] and implemented using a standard brand and
bound method (BNB) with Gurobi [53] as the solver.

We consider three different power networks for the assess-
ment of the proposed approach:

o case-9: Western System Coordinating Council (WSCC) 9-
Bus network (9-bus system with 3 synchronous generators).

o case-39: IEEE 39-Bus network "New-England Power Sys-
tem" (39-bus system with 10 synchronous generators).

e case-200: ACTIVSg200-Bus network "Illinois200 case"
(200-bus system with 49 synchronous generators).

The test cases can be downloaded online from the Illinois
center for a smarter electric grid cases repository [57]. The
generator parameters are extracted from power systems toolbox
(PST) [33] case file data3m9b.m and datane.m for case-9
and case-39 respectively. For case-200 the generator parameters
are chosen based on the ranges provided in the PST toolbox.
Regulation and chest time constants for the generators are
chosen as Rp; = 0.2 Hz/sec and Tcpg; = 0.2 sec, since
they are not included in the PST case file. The steady state
initial conditions for the power system are generated from the
power flow solution obtained from MATPOWER [49]. The
synchronous speed is set to wg = 1207 rad/sec and a power
base of 100 MVA is considered for the power system.

To simulate the discretized descriptor system, we set the
discretization step size h = 0.1 and simulations time ¢t =
30 sec. Starting from the initial steady state conditions ob-
tained from solving the power flow equations we introduce
a load disturbance at t > 0 on initial load (P{,QY). In

this model renewables are modeled as a negative load, that
is renewables are considered to inject power into the network
as given in (3). The total power generation considered within
the 3 cases is (P%,Q%) = (0.2P{,0.2Q}). The perturbed
magnitude under a load disturbance («y) is computed as
(P,QY) = (1 + 2£)(PY,QY). Moreover, the perturbed
magnitude under a renewable disturbance (ag) is computed
s (P2,Q0) = (14 25)(P%,Q%). Under the scope of this
paper, we demonstrate simulating the system dynamics with
load disturbance magnitude «,) varying between {2%, 20%}
of the unperturbed initial loads and with renewable disturbance
magnitude ap = «a, of the unperturbed initial renewable loads.

A. Simulating the discretized power system dynamics

To assess the accuracy of the discretization methods pre-
sented, we first simulate the baseline system dynamics using
MATLAB DAE solver odelbi under the perturbations men-
tioned above. Then we simulate the dynamics using the dis-
cretization methods developed from Section III. Finally, we cal-
culate the root mean square error (RSME) of the discretizations

over time period ¢ which is calculated as RSME := Zt’”%le’z‘
where e, := |&; — x| is the difference between the states
of the two system representation with &y, corresponding to the
discretized system and xj, to the system solved using odelbi.
The setting chosen for odelbi are: (i) absolute tolerance as
1 x 1079, (ii) relative tolerance as 1 x 107%% and (4ii)
maximum step size equal to 0.001. As for the Newton-Raphson
algorithm we set: (7) absolute tolerance on L£o—norm of iteration
convergence as 1072 and (ii) maximum iterations as 10. The
results are summarized in Tab. I. It can be seen that for each
of the three methods and under different load perturbations, the
BDF discretization method outperforms BE and TI methods by
having the lowest RSME values for the state estimates. The
BDF discretization order chosen for the simulations is kg = 3.
Also, under increased load/renewable perturbations the systems
results in larger a RSME value on the state trajectories, this
is expected since the perturbations induce transient conditions
within the system—that exhibit stiff nonlinearities and might
render the system unstable.

B. Validating the discrete -NDAE model

We now move forward with validating the approximate p-
NDAE system. The validity of such approach is demonstrated
for the three case systems by choosing different values for 1 over
arange of i = {1072, 10?}. We note that for any p < 1072
the ©-NDAE system does not converge to a solution, i.e, the
power balance equations are not satisfied. That means for any
value that is less than p < 10~2, the simulation is unstable.

The RSME of the 4-NDAE model over time period ¢ that
is calculated by considering x; corresponding to the NDAE
system and & to the u-NDAE system. The RMSE for the
different cases and for each of the discretization methods over
the range p values is depicted in Fig. 2. It can be seen that
the 4-NDAE system approximates the NDAE with a relatively
small error and this error tends to decrease as p approaches
zero, which is intuitive since with y reaching zero we go back
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Figure 3. Transient differential (w;) and algebraic (0;) state trajectories under load and renewables disturbance: (a) case-9 (ar, = 2%), (b) case-39

(ar, = 5%) ,and (b) case-200 (ay, = 20%).

to having a NDAE. From Fig. 2 one can discern that the RSME
becomes less than 10~2 when p reaches 1076 for the different
discretization methods, in particular, that of TI where it has an
asymptotic behavior when 1 > 1076, We note that, there is an
approximately linear relation between the value of p and the
RMSE. This is evident in the BE and BDF cases, whereas it is
asymptotically linear for TI case. This suggests that accuracy
is directly related the value of p. This means that the value
of 1 bounds the error on the resulting state trajectories under
load/renewables disturbance, thus suggesting the following:

(32)

Having provided experimental validation of the accuracy and
stability of the proposed ©-NDAE model, for the remainder
of this work we choose i = 107° as it produces a sufficient
approximation of the NDAE model. The differential and al-
gebraic state trajectories of the studied power system cases
under the different discretization methods are presented in Fig. 3
under ;1 = 107°. The trajectories show accurate depiction of
state-trajectories under the different discretization methods as
compared with the baseline NDAE model.
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C. Optimal PMU placement: under load/renewables uncer-
tainty and measurement noise

We now solve the optimal PMU placement problem posed
as PS5, with an aim to seek an optimal configuration of PMU
placement represented by set Z* under a maximum number of
PMUs denoted by p. The framework detailing the OPP program
is presented in Fig. 1. To begin, we first initialize a power system
under assumed initial conditions &, that has been perturbed
under load and renewables disturbance aop = a;, = 4% , then
by simulating the discretized measurement model in (12) and
under v = 2% measurement noise over observation horizon
N,, we perform initial state estimation assuming full PMU
placement—that is |Z] = n,. The GN method developed in
Section IV for the MHE is implemented to solve for initial state
estimate &, under optimization problem P2. As for the GN
algorithm constants, we set time step constant b, = 0.1 and
tolerance on residual as 10~%. Then, based on the initial state
estimate the optimization problem PS5 is solved to obtain optimal
set Z* and compute the estimation error resulting from the
optimal PMU placement. The estimation error that is based on
the estimate of the GN algorithm is computed as € := 2o —ol,

lTzoll,
where x, is the actual state that we want to estimate and &,

[l
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(a,d, g) BE discretization, (b, e, h) BDF discretization, and (c, f, %) TI discretization. The figures show a horizontal bar when a PMU is selected for each

of the sensor fractions simulated.

is its estimate computed by solving the nonlinear least squares
problem for the fixed sensor location. It is noteworthy to mention
that PS5 is classified as a convex integer program (IP) since the
presumed initial state estimate & is fixed and binary vector I
is the optimization variable.

We solve the OPP problem for each of test cases and under the
different discretization methods while being constrained by the
number of PMUs (p) that is to be employed within the network.
The maximum number of PMUs to be installed for each of the
test cases is taken as p = {0.2,0.4,0.6,0.8} x n,. That is for
example for case-9 we have n, = 9, then for p = 0.2 x n,, we
want to employ 2 PMUs within the network. The optimal PMU
placements over the generator and load buses node locations
for the each of the test cases and under different discretization
methods are given in Fig. 4.

Three key aspects can be pointed out from the observability-
based PMU placement program solved. The first is through
the coupling of dynamics and algebraic states, load buses are
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selected and thus are included in the optimal set Z*. This is
important since typically only generator buses are potential
locations where PMUs can be installed under the observability-
based approach for ODE power systems. Thus, validating the
use of an NDAE representation of a power system instead of
and ODE one for the observability-based OPP problem. The
second is that the different discretization methods that the OPP
is built upon yield different placements. This can be clearly
identified from Figs. 4a, 4b, and 4c for case-9. The reasons
for such behavior is that each of the discretization methods
change the structure of the observability matrix (22). This is
a result of the partial derivatives that have been derived and are
presented for each of the discretization methods in C and D. One
can notice that the TI method differs from both BDF and BE
by having an additional evaluation of the partial derivative of
the system nonlinearities for an additional previous time-step.
Whereas BE and BDF differ by having &, order of previous time
step dependency. We point out that the placements for BE and



BDF are less different than that as compared to TI method. This
similarity between BE and BDF OPP can be observed for case-
200. The results suggest that indeed, the discretization method
does affect the optimal PMU placements. We note here, that
nonlinear models of observability depend on the operating point
and the simulation model. That is, the nonlinear observability
Gramian depends on the underlying structure of nonlinearities
that are depicted in a dissimilar manner amongst the different
discretizations and hence the different placements. In order to
understand and assess the resulting optimal placements for each
of the methods we compare the resulting estimation error on
both differential and algebraic states in Section VI-D.

The third aspect is that it is evident that modularity is retained
with the increase of PMUSs selected. As depicted in Fig.4 there
exists continuity of the horizontal histograms—that show the
selected PMUs—as the number of PMUs selected increases.
This means that as we increase the number of PMUs p required
to be employed within the network, the same optimal sets Z*
for the previously specified p becomes as subset of the new
OPP. This concurs with the modularity concept that the a priori
optimization problem PS5 is based upon. The significance of
having a modular PMU or sensor placement framework is two-
folds. First, (i) with increased penetration of fuel-free energy
sources—wind plants and solar farms—achieving an observable
system simply requires the same grid phasor measurements
or an additional PMU that augments the preexisting PMUs.
This enables expanding grid operations while retaining system
observability and control. Second, (i%) the scheduling of PMUs
or sensors can be easily performed by activating an incremental
set of sensors AZ*. This offers a fast selection approach when
selecting sensors or PMUs for DSE under physical constraints,
such as cost or availability of sensors—the applicability of such
points is to be explored in future work under this observability-
based approach. On such note, we now asses the robustness of
the optimal PMU placements against load/renewable perturba-
tions and measurement noise.

1) Effect of measurement noise: To investigate the impact
of measurement noise v on the optimal PMU placements, we
vary v within the range of v = {0%, 5%} and under each value
we perform OPP for each of the sensor fractions p. The result-
ing placements show robustness towards measurement noise
meaning that for each case, the same optimal placements were
obtained. This can be explained by how the MHE estimation
framework accounts for noisy measurements, such that the
observability matrix is based on estimated measurements under
noise from the MHE algorithm.

2) Effect of load/renewables uncertainty: As for investigat-
ing the impact of load/renewables uncertainty on the optimal
placements, we vary oy for case-9 and case-39 within the
range of ar, = {0%, 5%} and for case-200 within the range of
ar, = {0%, 20%}. The results also show consistent placements
with varying uncertainty on loads and renewables. This is also
explained by the framework that the OPP is based upon whereby
the major assumption is that initial states and load/renewables
disturbances are not known and thus we start by assuming such
conditions. Then, using the MHE Gauss-Newton algorithm the
actual states under the actual loads/renewables are estimated
and on those estimated states the observability matrix is con-

12

T T T T T
107! E E
o..
= e
g t r=TId P O
_ NS — e
;_2 10 2L g “K\ a.,..:____‘\ .
~. ~ I~ ~<
g @ I9BE T N N e TS~
S - OBDF g ~T g———-n'
g - 9-TRAP - ..
% 39-BE ~
4] 1073 L 9-BDE \\\\ \\" i
SS N\
39-TRAP *\ N
@ 200-BE SON
=X:+ 200-BDF N
\,
10-4 L% 200-TRAP w
1 1 1 1 1
0.2 0.4 0.6 0.8 1.0

Percentage of PMUs
Figure 5. Estimation error € resulting from the optimal PMU placements for
each case and discretization methods.

structed. This means that inherent within the construction of
the observability matrix, such uncertainty is already accounted
for and therefore, offers robustness towards load/renewables
perturbations.

D. Initial state estimation under optimal PMU placement

We perform initial state estimation based on the optimal
PMU configuration chosen for each of the cases. The estimation
error for each case and under each of the discretization methods
is presented in Fig. 5. Intuitively, as we increase the number
of PMUs placed, the estimation error decreases. This relates
to the concept of observability whereby, the more PMUs are
employed or more nodes being sensed, reconstruction of the
initial dynamics and algebraic states becomes more accurate.
This can be seen for each of the network cases in Fig. 5 as the
ratio of PMUs—sensed nodes— is increased. For the case of
PMUs placed that is between {0.2,0.4}, BDF discretization
estimation outperforms those of BE and TI. However, TI
method becomes results in better estimated under increased
PMU fractions. Herein, since we want to limit the number of
PMUs, we consider the fractions that are small, i.e., employ
lower PMUs whilst achieving adequate DSE. Thus based on
the concept of observability and initial state reconstruction, we
refer to BDF discretization method to solve for optimal PMU
placements.

VII. PAPER SUMMARY AND FUTURE WORK

This paper revisits the optimal PMU placement problem for
power systems. The power system is based on a NDAE repre-
sentation which allows coupling of the differential and algebraic
states within the network. The NDAE system is discretized using
BE, BDF, and T1 discretization method and is transformed into a
u-NDAE which retains the mathematical structure of an ODE.
We adopt a MHE approach to perform the OPP problem by
exploiting the modularity of the observability matrix. As such,
we pose the OPP as an a priori set optimization program which
extenuates the computational burden from performing complex
computation at each optimization instance of the combinatorial
placement problem. Given the comprehensive computational
investigation and validation, we answer the posed research
questions in Section VI-C:



o Al: There is a value for p the ensures numerical stability and
solvability of the NDAE power system. Such value bounds
the error on differential and algebraic state trajectories.

o A2: The choice of discretization method is important when
formulating the nonlinear observability-based approach. This
depends on the system nonlinearities and their structure. For
the power system herein, BDF method is suggested for the
OPP problem.

e A3: Indeed, robustness against measurement noise and
load/renewables uncertainty is achieved under the OPP frame-
work. This is inherent with the MHE framework that the
observability-based OPP is built upon.

o A4: Modularity of the optimal PMU placements is observed
when increasing the number of PMUs to be employed within
the network. As mentioned in Section VI-C, this offer com-
putationally efficient solutions for ever-growing power grids
and sensor scheduling applications.

APPENDIX A
IMPLICIT DISCRETE-TIME MODELING
In this section, we present the backward Euler and trape-
zoidal implicit discrete-time models. We define the discretiza-
tion constants A for each of the method as follows

h for BE
h = Bh  for BDF
0.5h for TIL

1) Backward Euler: Being the case that Gear’s method is
a generalization of backward Euler’s discretization method, we
can take the index k; = 1. Then, the ;-NDAE system can be
discretized under BE as

Tk — Td k-1 = ﬁ(f(zk)) (33a)
HTa — Tap—1 = h(g(zk)), (33b)

and the system dynamics under BE method of the u-NDAE
system in a state-space representation can be written as

B,z = Eyxyy + 1, [f (Z’“)] , (34)

g(x)
such that the implicit representation of the BE discrete sys-
tem (33) can be rewritten as

0=z — xg k-1 — hf(zk) (35a)
0= pxqr — pex—1 — hg(xk). (35b)
2) Trapezoidal Implicit: For the TRAP discretization
method, the ;-NDAE system can be written as
Ty — Tak—1 = h(f(zk) + F(ze-1)) (36a)
Tak — Tap—1 = h(g(zr) + g(xr-1)), (36b)
and the system dynamics under TI method of the pu-NDAE
system in a state-space representation can be written as
f(zi) + f(ze-1)
9(zr) + g(xr—1)
such that the implicit representation of the TI discrete sys-
tem (33) can be rewritten as

O0=xqr — Tagr—1— B(f(zk) + f(zr-1)) (38a)

0 = pia i — pa -1 — h(g(xr) + g(@e_1)).  (38b)
Following such discretization schemes, we move forward
with solving the system using Newton-Raphson analogously

E,x, = E,x;_, + hI, N &Y))

to that of Gear’s method with the exception of having different
Jacobian matrices under the iteration increment update.

The Jacobian A (-) of the implicit BE-discretized nonlinear
system has the same representation as of that of Gear’s method.
On the other hand, the Jacobian A/(-) of the implicit TI-
discretized nonlinear system can be written as (39)
I, — hFy,(29) ~hF,, (1)

—hGg, (™) Iy, — hGq, (9)
where Fy,(20) = Fyp,(2)) + Fu,(2",), Fy,(21)) :=
Fo(z)) + Fo(5)). Gaoy(@?) = Go(@) +

a

Goy(x),), and Gy, (21) i= Gy, (@) + G, (21 ).

APPENDIX B
SIMULATING THE IMPLICIT DISCRETE-TIME MODELS

Ay(z)) = , (39)

In this section, we formulate the numerical methodology
for solving the discrete-time NDAE system that will be used as
a basis to validate the p-NDAE system under which the OPP
problem is posed.

Applying Gear’s method to the continuous time NDAE
system (4), the dynamics of the system concatenated as a state-
space form can be rewritten as (40)

k

pr=EY emat |y 0] @

where E € R™ " is a singular matrix of rank = ng4 and is
defined as

E(i,i) = {1 for

s=1

1<i1<ny

0 for nge1 <i<n.

To solve the BDF-discretized NDAE system under Newton-
Raphson we now implicitly represent the discrete-time model
under NR iteration index (7). First, the implicit representation
for the differential equation can we written as (41)

kg
¢>(z,?)) = :nf;)k — Z QT f—s — hf(z,(;))7 41)
s=1
thus the BDF-discretized NDAE system (40) can be implicitly
and succinctly written as (42)

0 =¢(z") (42a)
0 =g(x\"). (42b)

Following same methodology for simulating the system as
with the y-NDAE, the Jacobian A,(-) of the implicit NDAE
system (42) can be written as (43)

[0g(=")  od(=")
(1) 6md 6ma
Ag(z7) = (i) (i)
dg(x)’ og(x,’
T T @)
_ |, - ﬁFxg‘gz,(;‘)) —EFIG(?,;”)
Gq, (mkl ) G., (wkl )

then for each iteration (7) the NR method increment is computed
using equation (44), which is then used to update z(**1) in
equation (45) until convergence is satisfied. Convergence is
calculated using the £-2-norm on the increment.

Az = (A5 [qf’(z%f >] ,

; (44a)
g(z;”)



2t = al) + Az, (452)
2l =2l + Azl (45b)

For brevity we only present the formulation under BDF
discretization, we leave it for interested readers to infer the
formulations for BE and TI methods from the presented work.

APPENDIX C
JACOBIAN MATRIX UNDER EXPLICIT REPRESENTATION

To calculate the Jacobian matrix for the nonlinear DAE
vector valued function that represents the dynamics of the power
system, we adopt a numerical layout notation. Then using the
chain rule we express the Jacobian matrix J(xg) as shown
in equation (23). Given the implicit discretization model used
to s1n1ulate the system we run into a challenge of explicitly
due to the fact that x; appears
on both sides of the discrete system dynamics equations. We
herein show the derivations and calculatlons required to obtain
an explicit representation of = for computing the Jacobian
of the observability matrix W (I‘ xo) = WH(Z, zo).

For Gear’s discretization method, the partial derivative can
be obtained by taking the partial derivative of the discretized
system (40) as follows

k ~ of(x;) oz
ox.; g ox.;_ h O el PO
E J _E g J—s +|: :| {dwjv decjfl ,
8(1&;1 5:21 8£L‘j 1 0 1 d%E:jJ) - 8(:12”11
(46)
which can equivalently be written as
ox; 0] ~0 oz,
o Qs(1) mj - f(x])|m,~ % (47a)
8115]‘,1 8 aiL'j &nj,l
0] 0
0=01+ g( ’)|m I (47b)
813]‘ ’ 833j 1
893]

It is evident from (47) that for the case of differen-
tial variables in equation (47a) can be explicitly formulated

assuming that (I + haf (mJ) |z, aimj ) is invertable. However,
for the algebraic constralnt variables in equation (47b), Oawj

is equal to zero and cannot be explicitly represented. This is
where the ©-NDAE formulation comes into play to allow for
a plausible solution towards developing an observability based
sensor placement for descriptor systems of index-1.

To construct the Jacobian in (23) we represent the partial

derivative 7= explicitly for each of the discretization meth-
ods presented in thlS work. The partial derivative 88 for each
of the discretization method can be written as (48)
6:1:d Ni Bmd Ni
(3%] o (9md‘j,1 6m,,,‘_j_1 (48)
o R . Oz T, )
J— oz j_1 Oxqa,j—1

the partial derivative 86
method as per the followmg

can be explicitly written for BDF

Ox; 8:1: Df( o2
J Ybj=s | 7 Tj Owj_
833] ; Zas + hI, 898(:2 i) . ﬁéj1‘| )
T ; Jo0xTj_1
(49)
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whereby differentiating with respect to the differential and
algebraic state variables separately we obtain (50)

a.’I}dv af (x;) oxg 5 Of () 8wa
axj—Jl = [as(l) +h 6:Ed |w]‘ amd,jil h Bw - |m:l 6:Ea 1:|
(50a)
04 P ogay), Oz, 7 oga;))  O%a
8:3]_]1 = |:h dej ‘a:j 8mdj,1 ;uas(l) +h/ awaj |a:j amaj71:| 5
(50Db)
equation (50) is implicitly stated and here we can explicitly
represent aw:dj and 5_—— as (51)
i . of(x -1
Oz, [Ind —h afm(/ |z ] Qg(1) (51a)
T 0T,
R T
~ Oxq,
pog(xi)) 9% -1
aascaj _ 6mij8:::: é)wdj71_1 ’ (Slb)
Lj-1 [MIna - hﬂh} HCs(1)
let A,, = (I, — h%L mf>|w]) and A,, = (ul,, —

B%hﬂ.), such that A,, and A, are invertable. To ex-
(J/j g

ox a Oz .
plicitly represent % and a: 1—, we replace 5 d’ and
o Taj;_q dj —1
8%] by their explicit representation formulated in (51)
-1
awd,. [And] as(l)Ind
Ox; J1 o -1 G2
J7 h 63:“7 |w1 [A”a} 'uas(l)I”a
) -1 _
6[301'_ h g;::;”:mj I:An(i:l as(l)IndM !
3 == ; (52b)
Tj-1 -1
L [An,] " pesyIn,

Now for the case where k; = 1, that is the case of Backward

Euler, (52) can be written as

_1 - 1
ow; [An,] I, hFy,  [An] " ul,,
ox i—1 ~ 1 B 1

J hGa:d,j [And] I,Ldu 1 [Ana] /_LIna
(53)
Where Fwd 5 = aéfa(!f |wJ ’ Fwa s J aga(:m7) |515] > G:l?d,j =
og(x;)

89(:17])
Dos, |z, and G, ; = |

To represent the partial derivative 8%:1 explicitly for the
TI discrete time model of the system, we start by differentiat-
ing (12a) with respect to to both the differential and algebraic
variables, and by denoting F, af m’) |z, and Go, =

ag wj) | OB Differentiating w1th respect to the differential and

algebralc state variables separately (12a) can be written as (54)

r ~ oxg,
o L, + h(Fwd,j ﬁ + Fwd,j—l)
dj (54a)
awjfl ~ Bzaj
L h(FmaJ am _1 + Fma j—l)
r ~ 8
. (Gt + G, )
ITa; _ . (54b)
85%;1 ~ Oz,
NIna + h(Gma’j ﬁ + Gmayjfl)



then, the explicit representation of - ::dj and aimf” - can be
j—1 aj—
written as
r Oxgq. 7 ~ ~ 1 ~
62@-11 [Ind thd, ] [Ind + thd,j—l]
= ) (552)
ox 7 La,;
dwa]di1 L h(FwaJ 695 —1 +Fwa jil)
[_92a; ] 7 O -1
(')mdj71 h(Gmd ¥ amd + Gwd‘j—l)/'l‘
Oz, B ~ -1 ~ ’
_6ma]~,1 _ —[l’l’na - h’Gwa‘j] I:”na + h’Gwa,j—l] Nna
(55b)
where g, := pl,,. Now, let for Tl method, A = (I, —
hFa,,), AL_ (Lng + hFa,,), Ay, | = (Mna hGs,,)
and A} = (pn, + hGa, ), such that A, , and A,  are
N Omj 1

invertable. Then, can be explicitly formulated and written

for TI discretization 4s (56)
i (45,17 (AL, ] ]
v 1| e (A ) AL ) )
L WGy, (A7, )7 (AT, ]+ Gy |
i tAEa,j]fl (A%, -]

(56)

d
the partial derivative 5_—— 4 is now explicitly defined, as such

we can now concatenate the Jacobian J(-) for observation
horizon N,.
APPENDIX D

PARTIAL DERIVATIVES FOR GEAR’S DISCRETIZATION

To capture the system dynamics for Gear’s discretization
of order kg, We realize that the formulation for the partial
differential 5 is not fully representative for BDF of order
kg except when k: = 1 for reasons that will be obvious shortly.
On the other hand, building the Jacobian by differentiating the
states with respect to k, will allow to fully capture the system
dynamics. Herein we show how this formulation captures the
full system dynamics by taking Gear’s discretization order
kg = 3 as an example. Differentiating the system dynamics
with with respect to «;_; for k; = 3 yields the following

ox; ox 8ac i—2 ox i—3
EL J EJ. J— J
ham, o Enlem gy +a<2> 9z T o,
I, 0 0
of (x;) - ij
7 0 ox
+hl, agg;gj) ' amJ
ox; 15 Ox

(57)
From (57) we notice that if we differentiate the system
dynamics with respect to one prior time step (j—1) and when the
order of k4 is greater than 1, the system dynamics depicted in the
25_2 abg = suffice equal to zero. Utilizing such approach,
the BDF method for any order between 1 < k; < 5 will
represent only that of order 1.
Realizing such shortcoming, we refer to considering Gear’s
discretization order for developing the partial derivatives. As
such, we differentiate the discretized system (40) with respect
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to kg in order to capture the full system dynamics. For £, = 3
the partial derivative can be written as (58)

ox; 0x;j_1 0xi_o oxi_3
E J —E J J
“awj, ( 1)8 )({917];3 +C¥(3) Ba:j,g)
I,
of (z;) ox;
T Ox; %jOox;_
+hily, 29(z,), oz, | -
3mj T j 8mj 3
(58)
Ox;i_1 Oxj_1 Ox;i_o
where 8:1:] = ij 2 ij 3"

Taking j = k, = 3, we now have defined dwd as (58) and
b = g:"’ g:l Such that am? and am; are calculated using
the formulation presented in (52).

Now, for j > 2k, that is in this case j > 6, we use the chain
rule to compute the j-th derivative with respect to x as follows

(%2 ox; ' oxy, 7 (59)

8:c0 81’]’7}% 8330
and for k, < j < 2k, that is in this case 3 < j < 6, we
represent the j-th derivative for j = 4 and j = 5 with respect
to x( respectively as follows

Oxo

0wy _ Omy Oz (60a)
6330 8w1 8330
0 dxs Oxs O
Oy _ Ows 023 Oy (60b)
81:0 8w2 8331 8(13()

Such that, 8"”5 and a“"‘ are calculated from (58). Given such

formulation, the Jacoblan for Gear’s discretization method is
able to depict system dynamics for k, > 1.
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