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AbstractÐTo provide real-time visibility of physics-based
states, phasor measurement units (PMUs) are deployed through-
out power networks. PMU data enable real-time grid monitoring
and controlÐand is essential in transitioning to smarter grids.
Various considerations are taken into account when determining
the geographic, optimal PMU placements (OPP). This paper
focuses on the control-theoretic, observability aspect of OPP. A
myriad of studies have investigated observability-based formu-
lations to determine the OPP within a transmission network.
However, they have mostly adopted a simplified representation
of system dynamics, ignored basic algebraic equations that model
power flows, disregarded including renewables such as solar
and wind, and did not model their uncertainty. Consequently,
this paper revisits the observability-based OPP problem by
addressing the literature’s limitations. A nonlinear differential al-
gebraic representation (NDAE) of the power system is considered
and implicitly discretizedÐusing various different discretization
approachesÐwhile explicitly accounting for uncertainty. A mov-
ing horizon estimation approach is explored to reconstruct the
joint differential and algebraic initial states of the system, as
a gateway to the OPP problem which is then formulated as a
computationally tractable integer program (IP). Comprehensive
numerical simulations on standard power networks are con-
ducted to validate various aspects of this approach and test its
robustness to various dynamical conditions.

Index TermsÐPower system modeling, phasor measurements,
nonlinear differential algebraic models, nonlinear observability,
moving horizon estimation, optimal PMU placement

I. INTRODUCTION, MOTIVATION AND PAPER

CONTRIBUTIONS

A. Motivation

W
ITHIN recent years, there has been a trend of shifting from

fuel-based energy generation to fuel-free, renewables.

This transition has imposed a challenge on preserving stable

grid operations [1]. To enable stable and secure power system

operations, grid monitoring is performed by the supervisory

and data acquisition (SCADA) system. [2]. However, SCADA

measurements cannot fully capture the dynamics of the power

system under transient conditions due to slow system update

rates [3]±[5]. As such, more elaborate real-time system monitor-

ing is required to perform state estimation and control. Dynamic

state estimation (DSE) from real-time measurements allows

for reconstructing system dynamics, thereby enabling stability

predictions and control. In order to achieve an observable

system for DSE, Phasor measurement units (PMUs) are installed

within the grid in order to provide real-time high-resolution

measurements [6]. Albeit a system can have PMUs allocated

to each bus and achieve complete observability, this is not
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economical [7]. Thus, it is necessary to solve for optimal PMU

placement (OPP) posed as a constraint optimization problem

whilst achieving observability [4].

Previous studies have focused on the PMU placement prob-

lem considering steady state estimation (SSE). Nonetheless,

such methods that are based on steady state operating conditions

are unsuitable for power systems for-which exhibit considerable

dynamic changes [8]. Moreover, SSE based sensor placement

is mainly based on topological observability and therefore,

neglects important parameters [5]. A comprehensive survey on

the different approaches that deal with OPP under topological

observability in power systems are presented in [9], [10].

Herein, we focus on formulating the OPP from an

observability-theoretic perspective. Meaning that the placement

problem is posed so that the system is observable and therefore,

control and stability predictions under DSE is achievable [11].

Howbeit, current literature that has addressed the combinato-

rial observability-based PMU placement problem in nonlinear

power networks establish that such sensor selection problem (i)
is not well understood and is solved via a heuristics methods

that becomes unfeasible for large networks [12] and (ii) is still

considered an open problem for a nonlinear representation of the

power system [13]Ðgiven the complexity of the nonlinearities

that are evident in the observability analysis of the system.

B. Literature review

A primary step in developing an OPP program is quantifying

the observability of the dynamic system. This quantification

for nonlinear networks can be approached under several for-

mulations. One approach is substituting the nonlinearities by

first order linear approximations [14], [15]. This approach

yields inaccurate observability-based analysis under uncertain-

ties that change the operating conditions for which the linearized

dynamics are valid. Other prevalent approaches include the

use of Lie derivatives and differential embedding to construct

the observability matrix [16], [17]. However, such formula-

tions do not guarantee optimal sensor selection for network

observability [13]. Furthermore, quantifying observability in

nonlinear networks can be based on the empirical observability

Gramian [18]±[20]. The positive semi-definite matrix structure

of the empirical observability Gramian which relates energy no-

tions of controllability and observability quantitative metricsÐ

trace, determinant, rank, etc.Ðallows for sensor selection [12].

In [21], the optimal sensor placement for a nonlinear network

is posed as a maximization of the empirical observability

Gramian’s determinant, however for systems that are marginally

observable, this metric results in numerical problems. Moreover,

the formulation results in a mixed integer nonlinear program

which is computationally complex and nontrivial for large

networks. Similarly for a nonlinear power system, the study [5]
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poses the PMU selection problem based on empirical observ-

ability Gramian metrics and albeit good observability under the

optimal PMU placement is obtained however, the OPP (i) is

nonetheless performed under typical flow conditions and then

the robustness of the optimal solution is examined, (ii) is limited

to estimation of dynamic states and not the joint dynamic and

algebraic state estimation, and (iii) is posed as a nonconvex

mixed integer program that is computationally exhaustive. To

tackle the computational complexity of the OPP, the authors

in [12] approach solving the OPP problem by introducing the

idea of leveraging observability Gramian metrics’ submodu-

larity properties. However, this approach yields sub-optimal

placements given it was solved using a greedy approach.

Others studies [22]±[28] have approached the observability-

based OPP problem based on the formulations similar to those

introduced in the survey above [5], [12], [21], while also not con-

sidering all the aforementioned drawbacks. In power systems

control, typically the differential equations are considered in the

system representation of the model, whereas the algebraic equa-

tions are neglected due to the computational burden and overall

stability implications [29]. A complete representation of a power

system includes both differential and algebraic equations. The

advantages of simulating the dynamics of the system under a

complete nonlinear differential algebraic equations (NDAE) for-

mulation are: (i) linking of network dynamics with power flow

equations resulting in an accurate dynamics representation [30],

(ii) modeling load and renewable uncertainties in DSE routines

as a result of incorporating renewables in the system [31],

and (iii) expanding the set of potential measurement buses to

include non-generator buses.

C. Paper contributions and organization

Motivated by the aforementioned limitations, the objective

of this work is to develop an OPP formulation for an NDAE

representation of power system while (i) achieving full observ-

ability under uncertainty from loads and renewables, (ii) jointly

estimating both dynamic and algebraic states of the transmission

network and, and (iii) posing the OPP under a computationally

efficient formulation. It is to the best of our knowledge that

observability-based OPP in power systems that are represented

as a NDAE has not yet been investigated.

Accordingly, we approach formulating the OPP problem on

the basis of leveraging the modularity of the observability

matrix. The main contributions of this work are as follows

• We introduce and validate a structure preserving transfor-

mation that retains the complete NDAE representation while

achieving a nonlinear ordinary differential equations (ODE)

formulation. By using this modelÐdenoted as µ-NDAEÐ

we show that the observability matrix can be defined for

the NDAE power system considered. We also showcase this

model for three different implicit discrete-time modeling

methods: backward differential formula (BDF), backward

Euler (BE) and trapezoidal implicit (TI).

• As a stepping stone for the OPP problem, we reconstruct

the joint dynamic and algebraic initial states by adopting a

moving horizon (MHE) framework. The state estimation is

posed as a nonlinear least-squares problem which we solve

numerically using the Gauss-Newton algorithm.

• We leverage the modularity property of the observability

matrix to pose the OPP as a convex integer program (IP).

Based on the modularity of the observability matrix, a priori

observability information from each PMU placement is ex-

tracted prior to solving the OPP. Such approach extenuates

the computational complexity of an optimization instance

resulting in a computationally tractable approach for PMU

placement in lager networks.

• The validity and effectiveness of this approach are studied

on standard power networks. We show the validity of the

µ-NDAE model under several discretizations and we prove

that the optimal PMU placements for a specific number of

PMUs are subsets of that for a larger number of PMUs, thus

indicating modularity.

A preliminary and partial version of this paper appeared

in [32] without proofs; it included a small case study on the

viability of the proposed OPP approach. In this paper, we

include several theoretical and numerical developments by (i)
extending the proposed approach under 3 implicit discretization

methods, (ii) providing detailed proofs and explicit Jacobian

formulations for building the observability measures for each

method, (iii) and extending the numerical studies to include

OPP on larger power networks.

The remainder of this paper is organized as follows. In Section

II, we introduce the NDAE power system and it’s state-space

formulation. In Section III, we present the different implicit

discretizations of the NDAE system and the µ-NDAE system.

In Section IV, initial state estimation based on a MHE approach

is developed. In Section V, the OPP problem is formulated. The

proposed OPP is studied for several standard power networks

in Section VI. Finally, Section VII concludes the paper.

Paper’s Notation: Let N, R, Rn, and R
p×q denote the set of

natural numbers, real numbers, and real-valued row vectors with

size of n, and p-by-q real matrices respectively. The symbol ⊗
denotes the Kronecker product. The cardinality of a set N is

denoted by |N |. The operators det(A) returns the determinant

of matrix A, trace(A) returns the trace of matrix of matrix A

and blkdiag(A) constructs a block diagonal matrix.

II. NONLINEAR POWER NETWORK DAE MODEL

A power system (N , E) can be represented graphically, where

E ⊆ N × N are the set of transmission lines, N = G ∪ L is

the set of all buses in the network, while G and L are the set of

generator and load buses respectively.

In this work, a NDAE formulation of a power system is

studied. We consider the standard two axis 4th order transient

model of a synchronous generator [33]. This model excludes

exciter dynamics and turbine governor, meaning that each of

the generators has 4 states and 2 control inputs. The dynamics

of a synchronous generator i ∈ G can be written as (1)

δ̇i = ωi − ω0 (1a)

Miω̇i = TMi − PGi −Di(ωi − ω0) (1b)

T
′

d0iĖ
′

i = −xdi

x
′

di

E
′

i +
xdi − x

′

di

x
′

di

vi cos(δi − θi) + Efdi (1c)

TCHiṪMi = TMi −
1

RDi

(ωi − ω0) + Tri, (1d)
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where the time varying components in (1) are: δi the rotor

angle (rad), ωi generator rotor speed (rad/sec), E
′

i generator

transient voltage (pu), TMi generator mechanical torque (pu).
Generator inputs are: Efdi generator internal field voltage (pu),
Tri governor reference signal (pu). Constants in (1) are: Mi is

the rotor inertia constant (pu× sec2), Di is the damping coef-

ficient (pu× sec2), xdi and xqi are the direct-axis synchronous

reactance (pu), x
′

di is the direct-axis transient reactance (pu),
T

′

d0i is the direct-axis open-circuit time constant (sec), TCHi is

the chest valve time constant (sec), RDi is the speed governor

regulation constant (Hz/sec), and ω0 is the synchronous speed

(120π rad/sec).
The algebraic constraints of the power system represent the

relation between the internal states of a synchronous generator

and it’s generated power PGi and QGi i.e, real and reactive

power. The algebraic constraints of the nonlinear descriptor

system can be written as (2) with i ∈ G
PGi =

1
x
′

di

E
′

ivi sin(δi − θi)− xqi−x
′

di

2x
′

dixqi
v2i sin(2(δi − θi)) (2a)

QGi =
1

x
′

di

E
′

ivi cos(δi − θi)− xqi−x
′

di

2x
′

di
xqi

v2i

− xqi−x
′

di

2x
′

dixqi
v2i cos(2(δi − θi).

(2b)

The power balance between the set of generator and load

buses with i ∈ G ∪L can be written as (3) such that, N := |N |
is the number of buses within the transmission network while,

G := |G| and L := |L| are the number of generator and load

buses.

PGi + PLi =

N∑

j=1

vivj(Gij cos θij +Bij sin θij) (3a)

QGi +QLi =
N∑

j=1

vivj(Gij cos θij −Bij sin θij), (3b)

where θij = θi− θj is the bus angle, vi is the bus voltage (pu),
(Gij , Bij) denote respectively the conductance and susceptance

between bus i and j.

Having presented (1)±(3), which depict the physics based

components of the electromechanical transientsÐrepresenting

both the generator dynamics and algebraic constraintsÐthe

state space formulation of the nonlinear descriptor power system

can be written as (4)

generator dynamics : ẋd = f(xd,xa,u) (4a)

algebraic constraints : 0 = g(xd,xa), (4b)

where the dynamic states of the synchronous machine can

be defined as xd := xd(t) = [δ⊤ ω⊤ E
′⊤

TM
⊤]⊤ ∈

R
4G, the algebraic states can be defined as xa := xa(t) =

[P⊤
G Q⊤

G v⊤ θ⊤]⊤ ∈ R
2G+2N and the input of the system

can be defined as u := u(t) = [E⊤
fd T⊤

r ]⊤ ∈ R
2G. Matrix

functions f(·) and g(·) are nonlinear mapping functions such

that, f(·) : R
4G × R

2G × R
2G → R

4G and g(·) : R
4G ×

R
2G × R

2N → R
2G+2N . Based on the NDAE model of the

power network presented above, the next section formulates the

discrete-time model of the NDAE power system.

III. IMPLICIT DISCRETE-TIME MODELING OF POWER

NETWORKS

In this section, we introduce the NDAE formulation referred

to in this work as the µ-NDAE system. The impact of how the

choice of discretization method is on the solution to the OPP is

unclear and to that end we investigate the use of several implicit

discrete-time modeling techniques and embed them with the

OPP formulation.

DAE solvability have been thoroughly presented and investi-

gated in literature. MATLAB is capable of solving DAEs with

the DAE solversÐode15i and ode15s [34]. However, given the

discrete-time modeling approach that the observability-based

OPP is herein based on, we refer to the use of numerical

methods for simulating the NDAE power system. DAEs are

considered unequivocally stiff and in particular, nonlinear power

system models exhibit stiff dynamics [35]. Implicit discretiza-

tion methods when used to simulate stiff dynamics offer a stable

and computational efficient solution as compared with explicit

discretization techniques. Implicit techniques previously used

in the context of discrete-time modeling of power systems

include: backward differential formulas (BDF) known as Gear’s

method [36], implicit Runge-Kutta (IRK) method [13], [37] and

trapezoidal implicit (TI) method [38], [39]. The IRK method is

the most numerically involved. BDF and TI methods have been

shown to be an efficient methods for simulating power systems

for transient stability analysis [40].

A. Discrete-time representation of NDAEs

With that in mind, we investigate the use of three implicit

time-modeling methods (backward Euler (BE), TI, and BDF)Ð

that account for the stiffness and complexity of the NDAEsÐ

for solving the dynamics of system (4). Solving NDAEs using

implicit numerical techniques requires finding a solution to

a set of implicit nonlinear equations, which we implement

using the Newton-Raphson (NR) method. In this section, we

will showcase the discrete-time modeling approach for Gear’s

method.

Gear’s k-step discretization method is generally stable for

BDF discretization index kg in the range of 2 ≤ kg ≤ 5.

For kg = 1, Gear’s method represents BE. Thus, Gear’s

backward differential discretization is a generalization of BE’s

discretization. Accordingly, the discrete-time representation

of (4) under Gear’s method can be written as (5) for time step

k with step size h, such that xk := xkh. We define vectors

zk := [xd,k, xa,k, uk]
⊤ and xk := [xd,k, xa,k]

⊤ for time

step k, and BDF discretization constant h̃ = βh

xd,k −∑kg

s=1 αsxd,k−s

h̃
= f(zk) (5a)

0 = g(xk), (5b)

where the term
∑kg

s=1 αsxd,k−s represents kg previous time

steps, and discretization constants β andαs that depend on order

of index kg are calculated as

β =
( kg∑

s=1

1

s

)−1

, αs = (−1)(s−1)β

kg∑

j=s

1

j

(
j
s

)

. (6)

B. Structure-preserving µ-NDAE Representation

Before introducing the methodology under which we solve

the NDAE systemÐalso referred to as a descriptor system. We

present a mathematical structural transformation to the NDAE,

3



that involves transforming the system in (4) from a NDAE into

a nonlinear ODE representation. A descriptor system’s index

plays an important role in the complexity of the numerical

simulation, whereby the higher an index, the more difficult it is

to run the system [31]. The index of the NDAE system is related

to it’s algebraic equations and refers to the overall equivalency

a NDAE has to an ODE [41]. The index-n of a NDAE system

can be defined as 1.

Definition 1. The descriptor system (1)-(3) is said to be of

index-1 if, the DAEs can be converted into a system of ODEs

by differentiating the system with respect to independent time

variable (t) only once. That being said, the index-n of the

descriptor system is the number of times needed to differentiate

the DAEs to obtain system of ODEs.

For the descriptor system (1)-(3), it can be shown that the

system is of index-1 [30], [40]. The implicit function theorem

can be used to transform system (4) from a DAE to an ODE

structure [42]. Applying the aforementioned theorem and differ-

entiating (4b) with respect to time we can obtain a NDAE model

that is structurally equivalent to an ODE model and written as (7)

ẋd = f(xd,xa,u) (7a)

ẋa = g̃(xd,xa,u) = −(Gxa
)−1Gxd

f(xd,xa,u), (7b)

where matrix Gxa
= ∂g(xd,xa)

∂xa
and matrix Gxd

= ∂g(xd,xa)
∂xd

.

With that in mind, we now discuss the rationale behind

introducing an approximate transformation rather than the for-

mulation presented in (7). We note here that the notion of

transforming the NDAE system into an nonlinear ODE model

is for reasons beyond numerical simulation and solvability.

Howbeit a plethora of numerical methods have been developed

to solve DAE systems particular DAEs of index-1 [43]. Herein,

we are concerned with the aspect of observability for descrip-

tor systems. In [44] the concept of algebraic observability

is introduced, which formed a local observability definition

for DAEs. The study related algebraic observability and local

observability through a concept of regulating trajectory. This

requires linearizing the NDAE system and writing it in an

equivalent ODE system. Another study [45] tackled observer

design within descriptor systems and formulated the concept of

observability using Lie derivatives, however this was validated

on a small scale system and was considered to be mathematically

limited.

Granted that there is no conventional method in studying ob-

servability of NDAEs, we approach assessing the observability

of a descriptor system (4) by representing the dynamics in an

approximate ODE formulation that we refer to as µ-NDAE.

Instead of using the implicit function theorem to represent the

power system as (7)Ðthat is computational expensive due to the

existence of the partial derivative Gxa
and its inverseÐthe left

hand side is replaced in equation (4b) by µẋa such that µ is a

relatively small number which simulates the system’s dynamics

with a negligible error between the two representations while

satisfying the power flow constraint equations. Therefore, the

stability of the µ-NDAE is directly related to the value of µ
chosen and does not depend on algebraic constraints g(·), since

g(·) is of zero value. This means that the error that bounds the

µ-NDAE is linearly proportional to the value of µ.

With the proposed approximation, the system is represented

as an ODE, albeit without formulating unnecessary computa-

tions. The plausibility of such approximation is viable given

the low index of the power system modelÐi.e, requiring one

order of differentiation to become an ODE. The validity of such

approximation is presented in Section VI for the implicit time-

models under which the discretized dynamics are simulated.

Given such µ-NDAE approximation, the discrete-time repre-

sentation of the power system in (5) can be rewritten in implicit

form as (8) denoted by ϕ(zk,xk−s) := ϕ(zk) such that,

0 = xd,k − Σ
kg

s=1αsxd,k−s − h̃f(zk) (8a)

0 = µxa,k − µΣ
kg

s=1αsxa,k−s − h̃g(xk). (8b)

C. NDAE numerical solvability: Newton-Raphson Method

The solvability of the discretized system in (8) involves

finding a solution to a set of implicit nonlinear equations that is,

finding xd and xa for each time step k. The NR method [40],

[46] is implemented at each time-step to solve the set of

equations under iteration index (i). The method is iterated until a

relatively small error on the L2±norm of the iteration increment

is achieved.

Based on such implicit nature of the µ-NDAE, we move

forward with solving the system using NR method. First we

represent (8) as (9) that is under iteration index (i) which

depicts the convergence of NR’s method. We denote (9) as

ϕ(z
(i)
k ,xk−s) := ϕ(z

(i)
k ), where z

(i)
k := [x

(i)
d,k,x

(i)
a,k,u

(i)
k ]

thereby retaining the same definition as zk however now under

the NR iteration index (i),

0 = x
(i)
d,k − Σ

kg

s=1αsxd,k−s − h̃f(z
(i)
k ) (9a)

0 = µx
(i)
a,k − µΣ

kg

s=1αsxa,k−s − h̃g(x
(i)
k ). (9b)

To ensure solution convergence for each time step, the

Jacobian of the nonlinear dynamics in (8) is evaluated. Such that,

at each time step k the increment ∆x
(i)
k Ðwhich is a function

of the JacobianÐis evaluated and then is used to update state

variable x
(i+1)
k = x

(i)
k +∆x

(i)
k for each iteration (i) until the

convergence criterion is satisfied. Once NR method converges,

time step k advances until the dynamics over time span (t) is

simulated. The iteration increment ∆x
(i)
k can be written as (10)

∆x
(i)
k =

[

Ag(z
(i)
k )

]−1 [

ϕ(z
(i)
k )

]

, (10)

where the Jacobian Ag(z
(i)
k ) =

[
∂φ(z

(i)
k

)

∂x

]

can be represented

as (11)

Ag(z
(i)
k ) =

[

Ind
− h̃Fxd

(z
(i)
k ) −h̃Fxa

(z
(i)
k )

−h̃Gxd
(x

(i)
k ) µIna

− h̃Gxa
(x

(i)
k )

]

.

(11)

We define nd := 4G as the number of differential states, na :=
2G + 2N as the number of algebraic states, n := nd + na

as the number of differential and algebraic states. The matrix

Fxd
∈ R

nd×nd represents the Jacobian of (9a) with respect to

state variable xd, matrix Fxa
∈ R

nd×na represents the Jacobian

of (9a) with respect to algebraic variables xa, matrix Gxd
∈

R
na×nd represents the Jacobian of (9b) with respect to state

variables xd and matrix Gxa
∈ R

na×nd represents the Jacobian

of (9b) with respect to algebraic variables xa. Matrix Ind
is

4



an identity matrix of dimension similar to Fxd
and Ina

is an

identity matrix of size similar to Gxa
.

The discrete-time models under BE and TI discretization

methods are presented in A. The methodology for solving the

NDAE representation of the power system that will be later used

to validate the µ-NDAE approximation is presented in B.

IV. INITIAL STATE ESTIMATION: A MHE APPROACH

In this section, we develop the framework for moving

horizon state estimation (MHE) that is the basis of the OPP

problem. Based on the discretized time-models developed in

Section III, the discrete-time power system dynamics with

measurements can be represented as

Eµxk =







Eµxk−1 + h̃In

[

f(zk)

g(xk)

]

for BE,

Eµ

∑kg

s=1 αsxk−s + h̃In

[

f(zk)

g(xk)

]

for BDF,

Eµxk−1 + h̃In

[

f(zk) + f(zk−1)

g(xk) + g(xk−1)

]

for TI,

(12a)

yk = C̃xk + Γvk, (12b)

where Eµ ∈ R
n×n is a diagonal matrix that has ones on its

diagonal for xd and µ for xa. Diagonal matrix Γ defines the

placement of PMUs within the network such thatΓ := diag(γz)
and γz = [0, 1]p whereby, γz = 1, if a PMU bus is selected

and γz = 0, otherwise. Under such measurement model, we

define Np ⊆ N as the set of buses at which PMUs can be

installed, such that |Np| := Np. We emphasize that since a full

representation of the power system is being modeledÐthen,

Np = NÐand thus includes both generator and non-generator

buses. The matrix C̃ := ΓC ∈ R
np×n represents the mapping

of states variables under the selected PMU configuration. For

the measurement model herein, C̃ measures np states [v⊤ θ⊤]⊤

where np := 2Np represents the number of measured states.

Variable p ≤ Np denotes the number of selected PMUs within

the transmission network and vk ∈ R
np is the measurement

noise. Discretization constant h̃ for BE and TI discretization

methods is defined in A.

Considering the discretized state-space measurement model

with PMU placement presented in (12), we now introduce

the MHE framework under which the observability-based OPP

is postulated. The OPP program under the MHE framework

utilized is based on the concept of observability for stiff

nonlinear networks developed in [13]. The rationale behind

referring to this approach is that it (i) adopts an simple open-

loop MHE formulation, (ii) allows to study the influence

of observation horizon window on state estimation accuracy,

(iii) is intrinsically robust against measurement noise [47] and

(iv) as compared with empirical observability Gramian and

other approaches mentioned earlier in Section I, this methodÐ

as argued by [13]Ðis the most scalable approach for sensor

selection within stiff nonlinear networks. Such approach has

also been investigated on traffic networks applications, refer

to [48].

To that end, we develop the observability based analysis

through a MHE approach. To begin, we define an observation

window equal to No discrete measurements. Then, we introduce

a nonlinear vector function of the initial state h(Γ,x0) :=
h(x0) : Rnp × R

n → R
np . The objective is to minimize the

nonlinear least-square error on h(·) which is posed as P1

(P1) minimize
x0

||h(x0)||22 (13a)

subject to x0 ≤ x0 ≤ x0, (13b)

where x0 and x0 are the lower and upper bounds on initial state

variables. For power systems, the upper and lower bounds on

algebraic variables are obtained from MATPOWER [49]. The

vector function h(·) represented in (14) is defined as h(x0) :=
y(x0)−w(Γ,x0). Such that, the set of observations over No of

the discretized µ-NDAE is represented by vector y(x0) ∈ R
np

and the nonlinear mapping vector function of the dynamics and

algebraic states is represented by w(Γ,x0) := w(x0) : R
np ×

R
n → R

np , as such vector function h(·) can be written as







h(x0)
h(x1)

...

h(xNo−1)







:=








y0

y1

...

yNo−1







−








C̃x0

C̃x1

...

C̃xNo−1







. (14)

Remark 1. The vector g(·) in is in fact a function of initial

state x0 := x(0), since the k-th state xk := x(k)Ðas can

be observed from (12b)Ðis coupled to initial state x0 through

the postulated discrete state-space representation.

Indeed for every initial condition x0, it holds true that

h(x0) = 0 such that, y(x0) = w(x0). Therefore, we can

define the observability of a system with respect to the selected

PMU buses as Definition 2.

Definition 2. Uniform observability of system (12) under the

prescribed PMU placement holds true, if for all inputs u(k)
and under a finite measurement horizon No, the mapping g(·)
defined in (14) is injective with respect to x0.

That being said, we can say that for the system to be observ-

able, initial state x0 under a selected sensor placement has to

be uniquely determined for a set of measurements y(x0) over

horizon No. A sufficient condition for g(·) to be injective with

respect to initial state x0, is that the Jacobian of g(·) around x0

is full rank, that is, rank(J(Γ,x0)) = nd +na = n ∀ x0 [50].

A. Gauss-Newton for moving horizon estimation

Under such conditions, we can now solve the nonlinear

least squares objective function (13) by exploiting the discrete

nature of the system. We approach solving the least-squares

optimization problem numerically using the Gauss-Newton

(GN) algorithm. Such algorithm has been demonstrated on

power systems for DSE [24], [51]. The reasons for referring

to a numerical approach rather than utilizing already developed

least-square solvers are two-fold. The first, is that GN algo-

rithm is more computationally efficient and leads to solution

converges faster and second, under the latter existing solvers

approach while considering large networksÐi.e, ACTIVSg200-

bus caseÐMATLAB lsqminorm solver could not converge to

an initial state estimate.
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With that in mind, first to solve P1 using GN we reformulate

the objective and pose it as the minimization of the L2±norm of

the residual function vector r(Γ, q) that is concatenated from

(i) the measurement equation (12b) and (ii) the discretized

µ-NDAE model (12a). The redefined optimization problem is

posed as P2

(P2) minimize
q0

||r(Γ, q)||22, (15)

where the vector q ∈ R
No·n is the concatenation of the dynamic

and algebraic systems simulated over horizon No, whereby, can

be written as q := [x⊤
d,0, x

⊤
a,0, . . . , x

⊤
d,No−1, x

⊤
a,No−1]

⊤. As

such, the residual vector r(Γ, q) := r(q) ∈ R
No·np+No·n is

written as

r(q) :=

[
ry
rx

]

, (16)

where vector ry := h(x0) = [r⊤y0
. . . r⊤yNo−1

]⊤ ∈ R
No·np

is the residual function of the measurement equation for No

observations that is defined as (17), such that x̂k ∈ R
No·n is

the vector representing the estimated differential and algebraic

states

ry := yk − C̃x̂k, (17)

and vector rx := ϕ(x0) = [r⊤x0
. . . r⊤xNo−1

]⊤ ∈ R
No·n is the

residual of the discretized µ-NDAE model, where rxk
for time

step (k) is defined as

rxk
:=







Eµ(x̂k − x̂k−1)− h̃In

[

f(x̂k)

g(x̂k)

]

for BE,

Eµ(x̂k −∑kg

s=1 αsx̂k−s)− h̃In

[

f(x̂k)

g(x̂k)

]

for BDF,

Eµ(x̂k − x̂k−1)− h̃In

[

f(x̂k) + f(x̂k−1)

g(x̂k) + g(x̂k)

]

for TI.

(18)

Having formed the residual function that is the objective of

optimization problem P2, we move forward with solving the

minimization problem using GN iterative method by updating

state vector q such that (15) is minimized. The GN update for

iteration (i) is given as (19) with a GN step size denoted by hg .

q(i+1) = q(i) − hg

(
Jg(q

(i))⊤Jg(q
(i))

)−1
Jg(q

(i))⊤r(q(i)).
(19)

The Jacobian matrix in (19) of the residual function r(q) is
defined as (20)

Jg(Γ, q
(i)) := Jg(q

(i)) =

[
M

N

]

, (20)

where Jacobian matrix of residual function ry is denoted by

M and defined as M := blkdiag(−C̃) ∈ R
No·np×No·n

while the Jacobian matrix of residual function rx is denoted

by N and defined as N := blkdiag(Ag) ∈ R
No·n×No·n. Here

Ag ∈ R
n×n is the Jacobian of the discretized µ-NDAE (12a)

which is evaluated for observation horizon No and is therefore

dependent on the discretization method. Such that for BE and

BDF discretization method the Jacobian matrix Ag is defined

as (11) and for TI method Ag is defined in A. With the iteration

update defined, Gauss-Newton iterative method is performed

until theL2±norm of the residual (16) is minimized. Algorithm 1

outlines the proposed MHE for initial state estimation using GN

method.

Algorithm 1: MHE via Gauss-Newton Iterations

Input: hg , x0, u0, Γ, tolerance

Output: x̂0

1 Set i = 1 as GN iteration index

2 while L2±norm of the residual ≥ tolerance do

3 Simulate the system dynamics with initial states x0

4 Build the residual function r(q) represented in (16)

5 Calculate the Jacobian Jg(q
(i)) in (20)

6 Perform the GN iteration update on qi+1 in (19)

7 Update GN iteration index i = i+ 1
8 Update initial states x0 → x̂0

9 Calculate L2±norm of the residual (16)

V. OBSERVABILITY-BASED PMU PLACEMENT PROBLEM IN

POWER NETWORKS

In this section, we formulate the observability-based OPP

that is based on the discretized system dynamics and MHE

framework developed in Sections III and IV.

To quantify observability of the µ-NDAE representation of

the power system, the concept of observability through the

observability Gramian is used. Observability metrics that allow

us to numerically quantify observability taking into account

different aspects of the observability Gramian include: the

condition number, rank, smallest eigenvalue, trace and deter-

minant. Interested readers are referred to [5], [12] both of

which presented a more elaborate discussion on the different

metrics that quantify observability of the Gramian matrix. For

the placement problem within the scope of this work, the trace

of the observability Gramian is considered. The trace similar

to the determinant quantifies the average observability in all

directions of the state-space. The determinant is usually also

considered since it is able to measure observability in the noise

space. However, given the MHE approach that the placement

formulation is built upon, redundancy towards noise is already

considered prior to building the observability matrix.

Remark 2. Additional consideration should be given if the

observability Gramian has a large condition number, i.e,

near zero eigenvalues. This implies that observability is ill-

conditioned and that any perturbation to initial state x0 would

change the observability rather significantly.

As such, it is said that the observability Gramian is sen-

sitive to uncertainties. Considering that, we pose OPP as a

maximization of the trace of the observability matrix, while

checking for near-zero eigenvalues. We implement the OPP on

standard optimization interfaces such as YALMIP [52] along

with Gurobi [53] solver. The OPP problem on the discretized

state space measurement model (12) can be defined for a fixed

number of sensorsÐdenoted by pÐas P3

(P3) minimize
Γ

− trace (Wo(Γ,x0)) (21a)

subject to

n∑

i=1

γi = p, γi ∈ {0, 1}p, (21b)

where Wo(·) ∈ R
n×n is the observability Gramian of the non-

linear discretized µ-NDAE system. The observability Gramian
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for a nonlinear descriptor system under a MHE formulation with

PMU placement can be written as

Wo(Γ,x0) = JT (Γ,x0)J(Γ,x0), (22)

where J(·) ∈ R
No·np×n represents the Jacobian of function

h(·) = 0 around x0 for the MHE observation horizon No and

can be defined as

J(Γ,x0) :=
[

In ⊗ C̃
]








In
∂x1

∂x0

...
∂xNo−1

∂x0







, (23)

where
∂xj+1

∂xj
=

∂xj+1

∂xj
|xj

for j = {0, 1, . . . ,No − 1}. (24)

The observability formulation herein maps the sensor place-

ment problem under a quantitative measure of DSE. That being

said, the mapping of sensor location is represented by the matrix

C̃, where under full sensor placementÐthat is when all states

are measuredÐthe observability Gramian Wo(Γ,x0) is max-

imum, Hence, the objective function is minimum. Conversely,

under zero sensingÐthat is C̃ is equal to a zero matrixÐa

maximum error of zero is achieved.

As for calculating the Jacobian in (23), knowledge of

xk ∀ j = {1, . . . ,No − 1} is required. This can be obtained

by simulating the discrete-time µ-NDAE dynamics over No. To

calculate the partial derivatives terms in (23), that is
∂xj+1

∂xj
=

∂xj+1

∂xj
|xj

for j = {0, 1, . . . ,No − 1}. We apply the chain rule

to the j-th partial derivative as follows
∂xj

∂x0
=

∂xj

∂xj−1
. . . ∂x1

∂x0
.

However given the implicit nature of the discretized µ-NDAE

system, the representation of
∂xj

∂x0
for the power system is

not straightforward and depends on the discretization method

followed [13]. For Gear’s method we use the chain rule as

presented in (25). The rationale behind the approach used for

BDF method is described in D.
∂xj

∂x0
=

∂xj

∂xj−kg

. . .
∂xkg

∂x0
. (25)

Moreover, computing the Jacobian J(·) for NDAEs is non-

trivial. This is due to calculating the partial derivative of

algebraic states whereby an explicit representation of the partial

derivative
∂xa,j+1

∂xa,j
for the algebraic states is non-trivial unless

the system dynamics are reformulated into an ODE representa-

tion (7). For brevity we show this result in C. We note here that

if we had referred to the use of the NDAE system instead of

the approximate µ-NDAE representationÐthat retains an ODE

structureÐthe process of expressing
∂xaj

∂xaj−1
in explicit form for

the algebraic variable would have been non-trivial and hence the

main rationale for such approximate transformation. With that

in mind, we have opted to simulate the dynamics under the

approximate µ-NDAE formulation presented in Section III. We

present the Jacobian for the different discrete time-models (12a)

that originate from the implicit state-space equations in C. In

specific, we express the partial derivative
∂xj+1

∂xj
in explicit form

for each of the discrete time-models under study.

Having formulated the observability Gramian we now discuss

reformulating the OPP problem P3. One approach for tackling

the combinatorial class of sensor selection problems within

networks, is posing such problem as a set function optimization

problem where for a submodular1 objective function, solving

a set maximization problem is a common approach. Intrinsi-

cally, submodularity is considered to be a diminishing returns

property [54]. Accordingly, the OPP in P3 can be posed as

a set function optimization program denoted by P4. The set

of selected sensors is denoted by Z ⊆ Np. The mapping of

selected PMUs in set Z is encoded by the matrix C̃.

(P4) minimize
Z

− trace (Wo(Z,x0)) (26a)

subject to |Z| = p, Z ⊆ Np. (26b)

Submodular set maximization problem is still considered an

NP-hard integer program. A common computationally tractable

approach that achieves a sub-optimal solution for maximizing

monotone increasing2 submodular functions can be performed

by a greedy heuristics approach. Solving the OPP under a

greedy approach yields sub-optimal solutions that are at least

(1− 1/e) = 63% of the optimal solution [55].

Considering the above, we revisit the OPP posed in P4 that

is solved as a submodular set optimization program and instead

pose it as an a priori set optimization program. The idea is based

on the a priori observability knowledge from individual sensor

measurements. The proposed framework involves computing

prior singular contribution resulting from each PMU placement

on the observability matrix. After saving such a priori infor-

mation regarding observability contributions, the OPP that is

then posed as a convex integer program (IP) is solved. The

plausibility of such approach stems from the fact that the

observability Gramian Wo(·) is a modular3 set function. In the

context of linear systems, [12] showed that the observability

matrix retains a modular set function structural property. With

regards to the nonlinearities of model under study in this work,

we prove that the observability matrix under PMU placement

is modular with respect to to decision variable Γ. The idea

of considering the modularity of the observability Gramian is

that a modular function forms positive linear combinations of

the single elements in the modular set. This intuitively can be

explained in the sense that modular function and linear functions

are analogous whereby, each element within the set that forms

the modular function has an independent contribution to the

function value. With that in mind, the next proposition formu-

lates the observability matrix Wo(·) as a linear combination of

it’s individual elements.

Proposition 1. The Observability matrix Wo(·) can be

written as a linear combination of individual observability

matrices that are based on the individual contribution from

each singular PMU placement as follows

Wo(Γ,x0) =

Np∑

i=1

Wo,i(Γi,x0).

1A function F : 2V → R is submodular if for every A,B ⊆ V , and e ∈
V \B it holds that ∆(e|A) ≥ ∆(e|B). Equivalently, a function F : 2V → R

is submodular if for every A,B ⊆ V it holds that F(A∩B)+F(A∪B) ≤
F(A) + F(B)

2A set function F : 2V → R is monotone increasing if ∀ A,B ⊆ V the
following holds true; A ⊆ B → F(A) ≤ F(B)

3A set function is modular if it is both submodular and supermodular, such
that ∀ A,B ⊆ V the following holds true; F(A ∩ B) + F(A ∪ B) =
F(A) +F(B). Supermodularity of a set function F(·) holds true if −F(·)
is submodular.
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Accordingly, for each element in set Np we evaluate,

Wo,i(Γi,x0) ∀ i = {1, . . . , Np}, prior to solving the

OPP problem. The proof for Proposition 1Ðmodularity of the

observability matrixÐis presented as follows.

Proof. First we consider Wo(Γ,x0) under full PMU placement

that is C̃ = C then, the observability matrix can be written as

Wo(Γ,x0) =JT (Γ,x0)J(Γ,x0) (27a)

=








In
∂x1

∂x0

...
∂xNo−1

∂x0








⊤

[
In ⊗C

]⊤ [
In ⊗C

]








In
∂x1

∂x0

...
∂xNo−1

∂x0







.

(27b)

We now reformulate (27) to show that it is analogous to a

linear modular function. To do that, we refer to the distributive

property of transpose over the Kronecker product, and thus we

can write
[
In ⊗C

]⊤
=

[
I⊤
n ⊗C⊤

]
, then by using the mixed-

product property of the Kronecker product we can write
[
I⊤
n ⊗C⊤

] [
In ⊗C

]
=

[
I⊤
n In

]

︸ ︷︷ ︸

In

⊗
[
C⊤C

]

︸ ︷︷ ︸

Cn

. (28)

Replacing (28) in (27) and again with the use of the mixed-

product property we can write

Wo(Γ,x0) =
















In
∂x1

∂x0

...
∂xNo−1

∂x0








⊤

⊗Cn















In ⊗








In
∂x1

∂x0

...
∂xNo−1

∂x0














, (29)

we note here that matrix Cn ∈ R
n×n has 1’s on the diago-

nal corresponding to the measured algebraic states and zeros

elsewhere. As such Cn = blkdiag(04G+2G, I2N ). With that in

mind, (29) can be rewritten as

Wo(Γ,x0) =








Cn

Cn
∂x1

∂x0

...

Cn
∂xNo−1

∂x0








⊤ 






In
∂x1

∂x0

...
∂xNo−1

∂x0







, (30)

where the only variable in the optimization matrix W (·) is

matrix C̃ = Cn which is a binary diagonal matrix mapping

sensor locations within the power network. With that in mind,

it is now evident that the observability matrix in (30) is linear

with respect to to matrix Cn.

As such, we define A as matrix Cn when bus no. 1 is

measured and B as matrix Cn when bus no. 2 is measured.

Then, Cn(A) = blkdiag(04G+2G, I2,02N−2) and Cn(B) =
blkdiag(04G+2G,02, I2,02N−4). Intuitively, the intersection

of the two cases is zero and their union is their sum since Cn

has only ones and zeros on it’s diagonal. This concurs with the

definition of modularity and thus the proof is complete. ■

Considering the above, the a priori set optimization program

for optimal PMU placement denoted by P5 can be posed as

(P5) minimize
Z

− trace
(
W 1

o (Z,x0)
)

(31a)

subject to |Z| = p, Z ⊆ Np, (31b)

Step 1: Extract network description 
and generator parameters

MATPOWER and 
PST

Newton-Raphson

Step 2: Run Optimal power flow to 
obtain initial conditions under actual 

and assumed disturbances 

MATPOWER

Step 4: Estimate actual states under 

MHE framework
Gauss-Newton

Step 5: Simulate actual system 

conditions and build Observability 

Gramian

Newton-Raphson

Step 6: Perform OPP BNB using Gurobi

Step 3: Simulate assumed discrete 
system dynamics

Toolbox / AlgorithmSteps for the Proposed OPP Program

Figure 1. Implementation of optimal PMU placement framework for a NDAE
representation of power systems.

where W 1
o (Z,x0) =

∑Np

i=1 Wo,i(Zi,x0). Here Zi corre-

sponds to the selected i-th sensor that is encoded in matrix C̃

that is, Zi is a binary set that has a value of 1 at the i-th selected

sensor location and zeros elsewhere, as such |Zi| = 1.

The concept of a priori optimization has been proposed

before in optimization, in particular combinatorial optimization.

Maros [56] introduced the concept of a priori optimization for

optimizing randomly distributed networks in a computationally

efficient manner. This concept encompasses attaining instance

contributions knowledge prior to solving the combinatorial

problem without having exponentially complex computations

being performed during each optimization instance, i.e, at each

optimization instance the complex computations are already

evaluated. This allows one to perform combinatorial optimiza-

tion with minimal computing power.

Having provided a priori information on an particular in-

stance which in our case is possible given the modular nature

of the observability matrix, P5 which is categorized as a

convex integer program (IP) is considered computational less

exhaustive and therefore scalable to large power networks.

With such formulation, P5 can be solved efficiently given

that the observability metric (31a) is evaluating a linear combi-

nation of the individual pre-calculated contributions from each

of selected PMUs. The implementation of this approach for

OPP problem for a power system represented as a NDAE is

summarized in Fig. 1. The validity and effectiveness of this

approach is studied in the subsequent section of this paper.

VI. CASE STUDIES: VALIDATION AND RESULTS

In this section, we first validate the discrete-time µ-NDAE
system developed in Section III and then we evaluate various

aspects of the proposed OPP problem P5. The objective is to

obtain an optimal PMU placement for a specified sensor fraction

p that yields an observable system under load/renewables uncer-

tainty. As such, we attempt to answer the following questions:

• Q1: What is an appropriate value for µ that offers a good

compromise between numerical stability and accuracy in

simulating system dynamics?
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Table I
RSME VALUE OF THE SYSTEM STATES BETWEEN MATLAB ode15i AND

THE DIFFERENT DISCRETIZATION METHODS UTILIZED TO SIMULATE THE

NDAE POWER SYSTEM.

Network
Disturbance RSME

αL BE BDF TRAP

case-9

2% 0.0022 1.2857× 10
−5

0.0022

3% 0.0049 2.0379× 10
−5

0.0048

4% 0.0126 9.5091× 10
−5

0.0122

case-39

3% 0.2109 0.0134 0.1998

5% 0.2171 0.0139 0.1908

7% 0.2418 0.0172 0.2053

case-200

10% 0.0129 1.1396× 10
−5

0.0131

15% 0.0185 0.0010 0.0186

20% 0.0227 0.0014 0.0228

• Q2: How does the choice of discretization method affect the

power system simulation, and ultimately, the optimal PMU

placements?

• Q3: Are the optimal PMU placements robust against

load/renewables uncertainty and measurement noise?

• Q4: Does the framework under which we pose the OPP

problem result in modular PMU placements and what is the

significance of such modularity?

The simulations and optimization problem are performed in

MATLAB R2021b running on a Macbook Pro having an Apple

M1 Pro chip with a 10-core CPU and 16 GB of RAM. The

PMU placement program is interfaced on MATLAB through

YALMIP [52] and implemented using a standard brand and

bound method (BNB) with Gurobi [53] as the solver.

We consider three different power networks for the assess-

ment of the proposed approach:
• case-9: Western System Coordinating Council (WSCC) 9-

Bus network (9-bus system with 3 synchronous generators).

• case-39: IEEE 39-Bus network "New-England Power Sys-

tem" (39-bus system with 10 synchronous generators).

• case-200: ACTIVSg200-Bus network "Illinois200 case"

(200-bus system with 49 synchronous generators).

The test cases can be downloaded online from the Illinois

center for a smarter electric grid cases repository [57]. The

generator parameters are extracted from power systems toolbox

(PST) [33] case file data3m9b.m and datane.m for case-9
and case-39 respectively. For case-200 the generator parameters

are chosen based on the ranges provided in the PST toolbox.

Regulation and chest time constants for the generators are

chosen as RDi = 0.2 Hz/sec and TCHi = 0.2 sec, since

they are not included in the PST case file. The steady state

initial conditions for the power system are generated from the

power flow solution obtained from MATPOWER [49]. The

synchronous speed is set to ω0 = 120π rad/sec and a power

base of 100 MVA is considered for the power system.

To simulate the discretized descriptor system, we set the

discretization step size h = 0.1 and simulations time t =
30 sec. Starting from the initial steady state conditions ob-

tained from solving the power flow equations we introduce

a load disturbance at t > 0 on initial load (P0
L,Q

0
L). In

this model renewables are modeled as a negative load, that

is renewables are considered to inject power into the network

as given in (3). The total power generation considered within

the 3 cases is (P0
R,Q

0
R) = (0.2P0

L, 0.2Q
0
L). The perturbed

magnitude under a load disturbance (αL) is computed as

(P̃0
L, Q̃

0
L) = (1 + αL

100 )(P
0
L,Q

0
L). Moreover, the perturbed

magnitude under a renewable disturbance (αR) is computed

as (P̃0
r , Q̃

0
r ) = (1 + αR

100 )(P
0
R,Q

0
R). Under the scope of this

paper, we demonstrate simulating the system dynamics with

load disturbance magnitude αL) varying between {2%, 20%}
of the unperturbed initial loads and with renewable disturbance

magnitude αR = αL of the unperturbed initial renewable loads.

A. Simulating the discretized power system dynamics

To assess the accuracy of the discretization methods pre-

sented, we first simulate the baseline system dynamics using

MATLAB DAE solver ode15i under the perturbations men-

tioned above. Then we simulate the dynamics using the dis-

cretization methods developed from Section III. Finally, we cal-

culate the root mean square error (RSME) of the discretizations

over time period t which is calculated as RSME :=

√∑t
k=1 e2

k

t

where ek := |x̃k − xk| is the difference between the states

of the two system representation with x̃k corresponding to the

discretized system and xk to the system solved using ode15i.
The setting chosen for ode15i are: (i) absolute tolerance as

1 × 10−05, (ii) relative tolerance as 1 × 10−04 and (iii)
maximum step size equal to 0.001. As for the Newton-Raphson

algorithm we set: (i) absolute tolerance on L2±norm of iteration

convergence as 10−2 and (ii) maximum iterations as 10. The

results are summarized in Tab. I. It can be seen that for each

of the three methods and under different load perturbations, the

BDF discretization method outperforms BE and TI methods by

having the lowest RSME values for the state estimates. The

BDF discretization order chosen for the simulations is kg = 3.

Also, under increased load/renewable perturbations the systems

results in larger a RSME value on the state trajectories, this

is expected since the perturbations induce transient conditions

within the systemÐthat exhibit stiff nonlinearities and might

render the system unstable.

B. Validating the discrete µ-NDAE model

We now move forward with validating the approximate µ-

NDAE system. The validity of such approach is demonstrated

for the three case systems by choosing different values forµ over

a range of µ = {10−2, 10−9}. We note that for any µ < 10−2

the µ-NDAE system does not converge to a solution, i.e, the

power balance equations are not satisfied. That means for any

value that is less than µ < 10−2, the simulation is unstable.

The RSME of the µ-NDAE model over time period t that

is calculated by considering xk corresponding to the NDAE

system and x̃k to the µ-NDAE system. The RMSE for the

different cases and for each of the discretization methods over

the range µ values is depicted in Fig. 2. It can be seen that

the µ-NDAE system approximates the NDAE with a relatively

small error and this error tends to decrease as µ approaches

zero, which is intuitive since with µ reaching zero we go back
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Figure 2. RMSE on dynamic and algebraic states between the NDAE and µ-NDAE discrete-time representations of the power systems: (a) case-9, (b)
case-39, and (c) case-200.
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Figure 3. Transient differential (ωi) and algebraic (θi) state trajectories under load and renewables disturbance: (a) case-9 (αL = 2%), (b) case-39
(αL = 5%) ,and (b) case-200 (αL = 20%).

to having a NDAE. From Fig. 2 one can discern that the RSME
becomes less than 10−3 when µ reaches 10−6 for the different

discretization methods, in particular, that of TI where it has an

asymptotic behavior when µ ≥ 10−6. We note that, there is an

approximately linear relation between the value of µ and the

RMSE. This is evident in the BE and BDF cases, whereas it is

asymptotically linear for TI case. This suggests that accuracy

is directly related the value of µ. This means that the value

of µ bounds the error on the resulting state trajectories under

load/renewables disturbance, thus suggesting the following:
√
√
√
√

t∑

k=1

e2k
≈
≤ µ

√
t (32)

Having provided experimental validation of the accuracy and

stability of the proposed µ-NDAE model, for the remainder

of this work we choose µ = 10−6 as it produces a sufficient

approximation of the NDAE model. The differential and al-

gebraic state trajectories of the studied power system cases

under the different discretization methods are presented in Fig. 3

under µ = 10−6. The trajectories show accurate depiction of

state-trajectories under the different discretization methods as

compared with the baseline NDAE model.

C. Optimal PMU placement: under load/renewables uncer-

tainty and measurement noise

We now solve the optimal PMU placement problem posed

as P5, with an aim to seek an optimal configuration of PMU

placement represented by set Z∗ under a maximum number of

PMUs denoted by p. The framework detailing the OPP program

is presented in Fig. 1. To begin, we first initialize a power system

under assumed initial conditions x̄0 that has been perturbed

under load and renewables disturbance αR = αL = 4% , then

by simulating the discretized measurement model in (12) and

under v = 2% measurement noise over observation horizon

No, we perform initial state estimation assuming full PMU

placementÐthat is |Z| = np. The GN method developed in

Section IV for the MHE is implemented to solve for initial state

estimate x̂0 under optimization problem P2. As for the GN

algorithm constants, we set time step constant hg = 0.1 and

tolerance on residual as 10−4. Then, based on the initial state

estimate the optimization problem P5 is solved to obtain optimal

set Z∗ and compute the estimation error resulting from the

optimal PMU placement. The estimation error that is based on

the estimate of the GN algorithm is computed as ε :=
∥x̂0−x0∥2

∥x0∥2
,

where xo is the actual state that we want to estimate and x̂o
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Figure 4. Optimal PMU placement for (a, b, c) case-9, (d, e, f) case-39, and (g, h, i) case-200 under different values of PMUs that are to be selected p:
(a, d, g) BE discretization, (b, e, h) BDF discretization, and (c, f, i) TI discretization. The figures show a horizontal bar when a PMU is selected for each
of the sensor fractions simulated.

is its estimate computed by solving the nonlinear least squares

problem for the fixed sensor location. It is noteworthy to mention

that P5 is classified as a convex integer program (IP) since the

presumed initial state estimate x̂0 is fixed and binary vector Γ

is the optimization variable.

We solve the OPP problem for each of test cases and under the

different discretization methods while being constrained by the

number of PMUs (p) that is to be employed within the network.

The maximum number of PMUs to be installed for each of the

test cases is taken as p = {0.2, 0.4, 0.6, 0.8} × np. That is for

example for case-9 we have np = 9, then for p = 0.2× np we

want to employ 2 PMUs within the network. The optimal PMU

placements over the generator and load buses node locations

for the each of the test cases and under different discretization

methods are given in Fig. 4.

Three key aspects can be pointed out from the observability-

based PMU placement program solved. The first is through

the coupling of dynamics and algebraic states, load buses are

selected and thus are included in the optimal set Z∗. This is

important since typically only generator buses are potential

locations where PMUs can be installed under the observability-

based approach for ODE power systems. Thus, validating the

use of an NDAE representation of a power system instead of

and ODE one for the observability-based OPP problem. The

second is that the different discretization methods that the OPP

is built upon yield different placements. This can be clearly

identified from Figs. 4a, 4b, and 4c for case-9. The reasons

for such behavior is that each of the discretization methods

change the structure of the observability matrix (22). This is

a result of the partial derivatives that have been derived and are

presented for each of the discretization methods in C and D. One

can notice that the TI method differs from both BDF and BE

by having an additional evaluation of the partial derivative of

the system nonlinearities for an additional previous time-step.

Whereas BE and BDF differ by having kg order of previous time

step dependency. We point out that the placements for BE and
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BDF are less different than that as compared to TI method. This

similarity between BE and BDF OPP can be observed for case-

200. The results suggest that indeed, the discretization method

does affect the optimal PMU placements. We note here, that

nonlinear models of observability depend on the operating point

and the simulation model. That is, the nonlinear observability

Gramian depends on the underlying structure of nonlinearities

that are depicted in a dissimilar manner amongst the different

discretizations and hence the different placements. In order to

understand and assess the resulting optimal placements for each

of the methods we compare the resulting estimation error on

both differential and algebraic states in Section VI-D.

The third aspect is that it is evident that modularity is retained

with the increase of PMUs selected. As depicted in Fig.4 there

exists continuity of the horizontal histogramsÐthat show the

selected PMUsÐas the number of PMUs selected increases.

This means that as we increase the number of PMUs p required

to be employed within the network, the same optimal sets Z∗

for the previously specified p becomes as subset of the new

OPP. This concurs with the modularity concept that the a priori

optimization problem P5 is based upon. The significance of

having a modular PMU or sensor placement framework is two-

folds. First, (i) with increased penetration of fuel-free energy

sourcesÐwind plants and solar farmsÐachieving an observable

system simply requires the same grid phasor measurements

or an additional PMU that augments the preexisting PMUs.

This enables expanding grid operations while retaining system

observability and control. Second, (ii) the scheduling of PMUs

or sensors can be easily performed by activating an incremental

set of sensors ∆Z∗. This offers a fast selection approach when

selecting sensors or PMUs for DSE under physical constraints,

such as cost or availability of sensorsÐthe applicability of such

points is to be explored in future work under this observability-

based approach. On such note, we now asses the robustness of

the optimal PMU placements against load/renewable perturba-

tions and measurement noise.

1) Effect of measurement noise: To investigate the impact

of measurement noise v on the optimal PMU placements, we

vary v within the range of v = {0%, 5%} and under each value

we perform OPP for each of the sensor fractions p. The result-

ing placements show robustness towards measurement noise

meaning that for each case, the same optimal placements were

obtained. This can be explained by how the MHE estimation

framework accounts for noisy measurements, such that the

observability matrix is based on estimated measurements under

noise from the MHE algorithm.

2) Effect of load/renewables uncertainty: As for investigat-

ing the impact of load/renewables uncertainty on the optimal

placements, we vary αL for case-9 and case-39 within the

range of αL = {0%, 5%} and for case-200 within the range of

αL = {0%, 20%}. The results also show consistent placements

with varying uncertainty on loads and renewables. This is also

explained by the framework that the OPP is based upon whereby

the major assumption is that initial states and load/renewables

disturbances are not known and thus we start by assuming such

conditions. Then, using the MHE Gauss-Newton algorithm the

actual states under the actual loads/renewables are estimated

and on those estimated states the observability matrix is con-
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Figure 5. Estimation error ε resulting from the optimal PMU placements for
each case and discretization methods.

structed. This means that inherent within the construction of

the observability matrix, such uncertainty is already accounted

for and therefore, offers robustness towards load/renewables

perturbations.

D. Initial state estimation under optimal PMU placement

We perform initial state estimation based on the optimal

PMU configuration chosen for each of the cases. The estimation

error for each case and under each of the discretization methods

is presented in Fig. 5. Intuitively, as we increase the number

of PMUs placed, the estimation error decreases. This relates

to the concept of observability whereby, the more PMUs are

employed or more nodes being sensed, reconstruction of the

initial dynamics and algebraic states becomes more accurate.

This can be seen for each of the network cases in Fig. 5 as the

ratio of PMUsÐsensed nodesÐ is increased. For the case of

PMUs placed that is between {0.2, 0.4}, BDF discretization

estimation outperforms those of BE and TI. However, TI

method becomes results in better estimated under increased

PMU fractions. Herein, since we want to limit the number of

PMUs, we consider the fractions that are small, i.e., employ

lower PMUs whilst achieving adequate DSE. Thus based on

the concept of observability and initial state reconstruction, we

refer to BDF discretization method to solve for optimal PMU

placements.

VII. PAPER SUMMARY AND FUTURE WORK

This paper revisits the optimal PMU placement problem for

power systems. The power system is based on a NDAE repre-

sentation which allows coupling of the differential and algebraic

states within the network. The NDAE system is discretized using

BE, BDF, and TI discretization method and is transformed into a

µ-NDAE which retains the mathematical structure of an ODE.

We adopt a MHE approach to perform the OPP problem by

exploiting the modularity of the observability matrix. As such,

we pose the OPP as an a priori set optimization program which

extenuates the computational burden from performing complex

computation at each optimization instance of the combinatorial

placement problem. Given the comprehensive computational

investigation and validation, we answer the posed research

questions in Section VI-C:
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• A1: There is a value for µ the ensures numerical stability and

solvability of the NDAE power system. Such value bounds

the error on differential and algebraic state trajectories.

• A2: The choice of discretization method is important when

formulating the nonlinear observability-based approach. This

depends on the system nonlinearities and their structure. For

the power system herein, BDF method is suggested for the

OPP problem.

• A3: Indeed, robustness against measurement noise and

load/renewables uncertainty is achieved under the OPP frame-

work. This is inherent with the MHE framework that the

observability-based OPP is built upon.

• A4: Modularity of the optimal PMU placements is observed

when increasing the number of PMUs to be employed within

the network. As mentioned in Section VI-C, this offer com-

putationally efficient solutions for ever-growing power grids

and sensor scheduling applications.

APPENDIX A

IMPLICIT DISCRETE-TIME MODELING

In this section, we present the backward Euler and trape-
zoidal implicit discrete-time models. We define the discretiza-

tion constants h̃ for each of the method as follows

h̃ :=







h for BE

βh for BDF

0.5h for TI.

1) Backward Euler: Being the case that Gear’s method is

a generalization of backward Euler’s discretization method, we

can take the index kg = 1. Then, the µ-NDAE system can be

discretized under BE as

xd,k − xd,k−1 = h̃
(
f(zk)

)
(33a)

µxa,k − xa,k−1 = h̃
(
g(xk)

)
, (33b)

and the system dynamics under BE method of the µ-NDAE

system in a state-space representation can be written as

Eµxk = Eµxk−1 + h̃In

[
f(zk)
g(xk)

]

, (34)

such that the implicit representation of the BE discrete sys-

tem (33) can be rewritten as

0= xd,k − xd,k−1 − h̃f(zk) (35a)

0= µxa,k − µxa,k−1 − h̃g(xk). (35b)

2) Trapezoidal Implicit: For the TRAP discretization

method, the µ-NDAE system can be written as

xd,k − xd,k−1 = h̃
(
f(zk) + f(zk−1)

)
(36a)

xa,k − xa,k−1 = h̃
(
g(xk) + g(xk−1)

)
, (36b)

and the system dynamics under TI method of the µ-NDAE

system in a state-space representation can be written as

Eµxk = Eµxk−1 + h̃In

[
f(zk) + f(zk−1)
g(xk) + g(xk−1)

]

, (37)

such that the implicit representation of the TI discrete sys-

tem (33) can be rewritten as

0 = xd,k − xd,k−1 − h̃
(
f(zk) + f(zk−1)

)
(38a)

0 = µxa,k − µxa,k−1 − h̃
(
g(xk) + g(xk−1)

)
. (38b)

Following such discretization schemes, we move forward

with solving the system using Newton-Raphson analogously

to that of Gear’s method with the exception of having different

Jacobian matrices under the iteration increment update.

The Jacobian Ag(·) of the implicit BE-discretized nonlinear

system has the same representation as of that of Gear’s method.

On the other hand, the Jacobian Ag(·) of the implicit TI-

discretized nonlinear system can be written as (39)

Ag(z
(i)
k ) =

[
Ind

− h̃F̃xd
(z(i)) −h̃F̃xa

(z(i))

−h̃G̃xd
(x(i)) µIna

− h̃G̃xa
(x(i))

]

, (39)

where F̃xd
(z(i)) := Fxd

(z
(i)
k ) + Fxd

(z
(i)
k−1), F̃xa

(z(i)) :=

Fxa
(z

(i)
k ) + Fxa

(z
(i)
k−1), G̃xd

(x(i)) := Gxd
(x

(i)
k ) +

Gxd
(x

(i)
k−1), and G̃xa

(x(i)) := Gxa
(x

(i)
k ) +Gxa

(x
(i)
k−1).

APPENDIX B

SIMULATING THE IMPLICIT DISCRETE-TIME MODELS

In this section, we formulate the numerical methodology

for solving the discrete-time NDAE system that will be used as

a basis to validate the µ-NDAE system under which the OPP

problem is posed.

Applying Gear’s method to the continuous time NDAE

system (4), the dynamics of the system concatenated as a state-

space form can be rewritten as (40)

Exk = E

kg∑

s=1

αsxd,k−s +

[

h̃ 0
0 1

] [
f(zk)
g(xk)

]

, (40)

where E ∈ R
n×n is a singular matrix of rank = nd and is

defined as

E(i, i) :=

{

1 for 1 ≤ i ≤ nd

0 for nd+1 ≤ i ≤ n.

To solve the BDF-discretized NDAE system under Newton-

Raphson we now implicitly represent the discrete-time model

under NR iteration index(i). First, the implicit representation

for the differential equation can we written as (41)

ϕ(z
(i)
k ) = x

(i)
d,k −

kg∑

s=1

αsxd,k−s − h̃f(z
(i)
k ), (41)

thus the BDF-discretized NDAE system (40) can be implicitly

and succinctly written as (42)

0 =ϕ(z
(i)
k ) (42a)

0 =g(x
(i)
k ). (42b)

Following same methodology for simulating the system as

with the µ-NDAE, the Jacobian Ag(·) of the implicit NDAE

system (42) can be written as (43)

Ag(z
(i)
k ) =







∂φ(z
(i)
k

)

∂xd

∂φ(z
(i)
k

)

∂xa

∂g(x
(i)
k

)

∂xd

∂g(x
(i)
k

)

∂xa







=

[

Ind
− h̃Fxd

(z
(i)
k ) −h̃Fxa

(z
(i)
k )

Gxd
(x

(i)
k ) Gxa

(x
(i)
k )

]

,

(43)

then for each iteration (i) the NR method increment is computed

using equation (44), which is then used to update x(i+1) in

equation (45) until convergence is satisfied. Convergence is

calculated using the L-2±norm on the increment.

∆x
(i)
k = [Ag(z

(i)
k )]−1

[

ϕ(z
(i)
k )

g(x
(i)
k )

]

, (44a)
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x
(i+1)
d,k = x

(i)
d,k +∆x

(i)
d,k, (45a)

x
(i+1)
a,k = x

(i)
a,k +∆x

(i)
a,k. (45b)

For brevity we only present the formulation under BDF

discretization, we leave it for interested readers to infer the

formulations for BE and TI methods from the presented work.

APPENDIX C

JACOBIAN MATRIX UNDER EXPLICIT REPRESENTATION

To calculate the Jacobian matrix for the nonlinear DAE
vector valued function that represents the dynamics of the power

system, we adopt a numerical layout notation. Then using the

chain rule we express the Jacobian matrix J(x0) as shown

in equation (23). Given the implicit discretization model used

to simulate the system, we run into a challenge of explicitly

representing
∂xj

∂xj−1
. This is due to the fact that xk appears

on both sides of the discrete system dynamics equations. We

herein show the derivations and calculations required to obtain

an explicit representation of
∂xj

∂xj−1
for computing the Jacobian

of the observability matrix Wo(Γ,x0) ≡ W 1
o (Z,x0).

For Gear’s discretization method, the partial derivative can

be obtained by taking the partial derivative of the discretized

system (40) as follows

E
∂xj

∂xj−1
= E

kg∑

s=1

αs

∂xj−s

∂xj−1
+

[

h̃ 0
0 1

] [∂f(xj)
∂xj

|xj

∂xj

∂xj−1
∂g(xj)
∂xj

|xj

∂xj

∂xj−1

]

,

(46)

which can equivalently be written as

∂xj

∂xj−1
= αs(1)

∂xj−1

∂xj−1
+ h̃

∂f(xj)

∂xj

|xj

∂xj

∂xj−1
(47a)

0 = 0+
∂g(xj)

∂xj

|xj

∂xj

∂xj−1
. (47b)

It is evident from (47) that
∂xj

∂xj−1
for the case of differen-

tial variables in equation (47a) can be explicitly formulated

assuming that (I + h̃
∂f(xj)
∂xj

|xj

∂xj

∂xj−1
) is invertable. However,

for the algebraic constraint variables in equation (47b),
∂xj

∂xj−1

is equal to zero and cannot be explicitly represented. This is

where the µ-NDAE formulation comes into play to allow for

a plausible solution towards developing an observability based

sensor placement for descriptor systems of index-1.

To construct the Jacobian in (23) we represent the partial

derivative
∂xj

∂xj−1
explicitly for each of the discretization meth-

ods presented in this work. The partial derivative
∂xj

∂xj−1
for each

of the discretization method can be written as (48)

∂xj

∂xj−1
:=

[
∂xd,j

∂xd,j−1

∂xd,j

∂xa,j−1
∂xa,j

∂xd,j−1

∂xa,j

∂xa,j−1

]

, (48)

the partial derivative
∂xj

∂xj−1
can be explicitly written for BDF

method as per the following

Eµ

∂xj

∂xj−1
=

kg∑

s=1

αsEµ

∂xj−s

∂xj−1
+ h̃In

[
∂f(xj)
∂xj

|xj

∂xj

∂xj−1
∂g(xj)
∂xj

|xj

∂xj

∂xj−1

]

,

(49)

whereby differentiating with respect to the differential and

algebraic state variables separately we obtain (50)

∂xdj

∂xj−1
=

[

αs(1) + h̃
∂f(xj)
∂xdj

|xj

∂xdj

∂xdj−1
h̃
∂f(xj)
∂xaj

|xj

∂xaj

∂xaj−1

]

(50a)

∂xaj

∂xj−1
=

[

h̃
∂g(xj)
∂xdj

|xj

∂xdj

∂xdj−1
µαs(1) + h̃

∂g(xj)
∂xaj

|xj

∂xaj

∂xaj−1

]

,

(50b)

equation (50) is implicitly stated and here we can explicitly

represent
∂xdj

∂xdj−1
and

∂xaj

∂xaj−1
as (51)

∂xdj

∂xj−1
=





[

Ind
− h̃

∂f(xj)
∂xdj

|xj

]−1

αs(1)

h̃
∂f(xj)
∂xaj

|xj

∂xaj

∂xaj−1



 (51a)

∂xaj

∂xj−1
=




h̃
∂g(xj)
∂xdj

|xj

∂xdj

∂xdj−1
µ−1

[

µIna
− h̃

∂g(xj)
∂xaj

|xj

]−1

µαs(1)



 , (51b)

let And
= (Ind

− h̃
∂f(xj)
∂xdj

|xj
) and Ana

= (µIna
−

h̃
∂g(xj)
∂xaj

|xj
), such that And

and Ana
are invertable. To ex-

plicitly represent
∂xdj

∂xaj−1
and

∂xaj

∂xdj−1
, we replace

∂xdj

∂xdj−1
and

∂xaj

∂xaj−1
by their explicit representation formulated in (51)

∂xdj

∂xj−1
=






[
And

]−1
αs(1)Ind

h̃
∂f(xj)
∂xaj

|xj

[
Ana

]−1
µαs(1)Ina




 (52a)

∂xaj

∂xj−1
=






h̃
∂g(xj)
∂xdj

|xj

[
And

]−1
αs(1)Ind

µ−1

[
Ana

]−1
µαs(1)Ina




 , (52b)

Now for the case where kg = 1, that is the case of Backward

Euler, (52) can be written as

∂xj

∂xj−1
=






[
And

]−1
Ind

h̃Fxa,j

[
Ana

]−1
µIna

h̃Gxd,j

[
And

]−1
Ind

µ−1
[
Ana

]−1
µIna




 .

(53)

where Fxd,j
=

∂f(xj)
∂xdj

|xj
, Fxa,j

=
∂f(xj)
∂xaj

|xj
, Gxd,j

=
∂g(xj)
∂xdj

|xj
, and Gxa,j

=
∂g(xj)
∂xaj

|
x

(i)
j

.

To represent the partial derivative
∂xj+1

∂xj
explicitly for the

TI discrete time model of the system, we start by differentiat-

ing (12a) with respect to to both the differential and algebraic

variables, and by denoting Fxj
=

∂f(xj)
∂xj

|xj
and Gxj

=
∂g(xj)
∂xj

|
x

(i)
j

. Differentiating with respect to the differential and

algebraic state variables separately (12a) can be written as (54)

∂xdj

∂xj−1
=







Ind
+ h̃(Fxd,j

∂xdj

∂xdj−1
+ Fxd,j−1

)

h̃(Fxa,j

∂xaj

∂xaj−1
+ Fxa,j−1

)







(54a)

∂xaj

∂xj−1
=







h̃(Gxd,j

∂xdj

∂xdj−1
+Gxd,j−1

)

µIna
+ h̃(Gxa,j

∂xaj

∂xaj−1
+Gxa,j−1

)






, (54b)
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then, the explicit representation of
∂xdj

∂xdj−1
and

∂xaj

∂xaj−1
can be

written as






∂xdj

∂xdj−1

∂xdj

∂xaj−1






=






[

Ind
− h̃Fxd,j

]−1 [
Ind

+ h̃Fxd,j−1

]

h̃(Fxa,j

∂xaj

∂xaj−1
+ Fxa,j−1

)




 (55a)







∂xaj

∂xdj−1

∂xaj

∂xaj−1






=






h̃(Gxd,j

∂xdj

∂xdj−1
+Gxd,j−1

)µ−1

[

µna
− h̃Gxa,j

]−1 [
µna

+ h̃Gxa,j−1

]
µna




 ,

(55b)

where µna
:= µIna

. Now, let for TI method, A−
nd,j

= (Ind
−

h̃Fxd,j
), A+

nd,j
= (Ind

+ h̃Fxd,j
), A−

na,j
= (µna

− h̃Gxa,j
)

and A+
na,j

= (µna
+ h̃Gxa,j

), such that Ana,j
and Ana,j

are

invertable. Then,
∂xj+1

∂xj
can be explicitly formulated and written

for TI discretization as (56)

[
∂xj

∂xj−1

]

=















[
A−

nd,j

]−1 [
A+

nd,j−1

]

h̃(Fxa,j

[
A−

na,j

]−1 [
A+

na,j−1

]
+ Fxa,j−1

)

h̃(Gxd,j

[
A−

nd,j

]−1 [
A+

nd,j−1

]
+Gxd,j−1

)µ−1

[
A−

na,j

]−1 [
A+

na,j−1

]















,

(56)

the partial derivative
∂xdj

∂xdj−1
is now explicitly defined, as such

we can now concatenate the Jacobian J(·) for observation

horizon No.
APPENDIX D

PARTIAL DERIVATIVES FOR GEAR’S DISCRETIZATION

To capture the system dynamics for Gear’s discretization
of order kg , we realize that the formulation for the partial

differential
∂xj

∂xj−1
is not fully representative for BDF of order

kg except when kg = 1 for reasons that will be obvious shortly.

On the other hand, building the Jacobian by differentiating the

states with respect to kg will allow to fully capture the system

dynamics. Herein we show how this formulation captures the

full system dynamics by taking Gear’s discretization order

kg = 3 as an example. Differentiating the system dynamics

with with respect to xj−1 for kg = 3 yields the following

Eµ

∂xj

∂xj−1
=Eµ(α(1)

∂xj−1

∂xj−1
︸ ︷︷ ︸

In

+α(2)
∂xj−2

∂xj−1
︸ ︷︷ ︸

0

+α(3)
∂xj−3

∂xj−1
︸ ︷︷ ︸

0

)

+ h̃In

[
∂f(xj)
∂xj

|xj

∂xj

∂xj−1
∂g(xj)
∂xj

|xj

∂xj

∂xj−1

]

.

(57)

From (57) we notice that if we differentiate the system

dynamics with respect to one prior time step (j−1) and when the

order of kg is greater than 1, the system dynamics depicted in the
∑kg

s=2 αs
∂xj−s

∂xj−1
suffice equal to zero. Utilizing such approach,

the BDF method for any order between 1 ≤ kg ≤ 5 will

represent only that of order 1.

Realizing such shortcoming, we refer to considering Gear’s

discretization order for developing the partial derivatives. As

such, we differentiate the discretized system (40) with respect

to kg in order to capture the full system dynamics. For kg = 3
the partial derivative can be written as (58)

Eµ

∂xj

∂xj−3
=Eµ(α(1)

∂xj−1

∂xj−3
+ α(2)

∂xj−2

∂xj−3
+ α(3)

∂xj−3

∂xj−3
︸ ︷︷ ︸

In

)

+ h̃In

[
∂f(xj)
∂xj

|xj

∂xj

∂xj−3
∂g(xj)
∂xj

|xj

∂xj

∂xj−3

]

,

(58)

where
∂xj−1

∂xj−3
=

∂xj−1

∂xj−2

∂xj−2

∂xj−3
.

Taking j = kg = 3, we now have defined ∂x3

∂x0
as (58) and

∂x2

∂x0
= ∂x2

∂x1

∂x1

∂x0
. Such that ∂x2

∂x1
and ∂x1

∂x0
are calculated using

the formulation presented in (52).

Now, for j ≥ 2kg that is in this case j ≥ 6, we use the chain

rule to compute the j-th derivative with respect to x0 as follows

∂xj

∂x0
=

∂xj

∂xj−kg

. . .
∂xkg

∂x0
, (59)

and for kg < j < 2kg that is in this case 3 < j < 6, we

represent the j-th derivative for j = 4 and j = 5 with respect

to x0 respectively as follows

∂x4

∂x0
=

∂x4

∂x1

∂x1

∂x0
(60a)

∂x5

∂x0
=

∂x5

∂x2

∂x2

∂x1

∂x1

∂x0
. (60b)

Such that, ∂x5

∂x2
and ∂x4

∂x1
are calculated from (58). Given such

formulation, the Jacobian for Gear’s discretization method is

able to depict system dynamics for kg > 1.
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