Study of the Application of Blender for
Simulation of a Closed-loop Image-based
Greenhouse Supplemental Lighting Control

Kip Nieman * Helen Durand **

* Wayne State University, 42 W. Warren Ave. Detroit, MI 48202,
USA (e-mail: kip.nieman@uwayne.edu,).

** Wayne State University, 42 W. Warren Ave. Detroit, MI 48202,
USA (e-mail: helen.durand@uayne.edu)

Abstract: Image-based control and sensing has been applied in a wide variety of next
generation manufacturing fields. Utilizing methods of simulating closed-loop image-based control
may be advantageous for improving control performance and design without the need for an
experimental setup. One software capable of these simulations is the open-source 3D modeling
software Blender, which has many capabilities aided by a Python API. This work explores the
use of Blender as an image-based control test bed, where both the process and the controller
are simulated, in the context of a greenhouse supplemental lighting control system.

Keywords: Simulation tools, Greenhouse control, Model predictive and optimization-based
control, Digital twin development, Modeling, Blender, Ray tracing, 3D imaging

1. INTRODUCTION

Next-generation manufacturing strategies can take advan-
tage of new sensing technologies, such as image-based
sensors and models based on image data, to improve pro-
cess operation. Image-based sensing and control has been
important in applications in a variety of fields, including
in robotics (Mezouar and Chaumette (2002)), automotive
(Trivedi et al. (2007)), aerospace (Scorsoglio et al. (2022)),
and process systems (Yan et al. (2014)) applications. In
these contexts, sensors and image-based controllers are
studied to allow for improved process performance on real
systems. Also desirable are methods of simulating closed-
loop test beds of image-based control, where both the
controller and system are simulated together. Simulations
like this have been applied in many fields, such as, for
example, autonomous vehicles (Aradi (2020)).

One potential software for test beds of closed-loop image-
based controllers is Blender, which is a open-source 3D
computer graphics software with several useful features.
These include that the code is maintained and easy to
download, a user interface for creation and modification of
a virtual 3D geometry, and the inclusion of a Python ap-
plication programming interface (API) for Python coding
and interfacing Blender geometries. The use of Blender in
the process systems engineering field for closed-loop image-
based control has been studied in several contexts. This
includes investigating image-based proportional-integral
(PI) control of the level in a tank (Oyama et al. (2022a)),
a study of cyberattacks on image-based control systems
(Oyama et al. (2022Db)), and a path-finding study for use of
image-based control of an actuated nanorod as a precursor
to image-based control of self-assembly (Leonard et al.
(2024)). Such simulations may help in probing the effects

of modeling and control strategies and investigating the
use of different computing platforms on control operation.

This work seeks to demonstrate and expand upon the
capabilities of Blender with the Python API as a test-bed
for closed-loop image-based control through the study of
a greenhouse supplemental lighting control system. The
overall problem involves the study of a controller that
determines the optimal powers of individual light-emitting
diodes (LEDs), considering sunlight, for a greenhouse that
considers a virtual representation of the process. To rep-
resent the virtual geometry, individual plant leaves are
represented using the Blender image creation tools. Fol-
lowing this, the Python API is used to gather point cloud
information (representing a 3D imaging method), create a
mesh from the point cloud using a triangulation algorithm,
perform ray tracing to model energy absorbed by each
leaf from each LED and the sun, represent growth of
the plant geometry, and solve an optimization problem
that minimizes energy usage and maximizes plant growth
by selecting optimal LED powers. The purpose of these
coding objectives is to demonstrate the broad capabili-
ties of Blender to capture a variety of dynamics, and to
demonstrate how Blender could be used to explore novel
control objectives and strategies. We begin by detailing the
Blender and Python API test bed, explaining an overview
of the workflow. This includes descriptions of the creation
of a sample geometry, the point cloud data collection
and triangulation algorithms, the optimization problem
formulation, the ray tracing model, and a plant growth
strategy. Following this, we discuss the selection of simu-
lation parameters for the ray tracing algorithm, where we
determine the minimum number of vectors for independent
results (ensuring enough vectors are simulated so that the
results do not depend on the number of vectors). Finally,

simulation results from the Blender test bed are presented
and discussed.

2. SIMULATION METHODS

The greenhouse lighting control test bed was created in
Blender and utilizes Python coding. An overview of the
objectives of the code are as follows:

(1) A mock plant geometry was created with the Blender
interface.

(2) A Python code reads node data from the geometry to
create the kind of data that might be gathered from
a 3D imaging technique (e.g., a point cloud).

(3) A Python triangulation code converts the point cloud
data into a triangular mesh consisting of a series of
connected triangles.

(4) A Python code solves an optimization problem to
determine the optimal LED powers based on an
objective function, using a simplified ray tracing
model (denoted as the ‘reduced’ ray tracing model)
to estimate the energy absorbed and growth of the
plant.

(5) Using the LED values from the optimization problem,
a triangulated mesh of the actual geometry, and a
full version of the ray tracing algorithm (the ‘process’
model), the geometry of the process is updated.

The following sections explain these aspects in more detail.
2.1 Plant Geometry, Point Cloud Data, and Triangulation

An arbitrary plant was manually created using the Blender
interface (though the creation of plant geometries can
be automated using the Python API). In this work, the
geometry was created with seven leaves, each created
using sections of ico-spheres that were stretched and
manipulated into leaf-like shapes (see the left image in
Fig. 1 for a rendering of the geometry from Blender).
The result was a geometry with 171 vertices in total.
The geometry was also designed to fit inside a cube
representing the walls of the greenhouse, with dimensions
(in meters) of 4 x 4 x 4 (within coordinates —2 < x < 2,
-2 <y <2 0<z<4). A wireframe representing the
plant geometry is shown in the middle image of Fig. 1.

Next, a section of the code was designed to write the
vertex coordinates from the geometry in Blender to a text
file. The coordinates are taken directly from the Blender
geometry by first selecting each leaf using

leafObj = bpy.data.objects["leafl"]

in Python, which allows for each leaf to be stored as
a variable (in this case, leafl is now represented using
leafObj). Then it is possible to iterate through the vertices
by creating a “for” loop starting with

for local in leaf(Obj.data.vertices:

and print the coordinates to a text file. Note that it is
necessary to convert the coordinates to the global reference
frame before printing to a text file, using the command

global = leafObj.matrix_world @ local.co

where ‘global’ contains the global coordinates within the
“for” loop. By including an additional command to print

U

Fig. 1. LEFT: Plant with seven leaves rendered in Blender.
MIDDLE: Geometry of the actual leaf, represented as
a triangular mesh. RIGHT: The triangulated geome-
try created using the strategy involving the ‘Delau-
nay’ function.

to a text file, this process results in a text file. In this
work, the text file was structured so that each line contains
the (x,y,z) coordinates of every vertex in the plant,
without any information representing the connectivity. For
simplicity, this is treated as a representation of a point
cloud. While this method is not a model of a 3D imaging
method (we are merely reading vertices directly from
the Blender geometry), the flexibility of the Python API
means it would be possible to implement many different
kinds of simulations of 3D imaging hardware and software.

Following this, a section of the code determines the connec-
tivity of the vertex data, connecting nearby points to cre-
ate a triangular mesh. This is accomplished by projecting
each vertex on the xy-plane and then using the ‘Delaunay’
function from the Python Scipy package, which is designed
to create a connected triangular 2D mesh from point
data. The resulting connected vertices are then reunited
with the z-coordinates to create the 3D mesh. After this,
two filtering functions were written that iterate though
every triangle and remove certain triangles that exceed
certain properties. These include triangles that contain
an edge length longer than L,,,, and triangles with a
height less than H,,;,. This is necessary because, without
removing these triangles, all leaves become fused together
(with oddly shaped triangular elements connecting adja-
cent leaves together, in this case making the geometry
bowl-shaped). The results of this process can be seen in the
right image of Fig. 1. Note that triangles were additionally
included to represent the walls, floor, and ceiling of the
growth area (though these are not displayed in Fig. 1).
The resulting plant mesh is not identical to the ‘actual’
geometry and contains some errors introduced by the
filtering functions failing to remove all of the unwanted
elements without error. Overall, even though we have not
simulated 3D imaging, the differences in the mesh and the
actual geometry would also occur in a 3D imaging method
(given the general nature of the Python API, 3D imaging
could be implemented as models in Blender).

2.2 Optimization Problem Formulation

The controller formulation is implemented in the Python
APT and solves the following optimization problem:

NLED Ntri .

C C Zj:l pj
1 § Ty — L2 Meri
i=1 Z]:l a]

~ min
T, 1=1,2,...,nLED

Ntri

s.t. ij Z Emin
j=1

0<x < Tmax, ¢ = 172a -+, MLED

where x;,79 = 1,2,...,n,gp are decision variables of the
optimization problem representing the power of each of the
nrep LEDs (the x; values are also the manipulated inputs
computer by the controller). The objective function con-
tains two terms, each preceded by constants, C; and Cs,
which are used to specify the relative importance of each
term. The first term in the objective function > 7" x;
represents the total amount of energy used by the supple-
mental lighting system, which is minimized. The second

Ttri

ripg
term %‘a] represents the overall energy absorbed per
J

=1

unit area of the plant, which is used as a metric to es-
timate plant growth in the optimization problem, and is
subtracted so it is maximized. The absorbed energy of each
of the ny,; triangles is represented as p;,j = 1,2, ..., Ny,
and the area of each triangle is a;,j = 1,2,...,n44. The
value of Z;.“:r‘l pj, which is found using the ray tracing
algorithm, is representative of the total energy absorbed
by the plant, and FE,,;, represents a desired minimum
amount. Finally, x,.x represents the maximum possible
power applied to each LED. To determine the solution of
this optimization problem, the ‘minimize’ function from
the Python Scipy package was used with the ‘SLSQP’
(Sequential Least Squares Programming) algorithm. Fi-
nally, no specific units of energy are specified in this work.
Instead, the value given to energy is relative to zyax (so if
Tmax = 1 and the plant absorbs an energy of, for example,
2.5, this indicates that the amount of energy absorbed by
the plant is 2.5 times the amount of energy emitted by an
LED).

2.3 Ray Tracing

The purpose of this section is to describe the mathemat-
ics behind the ray tracing simulation, which was imple-
mented using the Blender Python API. This implementa-
tion demonstrates one possible mathematical framework
that can be integrated into a Python simulation, though
given the freedom introduced by the Python API, just
about any mathematics can be implemented. The ray
tracing simulation in this work assumes that a number of
point light sources exist that each emit light with some
radius. The following discusses the vector mathematics
involved in this ray tracing simulation.

Each vector has a starting point A = (g, yo, 20) and an
end point of B = (zy,ys,zs). The vector is defined as

AB =[z;—m0 yr—yo 2y —z0)7, the vector magnitude is

[AB|| = v/Tey = 20)% + @y — 90)% + (7 — 20)% and the

unit vector in the direction of B is B = %—. The
[lAB||

dot product of two vectors Z =lay ay ag T and =
[by by bs]Tis A-B = ayby +asby-+azbs = || A]| ||
and the cross product is X
by aibs — ashi]” = ||A|| ||B||sing. To represent a
vector in three-dimensional space, the parametric equation
of a line is applied:

x=xp+at, y=y,+pPt, z=zL+t (1)
where (21, yr,21) is a point on the line, [« 3 7] is the
direction of the line, and t is the parameter. Each triangle

lies in a two-dimensional plane that can be described by
the following equation:

|| cos 6

= [agbs — azbs azby —

c
Aq
a=—
i A
A
_ZE
b=
a yzﬂ
A

b

Fig. 2. Diagram of determining if a vector intersects a
plane inside of a triangle, utilizing three subtriangles
A, Ag, and A,.

nix+nsy+ngz+k=0 (2)
where [n; ny n3]? is the direction of a vector normal to
the plane, k = —(nixp + naoyp + ngzp) is a constant, and

(xp,yp, zp) is a point on the plane. For each triangle, the
normal vector can be found by taking the cross product
of any two edges. For example, if the three vertices of a
triangle are A, B, and C, the normal vector can be found

as N = AB x AC. Additionally, the area of a triangle can
be found as Area = || N|l.

Combining Eq. 1 and Eq. 2, the following equation for the
parameter t can be found, which represents the value of
the parameter when the vector defined by Eq. 1 intersects
the plane given in Eq. 2:

[ny na na)T - [zr yr 2]t + &
[n1 ng n3]” - [a B AT)

where [n1 ng ng]' is the direction of a normal vector
to the plane and (zr,yr,zr) is a point on the line that
may intersect the plane. If the vector reaches the specified
plane, the value of ¢ given by Eq. 3 will be greater than
zero. Using Eq. 3, the point where the vector intersects
each plane (if it exists) can be found by substituting the ¢
value into Eq. 1.

t=—

]T

Next, it is necessary to determine if the vector intersects
the plane within the triangle. One algorithm that accom-
plishes this (see Shirley et al. (2009)) involves dividing a
triangle into three subtriangles as shown in Fig. 2 (which
shows the case where the intersection lies within the trian-
gle). In Fig. 2, the triangle vertices are denoted as a, b, and
¢, and the intersection point is denoted as i. The areas of
the subtriangles, Aabi, Aaci, and Abci, are denoted as A,

Apg, and A, respectively. Then the ratio of each subtriangle

to the area of Aabc is found as a = ‘L}T", B = %, and

v = %, where A is the area of Aabc. For the point ¢ to

lie within Aabc, the expressions in Eq. 4 must hold:
a,B,7€[0,1], a+B+vy=1 (4)

Following this, the next step is to calculate the direction

of the reflected vector. To accomplish this, first define the

incident vector as I, the unit normal vector to the plant

as ﬁ, and the reflected vector as ﬁ Then the direction of
the reflected vector is:

R=T-2T-M)N -

Fig. 3 demonstrates how Eq. 5 is derived. First, as shown

in the top-right image in Fig. 3, the projection of I onto

R=1-2(I-N)

=)

Fig. 3. Diagram representing the process to find the

direction of the reflected vector R. The projection

of ? onto ﬁ is doubled, and then vector subtraction
is used to find B = I — 2(? . ﬁ)ﬁ (Dorst et al.
(2009)).
X
0 -1 -2 2 1

oY oY
1 1
"2)
%, %,

Fig. 4. Display of vectors emanating from one LED,
displayed with the camera positioned directly above
the plant and rotated so that the view is facing the
ground. LEFT: n, = 5, ng = 5 RIGHT: n, =

10, ng = 10

N is found as (? . ﬁ)ﬁ The bottom-right image in Fig. 3
shows how, if the projection is doubled and the result
is subtracted from I, the result is the equation of the
reflected vector as shown in Eq. 5.

Each LED emits a number of vectors defined by a number
of radial divisions n, (up to a specified radius of rpgp,
which is defined on the z = 0 plane) and angular divisions
ng (where the radius and angle are determined by pro-
jecting the vector onto the zy-plane). This results in each
LED emitting a total of n,ng vectors, where each vector
carries a power of ;/(n,ng) (i = 1,2, ...,n represents the
number corresponding to each LED). Two examples of
vectors emanating from a single LED are shown in Fig. 4.

An additional concern is representing the energy that is
absorbed by a surface (of leaves and the walls of the
growth area, which are represented using triangles). To
account for this, the power of each LED (FE;) is divided
by the number of vectors emitted by that LED (n,ng).
When the vector intersects a triangle, the energy the
triangle absorbes is increased by ax;/(n.ng), where « is
the absorptivity assumed to take a value of @ = 0.5 (as
assumed in Susorova et al. (2013)). The reflected vector is
then assigned a power of (1 — a)x;/(n,ng).

The sun was accounted for by creating a series of vectors
starting on a plane defined by z =4, —2— H <2 <2+ H,
—2—H <y <2+ H (units in meters), where H represents

z z

SRR

Fig. 5. LEFT: Side view of simulated greenhouse with no
overhang. Note how most of the vectors representing
sunlight do not reach the growing area. RIGHT:
Image with overhang in one direction, now with most
of the growing area now illuminated by sunlight.

W

z=

the amount the plane extends beyond the size of the
growing area. In this work, a value of H = 7 was selected.
This overhang H is necessary especially when the sunlight
approaches at an angle, as otherwise much of the growing
area will not be exposed to sunlight (see Fig. 5). Each sun
vector is given a direction by first defining two angles 0y,
and 0syp,, , which are used along with the sun vector start
point (zg, Yo, 4), to determine the point representing where
the sun vector will intersect the floor (z,yy,0) (assuming
it does not intersect a leaf first). Using trigonometry, x;
and yy can be written as zy = z + 4tan(fsyn,) and
yr = y + 4tan(fsun,). The direction of each sun vector

is then found as [z — 2o y; —vo —4]T.
2.4 Plant Growth

A simple plant growth representation was also imple-
mented by utilizing the Python API. Plant growth was
assumed to be equal to the energy flux applied to each
leaf (while this has no basis in reality, actual plant growth
methods could also be simulated in the Python API). To
implement plant growth in Blender, first the optimal LED
energies were determined by utilizing the optimization
problem with the reduced ray tracing model. Next, the
full process ray tracing model with independent values
of Ngr, n,, ng, ng, and n, (discussed in the following
section) is used to determine the energy flux applied to
each individual leaf (denote this as Ejear,). The amount
each leaf is scaled is based on the following equation:

Sleafi = Sleaf.; + Eleafi (6)

where Siear, is the current scaling factor of each leaf. This
can be accomplished by first selecting each leaf in the
geometry using the Python command

obj = bpy.data.objects["leaf1"]

where leafl is the name assigned to a part of the geometry
representing a leaf. Following this, the leaf can be scaled
by entering

obj.scalel[i] = obj.scale[i] + scaleVal

where ‘scaleVal’ = Ejeqr, and @ = 0,1, or 2 (corresponding
to the x, y, or z-direction respectively). In this work, all
three directions are scaled by the same value of Ejeaf, .

2.5 Independence Testing
This section utilizes the Blender API to verify that the

simulation uses a sufficient number of vectors and number
of reflections. This was accomplished by running a series

Energy Absorbed by Plant

0 5] 10 15
Ng

Fig. 6. Independence testing for the number of reflections,
Ng.

Test Number ‘ 1 2 3 4 5 6 7
Ng 0 3 5 7 10 12 15
3 5
3

Ny 10 15 20 25 30

ng 5 10 20 30 40 50
Table 1. Values of the number of reflections
(Ng), the number of radial divisions in vectors
generated for the LED (n,.), and the number of
angular divisions in vectors generated for the
LED (ng) used for the independence testing in
Fig. 6 and Fig. 7. The number of sun vectors

was set to n, = n, = 10 for these tests.

of ray tracing simulations. The objective was to determine
appropriate numbers of vectors from each LED (n, and
ng), the number of reflections (Ng), and the number of sun
vectors (n, and ny). Utilizing too few vectors will result in
inconsistent results. For example, if each LED only uses 4
vectors, it is possible that none of them will intersect any
leaves. A simulation using too many vectors will lead to
excessive computation time. Here, the number of vectors /
reflections is increased and results are plotted. When the
results stop changing (indicated by a ‘leveling off’ on the
plots), the corresponding number of vectors or reflections
is deemed independent. This means that the results are
independent of the number of vectors or reflections used
(hence why this is called ‘independence testing’).

We begin by determining how many vectors each LED
should emit and how many times these vectors should
reflect. This was accomplished using the geometry from the
right image in Fig. 1 and assuming a single (Npgp = 1)
LED located at coordinates (z,y, z) = (0,0,4). A set of ray
tracing simulations was performed using all combinations
of parameters listed in Table 1. In these simulations, the
number of sun vectors was set to n, = n, = 10 with a
total energy of 1. For each combination of n, and ny in
Table 1, a plot was created, where the energy absorbed by
the plant is plotted against the number of reflections Ng.
The plots for all combinations are shown in Fig. 1. While
Fig. 1 does not demonstrate which n, and ng values are
independent, it is helpful for determining an independent
value of Ng. To see this, note that for every combination
of n,. and ng in Fig. 1, the amount of energy absorbed by
the plant approaches a constant value as N increases at
approximately Ng = 7 (a conservative estimate). For this
reason, Ny = 7 is selected as an independent value.

Next, for determining the number of vectors n,. and ng per
LED, the data found using all combinations of parameters
listed in Table 1 was analyzed. This time, for a given value
of Npg, the energy absorbed by the plant versus number

= 0.06 ¢
5 oe%e
D-‘ oo
& 4
o DA Lue Biere
g SR
¢
= 002
>
o0
5} .
=] [y
a4 0
0 500 1000 1500
n, X ng
= 041
3
= .
5 008
e Lo
Zooef "o,
5 Tt e oLt
20041 .
<
£0.02
g ok
0 500 1000 1500
n, X ng
= 041
2
& .
£, 0.08 s
a o0,
goo6f . "
3 < g '
20041 .
<
£50.02
g -
g ob
0 500 1000 1500

n, X ng

Fig. 7. Independence testing for the number of vectors from
one LED. FROM TOP TO BOTTOM: N = 0,5, 10.

of vectors per LED (n, X ng) was plotted. The absorbed
energy results, which are shown in Fig. 7 for the Np = 0,
Ngr =5, and Ng = 15 cases, tend to all approach a similar
value at approximately n, x ng = 1000 (again chosen
conservatively). While there multiple possible values of n,.
and ng which have a product of 1000, in this work, values
of n, = 20 and ny = 50 were selected as independent.

Finally, independence tests were performed to determine
the number of sun vectors in the x-direction (n,) and y-
direction (n,). For these simulations, it was assumed that
ng = n, with LED parameters of Np = 0, n, = 3, and
ng = 3 (small values were chosen because these values
act independent of the number of sun vectors). Values of
Ng = ny = b to ny = n, = 200 were considered, using a
total sun energy of 1, with the resulting energy absorbed
by the plant versus n, x n, plotted in Fig. 8. Looking
at Fig. 8, it can be seen that the value of the energy
absorbed levels off as n, x n, increases. The independence
occurs at approximately ng X ny, = 2 x 10* (again chosen
conservatively), which corresponds to n, = n, = 142
(rounded up to the nearest integer). For this reason, n, =
n, = 142 is used as an independent value.

In summary, Table 2 lists the values for the numbers or
vectors and reflections that were selected as independent
(which are used in the full ray tracing model representing
the actual process), and parameters used in the reduced
ray tracing model (which are used as the model in the
controller).

3. SIMULATED CLOSED-LOOP CONTROL RESULTS

Using the independent simulation parameters determined
in the previous section (see Table 2) and the initial

%107

»
.

.
N .
',"'é,‘.:‘*.,W‘:r:iﬁ:’-t‘_’-‘.‘:’-‘:’.‘w-‘v-'h'

N

N

Energy Absorbed by Plant

o

o
-

2 3 4
Ng X Ny %104

Fig. 8. Independence testing for the number of sun vectors

Full Process Model

Reduced Model
(Independent Results)

Nr 7 0
nr g 20 - 50 = 1000 7-15 =105
Ng Ny 142 - 142 > 2 x 104 30 - 30 = 900

Table 2. Simulation parameters selected for the
reduced and full process ray tracing models.

geometry shown on the right in Fig. 1, an optimal set
of LED powers were determined to achieve a desired
absorbed energy by the plant under selected sunlight
conditions. The parameters used in this simulation are
shown in Table 3. The results of a simulation are listed

Lower bound of absorbed energy Emin = 0.2
Leaf absorptivity a=20.5
Number of LEDs Nrep =9

Maximum LED power Tmaz = 1
Radius of LED light at z =0 rLEp = 1.5
Total power of sun Esun =10
Angle of sun vectors Osun, = Osun, = 30°
Maximum triangle edge length Lmar = 0.3
Minimum triangle height H,,in = 0.01
Scaling constant for energy term C1 =25
Scaling constant for growth term Ca=1

Table 3. Simulation parameters.

in Table 4. The overall power required to achieve at least
Enin = 0.2 energy absorbed by the plant is 1.286, of
which 0.200 (in the reduced model in the controller) and
0.219 (in the full process model) is absorbed by the plant.
Additionally, the energy per unit plant area was 0.111 (in
the reduced model in the controller) and 0.113 (in the full
process model). Finally, Fig. 9 shows the plant before and
after the growth stage.

LED Number | LED Coordinates | Optimal LED Power
1 (-1,-1,4) 0.000
2 (-1,0,4) 0.000
3 (-1,1,4) 0.000
4 (0,—1,4) 0.000
5 (0,0,4) 0.000
6 (0,1,4) 0.286
7 (1,-1,4) 1.000
8 (1,0,4) 0.000
9 (1,1,4) 0.000

Table 4. Optimal LED energies rounded to the
nearest 0.001. The total power usage is 1.286.

ACKNOWLEDGEMENTS

Financial support from the Air Force Office of Scien-
tific Research (award number FA9550-19-1-0059), Michi-

Fig. 9. Render of the plant geometry before (left) and after
(right) applying plant growth.

gan Space Grant Research Consortium (award num-
ber 80NSSC20MO0124), the National Science Founda-
tion (award numbers CNS-1932026, CBET-1839675, and
CBET-2143469), and Wayne State University are grate-
fully acknowledged.

REFERENCES

Aradi, S. (2020). Survey of deep reinforcement learning for
motion planning of autonomous vehicles. IEEE Trans-
actions on Intelligent Transportation Systems, 23(2),
740-759.

Dorst, L., Fontijne, D., and Mann, S. (2009). Geometric
algebra for computer science (revised edition). Elsevier.

Leonard, A.F., Gjonaj, G., Rahman, M., and Durand,
H.E. (2024). Virtual test beds for image-based control
simulations using blender. Processes, 12(2), 279.

Mezouar, Y. and Chaumette, F. (2002). Path planning
for robust image-based control. IEFE transactions on
robotics and autornation, 18(4), 534-549.

Oyama, H., Leonard, A.F., Rahman, M., Gjonaj, G.,
Williamson, M., and Durand, H. (2022a). On-line
process physics tests via lyapunov-based economic
model predictive control and simulation-based testing of
image-based process control. In 2022 American Control
Conference (ACC), 2479-2484. TEEE.

Oyama, H., Messina, D., O’Neill, R., Cherney, S., Rahman,
M., Rangan, K.K., Gjonaj, G., and Durand, H. (2022b).
Test methods for image-based information in next-
generation manufacturing. IFAC-PapersOnLine, 55(7),
73-T8.

Scorsoglio, A., D’Ambrosio, A., Ghilardi, L., Gaudet,
B., Curti, F., and Furfaro, R. (2022). Image-based
deep reinforcement meta-learning for autonomous lunar
landing. Journal of Spacecraft and Rockets, 59(1), 153~
165.

Shirley, P., Ashikhmin, M., and Marschner, S. (2009).
Fundamentals of computer graphics. AK Peters/CRC
Press.

Susorova, I., Angulo, M., Bahrami, P., and Stephens,
B. (2013). A model of vegetated exterior facades for
evaluation of wall thermal performance. Building and
FEnvironment, 67, 1-13.

Trivedi, M.M., Gandhi, T., and McCall, J. (2007).
Looking-in and looking-out of a vehicle: Computer-
vision-based enhanced vehicle safety. IEFFEE Transac-
tions on Intelligent Transportation Systems, 8(1), 108—
120.

Yan, H., Paynabar, K., and Shi, J. (2014). Image-based
process monitoring using low-rank tensor decomposi-
tion. IEEE Transactions on Automation Science and
Engineering, 12(1), 216-227.

