COMPARISON PROBLEMS FOR RADON TRANSFORMS

ALEXANDER KOLDOBSKY, MICHAEL ROYSDON AND ARTEM ZVAVITCH

ABSTRACT. Given two non-negative functions f and g such that the Radon transform of
f is pointwise smaller than the Radon transform of g, does it follow that the LP-norm of
f is smaller than the LP-norm of g for a given p > 1?7 We consider this problem for the
classical and spherical Radon transforms. In both cases we point out classes of functions
for which the answer is affirmative, and show that in general the answer is negative if the
functions do not belong to these classes. The results are in the spirit of the solution of
the Busemann-Petty problem from convex geometry, and the classes of functions that we
introduce generalize the class of intersection bodies introduced by Lutwak in 1988. We also
deduce slicing inequalities that are related to the well-known Oberlin-Stein type estimates
for the Radon transform.

1. INTRODUCTION

Given two non-negative functions f, ¢ such that the Radon transform of f is pointwise
smaller than the Radon transform of g, what can one say about the functions f and g? In
this article, we consider this question for two kinds of Radon transforms: the classical and
spherical Radon fransforms in the n-dimensional Euclidean space R™.

Given a function ¢ on R", integrable over all affine hyperplanes, the (classical) Radon
transform of ¢ is the function Ry on R x S"~! defined by

Ro(t,0) = / o(x)dr, (1,60) € R x ™,
(z,0)=t

where integration is over the Lebesgue measure in the hyperplane perpendicular to 6 at
distance ¢ from the origin.
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The spherical Radon transform of a continuous function f on the sphere S"~! is a con-
tinuous function Rf on the sphere defined by

RIO= [ i pesm

Here 6+ denotes the central hyperplane orthogonal to the direction . For the properties of
the Radon transform and spherical Radon transform and different geometric applications,
we refer the reader to the monographs [9, 19, 20, 21, 30, 46].

We consider the following comparison problems.

Problem 1.1 (Comparison problem for the spherical Radon transform). Consider two
even, continuous, positive functions f,g on S* 1, n >3, and let p > 0. If

(1) Rf(0) < Rg(0) for all @ € S™1,
does it follow that || f| rr(sn—1) < 9]l p(sn-1)?
Problem 1.2 (Comparison problem for the Radon transform). Let p > 0. Given a pair of

even, continuous functions p,v: R™ — Ry, n > 2, each of which is integrable and integrable
over all affine hyperplanes, satisfying the condition:

(2) R(t,0) < Rip(t, ), for all (t,0) € R x S L,
does it follow that ||o|| Lr@ny < [|9] Lrwn)?

By a well-known integration formula on the sphere (see for example [30, p.28]) and by
the Fubini’s theorem, the answers to both problems are affirmative for p = 1. However, for

p # 1 the conclusions of the above problems fail to be true in general. For Problem 1.2 we
show how by the following simple example.

Example 1.3. Denote by |K| the volume of a compact set K of appropriate dimension.

Let n > 2, M >1, ¢ = M~ and set p > -25. Consider the functions ¢(x) = xpy ()

and 9 (x) = exympp (). It is readily checked that the inequality (2) holds, namely that
Rp(t,0) < Rap(t,6), for all (t,0) € R x "1,

while ¢l zp@ny > [[9]|Lp(rn). Indeed, on the one hand, observe that, for each (t,0) €
R x S,
t
Ris(t) = (M B5) 0 (6) =0 = |85 () ((0.6) = ;)| = Rcan ) = Ro(r.0),
because M > 1, and so ¢, satisfy (2). On the other hand, the condition |[¢l|zrrn) >
9] Lp(rn) Teads as
1 n 1 LONRIS IV |

|By[7 > M7 |By|r = M| By|r.

Since M > 1, the latter holds if, and only if, p > 5.

Our main source of motivation and guidance is the Busemann-Petty problem in convex
geometry which was introduced in 1956 in [4] and solved at the end of 1990’s. Suppose
K, L C R"™ are two origin-symmetric convex bodies so that

(3) K N6t < |LNot
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for every direction § € S"~!. Does it necessarily follow that |K| < |L|? Here |- | denotes
the volume of the appropriate dimension. It was proven that the answer is affirmative when
n < 4 and negative when n > 5; see [9, 30] for the solution and its history. Note that

Problem 1.1 is a generalization of the Busemann-Petty problem, choosing f = || - ||z,
g=|-I;"" and p = ~Io. Also, it was shown in [50, 51] that if one considers the Busemann-

Petty problem with volume replaced by an arbitrary measure with even, continuous, and
positive density, then the answer remains the same.

One of the critical ingredients in the solution of the Busemann-Petty problem is the
notion of an intersection body introduced by Lutwak [16, 39]; see Section 2 below for a
definition. Lutwak showed that if the body K in (3) is an intersection body, then the
answer to the Busemann-Petty problem is affirmative. On the other hand, every origin-
symmetric convex non-intersection body can be perturbed to construct a counterexample.
Therefore, the answer to the Busemann-Petty problem in R" is affirmative if, and only if
every origin-symmetric convex body in R™ is an intersection body.

Another ingredient in the Fourier analytic solution of the Busemann-Petty problem in
[10] is the characterization of intersection bodies in terms of the Fourier transform. It was
proven in [34] that an origin-symmetric star body K C R™ is an intersection body if, and
only if, || - || ' represents a positive definite distribution on R™.

Our approach to the comparison problems is based on these two ideas. We introduce
special classes of functions that play the role of intersection bodies. For the spherical
comparison problem, this is the class of functions f on S™ ! for which the extension of
fP~! to an even homogeneous of degree —1 function on R” represents a positive definite
distribution. The results resemble Lutwak’s connections in the Busemann-Petty problem.

Theorem 1.4. Let f, g be even, continuous, and positive functions on the sphere S"~', and
suppose that

(4) Rf(0) < Rg(0),  forall® e St
Then:

(a) Suppose that, for some p > 1, the function |:c\2_1f7’_1 (W) represents a positive

definite distribution on R™. Then | f| 1p(sn—1y < [lgllzr(sn—1)-

(b) Suppose that, for some 0 < p < 1, the function |93|271gp_1 (ﬁ) represents a positive

definite distribution on R™. Then | f| ro(sn-1) < |9l zp(sn-1)-
Theorem 1.5. The following hold true:

(a) Let gP~1 be an infinitely smooth strictly positive even function on S™~' and p > 1.
Suppose that the distribution ]:U|2_lgp*1 (i> 18 not positive definite on R™. Then

|2
there exists an infinitely smooth even function f on S™~' so that the condition (4)
holds, but || f||Ls(sn-1) > ||gllp(sn-1).-
(b) Let fP~1 be an infinitely smooth strictly positive even function on S™ 1 and 0 <

p < 1. Suppose that the distribution ]a:|2_1fp_1 (i> s not positive definite on R™.

|2
Then there exists an infinitely smooth even function g on S~ so that the condition
(4) holds, but || f||Lr(sn—1) > |lgllLr(sn—1)-
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To further investigate Problem 1.2, we introduce the class of intersection functions.

Definition 1.6. An even, continuous, real-valued, and integrable function f defined on R™
is called an intersection function if, for every direction 6 € S"~', the function

reR— |r[" L f(r0)

is positive definite and if the function § € S*~1 — H”_lf(-tg) is integrable over S"~!, where
f denotes the Fourier transform of f on R™.

We chose the Fourier definition rather than a more geometric one which is similar to the
original definition of intersection bodies in [16]. See Section 2 for the definition of S(R™).
The geometric definition now becomes a theorem, as follows.

Theorem 1.7. A function f is an intersection function if, and only if, for every direction
0 € S, there exists a non-negative, even, finite Borel measure pg on R such that

(i) the function
A
§eR\ {0} (Joly" iz (I2l2)) (€)(€)
belongs to L'(R™) whenever ¢ € S(R™), where the interior Fourier transforms is
the 1-dimensional Fourier transform and the exterior Fourier transform is the n-
dimensional Fourier transform; and

(i)

(5) /n fo= /Sn—l /RRL,O(t, 0)dpp(t)do
holds for all p € S(R™).

The equivalence of the Fourier and geometric characterizations follows from the fact that
(5) holds if, and only if,

(6) flz) = 2(2%)”_1|$|2’"+1ﬂﬁ(|x|2), Vo e R"\ {0},

where | - |2 is the Euclidean norm in R", and the Fourier transform of f is in the sense
of distributions, but appears to be a locally integrable function (see (26) below). Also, by
Bochner’s theorem, the Fourier transform of the measure py is a positive definite function on
R, which shows that f satisfies the definition of an intersection function by putting x = r6.

We will use both the Fourier definition and the geometric characterization to point out
examples of intersection functions. Indeed, we can choose any finite Borel measures pg on
R, satisfying the integrability condition by 6, and compute the corresponding function f.
In particular, intersection functions corresponding to intersection bodies are obtained by
choosing the measures g = s(0)dg, where s is any even, positive and continuous function
on the sphere and dy is the Dirac measure on R. More precisely, if s() = [|0]|;""", where
L is an origin-symmetric star body, then the corresponding intersection function is the
radial function of the intersection body of L. We explore these connections in Section 5.
However, if the measures g involve values of ¢ outside of the origin (integrals over non-
central sections), we get intersection functions not related to intersection bodies (see the
examples that appear in Section 4 and Equation (24) as the version of (6) in this case).
The examples that we present in Section 4 are all of this kind.
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We now formulate analogs of Lutwak’s connections for the Problem 1.2.

Theorem 1.8. Let p > 0 and consider a pair of continuous, non-negative even functions
@, € LY(R™) N LP(R™) satisfying the condition
(7) Rop(t,0) < Rab(t,0)  for all (t,0) € R x "L,
Then:
(a) if p>1 and @P~1 is an intersection function, then ||@|lLr@ny < [|¢]lLr@n), and
(b) if 0 < p <1 and YP~1 is an intersection function, then ||¢||Lo@ny < |9l Lown).-

We also give a counterexample to Problem 1.2.

Theorem 1.9. The following hold:

(a) Fizp > 1 andletvp € LP(R™) be continuous, strictly positive and even. If P~ is not
an intersection function and YP~1 € S(R™), then there exists an even, non-negative
1 € LP(R™) non-negative, even and continuous such that

Rop(t,0) < Rap(t,0)  for all (t,0) € R x ™71,

but with ||Y || pwny < @l Le@n)-

(b) Fiz 0 < p <1 and let o be strictly positive, continuous and even. If ¢P~1 is not an
intersection function and oP~! € S(R™), then there exists a non-negative, continuous
and even ¢ € LP(R") such that R < Ry, but with ||Y| p@mny < |l Le@n)-

We remark that Theorem 1.8 can not be used directly to provide a comparison of L4
norms of functions ¢ and + for 1 < ¢ < p. Indeed, the fact that ||¢|[z1m) < [[%]L1(r)

together with ||| Lrr) < [[9]|1r(r) does not guarantee in general that ||| Lemw) < [[%]La(r)s
as illustrated by the next example.

Example 1.10. We construct a pair of functions p,% > 0 such that ||¢||z1w) < ] L1 (R)
and |¢llr2@y < 9¥llz2(r), while ||<,0||L%(R) > ||¢||L%(R). The construction follows from

considering ||¢||h and optimizing over p and € for the function ¢ below. More precisely, fix

{’/g <d<e<{ %, and define the functions ¢ and ¥ on [0,00) by

Loifo<t<é, 1, ifo<t<o?
_ 2 1 _ r$2 1
SO(t) - €, Zf € S t S € and ¢(t) - 57 Zf5 S t S R
0 ift>1, 0 ift> %
It can be easily checked that
3 7
el =1+ e Nolfam =1e=e' ol =2ve—b;

3 7
o [l =140 =8 lfam =145 -8 [0l2y =2v5-0%.
Bt then ol < 19 and Nl < iz, and et gl 3 o > 1913,

Since the answer to the Busemann-Petty problem is negative in most dimensions, it
makes sense to ask if it holds up to some absolute constant. This is the so-called isomorphic
Busemann-Petty problem and was introduced in [42]: Given any pair of origin-symmetric



6 ALEXANDER KOLDOBSKY, MICHAEL ROYSDON AND ARTEM ZVAVITCH

convex bodies K, L C R" satisfying the condition (3), does it follow that |K| < C|L| for
some absolute constant C' > 07

As shown in [42], the isomorphic Busemann-Petty problem is equivalent to the slicing
problem of Bourgain [2, 3]: Does there exist an absolute constant C' > 0 such that, for any
n € N and for any origin-symmetric convex body K in R",

K| < C max |K N6+
fesSn—1

Both the isomorphic Busemann-Petty problem and slicing problem remain open. In [3]
Bourgain showed that C' < O(n'/*log(n)). Klartag [25] removed logarithmic term in Bour-
gain’s estimate. Chen [6] proved that C' < O(n€) for every € > 0 as n tends to infinity.
Klartag and Lehec [28] established a polylog bound C' < O(log?n). The proof of Klartag
and Lehec was slightly refined in [22] to get C' < O(log????6n). Finally, in [26] Klartag
improved the estimate to C' < O(y/logn).

Extensions and analogs of the slicing problem to arbitrary functions were studied in
[5, 14, 13, 17, 27, 29, 31, 32, 33, 37]. In particular, it was proved in [32] that for any n € N,
any star body K in R™ and any non-negative continuous function f on K, one has

/fSQdOW(K,In) max/ f
K 0esS™1 J koL

Here Z,, denotes the class of intersection bodies in R", and doy, (K, Z,) is the outer volume
ratio distance. In the case when f is even, K is origin-symmetric and convex, we may apply
John’s theorem [23] to conclude that dp(K,Z,) < v/n.

An isomorphic version of the measure theoretic Busemann-Petty problem from [51] was
proved in [38]: Given a non-negative, continuous function f: R” — R, and a pair of origin-
symmetric convex bodies K, L in R" satisfying meel f< fLmei f for every 6 € S"~!, one
has

(8) /Kfsﬁ/Lf.

It is still an open problem to determine whether the constant y/n is optimal. In [14] the
following extension of the inequality (8) was established: Let K and L be star bodies in R"
and let f,g: R™ — R be non-negative, continuous functions on K and L, respectively, so
that ||g|lcc = ¢(0) = 1. Then

n—1

n fKn&l f) 1 < >”
®) /K /< n— 1dOUT(K’In) 6?15%}51 (fLﬂQL g ol /Lg '

For the current state of the Busemann-Petty and slicing problems for functions see the
survey [15].

We get a slicing inequality for p > 1 from Theorem 1.4. In fact, if the function g is
constant with the value

1
-1 0)df,
g 1572 ggﬁ)fl /S"_lﬂfi f(0)

then f and g satisfy the conditions of Theorem 1.4, and the conclusion reads as follows.
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Theorem 1.11. Let f be a positive, even and continuous function on the sphere S™ 1.

Assume p > 1 and if ]w\;lpr (ﬁ) represents a positive definite distribution on R™, then

(10) 1fllzr(sn-1) < Tgnmr m

Similarly, in the case 0 < p < 1, by choosing the function

1
= i 0)do
r= g, o

in Theorem 1.4, we obtain:

Theorem 1.12. Let g be a positive even, continuous function on the sphere S"~1. Assume
X

that 0 <p <1 and \x!;lg”_l (W) represents a positive definite distribution on R™, then

n—1%
[P min Rg(§).

9l Lp(sn-1) > TSR] el

It was proved in [34], that an origin-symmetric star body K C R™ is an intersection body
if, and only if, || - ||;<1 represents a positive definite distribution on R™. Therefore, a positive
continuous function f on the sphere has the property that the distribution fP~!.r~! is

1

positive definite if, and only if, f = ||- || " for some intersection body K. Combining this
observation with Theorem 1.11, we get that for, any intersection body K in R"™ and any
p>1,

1 1
__p_ P ‘an‘; __1
11 Ptd < — / Pldr ) .
() (/snl Il x> I 629%){1( Sn-1ngt el de

When p = "5, the latter inequality turns into Bourgain’s slicing inequality for intersection
bodies. It would be interesting to see whether inequality (11) holds for other classes of
bodies, maybe with a different constant. Note that the class of intersection bodies contains
ellipsoids, unit balls of finite-dimensional subspaces of LP with 0 < p < 2, among others;
see [30, Chapter 4].

We would like to point out that the inequality of Theorem 1.11 goes in the opposite
direction to the well-known LP-L9%-estimates for the Radon transform; see [1, 7, 8, 44, 45]
for a historical recount of such results. The first result of this kind was established by
Oberlin and Stein in [44]: Given any function f: R” — R belonging to LP(R"™), one has

that

(12) ( (] |Rf<t,e>|fdt)’"d0> < Crpallf 1o

if, and only if, 1 <p < Lo g <p (p'+p 1 =1),and 1 =

n
P
inequality (12) implies that R f is finite almost everywhere on R x S"~! provided f € LP(R")
for some 1 < p < 5.

—n + 1. In particular,
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It was also proved in [44] that for every n > 3 one has

1
(13) ( /S sup!Rf(t,G)\Sdt‘)) < Corpos 1y L 1

n—1 tcR
whenever s <n, 1 <p; < % < pg < 00, and

n P2 n

Of particular interest to us is the limiting case of (13) due to its geometric content: If

X4 is the characteristic function of a measurable set A C R™ and s = n, then as p — "5,
inequality (13) becomes

nN L
(14) (/ (sup|Am(ei+t9)|>> < CplAl".
Sn—1 \teR

If A is an origin-symmetric convex body in R", by the Brunn concavity principle (see [9, 18])
the supremum is achieved at ¢ = 0, and one gets the Busemann intersection inequality. This
connection was first observed by Lutwak in [40]. The recent work [1] of Bennett and Tao
establishes reverse norm inequalities for the Radon transform.

The paper is organized as follows. Section 2 details notations and concepts we need
from harmonic analysis and convex geometry. In Section 3, we give a detailed solution to
Problem 1.1. In Section 4, we introduce, as an intuitive step, the notion of an intersection
function of a given function, provide several examples, and prove a characterization theorem
for this class of functions. Section 5 is dedicated to the introduction of the notion of
intersection functions, those which serve as a natural extension of intersection bodies. In
Section 6 we prove Theorem 1.8 and Theorem 1.9.

« 1—a n—1
+ = .

2. PRELIMINARIES

In this section we will recall several facts from harmonic analysis and convex geometry
that will be used throughout the paper.

2.1. Notions from harmonic analysis. We will work in the n-dimensional Fuclidean
space R™ equipped with its usual inner product structure (-,-) and induced normed |- |3 =
\/(+,-). We denote the Lebesgue measure of a measurable subset A of R™ of appropriate
dimension by |A|. The n-dimensional Euclidean unit ball shall be denoted by BY, and its
boundary, the unit sphere, by S"~!. For any fixed unit vector § € S*~! we denote by -+
the orthogonal complement of {#}, that is, 0+ = {x € R": (x,0) = 0}. More generally, for
any fixed § € S~ and t € R, the set

0- +t0 = {x € R": (x,0) =t}

is the hyperplane parallel to #+ at distance ¢ from the origin. We will often make use of the
notation (x,6) =t to denote such hyperplanes in our computations below.

Given a measure metric space (X,d, ) and p # 0, we say that a real-valued function
h: X — R belongs to LP(X) if

[ @Pduta) < .
X
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We define the LP(X)-norm of a function h: X — R to be

e = (| o)

We will use the following reverse Holder inequality [43, p.135]: Given a measure space
(X, ), with u(X) # 0, 1 < r < oo and any pair of non-negative functions h,w € L'(X),
each having a positive integral, one has

(15) [hwllzrxy = 1Al 2

We define the Fourier transform of a function ¢ € L'(R") by

Fol€) = p(6) = / @iz, R

For the following notions, we follow the presentation of [30] (see also [11, 47]). By
S := S(R™) we denote the Schwartz space of rapidly decreasing infinitely differentiable test
functions, and by S’ the space of continuous linear functionals (distributions) acting on
S. If f is a locally integrable function on R™ with power growth at infinity, it defines a
distribution acting by integration: For any test function ¢ € S

(f. o) = /R f@)pl@ds.

If ¢ is a test function, then so is its Fourier transform ¢. Moreover, the Fourier transform
is invertible on S and its inverse is given by
Fole) = 2m) " [ pla)eOda.
Rn
Consequently, for every ¢ € S, (¢)"(€) = (2m)"p(—&). Also, the Fourier transform and its
inverse are continuous operators on S. By the Fubini theorem, we also have the following
Parseval identity: For any pair ¢,¢ € S,

[ s@w@is= [ p©bade.

With this in mind, we define the Fourier transform of a distribution f as a distribution f
acting by (f,¢) = (f, ).
If  is an even test function, then
(9)" =@ and (f,9) = (21)"(f, ).
We say a distribution f is a positive definite distribution if its Fourier transform is a
positive distribution, i.e. for every ¢ € S one has (f, ) > 0 whenever ¢ > 0. We say that a

complex-valued function f defined on R" is a positive definite function on R™ if, for every
finite sequence {x;}{" in R™ and every choice of complex numbers {c;}{", we have

ZZCgc_jf(xg —xj) > 0.

=1 j=1
By Bochner’s theorem, a function on R is positive definite if, and only if, it is the Fourier
transform of a finite, positive Borel measure p on R™ (see [12]). From this it follows that
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products of positive definite functions are again positive definite functions. More generally,
Schwartz’s generalization of Bochner’s theorem asserts that a distribution is positive definite
if, and only if, if is the Fourier transform of a tempered measure on R™.

The Radon transform of a function ¢ € L'(R™) that is integrable over every affine
hyperplane is defined as

Ro(t0)= [ plads
6+ +t6

Moreover, we will make frequent use of the relationship between the Fourier transform and
Radon transform: Given ¢ € L'(R"), for every fixed direction ¢ € S"~1, one has that the
Fourier transform of the map ¢t € R — Rp(¢,0) is equal to the function z € R — ¢(z,&);
see for example [30, Lemma 2.11].

The spherical Radon transform R: C(S"~ 1) — C(S™ 1) is a linear operator defined by

R = [ S ges

for every function f € C(S™~!). The spherical Radon transform is self-dual, that is, for any
pair f,g € C(S" 1), one has (Rf,g) = (f, Rg). We define the spherical Radon transform
of a measure u as a functional Ry on the space C(S™~!) acting by

(Fpof) = uRA) = [ Rf@)ufa).

Denote by P" the space of all affine hyperplanes contained in R"™. Along with the Radon
transform, we consider the dual Radon transform R* of an even continuous function g: P"* —

R defined by
(R*g)(x) = / G(H ) dv s (H),
{HePn: zcHY

where v, ,—1 denotes the rotation invariant Haar probability measure on the compact set
{H € P": x € H}. Following [20] one can identify C'(P") with the class even functions
belonging to C(R x S"~1).

For more information on the Radon transform, see the books of Helgason [20, 21].

2.2. Notions from Convexity. We say that a compact subset K of R" is a star body if
the origin o belongs the the interior of K and if, for every x € K, each point of the interval
[0,2) is an interior point of K, and the boundary of K is continuous in the sense that the
Minkowski function of K defined by

|z||x = min{s > 0: x € sK'}

is a continuous function on R™. A star body K is called a convex body if in addition it is
a convex set. Moreover, any star body K satisfies

K ={z € R": ||z||x < 1}.

A star body K is said to be origin-symmetric if K = —K.

The radial function of a star body K is defined as px(-) = | - ||’ it is positive and
continuous outside of the origin. For every direction § € S"~ 1, py () is the distance from
the origin to the boundary of K in the direction of 6.
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Given a measure p on R™ with non-negative continuous density f and a star body K in
R™ we have

[
(16) w(K) = /5"1/0 "1 f(r0)dre,

which, in the case of the volume, becomes

1
K|l=—- 0" de.
K= [ 1ol

Given any hyperplane ¢, the polar formula for measure of the section K N &+ is given
by

o 611" I
WK NE) = /SnlmgL/o "2 f(r6)drdd
B ||'H17<1rrh2 A
—R</O s >d><£>,

1
[Kner=—R(I- 1) ©

If f is a continuous function on S™~! and 0 < p < n, we denote by f - 7P the extension
of f to an even homogeneous function of degree —p on R" :

Fr@ =leh?s () eer\ )

Since 0 < p < n, this function is locally integrable on R™ and represents a distribution.
Suppose that f is infinitely smooth, i.e. f € C*°(S™"1). Then by [30, Lemma 3.16], the
Fourier transform in the sense of distributions satisfies

(f-r ) =g-r P,

for some function g € C°°(S™~!). When we write (f - 7~P)"(£), we mean g(§), £ € S 1.
If f,g are infinitely smooth functions on S™~!, we have the following spherical version of
Parseval’s formula (see [30, Lemma 3.22]): for any p € (0,n)

(19) L@ e = o [ 1)) d.

Sn—1

(17)

and for the volume:

Suppose f is a continuous function on S"~!'. The Fourier transform of f - r "t is a
continuous function on the sphere. More precisely, by [30, Lemma 3.7],

(19) (f -r " HN =aRf -1

We will also use a non-smooth version of Parseval’s formula from [30, Corollary 3.23]. If
g € C(S™ 1) and g-r~! is a positive definite distribution, then there exists a finite Borel
measure i, on S"! so that, for every f € C(S"7 1),

(20) LN (e = e [ fo)ao)a.

Sn—1
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Note that (18) and (20) are formulated in [30] specifically for Minkowski functionals, not
functions. However, the Minkowski functional of a star body is an arbitrary continuous
positive function on S™~ .

The class of intersection bodies of star bodies was introduced by Lutwak in [39]. We say
that a star body IL is an intersection body of a star body L if, for every direction & € S™~1,
one has

1
gl = 1Enet = —=R(I- 17" (©).

Following [16], we say that a star body K is an intersection body if there exists a finite,
positive Borel measure 11 on the sphere S"~! so that ||-|| ' = Ry as functionals on C'(S"~1);
that is, for every continuous functions f on S"~!,

(1) L 1ol = [ Rf@ua).

We denote by Z, the class of intersection bodies in R™; it is immediately clear that Z,
contains the class of intersection bodies of star bodies.

In [34] it was proved that an origin-symmetric star body K in R" is an intersection body
if, and only if, || - | is a positive definite distribution on R™. This result was used in the
solution of the Busemann-Petty problem in [10].

3. THE SPHERICAL CASE

In this section we prove Theorems 1.4 and 1.5.

Proof of Theorem 1.4. We begin with the proof of part (a). By (19), the inequality Rf < Rg
can be written as

(22) (f -7 HNO) < (g - mTHNB), Vo e smTL

Integrating both sides of the latter inequality over S™~! with respect to the non-negative
measure figp—1 corresponding to the positive definite distribution Pt r=1 by (20), we get

/ (f DN O)dpgo-1 () < / (977" DM O)dpr g1 (6)-
Sn—1

Sn—1
Applying Parseval’s identity (20) we get

/ f7(6) d9 < / 71 (0)g(0) do.
S’nfl

Sn—1
and using Holder’s inequality we get

P

/SM fP(0) do < /Sn1 FP7H6)g(6) db < </5n1 fp(g)(w)pl (/SM gp(ﬁ)cw);,

which completes the proof of part (a).

The proof of (b) is more or less identical to the proof of part (a), except that instead
of Hoélder’s inequality we use its reverse (15) for 0 < p < 1: integrating both sides of the
inequality (22) over S"~! with respect to the non-negative measure pgr—1 corresponding to
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the positive definite distribution g?~!-r~! by (20), and applying Parseval’s identity (20),
we get,

/ £(0)gP1(0)d0 < / g (0) db),
Sn—l Sn—l

and using the reverse Holder’s inequality (15) with X = S" !, du =df, h = f, w = gP~*
and r = 1/p, we get

p

/Sn_1 g"(0) do > /Sn_l £(0)g7(6) db > (/SM fp(e)Cw); </SH gp(a)cw);l |

and the result of part (b) follows.
O

Proof of Theorem 1.5. We begin with the proof of part (a). Since gP~! is infinitely differ-
entiable and positive, the Fourier transform of ¢g?~!-r~! is of the form h-r~"*!, where h is
an even infinitely differentiable function on the sphere; see [30, Lemma 3.16]. This function
is negative on some open symmetric set 2. Choose a function ¢ € C*°(S™~!) so that ¢ > 0
everywhere on S"~! and ¥ > 0 only on some non-empty open subset of Q. The Fourier
transform of ¢ - r~1 is a function ¢ - 7" where ¢ € C*(S"1), again by [30, Lemma
3.16]. Then (¢ - r~"t)N = (2m)ep - L.
Define the function f on S™~! by
F0)=g(0) —ep(0), VoeSs,
where € is small enough so that f > 0 on the sphere. By extending the functions f, g, ¢ to
R™ homogeneously of degree —n + 1, we then have
(F ™) = (g Y — (@) e
Since 1) is non-negative everywhere on the sphere, by (19) we conclude that the functions

f and g satisfy the condition (4). Multiplying the latter equality by (¢?~! . r~1)" and
integrating over the sphere, we get

A RO RORT

= /Sn_1<g . r—n—i-l)/\(g)(gp—l '7“_1)/\(9) do — e(2m)" - ¢(9)(gp_1 '7“_1)/\(0) do.

Parseval’s formula (18) implies that

/ F(0)gP~1(6) db = / g"(0) df — e(2m)" (@) (Pt rH)NB) do.
Sn—1 Sn—1 Sn—1
Since 1 can be positive only where (gP~! - r~1)" is negative, we get

/ #(0) db < / £(6)g1(6) do,
Snfl

Sn—1
and by Holder’s inequality,

[ goa<| o am

which completes the proof of part (a).
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Now we move to the proof of (b). Since f is infinitely differentiable and positive, the
Fourier transform of fP~'.r~! is of the form h - r~"t! where h is an even infinitely
differentiable function on the sphere; see [30, Lemma 3.16]. This function is negative on
some open symmetric set €2 in the sphere. Choose a function ¢ € C*(S"~1) so that ¢ > 0
everywhere on "' and ¢ > 0 only on some non-empty open subset of €. The Fourier
transform of v - r~1 is a function ¢ - 7! where p € C*(S"1), again by [30, Lemma
3.16). Then (o - r "*HN = (2m)"ep - r~ L.

Define the function g on S"~! by

9(0) = f(0) +ep(0), Ve ST,

where € is small enough so that g > 0 on the sphere. By extending the functions f, g, ¢ to
R™ homogeneously of degree —n + 1, we then have

(g . T_TH_I)/\ — (f . T—n—f—l)/\ + 6(27T)n¢ . ,,4—1.

Since 1) is non-negative everywhere on the sphere, by (19) we conclude that the functions
f and g satisfy the condition (4). Multiplying the latter equality by (fP~!-r~1)" and
integrating over the sphere, we get

L e ot e) o

= /Snl(f . r_n+1)/\(9)(fp—1 . 7«—1)/\(9) do + 6(271')” w(e)(fp_l . 7‘_1)/\(0) de.

Sn—1
Parseval’s formula (18) implies that

/ 9(0)f7~1(0) db = / 20) d6+e2ny [ @) )N 6) do.
Sn—l Sn—l S’n—l

Since v can be positive only where (fP~1-r~1)" is negative, we get

/ 9(0)f71(0) db < / f7(6) do
Snfl Snfl

and by the reverse Holder’s inequality (15), we get

/ g (0) do < / F7(0) do.
Sn—1 Sn—1
O

Note that the condition of Theorem 1.5 that g is infinitely smooth can be removed using
the approximation argument of [30, Lemma 4.10], but then g needs to be perturbed twice
to construct a counterexample.

4. THE INTERSECTION FUNCTION OF A FUNCTION

The concept of an intersection body was introduced by Lutwak in two steps [16, 39].
First, Lutwak gave a geometric definition of an intersection body of a star body, and then
star bodies were replaced by measures to define the general concept of an intersection body.
We proceed in a similar way for intersection functions. First, we introduce the intersection
function of a positive function.
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Denote by L™ the class of positive, continuous, integrable, and even in the first variable
functions on R x S"~1,

Definition 4.1. Given g € L™, we say that a function f on R™ is an intersection function
of g if, for any Schwartz test function ¢ € S(R™),

(23) /n o) f(x) de = /Sn_1 /RR@(t, 0)g(t,0) dt df.

Essentially, this means that f = R*g is the dual Radon transform of a positive function
g; see [21, p.3]. The existence of an intersection function is guaranteed by the well-known
formula for the dual Radon transform:

Proposition 4.2. Let g € L", then the function f: R™ — Ry defined by

fa) = [ alt.0).0000

is an intersection function of g.

Proof. By Fubini’s theorem, we have that

(o) = [ falpla) da

_ /R </51 g((:c,@),G)dQ) o(z) da

—/Sn-l/ncp(x)g(@,@,@) da do

_ /S B /R ( /(Lw:tgp(x)dx) g(£,6) dt db

— [ [ Rett.0p(e.0) at as,
sn-1 Jr

whenever ¢ is a Schwartz test function on R"™. This means that the function f, as defined
above, satisfies the condition (23) for any Schwartz test function on R”, and so it must be
an intersection function of the function g. O

This simple formula is not very effective if one wants to know whether a given function f
is an intersection function of a function. As it was done in the case of intersection bodies,
we establish the Fourier characterization of intersection functions which works better for
our purposes.

Proposition 4.3. Let g € L. A function f on R™ is an intersection function of g if, and
only if,

(24) r= 2 (o (v ), <\xr2>):,

where the interior Fourier transform is taken with respect to t € R, and the exterior Fourier
transform is with respect to r € R"™,
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Proof. Note that for fixed # € S"~! the function t € R — R(t,6) is the Fourier transform
of the function z € R — (27)" 1(20). Therefore, for any even test function ¢, applying
Parseval’s identity to the inner integral by dt, we get

)= [ 1@ <>dx—/sn1/wt9> (t,0) dt do
/ )(g(t,0))7(2) dz df

oz
= 2(2m)" <\a:|‘”“ (g (t, ,;‘Q»A (\xlz),cp(x)>-

t

From the Propositions 4.2 and 4.3, we have the following corollary.

Corollary 4.4. For any g € L™, one has

717 (’x‘_nﬂ <9 (tv |;,2>>: (!9«"\2)): (&) = /nlg(<§,0>,9) do, V¢ eR™

Moreover, for every r € R and 0 € S"~1, the following identity holds:
(25) (9(t,0)7(r) = " f(r6),
where f is the intersection function of g.

We also have the following uniqueness theorem:

Corollary 4.5. Given a pair g1,g92 € L™ such that
/ g91({x,0),0)d0 = / g2((x,0),0)d0  for all x € R",
Sn—1 Sn—1
one has that g1 = go.

The condition (25) means that the function r — |r|*~1f(rf) is positive definite. We
will use this property to define a more general class of intersection functions. Also, this
condition allows to point out several examples of functions which are and are not intersection
functions, as follows.

Example 4.6. Fiz o, 3 >0 and £ € C(S™!) even and strictly positive.

(1) For each @ € S"~! consider the function hg(r) = aexp(—|r|?£(0)). It can be checked
that hg is the Fourier transform of the non-negative function:

(ho)r () = @ e(g)e‘ul@tp > 0.

So, by Proposition 4.3,

N[

f(&) =
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18 the intersection function of the function

s _#M?
— . | —— e T®

(2) For each 6 € S™™ 1 consider the function hg(r) = a\/gefﬁmw(@). Note that, as
above,
(ho)(t) = al(0)ePIt” > 0.

Again, according to Proposition 4.3,

f©=- [\wl;”“e (@) a\@e‘fﬂ'?]: (©

18 the intersection function of the function
g(t,0) = al(6)e PP,
(3) For each 8 € S"~! consider the function hg(r) = exp(—|r|(f)). Notice that

o 20(0)
(ho)y (t) = 2O > 0.
Consequently, the function
1 _ |z g(i) A
F©) = — Jlal" e TR (g)

T

is the intersection function of
20(0)

g(t,0) = PO
(4) More generally, fir q € (0,2], and for each 6 € S™ ', set
ho(r) = £(0)e 1",
According to [30, Lemma 2.27]

A
(h)} (8) = €0) (717) (1) = €Oy (1)
1s a positive function on R. Consequently, the function

ey =2t () 4] o

18 the intersection function of

gq(t, 0) = 5(9)%1(75)-

Example 4.7. To provide examples of functions which are not intersection functions, for
any 0 € S ! and q > 2, consider functions of the form hg(r) = £(6) exp(—|r|?), where
¢ € C(S™" 1) is even and strictly positive. Taking the Fourier transform by r € R, we see
that

(ho)P (1) = £(0)(e™ ") () = £(0)q (D).
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But ~4(t) is not always non-negative (see [30]), so according to Corollary 4.4, the function

f given by
A

fa) = n) [l e (5 ) e ] (@
T2 3
fails to be an intersection function of any member of L™.

5. INTERSECTION FUNCTIONS

The next step is to define the class of functions which includes both intersection functions
of functions and intersection bodies. We base our definition on the result of Corollary 4.4,
rather than use a more geometric definition in the spirit of Lutwak’s approach to intersection
bodies which is based on the extension of the dual Radon transform to measures.

Definition 5.1. A non-negative, even, continuous, integrable function f on R™ is called an
intersection function if, for every direction @ € S"~!, the function

r€ R [r["Lf(r6)
is a positive definite function on R.

The geometric definition now becomes a theorem, namely, Theorem 1.7, which we now
prove.

Proof of Theorem 1.7. Begin by recalling the connection between the Radon transform and
the Fourier transform: For any fixed direction § € S"~!, the function g(t) = R$(¢,0) is
the Fourier transform of the function h(z) = (2m)""1p(20), t,z € R whenever ¢ is a test
function on R".

Assume that f is an intersection function. For each 6 € S"~! we are tasked with finding
a finite, positive Borel measure ug on R for which

[ t@et@ar= [ [ Relt.opd(ni

holds whenever p € S(R").

Since f is an intersection function on R”, for every direction § € S™~!, the function
ho(r) = |r[*~1f(r0) is a positive definite function on R. Therefore, by Bochner’s theorem,
for each § € S"~1, there exists a finite, positive Borel measure 4 on R such that the Fourier
transform of vy is equal to hy. Notice that, by applying Parseval’s identity on R™ and then
again on R, we have

(£.0) = myif.p) = 220

H(rf)drdd
gn—1
o |- PTEF GO (2) (2(-0))0 (2)dzdo
= 2 . ,0)dvg(s)do

whenever ¢ € S(R") is even, which is exactly the condition (5).
Conversely, assume that the condition (5) holds. For every fixed direction 6, by Bochner’s
theorem, the Fourier transform of the measure py is a continuous, positive definite function
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fo defined on R. Consequently, for any even test function ¢ € S(R™), applying Parseval’s
identity to the integral by dt, we have that

<f,¢>==<f,¢>=:]gn1/g7z¢(ue)du9@)de
= [ o0 a0 = [ (ROl
(26) = (2m)" ! / / ifze) jgiz)dzde
2(2m)"" I/Sn 1/ |T|n o (20) fo(2)d=d0

=200 [ ol o0z (o

= 2027 Nal; ™ f = (Jola). ).

So it must be the case that
f(w)==2(2W)”_1M15"+1fﬁilkrb)

as distributions.
Hence, for any fixed direction § € S™~!, using the positive definiteness of the function
fo, one has

(- O ) = (|- 1" (0), )

- /R fo2) () ()d2
- / ()2 (s)yb(s)ds > 0,
R

whenever ) € S(R) is even and non-negative. Therefore, the function f is an intersection
function.

O

In the following subsections we will examine some examples of intersection functions. In
particular, we will see that the class of intersection functions contains the class of intersection
bodies of star bodies.

5.1. The spherical Radon transform. Let £ € C(S™"!) be continuous, strictly positive,
even function. Given € > 0, consider the function

1
ge(t,0) = £(0) Pl

TE

As we saw in Example 4.6, for each € > 0, the intersection function f. of g. is

10 = e (2) 2w+ e
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By the definition of an intersection function of g, for every even ¢ € S(R"™) and any fixed

€ >0,
I penstp () T e8] _
[ [atemete () o] @vtoras= [ e
/ / Re(t, 0)g. (¢, 0)dtdo
Sn— 1

= [ [reteoo =
sn=1 JR
When ¢ — 0, the left-hand side of the above equality tends to

' [mz—nw (@) <5o<t>>£<ra:|z>]A (©)e(E)de

xT

_ ;/ [p«\;““z <|;’2)]: (€)p(€)de

whenever ¢ € S(R") is even, where Jy is the delta function. Here we have used the fact
that §o = 1. Similarly, as ¢ — 0 the right-hard side tends to

Rp(0,0)(0)do = / Re(0)0(6)do.

2 |t|2

dtde.

Snfl Snfl
Consequently, we have shown that
1 n T A
1) 2 e ()] @vite= [ rownoran
™ JRn |$|2 x Sn—1

whenever ¢ € S(R") is even. From Theorem 1.7 paired with Bochner’s theorem, limits of
intersection functions are themselves intersection functions, so it follows that

=1 e (2] @

|2
is an intersection function. In particular, f is a continuous function on the sphere extended
to a homogeneous function of the order —1 on R™ \ {0}, which recovers [30, Lemma 3.7]:

For every € S 1,
1 n+1 " _
e ()] @ = meo

Next, we can rewrite equality (27) to get

/ F@)p(z)ds = /S  Rp(0)0(6)do

- /Sn ) </ p(z )dx> 0(6)do
LU ) o
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If we denote h(6 f > r"=2(rf)dr, then we recover the well-known self-duality property
of the spherical Radon transform For any /,h € C(S" 1)

/ RUOWM(©O)0 = | Rh(0)0(0)do.

5.2. Intersection bodies. In the previous example, set £(f) = [|0]|;""", where L is an
origin-symmetric star body in R™. Then we recover the Fourier formula for the volume of

a section, [30, Th.3.8]:
1
T
" ()
|22

In fact, we have shown that the concept of intersection function as described in Definition 5.1
extends the notion of intersection bodies.

Moreover, we have f(z) = (n— 1)||z|;}, where IL stands for the intersection body of L,
so we recover the result of [30, p.72]: For every & € S71

1

flz) = (n =1zl = —(I-17"™)" ().

(2m)"
m(n —1)
In particular, an origin-symmetric star body K is an intersection body of a star body if,

and only if, the Fourier transform of |||/ is a (—n+1)-homogeneous function on R™ whose
restriction to the sphere is continuous and strictly positive, cf [30, Th.4.1].

e

(lzl72)" (¢) =

6. THE CASE OF THE RADON TRANSFORM
In this section, we prove Theorem 1.8 and Theorem 1.9.
Proof of Theorem 1.8. Without loss of generality, we may assume that ¢, € S(R").
We begin the proof of (a). Since ¢P~! is an intersection function, by Theorem 1.7, for

each § € S"~! there exists a non-negative, even, finite Borel measure pg on R such that the
function

p ::/RRa(t,H)dug(t)

is integrable on S™"~! for any a € S(R") and

/n 1o = /Snl /RRa(t,e)dM,(t)dg

holds. Integrating both sides of the assumption (7) over R with respect to the measure puyg,
we then have the inequality

0o < 1y forall e S L.
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Integrating the above inequality over S"~! and applying the identity (5) of Theorem 1.7,
we obtain

[ etarae= [ Re(t0)du(e)as

=/ wMS/ Vudd
Sn—l Sn—l

:/ R¢(t,9)du9(t)d0:/ ()P () da
RxSn—1 "

< ([ wlora) - (] ¢<m>Pdar)’l’ 7

where in the last line we applied Holder’s inequality.
The proof of part (b) is the same as (a) with a minor adjustment akin to the proof of
Theorem 1.4(b). O

Next, we treat the second part of Problem 1.2, Theorem 1.9. We require the following
variant of [41, Theorem 4.7]:

Lemma 6.1. Let h(t,0) = r(t), wherer € C°([—b,b]). Then h is in the range of the Radon
transform, and furthermore h = Rs for some s € C2°(R™) with s(x) = 0 when |z|3 > b.

Proof of Theorem 1.9. We will present the proof of part (a). Since ¥P~! € S(R"), by
Corollary 4.4, there exists a continuous function g on S”! x R such that for any test
function «

/Rn PP (z)a(z)de = /Snl /RRa(t’ 0)g(t, 0)dtdo.

Since the function P! is not an intersection function, the function ¢ is negative on some
open set 2 C S"~! x R. Consider any non-negative radial function h(t,0) = r(t), r €
C([e,d]) such that h is supported in S"~! x [c, d]. By Lemma 6.1, there exists a continuous
function s with compact support in R so that Rs = h.

Define a function ¢ on R" by

QZS(I') = 1/)@) - 68(1‘), T = (t’ 9)3

where € is small enough so that the function ¢ is positive. This is possible because ¥ is
strictly positive and continuous and s has compact support and is also continuous.

We have

R¢(t? 9) = RW@ 9) - Eh(tv 9) < Rw(tv 9)7 V(t, 9)7

because the function h is non-negative.

On the other hand, the function h is non-negative and supported in the set 2 where g is
negative, so

—1 o
- PP (@) d(z)dr = /S . /R Ro(t,0)g(t,0)dtdo

- / / Rt 0)g(1, 0)dtdd — e / / h(t, 0)g(t, 0)dtdo
sn-1 JR sn-1 JR
> /S - /R Ru(t,0)g(t. O)ded = | 47(a)da.
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By Holder’s inequality, ||¢||zr > ||¥]|Le-
]

As a final note we remark that at this time we do not have a clear understanding of the
variety of intersection functions, as well as the relations between the classes of function f
for which f? is a positive definite distribution or an intersection function for different values
of p. We hope to consider these questions in a future work.
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