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Storage of sensitive multi-dimensional arrays must be secure and efficient in storage and processing time.

Searchable encryption allows one to trade between security and efficiency. Searchable encryption design
focuses on building indexes, overlooking the crucial aspect of record retrieval. Gui et al. (PoPETS 2023)
showed that understanding the security and efficiency of record retrieval is critical to understand the overall
system. A common technique for improving security is partitioning data tuples into parts. When a tuple is
requested, the entire relevant part is retrieved, hiding the tuple of interest. This work assesses tuple partitioning
strategies in the dense data setting, considering parts that are random, 1-dimensional, and multi-dimensional.
We consider synthetic datasets of 2;3 and 4 dimensions, with sizes extending up to 2M tuples. We compare
security and efficiency across a variety of record retrieval methods. Our findings are:

1. For most configurations, multi-dimensional partitioning yields better efficiency and less leakage.

2. 1-dimensional partitioning outperforms multi-dimensional partitioning when the first (indexed) dimension
is any size as long as the query is large in all other dimensions.

3. The leakage of 1-dimensional partitioning is reduced the most when using a bucketed ORAM (Demertiz

et al., USENIX Security 2020).

1 Introduction

Scientific data is often organized as multi-
dimensional arrays (Rusu, 2023). Datasets’ size
necessitates efficient solutions regarding storage,
processing time, and communication. Searchable
encryption (Song et al., 2000; Boneh and Waters,
2007; Bellare et al., 2008; Chase and Kamara, 2010;
Tu et al., 2013; Bosch et al., 2014; Fuller et al., 2017;
Kamara et al., 2022) allows a client C to outsource a
database DB, to a server S. The client should then
be able to retrieve records corresponding to a query q
efficiently from the DB without the server learning
about the contents of DB or q.
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This work considers multi-dimensional range
queries (Markatou and Tamassia, 2019; Falzon et al.,
2020; Akshima et al.,, 2020; Markatou et al., 2021;
Markatou et al., 2023). For a number of dimensions
‘, a database DB = (DB;;::;; DBy) is a collection of
tuples DB j where DB j 2 o} [1;mi] R:wheremjis
the maximum value for diménsion i. We use the
following terms:

1. The values x; are the dimensions of a tuple,
2. The value mj is the domain of a dimension, and
3. R is associated data and is called a record.

A range query q := (N)i'=1[ai;bi] finds all DBq :=
fDBjj81 i ‘;ai xji big: Searchable encryp-tion
design usually focuses on building an index (and
corresponding protocol) that calculates the subset of
records that have to be retrieved. That is, they design
an index retrieval mechanism called Retrievelndexes
that returns a set | [1;n] of matching records. A sec-
ond, often unspecified mechanism is used to retrieve
the actual records. We call this method RetrieveData.
In an full system, these protocols are used in sequence



for each query.

Recent work (Gui et al., 2023a; Gui et al., 2023b)
shows the efficiency and security aspects of record re-
trieval are crucial to understanding the overall system.
Given the unequal attention paid to the two stages,
this work focuses exclusively on RetrieveData assum-
ing a correct Retrievelndexes stage. Like search, ini-
tialization consists of two components, SetupIindexes,
and SetupData.

1.1 Prior Work on Record Retrieval

We provide a brief overview of methods used to pro-
vide security during record retrieval. We then dis-
cuss the prior combination of these techniques. Tech-
niques for hiding record access are shuffling, caching,
partitioning, and query flattening (Grubbs et al., 2020;
Maiyya et al., 2023).

We consider the following research question:

How are leakage and efficiency impacted by
the organization of tuples into parts?

We make five simplifying assumptions:

1. During retrieve index, the system retrieves the
correct records; this excludes systems that use ap-
proximate range covers (Demertzis et al., 2016;
Falzon et al., 2023)

2. During retrieve data, no “fake queries” are issued.
This excludes systems that flatten the distribu-
tion (Grubbs et al., 2020; Maiyya et al., 2023).

3. That each tuple appears in a single part.

4. Empty tuples are only used when the dataset size
is not divisible by part size.

5. That the partition is static; only parts are moved.

Assumption 1 is made for scoping reasons, how-
ever, considering approximately correct systems such
as those that use range covers is an important piece
of future work discussed in Section 8. Assuming a
query distribution without flattening (Assumption 2)
is necessary to study the research question. Assump-
tions 3-5 are satisfied by the cryptographic retrieval
methods discussed below. We introduce representa-
tive record retrieval mechanisms. These mechanisms
are used to assess the leakage of a partition strategy.
These approaches are: static shuffling, oblivious, n-
bucketed oblivious, and SWiSSSE (Gui et al., 2023b).
We consider three partitions: row-based shuffling or
DRW (shown in Fig. 1), slab-based shuffling or SLW
(shown in Fig. 2), and record-wise shuffling or RCW
(shown in Fig. 3).
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Figure 1: DRW- a two-dimensional example of a [8][8]
dataset. The numbers inside cells show the logical address
location of the tuples in the storage. For example, tuples
(5,1),(6,1),(7,1),(8,1), with addresses 5,6,7 and 8 in the orig-
inal dataset, go to location 13 in the shuffled dataset.
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Figure 2: SLW- a two-dimensional example of a [8] [8]
dataset. The numbers inside cells show the logical address
location of the tuples on the storage. For example, tuples
(5,1),(6,1),(5,2),(6,2), with addresses 5,6,13, and 14 in the
original dataset, go to location 16 in the shuffled dataset on
the right side of the figure.

1.2 Our Contribution

We evaluate the cross product of the above data
retrieval mechanisms and partitioning strategies.
Our evaluation is with respect to efficiency and se-
curity on dense, synthetic two-, three-, and four-
dimensional data of size up to 2M records. In Sec-
tion 3, we argue for metrics to assess the security
when one instantiates record retrieval with each can-
didate system (shown in Table 1). For Shuffled and
SWIiSSSE we adopt the average number of parts, for
the two ORAM systems we adopt the entropy of num-
ber of parts. Our evaluation supports three major con-
clusions.

For Shuffled and SWiSSSE, the page organiza-
tion that requests the fewest number of pages also has
the best security. However, efficiency and security
are not aligned when using (n-bucketed) ORAM. For
both ORAM variants, one can actually reduce the en-
tropy of response size by having most queries request
the maximum number of parts. RCW, which requests
nearly all parts, has the lowest values for both entropy
metrics despite its poor efficiency.

We consider four query types (Section 5):

1. Isotropic: each dimension has the same width.

2. Bisected anisotropic: separate dimensions into
two parts with equal widths for each.
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Figure 3: RCW: A two-dimensional example of a [4][4]
dataset. The numbers inside cells show the logical address
location of the tuples on the storage. We shuffle the loca-
tions of the tuples. For example, tuple (3,2) with address
7 in the original dataset goes to location 10 in the shuffled
dataset on the right side of the figure. Parts are then created
based on new organizations of equal size. (Any partition
strategy has the same outcome after a random permutation.)

Leakage
Retrieval Mech. | Profile ‘ Metric
Shuffled Access Pattern Parts/Query
SWIiSSSE SWiSSSE Parts/Query
ORAM Volume H(Parts)

bucket ORAM H(Parts)

Table 1: Association between storage mechanism and as-
sessed leakage metric. For all schemes, we consider the
average # parts returned as the efficiency metric. For the
n-bucketed ORAM, the volume is padded to the next power
of n. H is the entropy function on the distribution of part
numbers.

Bucket Volume

3. Gradual anisotropic: dimension width gradually
reduces.

4. Outlier anisotropic: all but one dimension are of
equal width. In these queries, we always make
the first dimension differ. We split the query type
by whether the first dimension is smaller or larger
than the other dimensions, called min and max,
respectively.

Our experiments demonstrate that SLW partitioning
is generally the best with respect to efficiency and se-
curity across various query shapes, with one excep-
tion. DRW partitioning exhibits higher performance
and lower leakage on outlier queries where dimen-
sions 2;:::;‘ have large sizes (and the size of the first
dimension is arbitrary).

Both DRW and SLW outperform RCW as expected
and as shown in Table 2. Table 2 shows the percentage
of tuples retrieved from the parts that were in the spec-
ified query. RCW usually requires at least three times
as many parts as the other two methods. Our detailed
results, presented in Tables 3, show that in general
SLW presents superior security and efficiency com-
pared to DRW. There are two notable exceptions:

1. DRW is sensitive to the width of dimensionsi> 1,
performing well when the query is large in other
dimensions. (When the width of each dimension
is the same in all dimensions, which dimension is
indexed is irrelevant.) This is displayed in the rel-
evant query % in outlier queries in Table 2. In

Relevant Tuple %

Dim. | Query Type | RCW | DRW | SLW
Isotropic 15.6 436 | 41.2
Bisected 123 | 35.7 | 40.6

4 | Gradual 4.0 16.1 | 23.9
Outlier Min 5.8 | 76.5 | 20.2
Outlier Max 1 4 2.8
Isotropic 26.3 66.5 | 73.3
Bisected 2.2 6.3 8.1

3 | Gradual 1.2 4.4 6.7
Outlier Min .5 11.5 3.1
Outlier Max .0 2 1.0
Isotropic 34.0 66.3 | 85.1
Bisected 25.1 49.7 | 80.4

2 | Gradual 245 | 49.2 | 80.0
Outlier Min .5 64.4 8.0
Qutlier Max .5 .5 8.1

Table 2: Relevant tuple percentage > 1M record datasets
across number of dimensions. Size of desired record set
over size of returned record set. Summarizes Tables 3.
Bolded entries are at least 10% better than other methods
for the same data and query set. Dimension 3/2 datasets
are detailed in the online version of this work (Heidaripour
et al., 2024)

Outlier Min, where dimension 1 is small com-
pared to other dimensions, DRW performs much
better than SLW. However, when dimension 1 is
larger than other dimensions SLW performs better
than DRW though all methods perform poorly.

2. DRW receives more security benefit from the use
of n-bucketed volume than SLW. This is due to
more variety in part numbers for DRW.

The above schemes are implemented, code is pub-
lished in a public GitHub repository.

2 Preliminaries

Let | 2 N be a security parameter. Throughout all al-
gorithms are collections of algorithms indexed by se-
curity parameter |. However, | is often omitted from
notation for simplicity.

For integers a;b let [a;b] = fx 2 Zja x bgand let

[b] be shorthand for [1;b]. We consider a database
DB where each tuple DB; consists of * dimensions
and an associated record. For 1 i , let m; de-note
the maximum value of the ith dimension which
ranges from [m;]. A database DB = (DB1;::;;DBy)
is an ordered collection of tuples where each DB 2

0" [m] R:where1 x; mi. For a querytq=

DBy = fDBj81 i ‘;ai xj;i big:
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Separating lookup and retrieval Let DB be a
database of size N. We separately define two func-
tions:

1. Index :[my]:::[m] 1 208",

2. Storage : 21" | (R[ ?)V.

We provide formal definitions of searchable en-
cryption in the full version of this work (Heidaripour
et al., 2024). Our definition considers four opera-
tions: 1) Setuplndexes generating an encrypted in-
dex set, 2) SetupData created an encrypted array of
records, 3) Retrievelndexes which finds the indices
and 4) RetrieveData which retrieves the tuples.

3 Prior Work: Retrieval
Mechanisms and Leakage Metrics

This section provides an overview of retrieval meth-
ods discussed in the Introduction (shuffled, ORAM,
n-bucketed ORAM, SWIiSSSE). This cross-section
of retrieval methods covers the main techniques of
caching, shuffling, and partitioning. (As a reminder,
we ignore query flattening, as it destroys optimiza-
tion of partitioning based on query load.) Through-
out our discussion, we consider a persistent adver-
sary (Grubbs et al., 2017) as codified in the full ver-
sion of this work (Heidaripour et al., 2024). Roughly,
the adversary 1) sees the encrypted database and all
communication from the client, 2) follows the proto-
col, and 3) does not specify the query distribution.

Before introducing defensive schemes, we intro-
duce common terminology used to describe leakage
functions.

e Access Pattern. Reveals the (persistent) identi-
fiers of all returned parts.

e Search/Equality Pattern. If queries are equal.

e Co-occurrence Pattern. Reveals parts that are
jointly returned by queries.

¢ Volume Pattern. Reveals the number of parts re-
turned by each query.

3.1 Prior Retrieval Mechanisms and
Leakage Analysis

We consider four record retrieval methods. Each of
these mechanisms yields a different leakage profile.
In Section 3.2, we introduce 1-dimensional metrics to
assess leakage.

Shuffled During SetupData one selects a ran-
dom permutation of parts that is consistent through-
out setup and search. This method has access pattern
leakage.

ORAM ORAM (Goldreich, 1987; Goldreich and
Ostrovsky, 1996) systems for RetrieveData leaks how
many records are accessed (assuming the tuple and
parts are fixed size).

n-bucketed Oblivious SEAL (Demertzis et al.,
2020) allows fine-tuning of leakage during the setup
phase. The construction of SEAL involves adjustable
ORAM (a) and adjustable padding (n). They use
two techniques: memory partitioning and padding the
number of accesses from an ORAM. For n, one re-
trieves nd'°8n ke records instead of n. We focus on the
ORAM padding technique because we already con-
sider memory partitioning for all systems.

SWISSSE (Gui et al.,, 2023b) SWIiSSSE can be
seen as a partial ORAM where the access pattern is
not completely oblivious, the main benefit is that it
only requires two rounds.

3.2 Prior Attacks and Leakage Metrics

We argue for metrics to assess a partitioning strategy
across retrieval methods. This analysis considers both
the leakage function and existing attacks. Leaker (Ka-
mara et al., 2022) provides an overview of attacks that
perform data and query-recovery (without the use of
either auxiliary or known data and queries).

Existing access pattern attacks rely on building a
co-occurence matrix and the success of the attack de-
pends on the number of items returned together. In
SWISSSE, only a single row of a co-occurrence ma-
trix is exposed to the adversary. Gui et al. evaluated
this leakage, and their attack recovered frequently re-
turned items. We adopt the average number of ac-
cessed parts as our metric for Shuffled and SWiSSSE.

Current (bucketed) ORAM attacks (Grubbs et al.,
2018) are for a single dimension. They rely on
observing all possible ranges. When one moves
from one-dimensional to multi-dimensional ranges
the number of ranges increases from N2 to N2 mak-
ing it more difficult for the adversary to observe each
range. We adopt the entropy of the number of re-
turned parts as our evaluation metric for ORAM and
n-bucketed ORAM.

4 Partition Organization

We implement a multi-dimensional search to measure
different partitions using a three-phase multimap as
follows:

1. Creation of an Index Structure: In this initial
phase, an index structure is established by run-
ning SetupData, and Setuplndexes. We use a k-d
tree (Bentley, 1975) for finding the appropriate



records, all exact methods are equivalent for eval-
uating the record retrieval stage.

2. Data Shuffling: The second phase entails shuf-
fling the source data on disk.

3. Dictionary Generation: In the third phase, a dic-
tionary is created where a range from the index
structure is linked with a set of values derived
from the newly shuffled data.

We consider three shuffling schemes.

Divided-Row Shuffling (DRW) In Divided-Row
Shuffling we adopt a row-based storage order for the
dataset. It is shown in Figure 1. DRW sequentially di-
vides the dataset into partitions of size jPj through the
stored source data. For example, consider a dataset
with dimensions [8][8] and a partition size of jPj = 4.
In this scenario, we obtain 16 partitions that trans-
form the dataset into a [8] [2] matrix. Subsequently, the
shuffling is performed by applying a pseudoran-dom
permutation to the parts.

The shuffled matrix forms the foundation for the
subsequent steps. From this point, we can construct a
multi-dimensional indexing structure by utilizing the
starting points of each partition. In the illustrative ex-
ample provided in Figure 1, the starting points for the
partitions are indicated as (1;1), (5;1), (1;2), (5;2),
and so forth, extending up to (1; 8) and (5; 8).

Slab-Wise Shuffling (SLW)  In Slab-Wise Shuffling
(SLW) we adopt a partitioning strategy for datasets
that are Slab-oriented, denoted as P, and are charac-
terized by a d-dimensional partition shape of [pi]
[p2]:::[pg]. This partitioning is depicted in Fig-ure 2.
In the specific illustration presented, a dataset initially
sized [8][8] is segmented into a collection of 16
distinct [4][4] matrices. This results in a trans-
formation to a [4] [4] dataset structure. Following this
Slab-oriented organization, we begin a shuffling
process targeting this newly arranged dataset. The
shuffling is guided by the locations of the individual
slabs within the structure.

Record-Wise Shuffling (RCW) RCW is a record-
wise permutation of the source data. Record-Wise
Shuffling unlike the preceding methods, requires no
logical grouping of values; hence the record-wise des-
ignation.

Fig. 3 illustrates a two-dimensional example. In
this example, we have a [4] [4] two-dimensional ar-ray
of tuples. We store the tuples in row-based storage and
assign logical location addresses to the tuples in a
row-based order from 1 to 16. Then we permute the
locations, mapping them so they are stored in a

new spot. Afterward, we build the multi-dimensional
index structure based on the points in their new loca-
tions.

5 Query Distribution

We consider four types of queries based on the rel-
ative queried width of each dimension. Isotropic
queries, denoted as Qjso, have a uniform scaled length
in each dimension. For a query g = [a1;b1] [aq;bg]
let 8i;wj := ja; bij. A query Y belongs to the set
iso if Q= q®@i;j wi wj e whereeis a deviation
parameter. In our implementation, we set e = 0, as
we only consider queries that are per-fectly isotropic.
Anisotropics have scaled lengths of their intervals
that vary across dimensions. The set of anisotropic
queries is the complement of isotropic queries: Qaniso
= Qtl. We categorize anisotropic queries into
Bisected, Gradual, and Outlier.

¢ Bisected anisotropic queries (BAQ) partitions the
dimensions into two parts each with a width gap
of at most e within each part. In four dimensional
datasets, this means two sets of two dimensions
have the same width.

e Gradual anisotropic (GAQ) queries scale the
width of each dimension down by a factor of
c. In our implementation, we randomly choose
c2 f1;2;:::; %;@ l%J where w is the width of
the query’s widest dimension.

¢ Qutlier anisotropic queries (OAQ) are isotropic in
all but one dimension which has either a smaller
or larger width. We call a OAQ query min if the
dimension of differing size is smaller and max if
it is larger. In our implementation, the outlier is
always dimension 1 to highlight the differences
between our shuffling techniques.

6 Evaluation Methodology

We experimentally evaluate the performance of our
schemes. We used a randomly generated dataset be-
cause the actual values in the datasets are unlikely to
impact our measurements. Our conclusions depend
on the dataset’s size, number of dimensions, and the
width of each dimension. We consider six datasets
in the full version of this work (Heidaripour et al.,
2024). We focus on a four-dimensional dataset of
sizes 1048576 = 32% with a DRW row of size 4096,
and SLW slabs of size 8*. We issue 10K queries. To
the best of our knowledge, no standard benchmarks



of queries on array-based data are available. A uni-
form distribution was used for our experiments to
generate Hyper-Rectangular range query samples
for each query shape according to the shapes dis-
cussed in Section 5. For dense data, only the relative
size of each dimension matters; we believe our query
shapes explore this parameter space well.

Experimental Setup We implemented our
schemes in Python 3.10.12 and conducted all our
experiments on a computer with 8-core processors
and 16G RAM. We utilized Python’s cryptography
library version 40.0.2 (pyca/cryptography, 2023) and
employed AES-128 encryption in XTS mode with a
256-bit key size for symmetric encryption, using line
positions as tweaks. Our code is published in a public
GitHub repository.

7 Experiment Results

Our primary efficiency measure is the number of parts
accessed per query. For best security, one seeks a
small number of returned parts with small variance.
This saves both on memory access for the return while
presenting less leakage. We computed the leakage
metrics introduced in Section 3, shown in Table 3.
Figure 4(a) illustrates the distribution of part access
numbers for the [32]* dataset with respect to the four
different query shapes: isotropic queries, bisected
anisotropic queries, gradual anisotropic queries, and
outlier anisotropic queries using violin graphs. The
width of a violin graph represents frequency while the
y-axis represents the number of parts accessed in a
query. In all of our results, we present the size of the
query for comparison (Figure 4(b)). A solution with
100% relevant tuple percentage would have these two
identical graphs.

Table 3 shows the (n-bucketed) entropy and av-
erage number of parts accessed across all queries.
For n-parts, we have rounded the number of parts to
the closest power of n = 2, which at least the num-
ber of accessed parts, and then computed our leakage
metrics over them. As discussed in Section 3, Ac-
cess Pattern and SWiSSSE leakage are minimized by
minimizing the number of partitions that are accessed
through the retrieval process. To minimize (bucketed)
volume leakage, one desires low entropy in the vol-
ume of accessed parts.

The use of n-parts is most useful when there is a
small increase in the amount of required parts but a
large decrease in the entropy of parts returned. As an
example, the results in Table 3 shows that for DRW
when we have outlier anisotropic queries max, the av-
erage number of parts increases by 10% while entropy

Parts n-Parts

Query Shuf. Avg I s l H Avg I s l H
Isotropic RCW 230 71 1.7 230 66 .65
Avg = 150K DRW 82 68 5.5 110 95 2.8
STD = 207K SLW 87 92 35 105 100 2.9
Bisected RCW 250 38 15 250 32 .28
Avg = 120K DRW 85 69 6.7 110 91 2.6
STD = 180K SLW 74 74 4.2 99 95 2.7
Gradual RCW 250 33 .76 250 30 13
Avg = 40.9K DRW 62 48 5 83 65 2.4
STD =36K SLW 42 30 3.6 60 43 2.5
Outlier Min RCW 260 0 0 260 0 0
Avg = 61K DRW 19 8.8 2.6 21.8 10 15
STD =28K SLW 74 23 .6 74 23 .6
Outlier Max RCW 171 91 4.9 200 97 8
Avg =730 DRW 40 14 2.9 43 15 .94
STD =710 SLW 6.3 4.3 13 6.3 4.3 13

Table 3: Leakage Metrics for 4D datasets. n set to 2, other
small values displayed similar trends. H is the entropy of
the (bucketed) part distribution.

of parts decreases by roughly 66%. On the other hand,
for SLW for isotropic queries, the average number of
parts increases by 22% with the entropy decreasing
by only 17%.

As shown in Table 3, across query shapes RCW
has lowest value of n-bucketed entropy, followed by
DRW, and then SLW.

It can also be inferred from the table that the bene-
fit of n-bucketing for the DRW is more significant than
for the SLW as the entropy decreases more in DRW.
Looking at Figure 4(a), this can be the result of hav-
ing a more continuous distribution in DRW than in the
SLW. For outlier anisotropic queries we see the most
discontinuity in SLW distribution (4(a)-(IV) and (V)),
and this is when bucketing does not have any effect
on the entropy of accessed parts.

DRW and SLW have very different performance
and security on outlier queries, they differ by a fac-
tor of 2 on both average and entropy of parts. For
isotropic queries, where the query has the same width
along all dimensions on 4D data, DRW performs bet-
ter than SLW. On the security side, DRW has a lower
average number of parts but higher entropy.

However, this improvement in average returns and
entropy found from the different shuffling schemes is
not consistent with the other query shapes or other
datasets (Heidaripour et al., 2024); For all other query
types, the average number of parts and entropy for
SLW is smaller compared to DRW.

8 Conclusion

Prior study of secure multi-dimensional storage fo-
cuses on indexing structure. This work focuses on
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the less-charted territory of optimizing storage and re-
trieval steps. Our primary study is the differences in
efficiency and security of data retrieval for searchable
encryption mechanisms across datasets and query
shapes. In most scenarios, reducing the average and
variance of returned parts improves both efficiency
and security of the system. That is, efficiency and
security are aligned. DRW demonstrates superior per-
formance only in the setting where dimensions i > 1
are large in each query. This is counter intuitive, we
usually organize data based on the most important di-
mension, here the width of the non-indexed dimen-
sions are critical.

We recommend that future research investigates
the interactions between different shuffling strategies
and index structures that allow for false positives,
such as the single range cover (Falzon et al., 2022).
Such systems usually reduce the number of possi-
ble ranges that are queryable. A natural solution is
to organize data according to these queryable ranges.
However, unlike the organizations considered in this
work, tuples usually are in more than one range cover.
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