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ABSTRACT

Positional encodings (PEs) are essential for building powerful and expressive
graph neural networks and graph transformers, as they effectively capture the
relative spatial relationships between nodes. Although extensive research has been
devoted to PEs in undirected graphs, PEs for directed graphs remain relatively
unexplored. This work seeks to address this gap. We first introduce the notion of
Walk Profile, a generalization of walk-counting sequences for directed graphs. A
walk profile encompasses numerous structural features crucial for directed graph-
relevant applications, such as program analysis and circuit performance prediction.
We identify the limitations of existing PE methods in representing walk profiles
and propose a novel Multi-qg Magnetic Laplacian PE, which extends the Magnetic
Laplacian eigenvector-based PE by incorporating multiple potential factors. The
new PE can provably express walk profiles. Furthermore, we generalize prior basis-
invariant neural networks to enable the stable use of the new PE in the complex
domain. Our numerical experiments validate the expressiveness of the proposed
PEs and demonstrate their effectiveness in solving sorting network satisfiability
and performing well on general circuit benchmarks. Our code is available at
https://github.com/Graph-COM/Multi-g-Maglap.

1 INTRODUCTION

Positional encoding (PE) (Vaswani et al., 2017; Su et al., 2024), which refers to the vectorized
representation of token positions within a series of tokens, has been widely integrated into modern
deep learning models across various data modalities, such as language modeling (Vaswani et al.,
2017), vision tasks (Dosovitskiy et al., 2020), and graph learning (Dwivedi et al., 2023; Rampasek
et al., 2022). The key advantage of PE is its ability to preserve crucial positional information of tokens,
thereby complementing many downstream position-agnostic models like transformers (Yun et al.,
2019) and graph neural networks (GNNs) (Li & Leskovec, 2022; Lim et al., 2022). For regularly
ordered data, such as sequences or images, defining PE is relatively straightforward; for instance,
one can use sinusoidal functions of varying frequencies (known as Fourier features) as PE (Vaswani
et al., 2017). In contrast, designing PE for structured graph data is more challenging due to the lack
of canonical node ordering in graphs.

Designing effective positional encodings for graphs (Dwivedi et al., 2023; Kreuzer et al., 2021; Beaini
etal., 2021; Lim et al., 2022; Dwivedi et al., 2021; Rampasek et al., 2022; Li et al., 2020; Wang et al.,
2022) is significant because graph PEs can be used for building powerful graph transformers as well
as improving the expressive power of GNNs (Li et al., 2020; Wang et al., 2022; Lim et al., 2022).
In particular, for undirected graphs, Laplacian positional encoding (Lap-PE) (Dwivedi et al., 2023;
Kreuzer et al., 2021), derived from the eigenvalues and eigenvectors of graph Laplacians, is adopted
by many state-of-the-art graph machine learning models (Rampasek et al., 2022; Chen et al., 2022;
Lim et al., 2022; Huang et al., 2023). Lap-PE is powerful as it well preserves the information of the
graph structure and can express various distance features defined on undirected graphs: examples such


https://github.com/Graph-COM/Multi-q-Maglap

Preprint

as diffusion distance (Coifman & Lafon, 2004; Bronstein et al., 2017; Wang et al., 2024), resistance
distance (Xiao & Gutman, 2003) and biharmonic distance (Lipman et al., 2010; Kreuzer et al., 2021)
are crucial structural features widely used in many graph learning and analysis tasks.

Despite the success of Lap-PEs for undirected graphs, many real-world applications involve directed
graphs, such as circuit design, program analysis, neural architecture search, citation networks, and
financial networks (Wang et al., 2020; Phothilimthana et al., 2024; Zhang et al., 2019a; Allamanis,
2022; Zhou et al., 2019; Ren et al., 2021; Liu et al., 2019; Boginski et al., 2005; Wen et al., 2020).
In these graphs, the structural motifs such as bidirectional walks and loops, which consist of edges
with different directions often carry critical semantic meanings. For example, in data-flow analysis,
programs can be represented as data-flow graphs (Brauckmann et al., 2020; Cummins et al., 2020).
Understanding reachability, liveness, and common subexpressions requires analyzing whether walks
between nodes have edges pointing in the same or reverse directions (Cummins et al., 2020; 2021).
Logical reasoning often depends on identifying directed relationships, such as common successors
(X <Y — Z) or predecessors (X — Y <+ Z) (Qiu et al., 2023; Tian et al., 2022). Feed-forward
loops that involve the two directed walks X — Z and X — Y — Z, are fundamental substructures
in many biological systems (Mangan & Alon, 2003). Figure 1 shows some examples.

However, how to define PEs for directed graphs to capture the above bidirectional relations is still
an open question. Most previous works focus on dealing with the asymmetry of Laplacian matrix,
and propose, e.g., symmetrized Laplacian PE (Dwivedi et al., 2023), singular value decomposition
PE (SVD-PE) (Hussain et al., 2022), Magnetic Laplacian PE (Mag-PE) (Geisler et al., 2023).
Nevertheless, these PEs can be shown to be not expressive enough to capture the desired bidirectional
relations. In this work, we address this problem by studying more expressive PEs for directed graphs.
Our main contributions include:

* We formally propose a notion named (bidirectional) walk profile, which generalizes undirected
walk counting to bidirectional walk counting and can be used to represent many important
bidirectional relations in directed graphs such as directed shortest (longest) path distance, common
successors/predecessors, feed-forward loops and many more. Walk profile ®(m, k) represents
the number of length-m bidirectional walks with exact k forward and m — k backward edges.

We show that symmetrized Laplacian PE, SVD-PE, and Mag-PE fail to express walk profile
To address this problem, we propose Multi-q Magnetic Laplacian PE (Multi-q Mag-PE) that
jointly takes eigenvalues and eigenvectors of multiple Magnetic Laplacian with different potential
constants ¢. Interestingly, this simple adaption turns out to be extremely effective: it can
provably reconstruct walk profiles of the directed graph. The key insight is that g serves as the
frequency of phase shift that encodes the counts of the walks with certain numbers of forward
and backward edges, and using a certain number of different ¢’s allows full reconstruction of the
counts of these bidirectional walks by Fourier transform. Notably, we show that the number of
potential q have to be half of the desired walk length for perfect recovery.

* Besides, naive use of complex eigenvectors of Magnetic Laplacian could lead to severe stability
issues (Wang et al., 2022). we introduce the first basis-invariant and stable neural architecture
to handle complex eigenvectors. Specifically, we generalize the previous stable PE frame-
work (Huang et al., 2023) from real to complex domain. The invariant property ensures that two
equivalent complex eigenvectors (e.g., differ by a complex basis transformation) have the same
representations. Moreover, the stability allows bridging Lap-PE (potential ¢ = 0) and Mag-PE
(potential ¢ # 0) smoothly. Our experiments show the key role of stable PE architecture to get a
good generalization performance.

Empirical results on synthetic datasets (distance prediction, sorting network satisfiability pre-
diction) demonstrate the stronger power of multi-q Mag-PEs to encode bidirectional relations.
Real-world tasks (analog circuits prediction, high-level synthetic) show the constant performance
gain of using multi-q Mag-PEs compared to existing PE methods.

2 RELATED WORKS

Neural networks for directed graphs. Neural networks for directed graphs can be mainly catego-
rized into three types: spatial GNNs, spectral GNNs, and transformers. Spatial GNNs are those who
directly use graph topology as the inductive bias in model design, including bidirectional message
passing neural networks (Jaume et al., 2019; Wen et al., 2020; Kollias et al., 2022) for general
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directed graphs and asynchronous message passing exclusively for directed acyclic graphs (Zhang
et al., 2019b; Dong et al., 2022b; Thost & Chen, 2020). Spectral GNNs aim to generalize the concepts
of Fourier basis, Fourier transform and the corresponding spectral convolution from undirected graphs
to directed graphs. Potential spectral convolution operators include Magnetic Laplacian (Furutani
et al., 2020; He et al., 2022; Fiorini et al., 2023; Zhang et al., 2021b), Jordan decomposition (Singh
et al., 2016), Perron eigenvectors (Ma et al., 2019), motif Laplacian (Monti et al., 2018), Proxim-
ity matrix (Tong et al., 2020) and direct generalization by holomorphic functional calculus (Koke
& Cremers, 2023). Finally, transformer-based models adopt the attention mechanism and their
core ideas are to devise direction-aware positional encodings that better indicate graph structural
information (Geisler et al., 2023; Hussain et al., 2022), which are reviewed next.

Positional encodings for undirected/directed graphs. Many works focus on designing positional
encodings (PE) for undirected graphs, e.g., Laplacian-based PE (Dwivedi et al., 2023; Kreuzer et al.,
2021; Beaini et al., 2021; Lim et al., 2022; Wang et al., 2022; Huang et al., 2023), random walk
PE (Li et al., 2020; Dwivedi et al., 2021). See Rampasek et al. (2022) for a survey and Black et al.
(2024) for a study that relates different types of PEs. On the other hand, recently there have been
efforts to generalize PE to directed graphs. Symmetrized Laplacian symmetrizes the directed graph
into an undirected one and applies regular undirected Laplacian PE (Dwivedi et al., 2023). Singular
vectors of the asymmetric adjacency matrix have also been used as PE (Hussain et al., 2022), and so
have the eigenvectors of the Magnetic Laplacian and bidirectional random walks (Geisler et al., 2023).
For directed acyclic graphs, a depth-based positional encoding has been used (Luo et al., 2024).

3 PRELIMINARIES

Basic notation. We denote the real domain by R and the complex domain by C. Bold-face letters
such as A are used to denote matrices. AT denotes the conjugate transpose of A. We use i = /—1
to represent the imaginary unit and I for the identity matrix.

Directed graphs. Let G = (V, ) be a directed graph, where V is the node setand £ C V x V
is the edge set. We call u predecessor of v if (u,v) € £ and call u successor of v if (v,u) € &.
Let A € {0,1}"*" be the adjacency matrix of a directed graph with n nodes where A4,, = 1
if (u,v) € € and 0 otherwise. Denote D as the diagonal node degree matrix where D,, ,, is the
in-degree d;y ,, plus the out-degree doy,., Of node wu.

Graph Magnetic Laplacian. With a parameter ¢ € R called potential, the complex adjacency
matrix A, € C"*" is defined by [A,],,» = exp{i2mq(Ay, — Ay )} if (v,v) € Eor (v,u) € €,
and 0 otherwise. A, encodes edge directions via the phases of complex numbers exp{+i27q}.
Magnetic Laplacian L, is correspondingly defined by L, = I — D~'/2A,D~'/2, For a weighted
graph A € R™*", we can instead define [Ay],,» = (Ayo + Apu) © exp{i2ng(Ay, — Ay )} and
L, thereby. As a generalization of Laplacian to directed graphs, L, is widely studied in applied
mathematics, physics and network science for directed graph analysis (Shubin, 1994; Fanuel et al.,
2017; 2018), and has been recently introduced as a promising way to build graph filters and deep
learning models for directed graphs (Furutani et al., 2020; Geisler et al., 2023; Fiorini et al., 2023;
He et al., 2022). Symmetrized Laplacian, i.e., Laplacian of the undirectized graph, is essentially a
special case of Magnetic Laplacian with potential ¢ = 0 (no phase difference). Magnetic Laplacian
L, is hermitian since L:fl = L,. This implies that there exists eigendecomposition L, = VAV,
where V' € C"*"™ is a unitary matrix, and A = diag(\) constitutes of real eigenvalues A € R™. The
Magnetic Laplacian PE of node  is defined by the corresponding row of V', denoted by 2z, = [V;,..] .

4  WHAT ARE GOOD POSITIONAL ENCODINGS FOR DIRECTED GRAPHS?

In this section, we are going to study the capability of directional PEs to encode bidirectional relations.
We first define a generic notion Walk Profile, which counts the number of walks that consist of forward
or backward edges and characterizes the expressive power of PEs to represent walk profiles. As
aforementioned, these bidirectional walks are important as they can form many crucial motifs to
enable the studies and analysis of directed graphs, such as feed-forward loops in biological systems
and common successors/predecessors for logic reasoning.
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Figure 1: Examples of real-world directed motifs/patterns (left) and walk profile (right).

4.1 WALK PROFILE: A GENERAL NOTION THAT CAPTURES BIDIRECTIONAL RELATIONS

On undirected graphs, one way to describe the spatial relation between node v and v is through
walk counting sequences at different lengths W, = (Ay., A2, A3 ..., AL ). In particular,

w,v?
suppose A € {0,1}™*™, then it is known that Af;w counts the number of /-length walks from u
to v and the shortest path distance can be found by spd,,, = min{¢ : A > 0}. For directed
graphs, we can adopt the same description with A replaced by the asymmetric adjacency matrix.
However, this single-directional walk could miss important distance information on directed graphs.
For example, consider a directed graph with E = {(1, 3), (2, 3)}, where node 1 and 2 share one
common predecessor. However, as we cannot reach node 2 from node 1, the walk counting sequence
from node 2 to node 1 is always zero. In this case this single-directional walk fail to capture the
relation.

A key observation is that descriptions of directed motifs/patterns such as common succes-
sors/predecessors require knowing both the powers of A (walks via forward edges) and that of
AT (walks via backward edges), and their combinations AAT and AT A. This observation moti-
vates us to define walks in a bidirectional manner as follows.

Definition 4.1 (Bidirectional Walk). Let G = (V,E) be a directed graph. A bidirectional walk
w = (vg, V1,2, ...) is a sequence of nodes where every consecutive two nodes form either a forward
edge (v;,viy1) € &€ or a backward edge (viy1,v;) € E. The length of a bidirectional walk is the
total number of forward edges and backward edges it contains.

Bidirectional walks contain significantly more information than unidirectional walks. Note that two
bidirectional walks of the same length can differ in the number of forward and backward edges. To
capture this finer granularity, we introduce the concept of Walk Profile, a generalization of walk
counting on directed graphs that retains more detailed structural information.

Definition 4.2 (Walk Profile). Let G be a directed graph and A be the adjacency matrix. Given
two nodes u,v, Walk profile ®,, ,,(¢, k) is the number of length-{ bidirectional walks from u to v that
contains exact k forward edges and { — k backward edges.

For example, ®,, ,(1,1) = A, , represents the connectivity from u to v; ®,,,,(2,1) = (AAT),, +
(ATA)U,U, which counts the number 2-length walk with one forward edge and one backward edge,
which corresponds to the number of common successors or predecessors. One can also compute the
shortest/longest path distance using the walk profile. See Figure 1(b) for illustrations. Note that the
definition of walk profile can be generalized to weighted graphs by replacing adjacency matrix with
weight matrix A € R™*".

Remark 4.1. Let G be a directed graph with Adjacency matrix A € {0, 1}"*™, and consider two
nodes u,v. The shortest path distance can be computed via spd,, , = min{f € Z : ®,, ,(¢,¢) > 0}.
Furthermore, if G is acyclic, then longest path distance is lpd,, , = max{{ € Z : @, ,(¢,¢) > 0}.
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4.2 THE LIMITATIONS OF EXISTING PES TO EXPRESS WALK PROFILE

Intuitively, a good PE can characterize certain notations of distances between nodes u and v based on
PEs z,, z,. Now let us study the power of the existing PEs for directed graphs via the notion of walk
profile. Formally, we say a PE method is expressive if it can determine &, ,, based on z,, and z,,.

Mag-PE. Let L, = I — D~'/2A,D~'/2 be Magnetic Laplacian with potential . Since Magnetic
graph A, faithfully represents the directed structure of the graph, one may conjecture that eigenvalues
A and eigenvectors z,, 2z, should be able to compute the walk profile. However, it turns out that it is
impossible to recover ®,, ,,(m, k) from them, as shown in the following Theorem 4.1.

Theorem 4.1. Fix a g € R. There exist graphs G, G’ with adjacency matrices A, A’ € R"*"™, and
nodes u,v € Vg and v’ ,v' € Vg, such that Mag-PE (\, zy, z,) = (N, 2, 2.,), but @, ,(m, k) #
@, i (m, k) for some m, k.

Remark 4.2. From the formal proof of Theorem 4.1 (see Appendix A) we can also show that Mag-PE
of node u, v is unable to compute shortest path distance spd,, ... More insights into why single g may
fail are to be discussed after the proof sketch of Theorem 4.2. Besides, as symmetrized Laplacian can
be seen as a special case of Magnetic Laplacian (q¢ = 0), the same negative results also apply for
symmetrized Laplacian PE.

SVD-PE. Singular vectors of the asymmetric adjacency matrix may also be used as directed PE (Hus-
sain et al., 2022). That is, A = Udiag(o)W ' and define SVD-PE z,, := Uy, Wu,:)—r. Here,
we provide an intuition on why SVD-PE is hard to construct the walk profile. Recall that in
eigen-decomposition, a power series of A can be computed via power series of eigenvalues, i.e.,
f(A) =32, apAP = Vdiag[f(X)]V'T, which explains that the distance in the form of f(A), , can
be expressed by (V,,.., f(A) ©® V,,.). In contrast, this property does not hold for SVD. For instance,
A? = Udiag(o)W "Udiag(o)W T # Udiag(c?)W . As a result, computation of [A?],, (the
walk profile more broadly) requires not only SVD-PEs z,, z,, but also z,, for some w € V/{u, v}.

4.3 MAGNETIC LAPLACIAN WITH MULTIPLE POTENTIALS ¢

The limited expressivity of existing PE methods motivates us to design a more powerful direction-
aware PE. The limitation of Mag-PE comes from the fact that the accumulated phase shifts over all
bidirectional walks by Magnetic Laplacian cannot uniquely determine the number of walks. For
example, suppose ¢ = 1/8, both of the following cases - (1) node v is not reachable from w - v.s. - (2)
u — u; — v and u < ug < v - yield the same [Lg]w, = ( for any integer /. However, the numbers
of length-¢ walks between u and v are different. The potential ¢ acts like a frequency that records the
accumulated phase shift for a walk, and one single frequency ¢ cannot faithfully decode the distance.

Based on the frequency intepretation, we propose Multi-q Magnetic Laplacian PE (Multi-q Mag-PE),
which leverages multiple Magnetic Laplacians with different ¢’s simultaneously. A g vector denoted
by ¢ = (q1,...,qq) is going to construct  many Magnetic Laplacian L, , ..., L, and Multi-q
Mag-PE is defined by concatenation of multiple Mag-PE:

20 = (Vi Juss o Vg ) T M

where V, is the eigenvectors of L, . Intuitively, different frequencies (potential g) give a spectrum
of phase shifts that allows to decode spatial distances in a lossless manner.

Indeed, despite the simplicity of the above extension, the following Theorem 4.2 demonstrates that this
simple extension can be rather effective: with a proper number of ¢’s, one is able to exactly compute
the walk profile of the desired length. Section 5.1 also provides extensive empirical justifications.

Theorem 4.2. Let L be a positive integer and let Q = [£] + 1, where [] means ceiling. If we
let § = (qu, g2, ..., qq) with Q distinct ¢’s and ¢1, ...,qr+1 € [0, i) then for all ¢ < L and k < ¢,

walk profile ®,,.,(£, k) can be exactly computed from (X%, 2, z), where X%, 27 are concatenation of
eigenvalues/eigenvectors of different q from q.

Proof Sketch. Fix two nodes u, v. As from (A7, 22, 27), we can construct [Af;]u’v for any ¢. So the

question becomes how we can determine the walk profile ®,, , (-, -) from [Aé}uv By the definition,
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Figure 2: Multi-q Magnetic Laplacian under stable PE framework. Eigenvectors and eigenvalues
of each Magnetic Laplacian with different ¢ will be processed independently and identically and
concatenated in the end.

one can find the following key formula that relates walk profile with Ag: For any ¢,

14
[Alluw = €27, (€, k)™, )
k=0

Fix the integer L and consider a length-Q) list of ¢ denoted by ¢ = (¢1,...,9¢g). Then, by Eq.

2, given [Agl}uw, [Af;Q]u p forall I < L, solving ®,, (¢, k) is equivalent to solving a linear

system F® =Y, where F € C@*(H+D $ ¢ RUAVXL Y € CO*L and F),, = exp{idmgym},
®; ., = Dy (m,7) (equals zero if j > m), Y, = [AZZ]M, - 274%™ In order to make the linear
system F' well-posed for un1quely solving the Walk profile ® from Y, it generally requires F' to have
Q = L + 1 distinct rows, i.e., €4™% = ¢™4; for any i # 7, such that Fourier matrix F becomes
full-rank. Fortunately, as the unknowns @ lies in real space, the number of rows () can be reduced to
[L/2] + 1 thanks to the symmetry of Fourier coefficients Y of real ®. As a result, we can choose

= [L/2] + 1 many distinct gs with ¢; € [0, 1), by which we can construct a full-rank system to
solve ®. O

The proof provides several insights: (a) determining the walk profile from the powers of A, of a
single ¢ is ill-posed; (b) in contrast, using [L/2] + 1 many ¢’s simultaneously makes the problem
well-posed and allows it to uniquely determine the walk profile of length < L. The number of ¢ can
be chosen based on the walk length of interest for a specific task; (c) the capability of expressing
the walk profile is robust to the values of multiple ¢’s. In practice, we may choose evenly-spaced

7= (3 i L0+1) s eees (QL(/Lﬂf)l) where F' indicates discrete Fourier transform, or randomly sampled

g; € [0, §) where F is non-singular with high probability.

Limitations. Despite the provable effectiveness of Multi-q Mag-PE, it suffers from some limitations.
One is its extra computational overhead: PEs induced by multiple ¢’s require multiple runs of
eigenvalue decomposition and introduce the higher PE input dimension. This introduces a trade-off
between the expressivity of PEs and computational complexity, which can be tuned in practice by
selecting different numbers of ¢’s. We provide a runtime comparison with various numbers of ¢’s,
see Sec. 5.4. Typically, the actual runtime of () = 5 is about twice of the runtime when Q) = 1. We
also discuss the pros and cons of using Multi-q Mag-PE v.s. directly using walk profiles as injected
features in Appendix F.

4.4 THE FIRST BASIS-INVARIANT/STABLE NEURAL ARCHITECTURE FOR COMPLEX
EIGENVECTORS

Recent studies have shown that Lap-PE has the issues of basis ambiguity and instability (Wang
et al., 2022; Lim et al., 2022; Huang et al., 2023; Black et al., 2024). That is, because eigen-
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decomposition is not unique (i.e., L = VAV = (VQ)A(V Q) for some orthogonal matrix
@), Lap-PE can become completely different for the same Laplacian and tend to be unstable to
Laplacian perturbation. In fact, this problem technically becomes even harder for Mag-PEs because
Mag-PEs live in the complex domain and the basis ambiguity extends to unitary basis transform:
L,=VAVT = (VQ)A(VQ)' for some unitary matrix Q € C"*". For Multi-q Mag-PE, even
without duplicated eigenvalues, eigenvectors associated with each ¢ exhibit their own symmetry (if v
is an eigenvector, ve’ for any 6 € (0, 27) is also an eigenvector), exacerbating the ambiguity and
stability issues even further.

To address this problem, we aim to generalize the previous stable PE frameworks, PEG (Wang et al.,
2022) and SPE (Huang et al., 2023), to handle complex eigenvectors. Our framework will process
PEs into stable representations and use them as augmented node/edge features in the backbone model.
We first consider Mag-PE of a single ¢ and then extend it. Specifically, let ¢1%, ¢ : R? — R be
permutation-equivariant function w.r.t. d-dim axis (i.e., equivariant to permutation of eigenvalues),
we can construct node-level stable PE 2,4, € R™*? and/or edge-level stable PE Zedge € Rnxnxd,

Znode = Prode(Re{ V diag(¢1°%(\) VY, .., Re{ Vdiag({¢™%()\))V T},

: node T : node T (3)
Im{Vdiag(¢}°*(\))V'}, .., Im{ Vidiag({#o*(\)) V'T}),

Zetge = pedie(Re{V diag (9% () V1], .., Re{V diag({#(\) V' 1}, )
Im{Vdiag(¢7"*°(\))V'T}, ..., Im{ Vdiag({¢:2°(\)) V'T}),

where V', A are the eigenvectors and eigenvalues of Magnetic Laplacian with a certain ¢, Re{-},Im{-}
means taking the real and imaginary parts, respectively, and ppoqe : R7X7x2m _y RXP and Pedge
RMXnX2m _ RPXNXP are permutation equivariant function w.r.t. n-dim axis (i.e., equivariant to
permutation of node indices). Afterwards, zno¢e Will be concatenated with node features, and Zzegge
will be concatenated with edge features.

Note that this is the first work to propose the usage of complex PEs in a stable way. In practice, if
the backbone model is a GNN, only a portion of (sparse) entries [Zeqge]u,0» (4, V) € € need to be
computed. For the multi-¢q case, we apply the same ¢, and p to the eigenvectors and eigenvalues
from different ¢’s and concatenate the outputs. A similar proof technique can show that the above
stable PE framework can achieve generalization benefits as stated in Proposition 3.1 in Huang et al.
(2023). Moreover, it can be shown that zyoge, 2edge are continuous in the choice of g due to the stable
structure. Such continuity naturally unifies Lap-PE and Mag-PE, because symmetrized Laplacian L
is a special case of Magnetic Laplacian L, when ¢ — 0.

5 EXPERIMENTS

In this section, we evaluate the effectiveness of multi-q Mag-PEs by studying the following questions:

* Q1: How good are the previous PEs and our proposed PEs at expressing directed dis-
tances/relations, e.g., directed shortest/longest path distances and the walk profile?

* Q2: How do these PE methods perform on practical tasks and real-world datasets?
* Q3: What is the impact on using PEs with or without basis-invariant/stable architectures?

In our experiments, we mainly consider three ways of processing PEs: (1) Naive: directly concatenates
raw PEs with node features; (2) SignNet (Lim et al., 2022): makes PEs sign invariant. We adopt the
same pipeline as in (Geisler et al., 2023), Figure G.1; (3) SPE (Egs. 3,4): we follow (Huang et al.,
2023), and use element-wise MLPs as ¢1, ..., ¢, GIN (Xu et al., 2018) as ppoge and MLPs as peqge.
Key hyperparameters are included in the main text while full details of the experiment setup and
model configurations can be found in Appendix B.

5.1 DISTANCE PREDICTION ON DIRECTED GRAPHS

Datasets. To answer question Q1, we follow Geisler et al. (2023) and generate Erd6s—Rényi ran-
dom graphs. Specifically, we sample regular directed graphs with average node degree drawn
from {1,1.5,2}, or directed acyclic graphs with average node degree from {1,1.5,2,2.5,3}. In
both cases, there are 400,000 samples for training and validation (graph size from 16 to 63, train-
ing:validation=95:5), and 5,000 samples for test (graph size from 64 to 71). Finally, We take the
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Table 1: Test RMSE results over 3 random seeds for node-pair distance prediction.

Directed Acyclic Graph Regular Directed Graph
PE method PE processing spd Ipd wp(4,-) spd Ipd wp(4,-)
Naive 0.48810.005  0.72710.005  0.370-£0.004 2.068+£0.004 1.898.10.001 0.480+0.000
Lap SignNet 0.537+0.013 0.77140.013 0.437+0.000 2.06410.004 1.90040.002 0.5180.027
SPE 0.355-+£0.001 0.655+0.002 0.32610.001 2.066-+0.005 1.92040.000 0.45240.001
Naive 0.649+0.002  0.85310.002  0.72140.000  2.19610.002  1.98210004  0-519+0.000
SVD SignNet 0.67320.003 087220002 044310001 222910005  1.99620005  0.54140001
SPE 0.727+0.001 0.91240.001 0.72110.000 2.26140.002 2.122.40.007 0.755+0.000
Naive 0.366+0.003  0.593+0.003  0.24140.010  1.82610.005  1.760+£0.007  0.311+0.013
MagLap-1q (q=0.1) ~ SignNet 0.55440.001 0.699+0.002 0.26840.042 2.04810.004 1.88140.003 0.41310.001
SPE 0.124 +0.002 0.433+0.002 0.043+0.000 1.62040.005 1.54740.004 0.133+0.001
MagLap-1q (bestq) SPE 0.12440.002 043210004  0.040+0.001 1.53310.007  1.49340.003  0-13210.000
Naive 0.35310.003  0.535+0.006  0.188+0.010 1.70810.012 1.661+0.002 0.25710.007
MagLap-Multi-q SignNet 0.473+0.000 0.57940.001 0.28040.004 1.906+0.001 1.784+0.008 0.377+0.007
SPE 0.01640.000 0-18510.036 0.00240.000 0.54610.065 1.10040.007 0.07440.001

largest connected component of each generated graph and form our final dataset. The task is to
predict the pair-wise distances for node pairs measured by: (1) shortest path distance; (2) longest path
distance; (3) walk profile. Only node pairs that are reachable or have non-zero walk profile elements
are included for training and test. For the walk profile, we choose to predict the normalized walk
profile of length 4, which is a 5-dim vector. Normalized walk profiles corresponds to the probability
of bidirectional random walks, with adjacency matrix A in walk profiles replaced by random walk

D_} A, as the latter is consistent with the normalized Laplacian I — D;;l/ 2AD;é|/ ? we use in

practice. See Appendix G for discussions.

Models. To show the power of pure PEs, we take PEs z,, 2, of node u, v to predict the distance d,, ,,
between u, v. We consider three ways of processing PEs: (1) naive concatenation: MLP([z,,, z,]);
(2) SignNet-based: MLP(SignNet(z, ), SignNet(z,)); (3) edge-SPE-based: MLP([2cqge)u,») Where
Zedge 18 defined in Eq. 4. For Multi-q Magnetic Laplacian PE, we choose ¢ = (0, ﬁ, ey %) where
L = 5 for predicting walk profile, L = 10 for predicting shortest/longest path distances on directed
acyclic graphs and L = 15 for predicting shortest/longest path distances on regular directed graphs.
For single-q Mag-PE, we tune ¢ from 0 to 0.5, and we report both the result of ¢ = 0.1 and the tuned
best g. It turns out the performance of single-q Mag-PE in this task is not sensitive to the value of ¢
as long as not being too large.

Results. Table 1 indicates several conclusions. (1) Multi-q Mag-PE constantly outperforms other PE
methods regardless of how we process the PE. Particularly, it is significantly better than other methods
when equipped with SPE; (2) impact of symmetry: when restricted to the use of naive concatenation,
the overall performance of all PE methods is not desired. This is because naive concatenation cannot
handle the basis ambiguity of eigenvectors. It is also worth noticing that SignNet’s performance may
be even worse than naive concatenation. This is because the PE processed by SignNet suffers from
node ambiguity, which loses pair-wise distance information (Zhang et al., 2021a; Lim et al., 2023).
Besides, SignNet is not stable. In contrast, when we properly handle the complex eigenvectors by
SPE, the true benefit of Mag-PE starts to present. On average, the test RMSE of Multi-q Magnetic
Laplacian gets reduced by 66% compared to the one uses naive concatenation.

Ablation study. The comparison to single-q Mag-PE naturally serves as an ablation study of Multi-q
Mag-PE. One may wonder if Multi-q Mag-PE performs better because it can search and find the best
q from ¢. We can show that the joint use of different ¢’s is indeed necessary, and it is constantly
better than using the single best q. The hyper-parameter search of the best g for single-q Magnetic
Laplacian for different tasks can be found in Appendix C.

Robustness of multiple ¢ values. As implied by Theorem 4.2, the expressivity to compute walk
profile is robust to the choice of multiple ¢ values. To verify this, Multi-q Mag-PE with a randomly
sampled ¢ (draw each ¢ from uniform distribution) is implemented. See details in Appendix E. Our
results show that random ¢ sometimes achieves even better prediction than evenly-spaced §.

5.2 SORTING NETWORK SATISFIABILITY

Sorting network (Knuth, 1997) is a comparison-based algorithm designed to perform sorting on a fixed
number of variables. Each sorting network consists of a sequence of operations v;, v; = sorted(v;, v;)
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PE method PE processing Test F1 LT

Naive 51.3942 36 0.9 \A\Q\.
Lap SignNet 49.5044.01

SPE 56.35+3.70 008

Naive 68.6819.66 &0
Maglap-1q (best q)  SignNet 76.2816.82 £

SPE 86.86+3.85 0.6

Nalve 75'12i12'78 0.57 -@- Maglap (5q)
Maglap-5q SignNet 72.9719.38 A Lap

SPE 91.2740.71 0.4 Maglap (1q)

13 14 15 16

Sequence Length

Table 2: Test F1 scores over 5 random

seeds for sorting network satisfiability. Figure 3: Test F1 scores w.r.t. different sort-
ing network lengths.

and we say a sorting network is satisfiable if it can correctly sort an arbitrary input of a given length.
It can be parsed into a directed graph for which the direction (i.e., the order of operations) impacts the
satisfiability. We test the ability of positional encodings by how well they can predict the satisfiability.

Datasets. We randomly generate sorting networks by following the setup from Geisler et al. (2023).
Sorting networks are parsed into directed acyclic graphs whose nodes are comparison operators and
directed edges connect two operators that share variables to sort. The dataset contains 800k training
samples with a length (the number of variables to sort) from 7 to 11, 60k validation samples with
a length 12, and 60k test samples with a length from 13 to 16. We perform graph classification to
predict satisfiability.

Models. We adopt a vanilla transformer (Vaswani et al., 2017) as our base model. PEs are either
naively concatenated into node features, or using SignNet before concatenation, or concatenated both
into node features and attention weights using SPEs Eqs.3 and 4. For single-q Magnetic Laplacian

PE, we tune ¢ from ﬁ to ﬁ, where where dg = max(min(m,n), 1), m is the number of

directed edges and n is the number of nodes. We find ¢ = ﬁ gives the best results, which is the

same ¢ as in Geisler et al. (2023). For multi-q Mag-PE, we choose ¢ = (ﬁ7 e ﬁ).

Results. Table 2 displays the average Test F1 score of classifying satisfiability. Again, Multi-q
Mag-PE equipped with SPE achieves the best performance. Mag-PE with SignNet (both single-q and
multi-q) performs poorly compared to their SPE counterparts. Figure 3 additionally illustrates the test
F1 on samples with respect to individual sorting network lengths. Note that although single-q Mag-PE
and multi-q Mag-PE perform equally well on length=13 samples, the single-q one generalizes worse
on longer-length sorting networks. In contrast, Multi-q Mag-PE has nearly the same generalization
performance as the number of variables to sort increases.

5.3 CIRCUIT PROPERTY PREDICTION

We evaluate different PE methods on real-world Circuit Property Prediction tasks.

Open Circuit Benchmark. Open Circuit Benchmark (Dong et al., 2022a) contains 10,000 operational
amplifiers circuits as directed graphs and the task is to predict the DC gain (Gain), band width (BW)
and phase margin (PM) of each circuit. These targets reflect the property of current flows from
input nodes to output nodes and thus require a powerful direction-aware model. The dataset consists
of 2-stage amplifiers and 3-stage amplifiers and we use 2-stage amplifiers in our experiment. We
randomly split them into 0.9:0.05:0.05 as training, validation and test set.

High-level Synthesis. The HLS dataset (Wu et al., 2022) collects 18, 750 intermediate representation
(IR) graphs of C/C++ code after front-end compilation (Alfred et al., 2007). It provides post-
implementation performance metrics on FPGA devices as labels, which are obtained after hours of
synthesis using the Vitis HLS tool (vit) and implementation with Vivado (viv). The task is to predict
resource usage, namely look-up table (LUT) and digital signal processor (DSP) usage. We randomly
select 16570 for training, and 1000 each for validation and testing.

Models. We adopt GIN (Xu et al., 2018) as the backbone and implement two variants: (1) undirected-
GIN: the normal GIN works on the undirected version of the original directed graphs; (2) bidirectional-
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Table 3: Test results (RMSE for Gain/BW/PM, MSE for DSP/LUT) for Open Circuit Benchmark and
High-level Synthesis. Bold denotes the best result for each base model, and Bold' for the best result
among all base models.

Base Model PE method PE processing Gain BW PM DSP LUT
Lap SignNet 0.43040.009 4.71240.134 1.127 +0.007 2.66540.184 2.02540.057
g'PEN g»ggio,nm %»zg(l)io.mm i»ggio.nzn g»gggio.lw 12%22310.059
D ols _ ignNet 42610000  4.67010.113 11610.009 673 10.000 027 +0.001
Undirected-GIN Maglap-1q @=001) (o 040550016 43055000 1120ipoms 266610100 2.024%0 068
Maglap-1q (best q) SPE 0.39840.025 4.28140.085 1.11340.022 2.614.40.098 2.01040.082
. SignNet 0.42110.015 474310215 1.12640.011 2.66510.111 2.02510.076
Maglap-Multi-q  gp 0.38910.017 417510115  1137s0001  2.582i0153  L97610.080
Lap SignNet 0.38240.008 43710171 1.127 10,021 2.25610.109 1.806+0.096
SPE 0.39140.007 415310160  1.13540.035  2.26710126  1.78610.072
SignNet 0.38810.012 435140132 1.13lio012 230440143 1.88240.085
Bidirected-GIN Maglap-1q (¢=0.01)  gp 038420008 415250050 1123100 234410131 18300110
Maglap-1q (bestq)  SPE 0.38310.002 411340052 1.099+0.020 2.25610.144 1.76810.000
Maglap Melfiq SignNet 038000 L4800 1000 2202005 LT9Lc00m
SPE 0.37140.008 4.05140130 11160001 2.207hg 165  1.735%0 g0
Lap SignNet 0.368+0.022 4.08540.189 1.038.+0.016 3.10340.101 2.22310.175
SPE 0.375+0.016 4.180+0.003 1.065+0.034 3.16710.193 2.42510. 168
) Maglap-1q (g=0.01) S1gnNet 038240000 414300181 107340021 3.087x01s3  2.21440.150
SAT (undirected-GIN) SPE 0.36610.003 4.08110.071 1.089+0.023 3.206+0.197 2.36210.154
Maglap-1q (best q) SPE 0.36110.016 4.01440.068 1.057+0.036 3.10140.176 2.36210.154
Maglap-Multi-q SignNet 0,368Ti0_020 4.044+0.090 1.066Tio.028 312140143 2.20740.113
SPE 0.350] 5 004 404410153 1.0351 g 925 3.07610.240 2.333+0.147
Lap SignNet 0.38440.025 3.949 10,125 1.069+0.020 2.56940.116 2.04810.088
SPE 0.36840.022  4.02410106  1.04640.021 271340135  2.17340.107
o Maglap-1q (q=0.01) SignNet 0.38410.015  4.02350.032  1.05540.028 261610120  2.054%0.127
SAT (bidirected-GIN) i SPE 0.36440.012 3.99640.178 1.074+0.030 2.68710.209 219210135
Maglap-1q (best q) SPE 0.36040.009 3.96010.060 1.062+0.024 2.65710.128 2.10740.135
MaglpMultiq  SIEINCT 0420s001 1020015 1089s00  2711s010 204540010
SPE 0.35910.008 3.930%0 060 1.045:0012 261610151  2.08210.000

GIN: bidirectional message passing with different weights for two directions, inspired by (Jaume et al.,
2019; Thost & Chen, 2020; Wen et al., 2020). The state-of-the-art graph transformer SAT (Chen et al.,
2022) is also adopted, whose GNN extractor is undirected-GIN or bidirected-GIN as mentioned for
self-attention computation. PEs are processed and then concatenated with node features using SignNet
or with node and edge features using SPE (Egs. 3, 4). We generally choose ¢ = (1,2, ..., 10)/100 or
7= (1,2,...,5)/100 for Multi-q Mag-PE (see Appendix B for specific g for each tasks). For single-q
Magnetic Laplacian, we report ¢ = 0.01 as well as the best results of single g by searching over the
range of multiple g. See Appendix C for full results of varying single q.

Results. Table 3 shows the test RMSE (5 random seeds) on Open Circuit Benchmark (Gain, BW, PM)
and the test MSE (10 random seeds) on high-level synthesis (DSP, LUT). Notably, Multi-q Mag-PE
with Stable PE framework achieves most of the best results for 5 targets compared to other PEs.

5.4 RUNTIME EVALUATION

Increasing the number of ¢ boosts expressivity but brings extra computational costs. We evaluate the
runtime of preprocessing (eigendecomposition), training and inference for various number of g, as
shown in Figure 4. We can see that the training time of even 10 ¢ is generally about 1.5 to 3 times the
training time of one single ¢q. The preprocessing time is not a concern as they are negligible compared
to total training time for hundreds of epochs in our experiments. See detailed setup at Appendix D.

Preprocessing time of eigendecomposition Training time per epoch Inference time per epoch

2500
—4— distance dataset (x10) —4— distance dataset (x10)

22501 _4 sorting dataset 1000] —4— sorting dataset

20001 —#— HLS dataset —#— HLS dataset

_ 1750

3500 —e— distance dataset (x10)

30001 —— sorting dataset
—8— HLS dataset

2500
800

o) O o)

2 2000 2 1500 % oo
E 1500 E 1250 E

1000 1000 400

500 750 ,
o 500 00
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of q Number of q Number of q

Figure 4: Runtime of preprocessing (left), training (middle) and inference (right) on three datasets.
The shown runtime of distance dataset is 10 times the actual ones for better illustration.
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6 CONCLUSION

This work studies the positional encodings (PEs) for directed graphs. We propose the notion of walk
profile to assess the model’s ability to encode directed relation. Limitations of existing PEs to express
walk profiles are identified. We propose a simple yet effective variant of Magnetic Laplacian PE
called Multi-q Mag-PE that can provably compute walk profile. the basis-invariant and stable PE
framework is extened to address the basis ambiguity and stability problem of complex eigenvectors.
Experiments demonstrate the consistent performance gain of Multi-q Mag-PE.
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A DEFERRED PROOFS

A.1 PROOF OF THEOREM 4.1

Theorem 4.1. Fix a q € R. There exist graphs G, G’ with adjacency matrices A, A’ € R"*"™, and
nodes u,v € Vg and u',v' € Vg, such that Mag-PE (), z,, z,) = (XN, 2., 2.,), but @, ,(m, k) #
@5,/ o (m, k) for some m, k.

Proof. Fix a ¢ € R and two nodes u, v. Pick and fix anther node u that is not u, v. Let us define a
graph A € R"*" such that diag(A) = 0, and for all w,r € V, A,y = Ay, =land A, =0
otherwise. for all nodes w, r. Note that complex adjacency matrix A, = (A+AT)®exp{i2rq(A—
AT)} uniquely determines A by the relation A = 1|A | + 1 24

3 Tre» Where | - |, Z denote amplitude
and phase of complex numbers.

Now let us construct A’ by constructing A; first. Suppose Hermitian A, has eigenvalue decomposi-
tion [Aglw,r = D1 AkZw k2, - Let us define another group of eigenvalues \" and eigenvectors (PE)

2 via:
Zw.:, fw#u
N =, zw{ , 7o )

y b)
€2y, W= U

that is, \’, 2’ shares the exact same spectrum as )\, z, except that 2;, . = exp(if)) - zy,... Itis easy to

verify that 2’ is indeed eigenvectors by their orthonormality, so we can construct Hermitian A7 as

[Al)w,r = D 1 Al# 1% k- From this construction, we shall see that (A, zy, 2,) = (N, 23, 23,)-

On the other hand, let us examine the walk profile. For any two nodes w, r, we have
[Aglw,r, fw,r#up
[A;]w,r = Z ;Cz;kz;*k = [Aglwug, 1w up,m=ug (6)
k ew[Aq}uw«, if w = ugp,r # ug
This determines A’, which reads
[Aly,r, fw,r# ug

1 1Z[AL]wr 1 - _
(A r = 5\[A;]w,r + 2[27‘;3]’ =43 @, ifw#ug,r =uo (7)
1
5'@7 if w = uo,r # ug
where
1 1 Z[AL ], exp{—i0} 0 0
- = A —1 — a 20 = A _—_— = ——
@ B [[Aq)w,uo exp{—i0}| + 2 27q w,ug dmq dmq’ (®)
and
1 1 Z[A] ], exp{—1i0} 0 0
— A r _q — q:70; = A _— = 1 —_—.
@ 2” q]uo, exp{—i0}| + 9 97q wg,r T 4nq + dmq )

Now we can see that for the fixed u, v, we have

¢U7U(2a 2) - (I), (2a 2) = A2 - A2 = Z Au,wAw,U - Al Al

u,v U, u,v 2wt w,v
1
= Au,quuofu - A;,qu'/uom =0-1- Z@ ' @ (10)
1 0 0

=1+ =)=,

4 ( * 4ﬂ'q) 4mq
Now let § = 4mq. Then ®,,(2,2) — @, ,(2,2) = —1/2 # 0. So the walk profile
®y0(2,2), 9, ,(2,2) are different while the PE (A, zy,2,) = (X, z],2,) are the same'. It is

'Note that here PE denotes the eigenvalues/vectors of A, rather than L,, as the walk profile of A is more
naturally correlated to the spectrum of A,.
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worthy noticing that using the same construction except that let A, ,, = 0, we can show that
spd(ug,u1) = 0but spd’(ug, u1) = 2. Therefore, Mag-PE cannot express shortest path distance as
well.

O

A.2 PROOF OF THEOREM 4.2

Theorem 4.2. Let L be a positive integer and let Q = [%] + 1, where [-] means ceiling. If we
let § = (q1, 42, ...,qq) with Q distinct q’s and qu, ..., qr41 € [0, %), then for all ¢ < L and k < (,

walk profile ®,, ., (¢, k) can be exactly computed from (A7, 29, 27), where X7, 29 are concatenation of
eigenvalues/eigenvectors of different q from q.

Proof. The proof starts with identifying a key relation between [A,]¢ , and <I>Z . Note that [A,],

equals to the sum of weight of all length-/ bidirectional walks: o o
[Aq]ﬁ,@ = Z [Aq]u,wl [Aq]w1,’wz~-~[Aq]wz,v
W1, W2,...,We—1
11
= Z [Aq]u,wl [Aq]wl,wz ---[Aq]wew- (n
bi-walk (uw,w1,...,we—_1,v)
of length £

It is bidirectional because A, is Hermitian and allows transition along the forward edges with weight
A, , exp{i2mq} or backward edges with weight A7, , exp{—i2mq}. Note that we can categorize the
bidirectional walks by their number of forward and reverse edges. Then for bidirectional walk of
length ¢ and exact k forward edges, the forward edges will cause an additional phase term exp{i27k}
while the remaining £ — k backward edges will cause exp{—i27 (¢ —k)} = exp{i2n(k—¢)}. So there
is a common phase term exp{i27(2k — ¢)} for all bidirectional walks of length ¢ and & forward edges.
Assume there is no multi-edges, i.e., directed edges (u, v), (v, u) cannot appear simultaneously, now
we can re-organize the formula into

14

[Aq]f;,v = Z Z [Aq]u,un [Aq]whwz ---[Aq]wz,v

k=0 bi-walk(u,w1,...,we_1,v)
of length ¢ and k forward edges

; (12)
= Z Z exp{i2mq(2k — Z)}[141]71,11& [A2}w1,wz'-'[Adwe~,v7

k=0 bi-walk(u,w1,...,we—1,v)
of length ¢ and k forward edges

where A1, ..., Ay is either A or AT, depending on it is a forward or backward edge. Now by taking
phase term exp{i2mq(2k — £)} out the inner sum, we get exactly walk profile:

J4
[Aq}ﬁ,v = Zexp{iqu(Qk -0} Z [Al]u,wl [AQ]wl,UJQ"'[AZ]we,U

k=0 bi-walk(u, w1 ,...,wr—1,v)
of length £ and k forward edges

¢
Z exp{i2mq(2k — £)}®,, (¢, k) (13)
k=0

1

= exp{—i2nql} Z exp{idmqk}®,, (¢, k).
k=0
Let L be any positive integer. Let us write the relation above for ®,, ,,(¢,-) (¢ < L) in a matrix form:

Do y(1,0) ®uy(2,0) ... Byo(L,0)
(1,1) (2,1) ®y0(L, 1)

F, 0 D,0(2,2) Oy o(L,2) | = (€27 [Aguw €47[A2],, .. e2L7[AL],.)
0 0 ®,.(L,3)
®y,0(L, L)

(14)

17
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where F, = (1,exp{idnq}, exp{i8nq},...,exp{i8Lmq}) € R*(L+1)_ For notation convenience,
let us denote RHS as Y, so we write the linear system as F;,® = Y. Note that as ® are real values,
we can know the Values of Y1 1y by the complex conjugate of Y, thanks to the symmetry of Fourier
matrix Fy:

Y :F%_qd):Fq*(I):K]*. (15)

q

Now we are ready to prove the theorem. Let Q = [L/2] + 1 and let ¢ = (q1, 42, ..., gg) With
each ¢; < 1/4 and ¢; are distinct. From eigenvalues/vectors at these frequencies we are able

to get Y~ Furthermore, we get to know Y1 _q = Y as we just argued. That is, we know Yz

where ¢ = (§,1/2 — ¢) . Since ¢ < 1/4 we cla1m that 1/2 — ¢ > 1/4 and thus ¢’ contams
Q' = 2 -([L/2] +1) > L + 2 different gs. We can put equation F;,® =Y, for each ¢ in ¢’ into
one matrix equation as follows:

®,.,(1,0) )

Duo(2,0) o Dyy(L,0) | |
» (1a 1) éu v(2a 1) (I)u,v<La ]-) 61271- [AIH]U,U 612[/7‘— [Aqu]u,v
Fp|l 0 0,22 .. ¢ L2)]|=] . o :
0 0 (I)u,v(La 3) e’ [AqQ/]u,v o e2m [AqLQ,]u,v
@, (L, L)

(16)
where Fy = (Fy,; Fopi 0 Fyy ) € RO (L+1) Since Fy contains Q' > L + 2 different frequen-
cies and thus is full-rank, we can uniquely determine walk profile ®,, , from the RHS matrix. Notably,
g = m makes Fi discrete Fourier transform, a unitary matrix which is invertible by taking
its conjugate transpose.

O

B EXPERIMENTAL SETUP

In this section, we give further implementation details. We use Quadro RTX 6000 on Linux system
to train the models. The training time for single run is typically between 1 hour to 5 hours.

Note that for SignNet, we use ¢ and p to represent SignNet(v1, ..., va) = p([¢(v;)+O(—v;)]j=1,....d),
where v; is the i-th eigenvectors.

For SPE, we use both node SPE z,4. and edge SPE z.qq. by default, except for High-level synthetic
task where we find using 2,04 Only has comparable performance to both zode and Zegge.-

For each experiment, the search space for baseline single ¢ is exactly the range of multiple ¢. For
example, if for multiple ¢’ we choose ¢ = (1/10,2/10, ..., 5/10), then for baseline single ¢ we search
over ¢ = 1/10,2/10, ...,5/10.

B.1 DISTANCE PREDICTION ON DIRECTED GRAPHS

Targets walk profile (regular graphs)  spd (regular graphs) Ipd (regular graphs)
Base model 8-layer MLPs

Hidden dim 64

Batch size 512

Learning rate le-3

Dropout 0

Epoch 150

Optimizer Adam (51 = 0.9, B2 = 0.999)

PE dim 32

Multiple q (1710, 2/10, ..., 5/10) (1730, 2/30, ...., 15/30) (1730, 2/30, ...., 15/30)

PE processing  SignNet (¢ =3-layer MLPs, p=3-layer MLPs), SPE (¢=3-layer MLPs, p=2-layer GIN)

Table 4: Hyperparameter for walk profile/shortest path distance/longest path distance prediction on
regular directed graphs.
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Targets walk profile (DAG) spd (DAG) Ipd (DAG)

Base model 8-layer MLPs

Hidden dim 64

Batch size 512

Learning rate le-3

Dropout 0

Epoch 150

Optimizer Adam (81 = 0.9, B> = 0.999)

PE dim 32

Multiple q (1710, 2710, ..., 5/10)  (1/20, 2/20, ...., 10/20) (1720, 2/20, ...., 10/20)

PE processing  SignNet (¢ =3-layer MLPs, p=3-layer MLPs), SPE (¢=3-layer MLPs, p=2-layer GIN)

Table 5: Hyperparameter for walk profile/shortest path distance/longest path distance prediction on
directed acyclic graphs.

B.1.1 MODEL HYPERPARAMETER

See Table 4 and 5.

B.2 SORTING NETWORKS

Targets Sorting Network

Base model 3-layer Transformer+mean pooling+3-layer MLPs
Hidden dim 256

Batch size 48

Learning rate le-4

Dropout 0.2

Epoch 15 (SignNet) or 5 (SPE)

Optimizer Adam (81 = 0.7, B2 = 0.9, weight decay 6 x 1075)
PE dim 25

Multiple q (1720, 2/10, ..., 5/20) / d

PE processing  SignNet (¢ =3-layer MLPs, p=3-layer MLPs), SPE (¢=3-layer MLPs, p=2-layer GIN)

Table 6: Hyperparameter for sorting network prediction.

B.2.1 MODEL HYPERPARAMETER

See Table 6.

B.2.2 DATASET GENERATION

Our sorting networks generation follows exactly as Geisler et al. (2023). To generate a sorting
network, the length of sequence (number of variables to sort) is first randomly chosen. Given the
sequence length, each step it will generate a pair-wise sorting operator between two random variables,
until it becomes a valid sorting network (can correctly sort arbitrary input sequence) or reaches the
maximal number of sorting operators. The resulting sorting network is then translated into a directed
graph, where each node represents a sorting operator, whose feature is the ids of two variables to sort.
In the sorting network, if two sorting operators share a common variable to sort, the corresponding
nodes will be connected by a directed edge (from the first operator to the second one).

For each generated sorting network, the test dataset further contains the reversion version of the
graph, by reversing every directed edge in the directed graph. The resulting reverse sorting network
is very likely not a valid sorting network.

B.3 OPEN CIRCUIT BENCHMARK
B.4 BI-LEVEL GNN

Note that graphs in the dataset are two-level: some directed edges describe the connection of nodes
(regular edges), while some extra edges represent subgraph patterns in the graph (subgraph edges). In
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Targets Gain BW PM

Base model 4-layer bidi. GIN 3-layer bidi. GIN 4-layer bidi. GIN
Graph Pooling Sum Sum Sum
Hidden dim 96 192 288

Batch size 128 64 64
Learning rate 0.0067 0.0065 0.0021
Dropout 0.1 0 0.2

Epoch 300 300 300
Optimizer Adam (81 = 0.9, B2 = 0.999)

PE dim 10

Multiple q (1/100, 2/100, ..., 10/100)  (1/100, 2/100, ..., 5/100) (17100, 2/100, ..., 5/100)

PE processing ~ SignNet (¢=1-layer bidi. GIN, p=3-layer MLPs), SPE (¢=3-layer MLPs, p=2-layer bidi. GIN)

Table 7: Hyperparameter for bidirected GIN on Open Circuit Benchmark.

Targets Gain BW PM

Base model 4-layer undi. GIN 3-layer undi. GIN 4-layer undi. GIN
Graph Pooling Sum Sum Sum
Hidden dim 96 192 288

Batch size 128 64 64
Learning rate 0.0067 0.0065 0.0021
Dropout 0.1 0 0.2

Epoch 300 300 300
Optimizer Adam (5, = 0.9, 5> = 0.999)

PE dim 10

Multiple q (1/100, 2/100, ..., 10/100)  (1/100, 2/100, ..., 5/100) (17100, 2/100, ..., 5/100)

PE processing  SignNet (¢=1-layer undi. GIN, p=3-layer MLPs), SPE (¢=3-layer MLPs, p=2-layer undi. GIN)

Table 8: Hyperparameter for undirected GIN on Open Circuit Benchmark.

Targets Gain BW PM

Base model 3-layer SAT (2-hop bidi. GIN)  3-layer SAT (2-hop bidi. GIN)  3-layer SAT (1-hop bidi. GIN)
Graph Pooling Sum Sum Sum

Hidden dim 54 78 54

Batch size 256 256 64

Learning rate 0.004 0.00119 0.00117
Dropout 0.2 0.3 0.2

Epoch 200 200 200
Optimizer Adam (81 = 0.9, 82 = 0.999)

PE dim 10

Multiple q (17100, 2/100, ..., 5/100) (17100, 2/100, ..., 10/100) (1/100, 2/100, ..., 5/100)

PE processing ~ SignNet (¢=1-layer bidi. GIN, p=3-layer MLPs), SPE (¢=3-layer MLPs, p=2-layer bidi. GIN)

Table 9: Hyperparameter for SAT (each layer uses bidirected GIN as kernel) on Open Circuit
Benchmark.

Targets Gain BW PM

Base model 3-layer SAT (1-hop undi. GIN)  3-layer SAT (1-hop bidi. GIN)  3-layer SAT (1-hop bidi. GIN)
Graph Pooling Sum Sum Sum

Hidden dim 54 54 54

Batch size 64 256 64

Learning rate 0.009 0.002 0.00117
Dropout 0.2 0.3 0.1

Epoch 200 200 200
Optimizer Adam (8; = 0.9, 82 = 0.999)

PE dim 10

Multiple q (17100, 2/100, ..., 10/100) (1/100, 2/100, ..., 10/100) (1/100, 2/100, ..., 10/100)

PE processing ~ SignNet (¢=1-layer undi. GIN, p=3-layer MLPs), SPE (¢=3-layer MLPs, p=2-layer undi. GIN)

Table 10: Hyperparameter for SAT (each layer uses undirected GIN as kernel) on Open Circuit
Benchmark.

our experiment, we uniform apply a GNN to the nodes with subgraph edges only, and then apply
other GNN to the nodes with regular edges.
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Targets DSP LUT

Base model 4-layer bidi. GIN 4-layer bidi. GIN
Graph Pooling Mean Mean
Hidden dim 84 192

Batch size 64 56
Learning rate 0.003 0.0023
Dropout 0.2 0.1

Epoch 400 400
Optimizer Adam (81 = 0.9, B2 = 0.999)

PE dim 10

Multiple q (1/100, 2/100, ..., 5/100) (1/100, 2/100, ..., 5/100)

PE processing ~ SignNet (¢=2-layer bidi. GIN, p=3-layer MLPs), SPE (¢=3-layer MLPs, p=2-layer bidi. GIN)

Table 11: Hyperparameter for bidirected GIN on High-level Synthetic dataset.

Targets DSP LUT

Base model 2-layer undi. GIN 4-layer bidi. GIN
Graph Pooling Mean Mean
Hidden dim 56 84

Batch size 32 32
Learning rate 0.006 0.0015
Dropout 0.1 0.3

Epoch 400 400
Optimizer Adam (3, = 0.9, 5> = 0.999)

PE dim 10

Multiple q (17100, 2/100, ..., 5/100) (1/100, 2/100, ..., 5/100)

PE processing  SignNet (¢=2-layer undi. GIN, p=3-layer MLPs), SPE (¢=3-layer MLPs, p=2-layer undi. GIN)

Table 12: Hyperparameter for undirected GIN on High-level Synthetic dataset.

Targets DSP LUT
Base model 4-layer SAT (2-hop bidi. GIN) 3-layer SAT (2-hop bidi. GIN)
Graph Pooling Mean Mean
Hidden dim 78 62
Batch size 64 64
Learning rate 0.004 0.004
Dropout 0.1 0.1
Epoch 400 400
Optimizer Adam (81 = 0.9, B> = 0.999)

PE dim 10

Multiple q (1/100, 2/100, ..., 5/100) (1/100, 2/100)

PE processing  SignNet (¢p=2-layer bidi. GIN, p=3-layer MLPs), SPE (¢=3-layer MLPs, p=2-layer bidi. GIN)

Table 13: Hyperparameter for SAT (each layer uses bidirected GIN as kernel) on High-level Synthetic
dataset.

B.4.1 MODEL HYPERPARAMETER

See Table 7, 8, 9, 10.

B.5 HIGH-LEVEL SYNTHETIC

B.5.1 MODEL HYPERPARAMETER
See Table 11, 12, 13, 14.
C VARYING SINGLE ¢ BASELINE

This section shows the effect the varying single ¢ on the performance of Mag-PE. Horizontal axis is
the value of single g, vertical axis is the test performance. The dashed line represents the result of
Multi-q Magnetic Laplacian with fixed multi-q ¢ as described in Section 5.1.
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Targets DSP LUT

Base model 3-layer SAT (2-hop bidi. GIN) 3-layer SAT (2-hop bidi. GIN)
Graph Pooling Mean Mean

Hidden dim 98 62

Batch size 64 64

Learning rate 0.004 0.004

Dropout 0.1 0.1

Epoch 400 400
Optimizer Adam (81 = 0.9, B2 = 0.999)

PE dim 10

Multiple q (17100, 2/100, ..., 5/100) (17100, 2/100, ..., 5/100)

PE processing ~ SignNet (¢=2-layer bidi. GIN, p=3-layer MLPs), SPE (¢=3-layer MLPs, p=2-layer bidi. GIN)

Table 14: Hyperparameter for SAT (each layer uses undirected GIN as kernel) on High-level Synthetic
dataset.

As shown in Figures 5, 6, 7, 8, we can see that the multiple q performance consistently beats best
performance of single q, which demonstrates the benefits of using multiple q simultaneously.

spd Ipd walk profile ®(4, *)
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Figure 5: Test RMSE for distance prediction with varying ¢ of single-q Magnetic Laplacian. First
row is for directed acyclic graphs, and second row is for regular directed graphs.
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Figure 6: Test F1 of sorting network satisfibability with varying single q.
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Figure 7: Test RMSE for prediction of Gain, BW, PM using backbone GINE or BIGINE, with varying
q of single-q Magnetic Laplacian.
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Figure 8: Test MSE for prediction of DSP and LUT, using backbone GINE or BIGINE, with varying
q of single-q Magnetic Laplacian.
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Table 15: Test RMSE results over 3 random seeds for node-pair distance prediction.

Directed Acyclic Graph Regular Directed Graph
PE method PE processing spd Ipd wp(4, ) spd Ipd wp(4, )
Naive 0.488..0.005 0.727+0.005 0.370+0.004 2.068+0.004 1.89840.001 0.480+-0.000
Lap SignNet 0.53710.013 0.77140.013 0.437+0.000 2.064 10.004 1.900-£0.002 0.518 19,027
SPE 0.355.0.001 0.6550.002 0.32610.001 2.0660.005 1.92040.000 0.45240.001
Naive 0.64919.002 0.85310.002 0.721+0.000 2.196 10,002 1.982.10.004 0.51940.000
SVD SignNet 0.67310.003 0.87240.002 0.443+0.001 2.22910.003 1.99610.005 0.54140.001
SPE 0.72740.001 0.912.0.001 0.72140.000 2.26140.002 2.12249.007 0.75540.000
Naive 0.366+0.003 0.59310.003 0.241+0.010 1.826+0.005 1.760-0.007 0.31140.013
MagLap-1q (q=0.1) SignNet 0.55410.001 0.699.0.002 0.268.+0.042 2.04810.004 1.88140.003 0.41310.001
SPE 012440002 043310002 0.04340.000  1.62040.005  1.54740.00a  0.13340.001
MaglLap-1q (best q) SPE 0.124 19,002 0.43210.004 0.040+0.001 1.53310.007 1.49310.003 0.13210.000
Naive 0.353+0.003  0.535.£0.006 0.1880.010 1.70810.012 1.66110.002  0.25710.007
MagLap-Multi-q SignNet 0.473 10.000 0.579+0.001 0.280+0.004 1.90640.001 1.784 19.008 0.377 £0.007
SPE 0.01640.000  0.185+0.036 0.00219.000 0.54610.068 1.100+0.007  0.07440.001
Naive 0.3564+0.022  0.56410.000  0.20410.000  1.781.40.021 1.665.10.011 0.29810.033
MagLap-Multi-q (random ¢)  SignNet 0.46910.003 0.57910.008 0.276£0.008 1.89540.013 1.769410.020 0.25210.218
SPE 0.01540.002  0.14640.010 0.00240.000 0.564+0.024 1.09540.009  0.07440.004
PE method PE processing Test F1 1.0
Naive 51.3942.36 C
Lap SignNet 49.5014.01 0.9 \w
SPE 56.35+3.70
Naive 68.6819.66 o 0.81
Maglap-1q (best q) SignNet 76.28.16.82 S
SPE 86.86.43.55 50.71
= T
Naive 75.12419.78 ]
Maglap-5q SignNet 72.9719.38 2 0.6
SPE 91.2710.71 ~@- Maglap (5q)
Naive 51.47419.92 0-51 : I\L/I:glap (Sajrandom)
Maglap-5q (random ¢)  SignNet 50.37+2.12 0.4] MaF;Iap (1)
SPE 89.3619.74 ’ ‘ ‘ | |
13 14 15 16

S L¢ th
Table 16: Test F1 scores over 5 random seeds for equence teng

sorting network satisfiability. Figure 9: Test F1 scores w.r.t. different sort-
ing network lengths.

D RUNTIME EVALUATION

First, we note that introducing multiple q brings extra computational cost, as stated in the Conclusion
and Limitations section. But we would like to emphasize that the goal of this work is to illustrate
the drawbacks and benefits of single q v.s. multiple q in theory. In particular, we prove that to
represent walk profiles—a bidirectional walk descriptor, multiple q are required. Thus there is a
natural trade-off between complexity and expressivity. Results on prediction of various distance
metrics demonstrates the superior power of multiple q, further validating our theory.

We evaluate the actual runtime of preprocessing, training and inference stage. For distance prediction,
we choose connected acyclic graphs; for high-level synthetic dataset, we choose undirected GIN
as backbone for evaluation. We use SPE to handle PEs and all other hyperparameters are the same
as mentioned in Appendix B. We exclude Open Circuit Benchmark since the the graph size is too
small to be interesting (10 to 20 nodes). Figure 4 show the runtime evaluation of multiple q for
our tasks, using single Quadro RTX 6000. Preprocessing time refers to the pre-computation of
eigendecompositions, and training/inference time refers to the runtime on the training set per epoch
(average over 10 epochs). Note that the preprocessing time is typically not a concern, as it is far less
than the total training time, e.g., on high-level synthesis total preprocessing time / total training time
(400 epochs) is about 0.5%.

The dataset statistics are also included below for reference.

E IMPACT OF MULTIPLE ¢ VALUES SELECTION POLICY

As implied by Theorem 4.2, any choice of multiple g values should yields the same level of expres-
sivity to compute walk profile. To verify this, we further implement a randomly sampled ¢ (each ¢ is
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Dataset Average Num. of Nodes  Average Num. of Edges
Distance Prediction ~ 27.4 35.8

Sorting Networks 72.8 272.9

High-level Synthesis  94.7 122.1

Table 17: Dataset statistics.

Table 18: Test results (RMSE for Gain/BW/PM, MSE for DSP/LUT) for circuit properties prediction.
Bold denotes the best result for each base model, and Bold' for the best result among all base models.

Base Model PE method PE processing Gain BW PM DSP LUT

La SignNet 0.430-£0.009 4.71240.134 1.12740.007 2.665+0.184 2.02540.057
P SPE 041640.021 432140084 112740000  2.66210187  1.92540.059

_ SignNet 0.42610.000  4.670+0.113 1.116-£0.000 2.67310.000 2.02710.001

Maglap-19 (4=0.01) SPE 0.40510.006  4.30540.002  1.12140.018  2.66610.090  2.02440.068

Undirected-GIN Maglap-1q (best q) SPE 0.398.+0.025 428140085 1.11340.022 2.61440.008 2.010+0.082
ol : SignNet 042110015 474310215 112610011 2.665.10.111 2.02510.076

Maglap-Multi-q SPE 0.38940.017 4.17540.a15 113710000 2.58240.133  1.97640.089

. SignNet 0.409.10.021 4.65510.054 1.12410.016 2.784 40157 2.087+0.008

Maglap-Multi-q (random)  gp; 0.39740.020  4.26740.080  1.14240.011  2.77240.423  2.10340.017

La SignNet 0.382+0.008 437110171 1.127+0.021 2.256+0.100 1.806-+0.096

P SPE 0.39140.007 415340060  1.13540.035  2.26740426  1.78640.072

B SignNet 0.38810.012 430140132 1.131i0012 230440143 1.88240.085

Maglap-1q (g=0.01) SPE 0.38450008 41521056 11233002 234410131 18300116

Bidirected-GIN Maglap-1q (best q) SPE 0.383+0.002 4113 £0.052 1.09940.020 2.25640.144 1.76810.090
Maglap-Multi-q SignNet 0.381£0.008 4443 40.116 T.11940.016 221250116 1.791+0.001
I

: ignNet - +0.008 - +0.108 14210016 . +£0.170 -823+0.089

Maglap-Multi-q (random) — gpp 0.38810.020  4.10240.425  1.13040.018  2.49940.203  1.87540.082

Laj SignNet 0.36810.022  4.08510.189 1.038+0.016  3.103+0.101 222340175

P SPE 0.37540.016 4.180+0.093 1.065+0.034 3.167+0.103 2.42550.168

_ SignNet 0.38240.0090  4.14310.181 107310021 3.08710183  2.2140.150

Maglap-1q (g=0.01) SPE 036610003 408150071 1.089:0.023 320610107 236210154

SAT (undirected-GIN) ~Maglap-1q (best q) SPE 0.36110.016 4.014 10068 1.057+0.036 3.10140.176 2.36240.154
Maglap-Multi- SignNet 0.36810.020 4.044.£0.090 1.066+0.028 312140143  2.2071o0.113

SPE 0.350% 0004 404410155  1.035% 00 3.07610.240 233310147

. SignNet 0.36140.015 4.122 40,067 1.094+0.064 3.106+0.123 2.23610.128

Maglap-Multi-q (random) SPE 0.35610.010  3.95340.104 1.05210.014 3.086+0.174 2.32040.135

Lap SignNet 0.384.£0.025 3.94940.125 1.06940.020 2.56940.116 2.04840.088

SPE 0.36810.022  4.02440.106 1.046 +0.021 2.71340.135 217340107

_ SignNet 0.38410.015 4.023 £0.032 1.05510.028 2.616+0.120 2.054 0127

Maglap-1q (¢=0.01) SPE 0.36410.012  3.99610178  1.07410030  2.68710209  2.19240.135

SAT (bidirected-GIN) ~ Maglap-1q (best q) SPE 0.360+0.000 3.960+0.060 1.0620.024 2.657+0.128 2.107+0.135
Maglap-Multi-q SignNet 0.42040.035 4.02210.125 1.089+0.046 2.74150.110 2.04550.079

SPE 0.35910.008 3-930%0 060 1.04510.012 26161015 208240000
i N SignNet 0.417£0.040 4.053+0.094 1.07840.043 2.677+0.146 2.01640.078

Maglap-Multi-q (random)  gpp; 0.363+0.007  3.95640.087 1.064.£0.022 2.690+0.165 2.25940.147

uniformly sampled from [0, 1/2]) to predict distances and walk profile. Table 15,16,18 and Figure 9
show the results of randomly sampled multiple ¢ compared to previous methods, where evenly-spaced
q= (i, %, e %) for some L (see specific values in Appendix B) is the origin one we adopted
in the main text, and random ¢ = (g1, ¢2, ..., ¢r,) contains L many ¢ values randomly sampled from
(0,1/2]. Note that collision ¢; ~ g; could lead to a ill-conditioned recovery of walk profile, so we
force that |g; — g;| > 0.2/L during ¢ sampling process. For each run of model training (i.e., each
random seed), we sample a different random ¢. Table 15 shows the results. We can see that randomly
sampled ¢ has comparable and even better performance than evenly-spaced ¢, which validates our

theory.

F DISCUSSION: WALK PROFILE DIRECTLY AS FEATURES

One may wonder why not directly compute walk profile as features as alternative to multiple ¢ PE.
Walk profile itself is straightforward to compute and can serve as descriptors of graph bidirectional
walk patterns, similar to random walks features on undirected graphs. However, the dimension of
walk profile grows quadratically with walk length. For instance, when predicting the largest path
distance on synthetic directed graphs, the longest path distance can be at most around 15, and thus we
use 15 gs (we find that decreasing the number of g, e.g., to 10, will fail to fit distance greater than 10).
In this case, the total dimension of the walk profile is about (16*15)/2=120. In contrast, multi-q PE
(with only top K eigenvectors, K=32 in our example) usually yields a good approximation, as shown
by the experimental results. Besides, we believe there are further potential advantages of multiple-q
positional encodings. For instance, if there are some sparsity structures of walk profile (which is
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indeed observed in our experiments), it is possible to downsample a small number of q to recover
the walk profile of large length. Finally, walk profiles are inherently features tied to node pairs, so it
generally requires a GNN model to handle node-pair features and yields quadratic complexity. In
contrast, positional encodings are node features that are more scalable, especially one may choose
top K eigenvectors instead of full eigenvectors.

G NORMALIZED WALK PROFILE

We define normalized walk profile i)u,v (¢, k) by replacing every A with random walks D_} A,

total
where [Dyoal]y,« 18 the total node degree of node u. As a result, <i>u7,u (¢, k) represents the probability
of landing at node v in a bidirectional random walk with & forward edges, starting from node u. Note
that normalized walk profiles still are able to encode important structural/distance information, such
as directed shortest/longest path distance.

The reason why considering normalized walk profile is to be consistent with the definition of

normalized Laplacian L=1- D;;d/ 2AqD;ulil/ ?. The normalization nature of L makes it more

suitable to recover normalized walk profile instead of the unnormalized ones.
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