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ABSTRACT

A Transformer-based deep direct sampling method is proposed for electrical
impedance tomography, a well-known severely ill-posed nonlinear boundary value
inverse problem. A real-time reconstruction is achieved by evaluating the learned
inverse operator between carefully designed data and the reconstructed images. An
effort is made to give a specific example to a fundamental question: whether and
how one can benefit from the theoretical structure of a mathematical problem to
develop task-oriented and structure-conforming deep neural networks? Specifically,
inspired by direct sampling methods for inverse problems, the 1D boundary data
in different frequencies are preprocessed by a partial differential equation-based
feature map to yield 2D harmonic extensions as different input channels. Then,
by introducing learnable non-local kernels, the direct sampling is recast to a mod-
ified attention mechanism. The new method achieves superior accuracy over its
predecessors and contemporary operator learners and shows robustness to noises in
benchmarks. This research shall strengthen the insights that, despite being invented
for natural language processing tasks, the attention mechanism offers great flexibil-
ity to be modified in conformity with the a priori mathematical knowledge, which
ultimately leads to the design of more physics-compatible neural architectures.

1 INTRODUCTION

Boundary value inverse problems aim to recover the internal structure or distribution of multiple
media inside an object (2D reconstruction) based on only the data available on the boundary (1D
signal input), which arise from many imaging techniques, e.g., electrical impedance tomography
(EIT) (Holder, 2004), diffuse optical tomography (DOT) (Culver et al., 2003), magnetic induction
tomography (MIT) (Griffiths et al., 1999). Not needing any internal data renders these techniques
generally non-invasive, safe, cheap, and thus quite suitable for monitoring applications.

In this work, we shall take EIT as an example to illustrate how a more structure-conforming neural
network architecture leads to better results in certain physics-based tasks. Given a 2D bounded
domain Ω and an inclusion D, the forward model is the following partial differential equation (PDE)

∇ · (σ∇u) = 0 in Ω, where σ = σ1 in D, and σ = σ0 in Ω\D, (1)

where σ is a piecewise constant function defined on Ω with known function values σ0 and σ1, but the
shape of the inclusion D buried in Ω is unknown. The goal is to recover the shape of D using only
the boundary data on ∂Ω (Figure 1). Specifically, by exerting a current g on the boundary, one solves
(1) with the Neumann boundary condition σ∇u · n|∂Ω = g, where n is the outwards unit normal
direction of ∂Ω, to get a unique u on the whole domain Ω. In practice, only the Dirichlet boundary
value representing the voltages f = u|∂Ω on the boundary can be measured. This procedure is called
Neumann-to-Dirichlet (NtD) mapping:

Λσ : H−1/2(∂Ω) → H1/2(∂Ω), with g = σ∇u · n|∂Ω 7→ f = u|∂Ω. (2)
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Santosa, 1994; Martin & Idier, 1997; Chan & Tai, 2003; Vauhkonen et al., 1999; Guo et al., 2019;
Rondi & Santosa, 2001; Chen et al., 2020; Bao et al., 2020; Gu et al., 2021). One usually looks for
an approximated σ by solving a minimization problem with a regularization R(σ) to alleviate the
ill-posedness, say

infσ

{∑L
l=1 ‖Λσgl − fl‖2∂Ω +R(σ)

}
. (7)

The design of regularization R(σ) plays a critical role in a successful reconstruction (Tarvainen et al.,
2008; Tehrani et al., 2012; Wang et al., 2012). Due to the ill-posedness, the computation for almost
all iterative methods usually takes numerous iterations to converge, and the reconstruction is highly
sensitive to noise. Besides, the forward operator F(·) needs to be evaluated at each iteration, which
is itself expensive as it requires solving forward PDE models.

Classical direct methods. The second methodology is to develop a well-defined mapping Gθ

parametrized by θ, empirically constructed to approximate the inverse map itself, say Gθ ≈ F−1.
These methods are referred to as non-iterative or direct methods in the literature. Distinguished from
iterative approaches, direct methods are typically highly problem-specific, as they are designed based
on specific mathematical structures of their respective inverse operators. For instance, methods in
EIT and DOT include factorization methods (Kirsch & Grinberg, 2007; Azzouz et al., 2007; Brühl,
2001; Hanke & Brühl, 2003), MUSIC-type algorithms (Cheney, 2001; Ammari & Kang, 2004; 2007;
Lee et al., 2011), and the D-bar methods (Knudsen et al., 2007; 2009) based on a Fredholm integral
equation (Nachman, 1996), among which are the direct sampling methods (DSM) being our focus
in this work (Chow et al., 2014; 2015; Kang et al., 2018; Ito et al., 2013; Ji et al., 2019; Harris &
Kleefeld, 2019; Ahn et al., 2020; Chow et al., 2021; Harris et al., 2022). These methods generally
have a closed-form Gθ for approximation, and the parameters θ represent model-specific mathematical
objects. For each fixed θ, this procedure is usually much more stable than iterative approaches with
respect to the input data. Furthermore, the evaluation for each boundary data pair is distinctly fast,
as no optimization is needed. However, a simple closed-form Gθ admitting efficient execution may
not be available in practice since some mathematical assumptions and derivation may not hold. For
instance, MUSIC-type and D-bar methods generally require an accurate approximation to Λσ , while
DSM poses restrictions on the boundary data, domain geometry, etc., see Appendix D for details.

Boundary value inverse problems. For most cases of boundary value inverse problems in 2D,
the major difference, e.g., with an inverse problem in computer vision (Marroquin et al., 1987),
is that data are only available on 1D manifolds, which are used to reconstruct 2D targets. When
comparing (4) with a linear inverse problem in signal processing y = Ax+ ǫ, to recover a signal x
from measurement y with noise ǫ, the difference is more fundamental in that F(·) itself is highly
nonlinear and involves boundary value PDEs. Moreover, the boundary data themselves generally
involve certain input-output structures (NtD maps), which adds more complexity. In Adler & Guardo
(1994); Fernández-Fuentes et al. (2018); Feng et al. (2018), boundary measurements are collected and
directly input into feedforward fully connected networks. As the data reside on different manifolds,
special treatments are made to the input data, such as employing pre-reconstruction stages to generate
rough 2D input to CNNs (Ben Yedder et al., 2018; Ren et al., 2020; Pakravan et al., 2021).

Deep neural network and inverse problems. Solving an inverse problem is essentially to give a
satisfactory approximation to F−1 but based on finitely many measurements. The emerging deep
learning (DL) based on Deep Neural Networks (DNN) to directly emulate operators significantly
resembles those classical direct methods mentioned above. However, operator learners by DNNs are
commonly considered black boxes. A natural question is how the a priori mathematical knowledge
can be exploited to design more physics-compatible DNN architectures. In pursuing the answer to
this question, we aim to provide a supportive example that bridges deep learning techniques and
classical direct methods, which improves the reconstruction of EIT.

Operator learners. Operator learning has become an active research field for inverse problems in
recent years, especially related to image reconstruction where CNN plays a central role, see, e.g.,
Kłosowski & Rymarczyk (2017); Nguyen et al. (2018); Tan et al. (2018); Jin et al. (2017); Kang et al.
(2017); Barbastathis et al. (2019); Latif et al. (2019); Zhu et al. (2018); Chen et al. (2021); Coxson
et al. (2022); Zhu et al. (2023b). Notable examples of efforts to couple classical reconstruction
methods and CNN include Hamilton et al. (2019); Hamilton & Hauptmann (2018), where a CNN
post-processes images obtained by the classical D-bar methods, and Fan et al. (2019); Fan & Ying
(2020) where BCR-Net is developed to mimic pseudo-differential operators appearing in many inverse
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problems. A deep direct sampling method is proposed in Guo & Jiang (2020); Guo et al. (2021)
that learns local convolutional kernels mimicking the gradient operator of DSM. Another example is
radial basis function neural networks seen in Hrabuska et al. (2018); Michalikova et al. (2014); Wang
et al. (2021a). Nevertheless, convolutions in CNNs use kernels whose receptive fields involve only a
small neighborhood of a pixel. Thus, layer-wise, CNN does not align well with the non-local nature
of inverse problems. More recently, the learning of PDE-related forward problems using global kernel
has gained attraction, most notably the Fourier Neural Operator (FNO) (Nelsen & Stuart, 2021; Li
et al., 2021a; Kovachki et al., 2021; Guibas et al., 2022; Zhao et al., 2022; Wen et al., 2022; Li et al.,
2022b). FNO takes advantage of the low-rank nature of certain problems and learns a local kernel
in the frequency domain yet global in the spatial-temporal domain, mimicking the solution’s kernel
integral form. Concurrent studies include DeepONets (Lu et al., 2021; Wang et al., 2021b; Jin et al.,
2022b), Transformers (Cao; Kissas et al., 2022; Li et al., 2022a; Liu et al., 2022; Fonseca et al., 2023),
Integral Autoencoder (Ong et al., 2022), Multiwavelet Neural Operators (Gupta et al., 2021; 2022),
and others (Lütjens et al., 2022; Hu et al., 2022; Boussif et al., 2022; de Hoop et al., 2022a;b; Ryck &
Mishra, 2022; Seidman et al., 2022; Zhang et al., 2023; Lee, 2023; Zhu et al., 2023a).

Related studies on Transformers. The attention mechanism-based models have become state of
the art in many areas since Vaswani et al. (2017). One of the most important and attractive aspects
of the attention mechanism is its unparalleled capability to efficiently model non-local long-range
interactions (Katharopoulos et al., 2020; Choromanski et al., 2021; Nguyen et al., 2021). The relation
of the attention with kernel learning is first studied in Tsai et al. (2019) and later connected with
random feature (Peng et al., 2021). Connecting the non-PDE-based integral kernels and the attention
mechanism has been seen in Hutchinson et al. (2021); Guibas et al. (2022); Nguyen et al. (2022);
Han et al. (2022). Among inverse problems, Transformers have been applied in medical imaging
applications, including segmentation (Zhou et al., 2021; Hatamizadeh et al., 2022; Petit et al., 2021),
X-Ray (Tanzi et al., 2022), magnetic resonance imaging (MRI) (He et al., 2022), ultrasound (Perera
et al., 2021), optical coherence tomography (OCT) (Song et al., 2021). To our best knowledge, no
work in the literature establishes an architectural connection between the attention mechanism in
Transformer and the mathematical structure of PDE-based inverse problems.

2.1 CONTRIBUTIONS

• A structure-conforming network architecture. Inspired by the EIT theory and classic DSM, we
decompose the approximation of the inverse operator into a harmonic extension and an integral
operator with learnable non-local kernels that has an attention-like structure. Additionally, the
attention architecture is reinterpreted through a Fredholm integral operator to rationalize the
application of the Transformer to the boundary value inverse problem.

• Theoretical and experimental justification for the advantage of Transformer. We have proved that,
in Transformers, modified attention can represent target functions exhibiting higher frequency
natures from lower frequency input features. A comparative study in the experiments demonstrates
a favorable match between the Transformer and the benchmark problem.

3 INTERPLAY BETWEEN MATHEMATICS AND NEURAL ARCHITECTURES

In this section, we try to articulate that the triple tensor product in the attention mechanism matches
exceptionally well with representing a solution in the inverse operator theory of EIT. In pursuing this
end goal, this study tries to answer the following motivating questions:

(Q1) What is an appropriate finite-dimensional data format as inputs to the neural network?
(Q2) Is there a suitable neural network matching the mathematical structure?

3.1 FROM EIT TO OPERATOR LEARNING

In the case of full measurement, the operator F−1 can be well approximated through a large number
of (σ,Aσ) data pairs. This mechanism essentially results in a tensor2tensor mapping/operator
from Aσ to the imagery data representing σ. In particular, the BCR-Net (Fan & Ying, 2020) is a
DNN approximation falling into this category. However, when there are very limited boundary data
pairs accessible, the task of learning the full matrix Aσ becomes obscure, which complicates the
development of a tensor2tensor pipeline for operator learning.
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Operator learning problems for EIT. We first introduce several attainable approximations of
infinite-dimensional spaces by finite-dimensional counterparts for the proposed method.

(1) Spatial discretization. Let Ωh be a mesh of Ω with the mesh spacing h and let {zj}Mj=1 := M
be the set of grid points to represent the 2D discretization of continuous signals. Then a function
u defined almost everywhere in Ω can be approximated by a vector uh ∈ R

M .
(2) Sampling of D. We generate N samples of D with different shapes and locations following

certain distributions. For example, elliptical inclusions with random semi-axes and centers are
generated as a benchmark (see Appendix C.1 for details). With the known σ0 and σ1, set the
corresponding data set D = {σ(1), σ(2), ..., σ(N)}. N is usually large enough to represent field
applications of interest.

(3) Sampling of NtD maps. For the k-th sample of D, we generate L pairs of boundary data
{(g(k)l , f

(k)
l )}Ll=1 by solving PDE (1), which can be thought of as sampling of columns of the

infinite matrix Aσ representing the NtD map. By the proposed method, L can be chosen to be
very small (≤ 3) to yield satisfactory results.

Our task is to find a parameterized mapping Gθ to approximate F−1
L,D (6) by minimizing

J (θ) := 1
N

∑N
k=1 ‖Gθ({(g(k)l , f

(k)
l )}Ll=1)− σ(k)‖2, (8)

for a suitable norm ‖ · ‖. Hyper-parameters N, h, L will affect the finite-dimensional approximation
to the infiniteness in the following way: h determines the resolution to approximate D; N affects the
representativity of the training data set; L decides how much of a finite portion of the infinite spectral
information of Λσ can be accessed.

3.2 FROM HARMONIC EXTENSION TO TENSOR-TO-TENSOR

To establish the connection between the problem of interest with the attention used in the Transformers,
we first construct higher-dimensional tensors from the 1D boundary data. The key is a harmonic
extension of the boundary data that can be viewed as a PDE-based feature map. We begin with a
theorem to motivate it.

Let ID be the characteristic function of D named index function, i.e., ID(x) = 1 if x ∈ D and
ID(x) = 0 if x /∈ D. Thus, σ can be directly identified by the shape of D through the formula
σ = σ1ID + σ0(1− ID). In this setup, reconstructing σ is equivalent to reconstructing ID.

Without loss of generality, we let σ1 > σ0. Λσ0
is understood as the NtD map with σ = σ0 on the

whole domain, i.e., it is taken as the known background conductivity (no inclusion), and thus Λσ0
g

can be readily computed. Then f − Λσ0
g = (Λσ − Λσ0

)g measures the difference between the NtD
mappings and encodes the information of σ. The operator Λσ − Λσ0

is positive definite, and it has
eigenvalues {λl}∞l=1 with λ1 > λ2 > · · · > 0 (Cheng et al., 1989).

Theorem 1. Suppose that the 1D boundary data gl is the eigenfunction of Λσ − Λσ0
corresponding

to the l-th eigenvalue λl, and let the 2D data functions φl be obtained by solving

−∆φl = 0 in Ω, n · ∇φl = (fl − Λσ0
gl) on ∂Ω,

∫
∂Ω
φl ds = 0, (9)

for l = 1, 2, . . . . Define the space S̃L = Span{∂x1
φl ∂x2

φl : l = 1, . . . , L}, and the dictionary

SL = {a1 + a2 arctan(a3v) : v ∈ S̃L, a1, a2, a3 ∈ R}. Then, for any ǫ > 0, we con construct an
index function ID

L ∈ SL s.t. supx∈Ω |ID(x)− ID
L (x)| ≤ ǫ provided L is large enough.

The full proof of Theorem 1 can be found in Appendix E. This theorem gives a constructive approach
for approximating F−1 and justifies the practice of approximating ID when L is large enough. The
function φl is called the harmonic extension of fl − Λσ0

gl.

On the other hand, it relies on “knowing” the entire NtD map Λσ to construct ID
L explicitly. Namely,

the coefficients of ∂x1
φl ∂x2

φl depend on a big chunk of spectral information (eigenvalues and
eigenfunctions) of Λσ, which may not be available in practice. Thus, the mathematics itself in this
theorem does not provide an architectural hint on building a structure-conforming DNN.

To further dig out the hidden structure, we focus on the case of a single measurement, i.e., L = 1.
With this setting, it is possible to derive an explicit and simple formula to approximate ID which
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is achieved by the classical direct sampling methods (DSM) (Chow et al., 2014; 2015; Kang et al.,
2018; Ito et al., 2013; Ji et al., 2019; Harris & Kleefeld, 2019; Ahn et al., 2020). For EIT,

ID(x) ≈ ID
1 (x) := R(x) (d(x) · ∇φ(x)) x ∈ Ω, d(x) ∈ R

2, (10)

is derived in Chow et al. (2014), where (see a much more detailed formulation in Appendix D)

• φ is the harmonic extension of f − Λσ0
g with certain noise f − Λσ0

g + ξ;
• d(x) is called a probing direction and can be chosen empirically as d(x) = ∇φ(x)/‖∇φ(x)‖;

• R(x) = (‖f − Λσ0
g‖∂Ω|ηx|Y )−1, where ηx is a function of d(x) and measured in | · |Y

semi-norm on boundary ∂Ω.

Both φ and ηx can be computed effectively by traditional fast PDE solvers, such as finite difference
or finite element methods based on Ωh in Section 3.1. However, the reconstruction accuracy is much
limited by a single measurement, the nonparametric ansatz, and empirical choices of d(x) and | · |Y .
These restrictions leave room for DL methodology. See Appendix D for a detailed discussion.

Constructing harmonic extension (2D features) from boundary data (1D signal input with limited
depth) can contribute to the desired high-quality reconstruction. First, harmonic functions are
highly smooth away from the boundary, of which the solution automatically smooths out the noise
on the boundary due to PDE theory (Gilbarg & Trudinger, 2001, Chapter 8), and thus make the
reconstruction highly robust with respect to the noise (e.g., see Figure 3 in Appendix C.1). Second,
in terms of using certain backbone networks to generate features for downstream tasks, harmonic
extensions can be understood as a problem-specific way to design higher dimensional feature maps
(Álvarez et al., 2012), which renders samples more separable in a higher dimensional data manifold
than the one with merely boundary data. See Figure 1 to illustrate this procedure.

The information of σ is deeply hidden in φ. As shown in Figure 1 (see also Appendix C), one cannot
observe any pattern of σ directly from φ. It is different from and more challenging than the inverse
problems studied in (Bhattacharya et al., 2021; Khoo et al., 2021) that aim to reconstruct 2D targets
from the much more informative 2D internal data of u.

In summary, both Theorem 1 and the formula of DSM (10) offer inspiration to give a potential answer
to (Q1): the harmonic extension φ (2D features) of f−Λσ0

g (1D measurements) naturally encodes the
information of the true characteristic function ID (2D targets). As there is a pointwise correspondence
between the harmonic extensions and the targets at 2D grids, a tensor representation of ∇φl at these
grid points can then be used as the input to a tensor2tensor-type DNN to learn ID. Naturally, the
grids are set as the positional embedding explicitly. In comparison, the positional information is
buried more deeply in 1D measurements. As shown in Figure 1, Gθ can be nicely decoupled into a
composition of a learnable neural network operator Tθ and a non-learnable PDE-based feature map
H, i.e., Gθ = Tθ ◦ H. The architecture of Tθ shall be our interest henceforth.

3.3 FROM CHANNELS IN ATTENTION TO BASIS IN INTEGRAL TRANSFORM

In this subsection, a modified attention mechanism is proposed as the basic block in the tensor2tensor-
type mapping introduced in the next two subsections. Its reformulation conforms with one of the
most used tools in applied mathematics: the integral transform. In many applications such as inverse
problems, the interaction (kernel) does not have any explicit form, which meshes well with DL
methodology philosophically. In fact, this is precisely the situation of the EIT problem considered.

Let the input of an encoder attention block be xh ∈ R
M×c with c channels, then the query Q, key

K, value V are generated by three learnable projection matrices θ := {WQ,WK ,WV } ⊂ R
c×c:

⋄ = xhW
⋄, ⋄ ∈ {Q,K, V }. Here c ≫ L is the number of expanded channels for the latent

representations. A modified dot-product attention is proposed as follows:

U = Attn(xh) := α
(
nlQ(Q)nlK(K)⊤

)
V = α

(
Q̃K̃⊤

)
V ∈ R

M×c, (11)

where nlQ(·) and nlK(·) are two learnable normalizations. Different from Nguyen & Salazar
(2019); Xiong et al. (2020), this pre-inner-product normalization is applied right before the matrix
multiplication of query and key. This practice takes inspiration from the normalization in the index
function kernel integral (10) and (20), see also Boyd (2001) where the normalization for orthogonal
bases essentially uses the (pseudo)inverse of the Gram matrices. In practice, layer normalization (Ba
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et al., 2016) or batch normalization (Ioffe & Szegedy, 2015) is used as a cheap alternative. Constant
α = h2 is a mesh-based weight such that the summation becomes an approximation to an integral.

To elaborate these rationales, the j-th column of the i-th row Ui of U is (Ui)
j = αAi• · V j , in which

the i-th row Ai• = (Q̃K̃⊤)i• and the j-th column V j := V•j . Thus, applying this to every column
1 ≤ j ≤ c, attention (11) becomes a basis expansion representation for the i-th row Ui

Ui = αAi•




V1...
VM


 =

∑M

m=1
αAimVm =:

∑M

m=1
A(Qi,Km)Vm. (12)

Here, αAi• contains the coefficients for the linear combination of {Vm}Mm=1. This set {Vm}Mm=1
forms the V ’s row space, and it further forms each row of the output U by multiplying with A. A(·, ·)
in (12) stands for the attention kernel, which aggregates the pixel-wise feature maps to measure how
the projected latent representations interact. Moreover, the latent representation Ui in an encoder
layer is spanned by the row space of V and is being nonlinearly updated cross-layer-wise.

For xh, U,Q,K, V , a set of feature maps are assumed to exist: for example u(·) maps R2 → R
1×c,

i.e., Ui = u(zi) = [u1(zi), · · · , uc(zi)], e.g., see Choromanski et al. (2021), then an instance-
dependent kernel κθ(·, ·) : R2 × R

2 → R can be defined by

A(Qi,Kj) := α〈Q̃i, K̃j〉 = α〈q(zi), k(zj)〉 =: ακθ(zi, zj). (13)

Now the discrete kernel A(·, ·) with tensorial input is rewritten to this kernel κθ(·, ·), thus the
dot-product attention is expressed as a nonlinear integral transform for the l-th channel:

ul(z) = α
∑

x∈M

(
q(z) · k(x)

)
vl(x) δx ≈

∫
Ω
κθ(z, x)vl(x) dµ(x), 1 ≤ l ≤ c. (14)

Through certain minimization such as (8), the backpropagation updates θ, which further leads a new
set of latent representations. This procedure can be viewed as an iterative method to update the basis
residing in each channel by solving the Fredholm integral equation of the first kind in (14).

To connect attention with inverse problems, the multiplicative structure in a kernel integral form
for attention (14) is particularly useful. (14) is a type of Pincherle-Goursat (degenerate) kernels
(Kress, 1999, Chapter 11) and approximates the full kernel using only a finite number of bases.
The number of learned basis functions in expansion (12) depends on the number of channels n.
Here we show the following theorem; heuristically, it says that: given enough but finite channels of
latent representations, the attention kernel integral can “bootstrap” in the frequency domain, that is,
generating an output representation with higher frequencies than the input. Similar approximation
results are impossible for layer-wise propagation in CNN if one opts for the usual framelet/wavelet
interpretation (Ye et al., 2018). For example, if there are no edge-like local features in the input (see
for empirical evidence in Figure 9 and Figure 10), a single layer of CNN filters without nonlinearity
cannot learn weights to extract edges. The full proof with a more rigorous setting is in Appendix F.
Theorem 2 (Frequency bootstrapping). Suppose there exists a channel l in V such that (Vi)l =
sin(azi) for some a ∈ Z

+, the current finite-channel sum kernel A(·, ·) approximates a non-separable
kernel to an error of O(ǫ) under certain norm ‖ · ‖X . Then, there exists a set of weights such that
certain channel k′ in the output of (12) approximates sin(a′z), Z+ ∋ a′ > a with an error of O(ǫ)
under the same norm.

The considered inverse problem is essentially to recover higher-frequency eigenpairs of Λσ based
on lower-frequency data, see, e.g., Figure 1. Λσ together with all its spectral information can be
determined by the recovered inclusion shape. Thus, the existence in Theorem 2 partially justifies the
advantages of adopting the attention mechanism for the considered problem.

3.4 FROM INDEX FUNCTION INTEGRAL TO TRANSFORMER

In (10), the probing direction d(x), the inner product d(x) · ∇φ(x), and the norm | · |Y are used as
ingredients to form certain non-local instance-based learnable kernel integration. This non-localness
is a fundamental trait for many inverse problems, in that ID(x) depends on the entire data function.
Then, the discretization of the modified index function is shown to match the multiplicative structure
of the modified attention mechanism in (11).

In the forthcoming derivations, K(x, y),Q(x, y), and a self-adjoint positive definite linear operator
V : L2(∂Ω) → L2(∂Ω), are shown to yield the emblematic Q-K-V structure of attention. To this
end, we make the following modifications and assumptions to the original index function in (10).
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• The reformulation of the index function is motivated by the heuristics that the agglomerated global
information of φ could be used as “keys” to locate a point x.

ÎD
1 (x) := R(x)

∫

Ω

d(x) · K(x, y)∇φ(y) dy. (15)

If an ansatz K(x, y) = δx(y) is adopted, then (15) reverts to the original one in (10).
• The probing direction d(x) as “query” is reasonably assumed to have a global dependence on φ

d(x) :=

∫

Ω

Q(x, y)∇φ(y) dy. (16)

If Q(x, y) = δx(y)/‖∇φ(x)‖, then d(x) = ∇φ(x)/‖∇φ(x)‖ which is the choice of the probing
direction in (Ikehata, 2000; Ikehata & Siltanen, 2000; Ikehata, 2007).

• In the quantity R(x) in (10), the key is | · |Y which is assumed to have the following form:

|ηx|2Y := (Vηx, ηx)L2(∂Ω). (17)
In Chow et al. (2014), it is shown that if V induces a kernel with sharply peaked Gaussian-like
distribution, the index function in (10) can achieve maximum values for points inside D.

Based on the assumptions from (15) to (17), we derive a matrix representation approximating the
new index function on a grid, which accords well with an attention-like architecture. Denote by φn:
the vector that interpolates ∂xn

φ at the grid points {zj}, n = 1, 2.

Here, we sketch the outline of the derivation and present the detailed derivation in Appendix D. We
shall discretize the variable x by grid points zi in (15) and obtain an approximation to the integral:∫

Ω

K(zi, y)∂xn
φ(y) dy ≈

∑
j
ωjK(zi, zj)∂xn

φ(zj) =: kT
i φn, (18)

where {ωj} are some integration quadrature weights. We then consider (16) and focus on one
component dn(x) of d(x). With a suitable approximated integral, it can be rewritten as

dn(zi) ≈
∑

j
ωjQ(zi, zj)∂xn

φ(zj) =: qT
i φn. (19)

Note that the self-adjoint positive definite operator V in (17) can be parameterized by a symmet-
ric positive definite (SPD) matrix denoted by V . There exist vectors vn,i such that |ηzi |2Y ≈∑

n φ
T
nvn,iv

T
n,iφn. Then, the modified indicator function can be written as

ÎD
1 (zi) ≈

{
‖f − Λσ0

g‖−1
∂Ω

(∑

n

φT
nvn,iv

T
n,iφn

)−1/2
}∑

n

φT
nqik

T
i φn. (20)

Now, using the notation from Section 3.3, we denote the learnable kernel matrices and an input vector:
for ⋄ ∈ {Q,K, V }, and u ∈ {q,k,v}

W ⋄ =

[
u1,1 · · · u1,M

u2,1 · · · u2,M

]
∈ R

2M×M , xh = [ φ1 φ2 ] ∈ R
1×2M . (21)

Then, we can rewrite (20) as

[ÎD
1 (zi)]

M
i=1 ≈ Cf,g(xhW

Q ∗ xhW
K)/(xhW

V ∗ xhW
V )1/2 (22)

where Cf,g = ‖f − Λσ0
g‖−1

∂Ω is a normalization weight, and both ∗ and / are element-wise. Here,
we may define Q = xhW

Q, K = xhW
K , and V = xhW

V as the query, keys, and values. We can
see that the right matrix multiplications (11) in the attention mechanism are low-rank approximations
of the ones above. Hence, based on (22), essentially we need to find a function I resulting in a vector
approximation to the true characteristic function {ID(zj)}

I(Q,K, V ) ≈ [ID(zi)]
M
i=1. (23)

Moreover, when there are L data pairs, the data functions φl are generated by computing their
harmonic extensions as in (9). Then, each φl is then treated as a channel of the input data xh.

In summary, the expressions in (22) and (23) reveal that a Transformer may be able to generalize
the classical non-parametrized DSM formula further in (10) to non-local learnable kernels. Thus, it
may have an intrinsic architectural advantage that handles multiple data pairs. In the subsequent EIT
benchmarks, we provide a potential answer to the question (Q2); namely, the attention architecture is
better suited for the tasks of reconstruction, as it conforms better with the underlying mathematical
structure. The ability to learn global interactions by attention, supported by a non-local kernel
interpretation, matches the long-range dependence nature of inverse problems.
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4 EXPERIMENTS

In this section we present some experimental results to show the quality of the reconstruction. The
benchmark contains sampling of inclusions of random ellipses (targets), and the input data has a
single channel (L = 1) of the 2D harmonic extension feature from the 1D boundary measurements.
The training uses 1cycle and a mini-batch ADAM for 50 epochs. The evaluated model is taken
from the epoch with the best validation metric on a reserved subset. There are several baseline
models to compare: the CNN-based U-Nets (Ronneberger et al., 2015; Guo & Jiang, 2020); the
state-of-the-art operator learner Fourier Neural Operator (FNO) (Li et al., 2021a) and its variant with
a token-mixing layer (Guibas et al., 2022); MultiWavelet Neural Operator (MWO) (Gupta et al.,
2021). The Transformer model of interest is a drop-in replacement of the baseline U-Net, and it is
named by U-Integral Transformer (UIT). UIT uses the kernel integral inspired attention (11), and we
also compare UIT with the linear attention-based Hybrid U-Transformer in Gao et al. (2021), as well
as a Hadamard product-based cross-attention U-Transformer in Wang et al. (2022). An ablation study
is also conducted by replacing the convolution layers in the U-Net with attention (11) on the coarsest
level. For more details of the hyperparameters’ setup in the data generation, training, evaluation,
network architectures please refer to Section 3.1, Appendix C.1, and Appendix C.2.

The comparison result can be found in Table 1. Because FNO (AFNO, MWO) keeps only the lower
modes in spectra, it performs relatively poor in this EIT benchmark where one needs to recover
traits that consist of higher modes (sharp boundary edges of inclusion) from lower modes (smooth
harmonic extension). Attention-based models are capable to recover “high-frequency target from
low-frequency data”, and generally outperform the CNN-based U-Nets despite having only 1/3 of
the parameters. Another highlight is that the proposed models are highly robust to noise thanks to the
unique PDE-based feature map through harmonic extension. The proposed models can recover the
buried domain under a moderately large noise (5%) and an extreme amount of noise (20%) which
can be disastrous for many classical methods.

Table 1: Evaluation metrics of the EIT benchmark tests. τ : the normalized relative strength of noises
added in the boundary data before the harmonic extension; see Appendix C for details. L2-error and
cross entropy: the closer to 0 the better; Dice coefficient: the closer to 1 the better.

Relative L2 error Position-wise cross entropy Dice coefficient
# params

τ = 0 τ = 0.05 τ = 0.2 τ = 0 τ = 0.05 τ = 0.2 τ = 0 τ = 0.05 τ = 0.2

U-Net baseline 0.200 0.341 0.366 0.0836 0.132 0.143 0.845 0.810 0.799 7.7m
U-Net+Coarse Attn 0.184 0.343 0.360 0.0801 0.136 0.147 0.852 0.807 0.804 8.4m

U-Net big 0.195 0.338 0.350 0.0791 0.133 0.138 0.850 0.812 0.805 31.0m
FNO2d baseline 0.318 0.492 0.502 0.396 0.467 0.508 0.650 0.592 0.582 10.4m

Adaptive FNO2d 0.323 0.497 0.499 0.391 0.466 0.471 0.635 0.595 0.592 10.9m
FNO2d big 0.386 0.482 0.501 0.310 0.465 0.499 0.638 0.601 0.580 33.6m

Multiwavelet NO 0.275 0.390 0.407 0.152 0.178 0.192 0.715 0.694 0.688 9.8m
Hybrid UT 0.185 0.320 0.333 0.0785 0.112 0.116 0.877 0.829 0.821 11.9m

Cross-Attention UT 0.171 0.305 0.311 0.0619 0.105 0.109 0.887 0.840 0.829 11.4m
UIT+Softmax (ours) 0.159 0.261 0.269 0.0551 0.0969 0.0977 0.903 0.862 0.848 11.1m

UIT (ours) 0.163 0.261 0.272 0.0564 0.0967 0.0981 0.897 0.858 0.845 11.4m
UIT+(L=3) (ours) 0.147 0.250 0.254 0.0471 0.0882 0.0900 0.914 0.891 0.880 11.4m

5 CONCLUSION

For a boundary value inverse problem, we propose a novel operator learner based on the mathe-
matical structure of the inverse operator and Transformer. The proposed architecture consists of
two components: the first one is a harmonic extension of boundary data (a PDE-based feature
map), and the second one is a modified attention mechanism derived from the classical DSM by
introducing learnable non-local integral kernels. The evaluation accuracy on the benchmark problems
surpasses the current widely-used CNN-based U-Net and the best operator learner FNO. This research
strengthens the insights that the attention is an adaptable neural architecture that can incorporate a
priori mathematical knowledge to design more physics-compatible DNN architectures. However,
we acknowledge some limitations: in this study, σ to be recovered relies on a piecewise constant
assumption. For many EIT applications in medical imaging and industrial monitoring, σ may involve
non-sharp transitions or even contain highly anisotropic/multiscale behaviors; see Appendix G for
more discussion on limitations and possible approaches.
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A TABLE OF NOTATIONS

Table 2: Notations used in an approximate chronological order and their meaning in this work.

Notation Meaning

Ω an underlying spacial domain in R
2

D a subdomain in Ω (not necessarily topologically-connected)
∂D, ∂Ω D’s and Ω’s boundary, 1-dimensional manifolds
∇u the gradient vector of a function, ∇u(x) = (∂x1

u(x), ∂x2
u(x))

‖ · ‖ω the L2-norm on a region ω
‖ · ‖ = ‖ · ‖Ω the L2-norm on whole domain Ω

δx the delta function such that
∫
Ω
f(y)δx(y) dy = f(x), ∀f .

n the unit outer normal vector on the boundary ∂Ω.
∇u · n normal derivative of u, measures the rate of change along the direction of n
Λσ NtD map from Neumann data g := ∇u · n

(how fast the solution changes toward the outward normal direction) to
Dirichlet data f := u|∂Ω (the solution’s value along the tangential direction)

Hs(Ω), s ≥ 0 the Sobolev space of functions
Hs(Ω), s < 0 the bounded linear functional defined on Hs(Ω)

Hs
0(Ω) all u ∈ Hs(Ω) such that u’s integral on Ω vanishes
| · |Y the seminorm defined for functions in Y

B BACKGROUND OF EIT

For EIT, an immediate question is whether F−1 and F−1
L in (4) and (5) are well-defined, namely

whether σ can be uniquely determined. In fact, for the case of full measurements (L = ∞), the
uniqueness for F−1 has been well established, (Brühl, 2001; Hanke & Brühl, 2003; Astala &
Päivärinta, 2006; Nachman, 1996; Kohn & Vogelius, 1984; Sylvester & Uhlmann, 1987). It is
worthwhile to point out that, in this case, σ is not necessarily a piecewise constant function. In (1),
we present a simplified case for purposes of illustrating as well as benchmarking. In general, with
the full spectral information of the NtD map, σ can be uniquely determined as a general positive
function.

If infinitely many eigenpairs are known, then the operator itself can be precisely characterized using
infinitely many feature channels by Reproducing Kernel Hilbert Space (RKHS) theory, e.g., Mercer
(1909); Aronszajn (1950); Minh et al. (2006); Morris (2015); Kadri et al. (2016); Lu et al. (2022). In
the context of EIT, this is known as the “full measurement”. A more challenging and practical problem
is to recover σ from only finitely many boundary data pairs. A common practice for the theoretical
study of reconstruction using finite measurements is the assumption of σ being a piecewise constant
function. The task is usually set to recover the shape and location of the inclusion D. Otherwise,
the problem is too ill-posed. With finite measurements, the uniqueness of the inclusion remains a
long-standing theoretical open problem, and it can be only established for several special classes of
the inclusion shape, such as the convex cylinders in Isakov & Powell (1990) or convex polyhedrons
in Barceló et al. (1994). We refer readers to some counter-examples in Kang & Seo (2001) where
a two- or three-dimensional ball may not be identified uniquely by one single measurement if the
values of σ0 and σ1 are unknown.

Furthermore, here we provide one example to illustrate the difficulty in the reconstruction procedure
(Pidcock et al., 1995). Let Ω be a unit circle, let D be a circle with the radius ρ < 1, and define

σ(x) =

{
1 if ‖x‖ ≥ ρ,

σ1 if ‖x‖ < ρ,
(24)

with σ1 < 1 being an arbitrary constant. In this case, the eigenpairs of Λσ can be explicitly calculated

λl =
1

l

1− ρ2lµ

1 + ρ2lµ
, νm =

1√
2π

cos(lθ) or
1√
2π

sin(lθ), l = 1, 2, ..., (25)
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Figure 5: The harmonic extension feature map φl (left 1-3 as different channels’ inputs to the neural
network) corresponding to a randomly chosen sample’s inclusion map (right). No visible relevance
shown with the ground truth. The layered heatmap appearance is adopted in plotly contour only for
aesthetics purposes, no edge-like nor layer-like features can be observed from the actual harmonic
extension feature map input.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6: The neural network evaluation result for the inclusion in Figure 5 using various models.
A model’s input is the left most function in Figure 5 if this model uses a single channel, or all left
three in Figure 5 if a model uses 3-channel input. (a) Ground truth inclusion in Figure 5; (b) U-Net
baseline (7.7m) prediction; (c) U-Net big (31m) prediction with 3 channels; (d) Fourier Neural
Operator (10.4m) prediction with 1 channel; (e) Fourier Neural Operator big (33m) prediction with 1
channel; (f) Adaptive Fourier Neural Operator (10.7m) prediction with 1 channel; (g) Multiwavelet
Neural Operator (9.8m) prediction with 1 channel; (h) Hybrid UT with a linear attention (10.13m)
prediction with 1 channel; (i) UIT (11.4m) prediction with 1 channel; (j) UIT (11.4m) prediction with
3 channels.

expand the number of channels from C to 2C. To leverage the “basis ⇔ channel” interpretation
and the basis update nature of the attention mechanism in Section 3.3, the proposed attention
block is first added on the coarsest grid, which has the most number of channels. UIT has three
upsampling layers as the decoder (feature selector), which map m/2×m/2 latent representations
to m×m, and shrink the number of channels from 2C to C. In these upsampling layers, attention
blocks are applied on each cross-layer propagation to compute the interaction between the latent
representations on both coarse and fine grids (see below). Please refer to Figure 8 for a high-level
encoder-decoder schematic.

• Double convolution block. The double convolution block is modified from that commonly seen
in Computer Vision (CV) models, such as ResNet (He et al., 2016). We modify this block such
that upon being used in an attention block, the batch normalization (Ioffe & Szegedy, 2015) can
be replaced by the layer normalization (Ba et al., 2016), which can be understood as a learnable
approximation to the Gram matrices’ inverse by a diagonal matrix.

• Positional embedding. At each resolution, the 2D Euclidean coordinates of an m ×m regular
Cartesian grid are the input of a channel expansion through a fixed learnable linear layer and are

22







Published as a conference paper at ICLR 2023

|ηx|2Y := (Vηx, ηx)L2(∂Ω). (35)

Applying certain quadrature rule to (33) with the quadrature points zi, i.e., the grid points of Ωh, and
weights {ωj}, we obtain an approximation to the integral:

∫

Ω

K(zi, y)∂xn
φ(y) dy ≈

∑
j
ωjK(zi, zj)∂xn

φ(zj) =: kT
i φn, (36)

i.e., qT
i is the vector of [ωjK(zi, zj)]j . For (34), we consider one component dn(x) of d(x). With

the same rule to compute the integral, (16) can be written as

dn(zi) ≈
∑

j
ωjQ(zi, zj)∂xn

φ(zj) =: qT
i φn, (37)

i.e., qT
i is the vector of [ωjQ(zi, zj)]j . Next, we proceed to express |ηzi |Y by discretizing the

variational form in (32) using a linear finite element method (FEM). Applying integration by parts,
the weak form of (32) at x = zi is

∫

Ω

∇ηzi · ∇ψ dy =

∫

Ω

−d(zi) · ∇δzi(y)ψ(y) dy = −d(zi) · ∇ψ(zi), (38)

for any test function ψ ∈ H1
0 (Ω). Here, we let {ψ(j)}Mj=1 be the collection of the finite element

basis functions, and for the fixed zi we further let ψn,i be the vector approximating [∂xn
ψ(j)(zi)]

M
j=1.

Denote ηi as the vector approximating {ηzi(zj)}Mj=1. Introduce the matrices

• B: the finite element/finite difference discretization of −∆ on Ωh (a discrete Laplacian) coupled
with the Neumann boundary condition and the zero integral normalization condition in (9).

• R: the matrix that projects a vector defined at interior grids to the one defined on ∂Ω.

Then, the finite element discretization of (38) yields the linear system:

Bηi =
∑

n
dn(zi)ψn,i ≈

∑
n
ψn,iq

T
i φn, (39)

where we have used (37). Then, the trace of ηzi on ∂Ω admits the following approximation

η̄i := ηzi |∂Ω ≈
∑

n
RB−1ψn,iq

T
i φn. (40)

Now, we can discretize (35). Note that the trace of a linear finite element space on ∂Ω is still a
continuous piecewise linear space, defined as Sh(∂Ω). Then, the self-adjoint positive definite operator
V can be parameterized by a symmetric positive definite (SPD) matrix denoted by V operating on the
space Sh(∂Ω). We can approximate |ηzi |2Y as

|ηzi |2Y ≈ η̄T
i V η̄i ≈

∑
n
ψT

n,iB
−1RTV RB−1ψn,iφ

T
nqiq

T
i φn (41)

where ψT
n,iB

−1RTV RB−1ψn,i ≥ 0 as V is SPD. Define

vn,i = (ψT
n,iB

−1RTV RB−1ψn,i)
1/2qi. (42)

This can be considered another learnable vector since the coefficient of qi comes from the learnable
matrix V . Then, (41) reduces to

|ηzi |2Y ≈
∑

n

φT
nvn,iv

T
n,iφn (43)

Putting (36), (37) and (43) into (15), we have

ÎD
1 (zi) ≈

{
‖f − Λσ0

g‖−1
L2(∂Ω)

(∑

n

φT
nvn,iv

T
n,iφn

)−1/2
}∑

n

φT
nqik

T
i φn. (44)

Now, using the notation in (21), we get the desired representation (22).
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E PROOF OF THEOREM 1

Lemma 1. Suppose the boundary data gl is the eigenfunction of Λσ − Λσ0
corresponding to the l-th

eigenvalue λl, and let φl be the data functions generated by harmonic extensions

−∆φl = 0 in Ω, n ·∇φl = (fl−Λσ0
gl) = (Λσ −Λσ0

)gl on ∂Ω,

∫

∂Ω

φl ds = 0, (45)

where l = 1, 2, · · · . Let d be an arbitrary unit vector in R
2, define a function

ΘL(x) =

L∑

l=1

(d · ∇φl(x))2
λ3l

. (46)

Then, there holds

lim
L→∞

ΘL(x) =

{
∞, if x /∈ D,

a finite constant, if x ∈ D.
(47)

Proof. See Theorem 4.1 in Guo & Jiang (2020), and also see Brühl (2001); Hanke & Brühl (2003).

Theorem 1 (A finite-dimensional approximation of the index function). Suppose the boundary data
gl is the eigenfunction of Λσ − Λσ0

corresponding to the l-th eigenvalue λl, and let φl be the data
functions generated by harmonic extensions given in (9). Define the space:

S̃L = Span{∂x1
φl ∂x2

φl : l = 1, ..., L}, (48)

and the dictionary:

SL = {a1 + a2 arctan(a3v) : v ∈ S̃L, a1, a2, a3 ∈ R}. (49)

Then, for any ǫ > 0, we con construct an index function ID
L ∈ SL s.t.

supx∈Ω |ID(x)− ID
L (x)| ≤ ǫ (50)

provided L is large enough.

Proof. Consider the function ΘL(x) from Lemma 1. As ΘL(x) > 0, it is increasing with respect to
L. Then, there is a constant ρ such that ρ > ΘL(x), ∀x ∈ D. Given any ǫ > 0, there is an integer L
such that ΘL(x) > 4ρǫ−2/π2, ∀x /∈ D. Define

ID
L (x) = 1− 2

π
arctan

(
πǫ

2ρ
ΘL(x)

)
(51)

Note the fundamental inequality z > arctan(z) ≥ π
2 − z−1, ∀z > 0. Then, if x ∈ D, there holds

|ID(x)− ID
L (x)| = 2

π
arctan

(
πǫ

2ρ
ΘL(x)

)
<
ǫ

ρ
ΘL(x) < ǫ

if x /∈ D, there holds

|ID(x)− ID
L (x)| = 1− 2

π
arctan

(
πǫ

2ρ
ΘL(x)

)
≤ 4ρ

π2ǫΘL(x)
< ǫ.

Therefore, the function in (51) fulfills (50).
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F PROOF OF THEOREM 2

In presenting Theorem 2 in Section 3.3, we use the term “multiplicative” to describe the fact that
two latent representations are multiplied in the attention mechanism. In contrast, no such operation
exists in, e.g., a pointwise FFN or a convolution layer. Heuristically speaking, the main result in
Theorem 2 states that the output latent representations can be of a higher “frequency” than the input
if the neural network architecture has “multiplicative” layers in it. The input latent representations
are discretizations of certain functions, and they are combined using matrix dot product as the one
used in attention. Suppose that this discretization can represent functions of such a frequency with a
certain approximation error, the resulting matrix/tensor can be an approximation of a function with
a higher frequency than the existing latent representation under the same discretization. Please see
Figure 9 and Figure 10 for empirical evidence of this phenomenon for the latent representations:
with completely smooth input (harmonic extensions), e.g., see Figure 5, attention-based learner can
generate latent representations with multiple peaks and valleys.

Theorem 2 (Frequency-bootstrapping for multiplicative neural architectures). Consider Ω = (0, π)
which has a uniform discretization of {zi}Mi=1 of size h, and v(x) = sin(ax) for some a ∈ Z

+. Let
N := a − 1 ≥ 1 be the number of channels in the attention layer of interest, assume that (i) the
current latent representation ph ∈ R

M×N consists of the discretization of the first N Legendre
polynomials {pj(·)}Nj=1 such that (ph)ij = pj(zi), (ii) ph is normalized and the normalization

weights α ≡ 1 in (14), (iii) the discretization satisfies that |
∑M

i=1 hf(zi) −
∫
Ω
f(x) dx| ≤ C h.

Then, there exists a set of attention weights {WQ,WK ,WV } such that for u(x) = sin(a′x) with
Z
+ ∋ a′ > a

‖ũ− u‖L2(Ω) ≤ Cmax{h, ‖ε‖L∞(Ω)}, (52)

where ũ and κ̃(·, ·) are defined as the output of and the kernel of the attention formulation in (14),
respectively; ε(x) := ‖κ(x, ·)− κ̃(x, ·)‖L2(Ω) is the error function for the kernel approximation.

Proof. Without loss of generality, it is assumed that a′ = a+ 1. The essential technical tools used
suggest the validity for any a′ > a > 0 (a′, a ∈ Z

+). Consider a simple non-separable smooth kernel
function

κ(x, z) := sin((a+ 1)(x− z)), (53)

it is straightforward to verify that for v(x) := sin(ax), we have c1 = 2a/(2a+ 1)
∫

Ω

κ(x, z)v(x) dx =

∫

Ω

sin
(
(a+ 1)(x− z)

)
sin(ax) dx = c1 sin

(
(a+ 1)z

)
=: c1u(z). (54)

As is shown, it suffices to show that the matrix multiplication (a separable kernel) in the attention
mechanism approximates this non-separable kernel with an error related to the number of channels.
To this end, taking the Taylor expansion, centered at a z0 ∈ Ω of κ(x, ·) with respect to the second
variable at each x ∈ Ω, we have

κN (x, z) :=
N∑

l=1

(z − z0)
l−1

(l − 1)!

∂l−1κ

∂zl−1
(x, z0). (55)

It is straightforward to check that

‖κ(x, ·)− κN (x, ·)‖L2(Ω) ≤ c1

√
(π − z0)2N+1 + z2N+1

0

N !
√
2N + 1

∥∥∥∥
∂Nκ

∂zN
(x, ·)

∥∥∥∥
L∞(Ω)

. (56)

By the assumptions on κ(·, ·), and a straightforward computation we have

‖κ(x, ·)− κN (x, ·)‖L2(Ω) ≤ c2
(π)N

N !
√
N

∥∥∥∥
∂Nκ

∂zN
(x, ·)

∥∥∥∥
L∞(Ω)

. (57)

Next, let ql(z) := (z − z0)
l−1/(l − 1)! and kl(x) := ∂l−1κ/∂zl−1(x, z0) for 1 ≤ l ≤ N , i.e., they

form a Pincherle-Goursat (degenerate) kernels (Kress, 1999, Chapter 11)

κN (x, z) =

N∑

l=1

ql(x)kl(z). (58)
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By this choice of the latent representation space being the first N Legendre polynomials, ql ∈ Y :=

span{pj}, thus there exists a set of weights {wQ
l ∈ R

l}Nl=1 corresponding to each channel, such that

ql(·) =
N∑

j=1

wQ
l,jpj(·) =: q̃l(·). (59)

This is to say, Q = phW
Q ∈ R

M×N with the l-th column of Q being the discretization of q̃l(·).
For the key matrix, by standard polynomial approximation since Y ≃ PN (Ω), there exists a set of
weights {wK

l ∈ R
N}Nl=1, such that

kl(·) ≈
N∑

j=1

wK
l,jpj(·) =: k̃l(·), (60)

i.e., K = phW
K ∈ R

M×N with the l-th column of K being the discretization of k̃l(·). Moreover, it
can approximate kl(·) with the following estimate

‖kl(·)− k̃l(·)‖L2(Ω) ≤ c3
πN

2N (N + 1)N
|kl(·)|HN (Ω). (61)

Similarly, without loss of generality, we choose v(·) := v1(·), which is concatenated to V such that it
occupies the first channel of V defined earlier, we have {wV

l ∈ R
N} such that

v(·) ≈
N∑

j=1

wK
1,jpj(·) =: ṽ(·) (62)

and

‖v(·)− ṽ(·)‖L2(Ω) ≤ c4
πN

2N (N + 1)N
|v(·)|HN (Ω). (63)

Now, to approximate the frequency bootstrapping in (54), define

ũ(z) :=

∫

Ω

κ̃N (x, z)ṽ(x) dx, with κ̃N (x, z) :=

N∑

l=1

q̃l(x)k̃l(z). (64)

Then, we have for any z ∈ Ω

u(z)− ũ(z) =

∫

Ω

κ(x, z)v(x) dx−
∫

Ω

κN (x, z)ṽ(x) dx

=

∫

Ω

(
κ(x, z)− κ̃N (x, z)

)
v(x) dx+

∫

Ω

κN (x, z)
(
v(x)− ṽ(x)

)
dx.

(65)

Thus, we have

‖u− ũ‖L∞(Ω) ≤ max
z∈Ω

{∫

Ω

∣∣(κ(x, z)− κ̃N (x, z)
)
v(x)

∣∣ dx+

∫

Ω

∣∣κN (x, z)
(
v(x)− ṽ(x)

)∣∣ dx
}

≤ max
z∈Ω

{
‖κ(x, ·)− κ̃N (x, ·)‖L2(Ω)︸ ︷︷ ︸

(∗)

‖v‖L2(Ω) + ‖κ̃N (x, ·)‖L2(Ω)‖v − ṽ‖L2(Ω)

}
.

(66)
Now, by triangle inequality, ql = q̃l, the definitions above (53) implying |kl(·)|HN (Ω) ≤ c 2N and

‖ql‖L2(Ω) ≤ cπN/(
√
NN !), and the estimate in (61)

(∗) ≤ ‖κ(x, ·)− κN (x, ·)‖L2(Ω) + ‖κN (x, ·)− κ̃N (x, ·)‖L2(Ω)

≤ ‖κ(x, ·)− κN (x, ·)‖L2(Ω) +

N∑

l=1

‖ql‖L2(Ω)‖kl − k̃l‖L2(Ω)

≤ c5

(
(2π)N

N !
√
N

+ c6
πN

2N (N + 1)N

N∑

l=1

‖ql‖L2(Ω)|kl(·)|HN (Ω)

)

≤ c6
(2π)N

N !
√
N
.

(67)
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Notice this is the same order with the estimate of ‖κ(x, ·) − κN (x, ·)‖L2(Ω). For the term
‖κ̃N (x, ·)‖L2(Ω), a simple triangle inequality trick can be used:

‖κ̃N (x, ·)‖L2(Ω) ≤ ‖κN (x, ·)‖L2(Ω) + ‖κN (x, ·)− κ̃N (x, ·)‖L2(Ω)

≤ ‖κ(x, ·)‖L2(Ω) + ‖κN (x, ·)− κ̃N (x, ·)‖L2(Ω),
(68)

which can be further estimated by reusing the argument in (67).

Lastly, using the following argument and the estimate for ‖u− ũ‖L∞(Ω) yield the desired result:

‖u− ũ‖2L2(Ω) ≤ ‖u− ũ‖L1(Ω)‖u− ũ‖L∞(Ω) ≤ 2max |u| ‖u− ũ‖2L∞(Ω). (69)

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 9: The latent representations from CNN-based UNet when evaluating for the sample in Figure
5, in their respective layers, 4 latent representations are extracted from 4 randomly selected channels:
(a)–(d) are from the feature extracting layer (layer 1, 128× 128 grid), (e)–(h) are from the middle
layer acting on the coarsest level (32× 32 grid), (i)–(l) are from the next level (64× 64 grid).

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 10: The latent representations from UIT when evaluating for the sample in Figure 5, in their
corresponding layers with respect to those in Figure 9, 4 latent representations are extracted from 4
randomly selected channels: (a)–(d) are from the feature extracting layer (layer 1, 128× 128 grid),
(e)–(h) are from the middle layer acting on the coarsest level (32× 32 grid), (i)–(l) are from the next
level (64× 64 grid).
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G LIMITATIONS, EXTENSIONS, AND FUTURE WORK

In this study, the σ to be recovered relies on a piecewise constant assumption. This assumption is
commonly seen in the theoretical study of the original DSM. For many EIT applications in medical
imaging and industrial monitoring, σ may involve non-sharp transitions or even contain highly
anisotropic/multiscale behaviors making it merely an L∞ function. If the boundary data pairs are still
quite limited, i.e., only a few electric modes are placed on the boundary ∂Ω, the proposed model alone
is not expected to perform as well as in benchmark problems. Nevertheless, it can still contribute
to achieving reconstruction with satisfactory accuracy, if certain a priori knowledge of the problem
is accessible. End2end-wise, our proposed method has limitations like other operator learners: the
data manifold on which the operator is learned is assumed to exhibit low-dimensional/low-rank
attributes. The behavior of the operator of interest on a compact subset is assumed to be reasonably
well approximated by a finite number of bases. Therefore, for non-piecewise constant conductivities,
the modification can be to employ a suitable data set, in which the sampling of {σ(k)} represents
the true σ’s distribution a posteriori to a certain degree. However, to reconstruct non-piecewise
constant conductivities, more boundary data pairs or even the entire NtD map is demanded from a
theoretical perspective (Astala & Päivärinta, 2006; Nachman, 1996; Kohn & Vogelius, 1984; Sylvester
& Uhlmann, 1987). For fewer data pairs and more complicated conductivity set-up, there have been
efforts in this direction hierarchically using matrix completion (Bui-Thanh et al., 2022) to recover
Λσ . When Λσ is indeed available, σ can be described by a Fredholm integral equation, see Nachman
(1996, Theorem 4.1), which itself is strongly related to the modified attention mechanism (14) of
the proposed Transformer. The architectural resemblance may lead to future explorations in this
direction. Optimization with regularization can be applied for the instance of interest (fine-tune)
from the perspective of improving the reconstruction for a single instance. This approach dates back
to the classical iterative methods involving adaptivity (Jin & Xu, 2019). Recent novel DL-inspired
adaptions (Li et al., 2021b; Benitez et al., 2023) re-introduce this type of method. In fine-tuning, the
initial guess is the reconstruction by the operator learner trained in the end2end pipeline (pre-train).

30


