Proceedings of Machine Learning Research vol 211:1-16, 2023 Sth Annual Conference on Learning for Dynamics and Control

Automatic Integration for Fast and Interpretable
Neural Point Processes

Zihao Zhou 712244 @UCSD.EDU
University of California, San Diego

Rose Yu ROSEYU@UCSD.EDU
University of California, San Diego

Editors: N. Matni, M. Morari, G. J. Pappas

Abstract

The fundamental bottleneck of learning continuous-time point processes is integration. Due to
the intrinsic mathematical difficulty of symbolic integration, neural point process (NPP) models
either constrain the intensity function to a simple integrable kernel function or apply numerical
integration. However, the former has limited expressive power. The latter suffers additional
numerical errors and high computational costs. In this paper, we introduce Automatic Integration
for Neural Point Process models (Aut o—-NPP), a new paradigm for exact, efficient, non-parametric
inference of point process. We validate our method on simulated events governed by temporal
point processes and real-world events. We demonstrate that our method has clear advantages in
recovering complex intensity functions from irregular time series. On real-world datasets with noise
and unknown intensity functions, our method is also much faster than state-of-the-art NPP models
with comparable prediction accuracy. Our code and data can be found at https://github.
com/Rose-STL-Lab/AutoNPP.

Keywords: temporal dynamics, neural point processes, integration method

1. Introduction

Neural point process (NPP) is a family of deep generative models that integrate deep neural networks
(DNN) with point processes for modeling irregularly sampled event data with continuous-time
dynamics. NPPs allow hidden states to vary between events and are particularly well-suited for
learning the dynamics behind discrete events such as social media posts, disease transmission, and
earthquakes. The surging interests in NPP have led to the development of many state-of-the-art time
series models such as Neural Hawkes process (Mei and Eisner, 2016), Neural ODE (Chen et al.,
2018), as outlined in a recent survey on NPP (Shchur et al., 2021).

A central concept in point processes is the intensity function, which captures the expected rates
of events occurrence. Specifically, given an event sequence over time H; = {t1, ta, ..., tn }|1, <t» the
joint log-likelihood of the observed events can be defined as follows:

n t
logp(Ht):Zlog)*(ti)—/o N (T)dr (1)
=1

where * refers to the optimal intensity function that best models the sequence.
A major difficulty of maximum likelihood estimation for point processes lies in the integral term
of Equation 1. Obtaining an analytical solution to the likelihood is especially difficult for NPPs

© 2023 Z. Zhou & R. Yu.

AUTO-NPP

with hidden states represented by neural networks. For example, the Neural Hawkes process (Mei
and Eisner, 2016) does not have a closed-form solution for the likelihood and must rely on Monte
Carlo sampling. Furthermore, existing NPPs often evaluate the test log-likelihood only without
verifying the learned intensity function. However, as we will demonstrate later, a relatively high test
log-likelihood can provide little information about the temporal patterns of influence. Models with
flat or complex intensity functions can have very similar test likelihood, rendering it an inadequate
evaluation metric.

On the other hand, NPPs with analytical integral rely on strong assumptions about the intensity
and are less expressive. Existing works assume that the current influence follows an exponential
decay of the intensity (Du et al., 2016), or of the latent representation (Mozer et al., 2017), or a linear
interpolation (Zuo et al., 2020). However, these assumptions may be challenging to meet in the real
world. For example, in social media posts, a “delayed jump” in influence can occur where a viral
post’s impact will not skyrocket until it is forwarded by an opinion leader. This type of event can
produce a jump in intensity that violates the smoothness assumption. Additionally, events can exhibit
“cyclic influence”, such as tweets being more influential in the evening than in the afternoon.

To reduce computational cost and improve the expressivity of NPPs, we ask a natural question:

Can we directly use a deep neural network to approximate the influence function?

If successful, the resulting NPP could signifi-

cantly relax the assumptions imposed by existing Intensity Intensity
NPPs and open up new venues for modeling com- ' P~ | Integral
plex real-world event dynamics, including those with T\f T’ \v\?"
“delayed jump” or “cyclic influence”. However, this J) (o

would require integrating a complicated neural func-
tion over a significant time period, where numerical
integration is both inefficient and erroneous.

We propose to leverage automatic integration
(Lindell et al., 2021; Li et al., 2019), or Autolnt, for
NPPs. We recognize that taking the partial derivative
of a DNN results in a new computational graph that
shares the same parameters, as illustrated in Figure 1.
We first construct a monotonically increasing integral
network whose partial derivative is the intensity func-
tion. Then, we train the integral network to maximize Figure 1: Ilustration of automatic integra-

the data likelihood. Finally, we reassemble the param- tion for NPP. W denotes the linear
eters of the integral network to obtain the intensity layer’s weight. o is the nonlinear
function. With Autolnt, we can fit the exact intensity activation function. The intensity
function and its antiderivative without imposing any () network is on the left and the
constraints on their functional forms. integral ([A) network is on the

Our approach can efficiently compute the exact right. The two networks share the
likelihood of any intensity function. We validate our same parameters.

approach using synthetic temporal point processes

with multimodal and discontinuous intensity functions and two real-world datasets. Notably, an earlier
work by (Omi et al., 2019) proposes an RNN-based model for the temporal point process, calculating
the integral of the intensity function using a similar method. However, our proposed method models

AUTO-NPP

the intensity function without recurrent representations, leading to better interpretability and improved
ability in recovering complex intensity functions.
To summarize, our contributions are the following:

* We propose an efficient and interpretable framework for neural point processes based on
automatic integration. Specifically, we directly approximate the influence function with a
neural network and enforce the positivity of the intensity via a monotone integral network.

* We show with synthetic data that our automatic integration framework can faithfully recover
complex intensity functions with higher efficiency and accuracy than existing NPP approaches
and traditional numerical integration methods.

* On real-world discrete event data, including earthquake Japan, our framework enjoys better
interpretability and results in performance comparable or superior to state-of-the-art methods.

2. Related Work

Parametrizing Point Process. Fitting traditional TPP models such as Hawkes process to data
points may have lousy performance if the model is misspecified. To address this issue, statisticians
have extensively studied non-parametric inference for TPP. Early works usually rely on Bayesian
methods (Mgller et al., 1998; Kottas and Sansé, 2007; Cunningham et al., 2008). Rathbun and
Cressie (1994) modeled the intensity function as a piecewise-constant log Gaussian. Adams et al.
(2009) proposed a Markov Chain Monte Carlo (MCMC) inference scheme for the Poisson process
with Gaussian priors. These Bayesian models are scalable but assume a continuous intensity change.
They can hardly handle the event sequences where the underlying dynamics rapidly change upon
event arrivals, such as social media posts.

Recently, NPPs that combine TPP with neural networks has received considerable attention (Yan
et al., 2018; Upadhyay et al., 2018; Huang et al., 2019; Shang and Sun, 2019; Zhang et al., 2020).
Such models leverage the flexibility of neural networks to estimate the intensity after each event and
improve the overall model performance. In these models, the focus is on approximating a discrete
set of intensities before and after each event, which are combined to interpolate the continuous
intensities. For example, Du et al. (2016) uses an RNN to generate intensities after each event. Mei
and Eisner (2016) proposes a novel RNN architecture that generates intensities at both ends of each
inter-event interval. Furthermore, some studies have explored alternative training schema: Xiao et al.
(2017) used Wasserstein distance as a training loss, Guo et al. (2018) introduced noise-contrastive
estimation technique, and Li et al. (2018) leveraged reinforcement learning.

While these NPP models are more expressive than traditional ones, they still assume simple
inter-event intensity changes that are continuous and monotonic. The work of Omi et al. (2019)
proposes to relax this assumption by parameterizing the integral of an intensity function with a DNN
and incorporating an RNN as well. However, their model can only inherit previous events’ influence
through an arbitrary RNN, and the learned intensity change cannot directly summate over time.

Integration Methods. Integration methods play a crucial role in a model’s ability to capture the
complex dynamics of a system but have largely been limited to simple techniques in NPP literature.
Existing works have either used an intensity function with an elementary integral (Du et al., 2016) or
relied on Monte Carlo integration (Mei and Eisner, 2016). However, we will see from our experiments
that the choice of integration method has a non-trivial effect on the model performance.

AUTO-NPP

Integration is generally more complicated than differentiation, as most integration rules, such
as integration by parts and change of variables, transform an antiderivative to another that is not
necessarily easier. While elementary antiderivatives exist for a small set of functions, they are
not available for many simple composite functions like exp(2?) (Dunham, 2018). To overcome
this, the Risch algorithm was developed to determine such elementary antiderivatives (Risch, 1969,
1970). However, this algorithm has never been fully implemented due to its complexity. As a
result, numerical integration methods are commonly used, such as Newton-Cotes Methods, Romberg
Integration, Quadrature, and Monte Carlo integration (Davis and Rabinowitz, 2007).

Multiple recent works introduced variants of a new integration approach, Automatic Integra-
tion (Autolnt). Liu (2020) proposes integrating the Taylor polynomial using the derivatives from
Automatic Differentiation (AutoDiff). It requires partitioning the integral limits and choosing the
order of Taylor approximation. Though it uses the efficient AutoDiff, the integration procedure
involves a trade-off between runtime and accuracy and is numerical in nature. Li et al. (2019) and
Lindell et al. (2021) proposed a dual network approach which we will discuss in detail in Section
3. The method guarantees a closed-form integral and is efficient. We adapted this dual network
approach to the point process settings.

3. Methodology

In this section, we first review the background of Neural Point Processes (NPP) and their limitations.
Then we introduce a new NPP model, which is more interpretable and flexible. We explain how to
use automatic integration with such an NPP for fast training and inference.

3.1. Point Processes and Limitations of NPPs.

Temporal Point Process. A temporal point process (TPP) is a counting process N (), representing
the number of events that occurs before time ¢. It is characterized by a scalar non-negative intensity
function *(t). Given the history events before time ¢ denoted by H; := {t1, ..., t,, }+, <¢, the intensity
function quantifies the event arrival rate at time ¢, and is formally defined as

E[N(t,t + At)|Hy]

) = g, S

The notation * is from Daley and Vere-Jones (2007) to indicate the intensity is conditional on the
past but not including the present. Hawkes process (Hawkes, 1971) is an example of TPP, defined as:

N(t) =p+a) exp(—B(t—t), 2)

When a new event occurs, it produces an increment in the intensity, and this influence decays
exponentially. 4 is the base intensity representing the rate of an event happening on its own. o and
are scalars.

Neural Point Processes. Neural Point Process (NPP) models combine DNNs with point processes
to increase their capacity. State-of-the-art NPPs first encode the events into hidden states. For
temporal NPP, if the inter-event function is as simple as a scalar kernel function (Du et al., 2016),
the integral is easy, but the model’s expressiveness is limited. In contrast, if the inter-event function
is high dimensional (Mei and Eisner, 2016; Zuo et al., 2020), the model gains stronger expressive

AUTO-NPP

power but requires numerical integration. For spatiotemporal NPP (Chen et al., 2020; Zhou et al.,
2022), a non-negative activation function maps the hidden states to a scalar, representing the temporal
intensity immediately after an event, and a conditional spatial distribution. The change of intensity
between events is represented using a decay function or a Neural-ODE. The conditional spatial
distribution is represented by a kernel mixture or a normalizing flow. Nevertheless, all models assume
a continuous transformation of the intensity function, limiting their expressivity.

Limitations of Existing NPPs. NPPs combine DNNs with

point processes to enhance their expressivity. However, they —— Intensity

are limited when learning sophisticated intensities. " eemed mensty
For example, RMTPP (Du et al., 2016) encodes the i-th

event history as a hidden vector h(¢;"). The influence of an

event over time is given by the interpolation function f, such

Intensity Integral

that the intensity is - N
/*(t)’tiétﬁtiﬂ =p+ g+(WTh(t?—) + f(t - tZ))
> Time
where 1 is the base intensity, w € R'** is a linear layer and
g is a positive activation function. Figure 2: Failure to recover the
Neural Hawkes process (Mei and Eisner, 2016) adds a true intensity despite the
prediction of the influence right before the 7 + 1-th event as the fact that estimated likeli-
hidden state h(t;), so that the intensity is hood matches the truth
. (the areas under the
)*(t)|ti§t§ti+1 =9 (f(h () (t;+1))) curves are the same).

The model assumes a scalar kernel function f to linear interpolate the two hidden state vectors.

These NPPs define a separate intensity function for each interval [t ¢ t;11]. Compared to Hawkes
process in Equation 2, the use of hidden states makes it difficult to interpret the influence of each
historical event. Additionally, their use of simple interpolated change of intensity in each interval
cannot handle the “cyclic influence” in Figure 2. The models may yield the correct likelihood, but
fail to recover the true intensity. Moreover, these models are not compatible with AutoInt. Although
Autolnt can approximate any function f and its antiderivative in closed forms, finding a closed-form
antiderivative for the function composition g™ o f is still intractable.

3.2. Influence-Driven Point Process

We propose a new NPP model that directly generalizes the Hawkes process in Equation 2. The model,
driven by a complex influence function, has the following conditional intensity:

=pt) fyt—tiH —M+Zf9), fo: R! = R, (3)

t; <t

where p is the scalar base intensity and f(j is a positive scalar function that takes time and event
history representations H(¢;) as inputs.

The model has two advantages. Firstly, each f(;r is approximated by a DNN, which allows for
the model to capture complex inter-event intensity changes, including the “cyclic influence” scenario.
Secondly, our model is more interpretable. The additive form of our model allows for interpreting
different past events’ influence on the current event by decomposing the intensity function.

AUTO-NPP

In simplified cases, we can directly use the difference in event times, ¢ — ¢; as input to f9+ We
consider some alternative methods for representing the event history 7 (t;) to compare with this
formulation. One option is to use RNNs or Transformers to encode the accumulative influence
of events as hidden vectors {h;}¥ ;. The hidden vectors could be then used to scale each event’s
influence, resulting in a conditional intensity function formulated as

—M+Zg¢ fe tft) fg:RIHRl, g¢:R1%R1, 4)

Here g4 is a separate neural network. Alternatively, time ¢ and h; can be concatenated and fed to the
neural network, such that the conditional intensity becomes

N =p+> ft—tieh), fo: R R! (5)

However, we show in the experiments later that the introduction of recurrent vector like Omi et al.
(2019) in Equations 4 and 5 is not beneficial; it increases the degree of freedom so much that it can
easily overfit on real-world datasets. The use of hidden states also makes the model less interpretable.

Average first derivative

3.3. Automatic Integration (Autolnt) forward time of 3 layer MLP
The NPPs proposed in Equation 3, 4 and 5 has a major advantage:
the ablhty to use automatic integration (Autolnt) and calculate the

integral j; fo(t,h) := Fy(b,h) — Fy(a, h) along time axis. Au- 5004

600p

toInt first constructs the integral network Fpy, and then reorganizes & 40,
. . [
the computational graph of Fy to form the integrant fy. The two S 200
]
networks thus share the same set of parameters 6. e
Specifically, let x := t & h, we approximate the integral of the 2004
intensity function as a DNN of the form: 100p
Fy (X) = Wn"'(W3U(W20(W1X)))7 0 "Autolnt PyTorch native
where W, : RMr s RNk denotes the weight of the k-th linear methods

layer, o the elementwise nonlinearity, M} and N the input and
output dimensions of the k-th layer, and § = {W; € RMx>*Nk vk} Figure 3: Comparing MLP

the set of parameters. forward time using
The influence network fy is the partial derivative of the integral our Integrant Net
network Fp. As long as the activation function is differentiable and naive PyTorch
everywhere, the intensity can be computed recursively:
OFy

fg(X) = W(X) = WkUI(kal(T(Wk,Q ‘e (Wlx))) +++ 0 WQO’I(Wlx) e} W11
where o indicates the Hadamard product, and Wy is the first column of Wy, i.e.,
W1 = [Wll W12 e Wl,fwl]

Computing fy(x) involves many repeated operations. For example, W1x is used for computing
both 0(W1x) and ¢/(W;x), see Figure 1. We implemented a program that leverages dynamic
programming to create a derivative model efficiently using automatic differentiation, see Algorithm
in A.3. We compared our implementation with PyTorch’s default AutoInt and confirmed a 50%
speedup on average for calculating a first derivative. With 3-layer Multi-Layer Perceptron (MLP),
the advantage is up to 80%, see Figure 3.

AUTO-NPP

3.4. Imposing the Non-negativity Constraint

To ensure the model in Equation 3 yields a valid intensity, we need to ensure that the function fj is

always non-negative. Constraining all linear weights to be non-negative as in Sill (1998) is too strict

since we only want the network to be monotonic for the time input and not others.
We design an Autolnt scheme tailored

for NPP as shown in Figure 4: we first pass

the hidden vector h and the time ¢ through @ o @ o W,

two linear layers with non-negative weights @@ P >@—> / A
W separately. Then, we concatenate the @ . @ o Wi
outputs to another non-negative weighted

network. The resulting integral monoton-
ically increases with respect to time, as
the time input ¢ does not pass through any
layer with negative weights. The two un-
constrained layers with weights W ensure
that the expressivity of other input dimen-
sions is not affected.

Through experimentation, we found that projected gradient descent (Chorowski and Zurada,
2014) (i.e., clamping the weights after each optimizer step) converges better to the ground truth
than the exponential transformation method. To ensure monotonicity, we use a monotonic activation
function. Previous Autolnt (Lindell et al., 2021) works used the sine activation, which is non-
monotonic. We found that both tanh and sine activation yield similar performance, as also indicated
by Parascandolo et al. (2016)

Figure 4: Monotonically increasing integral network. ¢
is the time of the event and h is the encoded
hidden vector. “W ™ indicates the neural
network layer has non-negative weights.

3.5. Model Training

Given the monotonic integral network Fy(t, h) and the integrant network fy = 88% approximating
the influence function, the log-likelihood of an event sequence H,, = {t1, ..., t, } observed in time
interval [0, T'] with respect to the model is

n

n i—1
L(Hn) =) log | Y folti —tj,hy) | = > <F9(T —ti,hy,) — Fg(o,hi))
i=1 j=1

i=1

where {h;} are the hidden states generated by a deep sequence model, but can be omitted with
Equation 3. This is an application of the Fundamental Theorem of Calculus (Sobczyk and Sénchez,
2011). To learn the parameters 6 in both networks, we maximize the log-likelihood function. We
name our method Automatic Integration Neural Point Processes (Aut o—NPP).

4. Experiments

We compare different NPPs using both synthetic and real-world data. Our goal for synthetic data is
to validate the ability of Aut o—NPP to accurately recover complex intensity functions. We report
the predictive performance and computational cost to showcase the advantages of Autolnt.

AUTO-NPP

4.1. Experimental Setup

Synthetic Datasets.

We simulated three challenging synthetic point process datasets using Ogata’s

thinning algorithm (Chen, 2016). Each dataset contains 8192 sequences over a time range of [0, 50),
with a train-val-test splitof 2 : 1 : 1.

Shaky Hawkes process: This dataset multiplies the influence function of the Hawkes process
(see Equation 2) by a cyclic function, resulting in a multimodal intensity for long inter-event
intervals. The conditional intensity function was defined as: *(t) = u + « Zfil cos((t —t;) +
1) exp(—pB(t — t;)). The values used for our experiments were aw = § = p = 0.2.

Delayed Peak process: This dataset features a unimodal but non-smooth influence function. Starting
from 0, each event’s influence initially increases and then decreases, following a bell-shaped curve.
The conditional intensity function was defined as: *(t) = u + « Zf\i 1 ReLU(—(B(t — t;) —
1)2 + 1). The values used for our experiments were o = 0.2, 3 = 0.5, u = 0.3.

Shift Hawkes process: This dataset describes the scenario in which a post becomes viral several
hours after it is first visible, resulting in a jump in the intensity between events. The conditional
intensity was characterized as: A*(t) = u + « Zf\il 1(t —t; > v)exp(—pB(t —t; —)). The

values used for our experiments were o = § = p = 0.2, and the threshold v = 2.0.

Real-world Datasets. We use two real-world
benchmark datasets, Earthquake Japan and

COVID-19 NJ from Chen et al. (2020). Earth-

quake Japan includes the times and locations
of all earthquakes in Japan from 1990 to 2020
with magnitudes of at least 2.5. The dataset
contains 1500 sequences over a time range of

seconds

Model training time using one Tesla P100

M ours
2000 W NPP baselines
Numerical baselines
1500

1000

[0,30). The train-validation-test data split is

4 : 1 : 1. COVID-19 NJ is published by 4% 4% Q% oy, Ty % G %y, %%, ,7(
The New York Times to describe the times and . W o, ’j:/ " g, “% (f;c@f,o
county locations of COVID cases in New Jersey " 6r,, /7"%? K

state. The dataset contains 1650 sequences over
a time range of [0, 7). The train-validation-test
data splitis 4 : 1 : 1. To normalize them, we
scale the Earthquake dataset’s times by 2 and
the COVID dataset’s times by 20.

Evaluation Metrics. As shown in Figure 2,
an NPP model may yield a likelihood similar to
the ground truth but still fail to learn the correct

methods

Figure 5: Training speed comparison for differ-

ent NPPs and numerical integration
methods in seconds. The proposed
Auto-NPP is fast. RMTPP is the
fastest but suffers from poor prediction
performance.

intensity. Therefore, in addition to test log-likelihood (LL), we also report the Mean Absolute
Percentage Error (MAPE) of the estimated conditional intensity.

Baselines. We use two groups of baselines:

* Numerical Integration methods: learning the NPP model in equation 3 but with different integration
techniques: Taylor integration (Liu (2020), see Appendix), the Clenshaw—Curtis quadrature, the

Monte Carlo integration, and Autolnt.

AUTO-NPP

1.4 = Alt) 1.4 { = Ground Truth, A(t)
12 === CT-GRU === Monte Carlo Integration
B Neural Hawkes 1.24 Clenshaw-Curtis quadrature
1.0{ ——- Transformer Hawkes 10477 Taylor expansion Integration
=== RMTPP : —— Auto-NPP (ours)
0.8 —— Auto-NPP (ours) 084 x Events
x Events 06
0.44
0.2
0.0 ¢ X X x X XXX X M X MKX B XK X
15 20 25 30 35 40 45 50 15 20 25 30 35 40 45 50
(@) (b)
1.2
—_ Alt) —— Ground Truth, A(t)
124 —-- CT-GRU 1.0{ === Monte Carlo Integration
104 Neural Hawkes Clenshaw-Curtis quadrature
: === Transformer Hawkes 084~ Taylor expansion Integration
0.84 = RMTPP —— Auto-NPP (ours)
= Auto-NPP (ours) 0.6 X* Events
0.6 X Events
Y 0.4
0.4 Ry
0.2 0.2
0.0 XXX XX X MUXX X X MKX AKX X X 0.0 1 XXX XX X MAXX X X MKX MK X X
0 10 20 30 40 50 0 10 20 30 40 50
(c) (d)
1.6 16
—_ Alt) — Ground Truth, A(t)
141 --- CT-GRU ™ 141 --- Monte Carlo Integration
1.24 Neural Hawkes 1.24 Clenshaw-Curtis quadrature
=== Transformer Hawkes === Taylor expansion Integration
1.0 —-- RMTPP 1.0 —— Auto-NPP (ours)
0.8 = Auto-NPP (ours) 08] x Events
X
0.6 4 0.6 4
0.4+ 0.4
0.2 £= 0.21
0.0 1 X X XX X X x R IKXX X X ;X 0.0 1 X X XX x X %X R IKXX X X ;X
0 10 20 30 40 50 0 10 20 30 40 50
(e))

Figure 6: Visualizations of the true conditional intensity A*(¢) and the learned conditional intensity on the
Shift Hawkes (a, b), Delayed Peak (c, d), Shaky Hawkes (e, f) datasets. (a, c, e): comparison of
intensities learned with different models. (b, d, f): comparison of intensities learned with different
integration methods.

Neural Point Processes: state-of-the-art NPP models (first section), including RMTPP (Du et al.,
2016), Neural-Hawkes (Mei and Eisner, 2016) and Transformer Hawkes (Zuo et al., 2020).
Additionally, Mozer et al. (2017) proposed a continuous-time GRU that interpolates hidden states
between events. It has a similar idea to Neural-Hawkes’s continuous-time LSTM. We include a
CT-GRU variant of Neural-Hawkes to increase the diversity of our baselines.

4.2. Experimental Results

Table 1 compares the prediction Mean Absolute Percentage Error (MAPE) and test log-likelihood
(LL) between Aut o—NPP and the baseline models on the synthetic datasets. Auto—NPP has a
significant advantage on the synthetic dataset with complex intensity. Figure 6 further compares
the ground truth intensity and the learned intensities. While using numerical integration like Monte
Carlo may occasionally yield a higher likelihood estimate, AutoInt most effectively recovers the
ground truth intensity as shown by the MAPE. Moreover, we can see that our method is the only
one that can capture the multimodal intensity function, as shown in Figure 6(e,). The bias makes
numerical methods more likely to learn flatter intensity.

AUTO-NPP

Model shakyHawkes shiftHawkes decayPeak
MAPE LL MAPE LL MAPE LL
CT-GRU (Mozer et al., 2017) 0.2243 -35.6063 0.1262 -39.7173 0.1103 -42.1959
Neural Hawkes (Mei and Eisner, 2016) 0.2168 -35.4043 0.1473 -40.0411 0.1468 -42.5548
RMTPP (Du et al., 2016) 0.2562 -35.6549 0.2630 -39.7893 0.2183 -42.7965

Transformer Hawkes (Zuo et al., 2020) 0.2812 -36.1831 0.2316 -40.6717 0.2342 -43.3308
Fully Hawkes (Omi et al., 2019) 0.6435 -64.7072 0.4522 -58.4046 0.4100 -65.0632

Clenshaw-Curtis 0.2197 -35.5183 0.0541 -39.4831 0.0312 -41.9839
Monte Carlo 0.1935 -35.6090 0.0462 -39.3527 0.0378 -41.9868

Taylor Expansion (Liu, 2020) 0.2004 -353771 0.0999 -39.7062 0.0224 -41.9691
Auto-NPP 0.1843 -35.3762 0.0356 -39.3599 0.0226 -41.9678
Auto-NPP (w/ RNN) 0.3353 -37.9182 0.4675 -44.0076 0.1107 -42.3124

Table 1: Comparison between our proposed model Aut o—NPP (with or without RNN), the state-of-
the-art NPP models (upper section), and the same model using different integration methods
(lower section) on three synthetic datasets. Performance w.r.t. Mean Absolute Percentange
Error (MAPE) of the estimated intensity A*(¢) and Test log likelihood (LL).

Table 2 compares the test log-likelihood (LL) on the real-world datasets. Our method outperforms
most other state-of-the-art methods for forecasting COVID events and earthquakes. These results
demonstrate the model’s capability to learn complex real-world dynamics. Conversely, the poor
performance of the RNN variant of Aut o—~NPP and Fully RNN reveal that combining an RNN with
an unconstrained influence function can overfit.

Finally, Figure 5 compares the training time of different methods. Auto-NPP is faster than most
state-of-the-art NPP models, and Autolnt is not only more accurate but also faster than all other
integration methods.

5. Conclusion

Model earthquakesJP covidNJ
We propose Automatic Integration for Neural L L
point process models (Aut o—NPP) using a dual CTORU P PP
network approach. P.xut'o ~NPE can efﬁ01er.1tl.y Neural Hawkes -36:3709 —25:4887
compute the exact likelihood of any sophisti- RMTPP -39.0440 226118
cated intensity. We validate our approach using Transformer Hawkes -41.3816 23.2670
both synthetic point processes with complex in- Fully Hawkes -55.2647 -65.0208
tensity functions and real-world datasets. Ex- Clenshaw-Curtis -38.7512 21.9713
periment results demonstrate that Aut o-NPP Monte Carlo -38.7560 -22.0792
can accurately recover the underlying intensity Taylor Expansion -38.5432 -22.0331
function while being efficient. Auto-NPP -38.4888 -21.8996

Our work presents a new paradigm for learn- Auto-NPP (w/RNN) -39.1172 ~23.8340

ing discrete event data with continuous-time dy-
namics. Presently, our neural process model
solely takes the form of Hawkes processes that
exhibit self-exciting behavior. However, it can-
not handle self-correcting processes owing to
the complexity of integration. In future work,
we aim to relax the form of the intensity network leveraging advanced integration techniques.

Table 2: Comparison between the models and the
integration methods on two real world
datasets, earthquakesJP and covidNJ.
Performance w.r.t. only LL since there is
no ground truth intensity.

10

AUTO-NPP

Acknowledgments

This work was supported in part by U.S. Department Of Energy, Office of Science, Facebook Data
Science Research Awards, U. S. Army Research Office under Grant W911NF-20-1-0334, and NSF
Grants #2134274 and #2146343.

References

Ryan Prescott Adams, lain Murray, and David JC MacKay. Tractable nonparametric bayesian
inference in poisson processes with gaussian process intensities. In Proceedings of the 26th Annual
International Conference on Machine Learning, pages 9-16, 2009.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differ-
ential equations. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pages 6572—6583, 2018.

Ricky TQ Chen, Brandon Amos, and Maximilian Nickel. Neural spatio-temporal point processes.
arXiv preprint arXiv:2011.04583, 2020.

Yuanda Chen. Thinning algorithms for simulating point processes. Florida State University,
Tallahassee, FL, 2016.

Jan Chorowski and Jacek M Zurada. Learning understandable neural networks with nonnegative
weight constraints. /IEEE transactions on neural networks and learning systems, 26(1):62-69,
2014.

John P Cunningham, Krishna V Shenoy, and Maneesh Sahani. Fast gaussian process methods for
point process intensity estimation. In Proceedings of the 25th international conference on Machine
learning, pages 192199, 2008.

Daryl J Daley and David Vere-Jones. An introduction to the theory of point processes: volume II:
general theory and structure. Springer Science & Business Media, 2007.

Philip J Davis and Philip Rabinowitz. Methods of numerical integration. Courier Corporation, 2007.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
Recurrent marked temporal point processes: Embedding event history to vector. In Proceedings of
the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pages
1555-1564, 2016.

William Dunham. The calculus gallery. Princeton University Press, 2018.

Ruocheng Guo, Jundong Li, and Huan Liu. Initiator: Noise-contrastive estimation for marked
temporal point process. In IJCAI, pages 2191-2197, 2018.

Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika,
58(1):83-90, 1971.

Hengguan Huang, Hao Wang, and Brian Mak. Recurrent poisson process unit for speech recognition.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 6538-6545,
2019.

11

AUTO-NPP

Athanasios Kottas and Bruno Sansé. Bayesian mixture modeling for spatial poisson process intensi-
ties, with applications to extreme value analysis. Journal of Statistical Planning and Inference,
137(10):3151-3163, 2007.

Haibin Li, Yangtian Li, and Shangjie Li. Dual neural network method for solving multiple definite
integrals. Neural computation, 31(1):208-232, 2019.

Shuang Li, Shuai Xiao, Shixiang Zhu, Nan Du, Yao Xie, and Le Song. Learning temporal point
processes via reinforcement learning. arXiv preprint arXiv:1811.05016, 2018.

David B Lindell, Julien NP Martel, and Gordon Wetzstein. Autoint: Automatic integration for fast
neural volume rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 14556-14565, 2021.

Keqin Liu. Automatic integration. arXiv e-prints, pages arXiv—2006, 2020.

Hongyuan Mei and Jason Eisner. The neural hawkes process: A neurally self-modulating multivariate
point process. arXiv preprint arXiv:1612.09328, 2016.

Jesper Mgller, Anne Randi Syversveen, and Rasmus Plenge Waagepetersen. Log gaussian cox
processes. Scandinavian journal of statistics, 25(3):451-482, 1998.

Michael C Mozer, Denis Kazakov, and Robert V Lindsey. Discrete event, continuous time rnns.
arXiv preprint arXiv:1710.04110, 2017.

Takahiro Omi, Naonori Ueda, and Kazuyuki Aihara. Fully neural network based model for general
temporal point processes. arXiv preprint arXiv:1905.09690, 2019.

Giambattista Parascandolo, Heikki Huttunen, and Tuomas Virtanen. Taming the waves: sine as
activation function in deep neural networks. 2016.

Stephen L Rathbun and Noel Cressie. Asymptotic properties of estimators for the parameters of
spatial inhomogeneous poisson point processes. Advances in Applied Probability, 26(1):122—154,
1994.

Robert H Risch. The problem of integration in finite terms. Transactions of the American Mathemat-
ical Society, 139:167-189, 1969.

Robert H Risch. The solution of the problem of integration in finite terms. Bulletin of the American
Mathematical Society, 76(3):605-608, 1970.

Jin Shang and Mingxuan Sun. Geometric hawkes processes with graph convolutional recurrent
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 4878-4885, 2019.

Oleksandr Shchur, Ali Caner Tiirkmen, Tim Januschowski, and Stephan Giinnemann. Neural
temporal point processes: A review. arXiv preprint arXiv:2104.03528, 2021.

Joseph Sill. Monotonic networks. 1998.

12

AUTO-NPP

Garret Sobczyk and Omar Leén Sanchez. Fundamental theorem of calculus. Advances in Applied
Clifford Algebras, 21:221-231, 2011.

Utkarsh Upadhyay, Abir De, and Manuel Gomez-Rodriguez. Deep reinforcement learning of marked
temporal point processes. arXiv preprint arXiv:1805.09360, 2018.

Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, and Hongyuan Zha. Wasserstein
learning of deep generative point process models. arXiv preprint arXiv:1705.08051, 2017.

Junchi Yan, Xin Liu, Liangliang Shi, Changsheng Li, and Hongyuan Zha. Improving maximum
likelihood estimation of temporal point process via discriminative and adversarial learning. In
1JCAI, pages 2948-2954, 2018.

Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive hawkes process. In
International Conference on Machine Learning, pages 11183-11193. PMLR, 2020.

Zihao Zhou, Xingyi Yang, Ryan Rossi, Handong Zhao, and Rose Yu. Neural point process for
learning spatiotemporal event dynamics. In Learning for Dynamics and Control Conference, pages
777-789. PMLR, 2022.

Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer hawkes
process. In International Conference on Machine Learning, pages 11692-11702. PMLR, 2020.

13

	Introduction
	Related Work
	Methodology
	Point Processes and Limitations of NPPs.
	Influence-Driven Point Process
	Automatic Integration (AutoInt)
	Imposing the Non-negativity Constraint
	Model Training

	Experiments
	Experimental Setup
	Experimental Results

	Conclusion

