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Extremal sections and projections of certain
convex bodies: a survey
Abstract:We survey results concerning sharp estimates on volumes of sections and pro-
jections of certain convex bodies, mainly �p-balls, by and onto lower-dimensional sub-
spaces. This subject emerged from geometry of numbers several decades ago and since
then has seen the development of a variety of probabilistic and analytic methods, show-
cased in this chapter.
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1 Introduction
1.1 Prologue
How small can the volume of a slice of the unit cube be? This question, asked by Good
in the 1970s in the context of its applications in geometry of numbers, has turned out
to be rather influential, prompting the development of several important methods, as
well as spurring the community to solve further problems and enter research directions
of independent interest in convex geometry, with strong ties to probability. Those most
notably include the dual question of extremal volume projections, which in the sim-
plest non-trivial case of hyperplane projections naturally translates into probabilistic
Khinchin-type inequalities. Intriguingly, questions on extremal volume sections can be
similarly translated into the same probabilistic language.

The purpose of this survey is thus twofold: In addition to striving to give a system-
atic account of the known results, our second goal is to illustrate intertwined Fourier
analytic, geometric, and probabilistic methods underpinning the old and recent ap-
proaches.
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1.2 The motivating example
We begin with recalling Good’s question (following [14, 132]). Suppose we are given n
linear forms Li(x) = �kj=1 aijxj , i = 1, . . . , n, in k variables. When does the system |Li(x)| �
1, i � n, admit a non-trivial integral solution? The cornerstone result in geometry of
numbers, Minkowski’s (first) theorem, provides a link to volume: If K is a symmetric
convex body in �d of volume at least 2d , then it contains a non-trivial lattice point (see,
e. g., [98, Chapter 2]). Let A = [aij]i≤n,j≤k be the n ◊ k matrix whose i-th row determines
Li. Thus, immediately, if k � n and det(A) � 1 when k = n, then the answer to Good’s
question is affirmative because the set

K = �x � �k , ����Li(x)���� � 1, i � n� = �x � �k , Ax � [�1, 1]n�
is the preimage of the cube [�1, 1]n under the linear map A:�k � �n (unbounded if A is
singular andof volume exactly 2k det(A)−1 otherwisewhen k = n). The case k < n ismore
interesting. Suppose A is of full rank k. Then the image of K under A is the section of the
cube [�1, 1]n by the k-dimensional linear subspace A(�k). How small can its volume be?
Good’s conjecture confirmed later by Vaaler in [132] says that it is at least 2k (the volume
of the k-dimensional subcube [�1, 1]k ◊ {0}n−k ). Thus, if det(A�A) � 1, we obtain

vol(K) � �det�A�A� vol(K) = vol�A(K)� � 2k ,
also asserting in view of Minkowski’s theorem that the initial system of inequalities
admits a non-trivial integral solution, provided the convenient sufficient condition
det(A�A) � 1. From a geometric point of view, it now seems natural and interesting to
ask further questions about the maximal volume sections for the cube, as well as other
sets.

1.3 Preliminaries and overview
We endow �n with the standard inner product �x, y� = �nj=1 xjyj between two vectors
x = (x1, . . . , xn) and y = (y1, . . . , yn) in �n and denote by |x| = ��x, x� the induced
standard Euclidean norm. Its closed centered unit ball is denoted Bn2 , and for the unit
sphere we write Sn−1 = �Bn2 . Moreover, we write e1, . . . , en for the standard basis vec-
tors, e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), etc. As usual, for a set A in �n, A⊥ = {x ��n, �x, a� = 0 �a � A} is its orthogonal complement, with the convention that for a
vector u in �n, u⊥ = {u}⊥ is the hyperplane perpendicular to u. Dilates are denoted by
λA = {λa, a � A} for a scalar λ. In particular, if �A = A, the set A is called (origin-)sym-
metric. The Minkowski or algebraic sum of two sets is A + B = {a + b, a � A, b � B}. The
orthogonal projection onto an affine or linear subspace H in �n is denoted by ProjH .
Volume, i. e., the k-dimensional Lebesgue measure in �n, is denoted by volk(�), identi-
fied with k-dimensional Hausdorff measure (normalized so that cubes with side length
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1 have volume 1). Recall that a body in�n is a compact set with non-empty interior. For a
symmetric convex body K in �n, its Minkowski functional is �x�K = sup{t � 0, x � tK},
x � �n, the norm whose unit ball is K . A function f :�n � �+ is called log-concave if it
is of the form e−V for a convex function V :�n � (��,+�]. We refer for instance to the
monographs [4, 31].

To put it fairly generally, given a body B in �n and 1 � k � n, the two questions of
our main interest will be:

(I) What are the minimal and
maximal volume sections
volk(B � H) among all

k-dimensional subspaces H in �n?
(II) What are the minimal and
maximal volume projections
volk(ProjH (B)) among all

k-dimensional subspaces H in �n?
We note the obvious fact that in contrast to Question (I), Question (II) does not

change if we translate the body B.
It is worth recalling two classical convexity-type results allowing to compare such

volumes in the codimension 1 case, k = n�1 (despite not yielding direct answers to these
questions).

Theorem 1 (Busemann [33]). Let K be a symmetric convex body in �n. Then the function
x �� |x|

voln−1(K � x⊥) , x �= 0,
extended by 0 at x = 0 defines a norm on �n.

The surface areameasure σK of a convex bodyK in�n is a Borelmeasure on the unit
sphere Sn−1 defined as follows: For E � Sn−1, σK (E) equals the volume of the part of the
boundary �K where normal vectors belong to E (in other words, σK is the pushforward
of the (n � 1)-dimensional Hausdorff measure on �K via the Gauss map νK : �K � Sn−1).
Theorem 2 (Cauchy–Minkowski). Let K be a convex body in�n. Then for every unit vector
θ � Sn−1, we have

voln−1�Projθ⊥ (K)� = 12 �
Sn−1
�����θ, ξ�����dσK (ξ).

In particular, the function x �� |x| voln−1(Projx⊥ (K)), x �= 0, extended by 0 at x = 0, defines
a norm on �n.

Let us explain this formula in the case of polytopes. Suppose we are given a con-
vex polytope P in �n and we want to project it onto a hyperplane θ⊥, where θ is a unit
vector. Let FP be the set of faces of P. If F � FP , then voln−1(Projθ⊥ (F)) = voln−1(F) �|�θ, n(F)�|, where n(F) is the unit outer-normal vector to F . Note that in Projθ⊥ (P) ev-
ery point is covered two times, so one gets the following expression for the volume of
projection:
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voln−1(Projθ⊥ P) = 12 �F∈FP

voln−1(F) � �����θ, n(F)�����.
The Cauchy–Minkowski formula is a straightforward generalization of this formula to
general convex bodies. For further background and proofs, we refer for instance to [56,
Theorem 8.1.10 and (A.49)].

For p > 0 and a vector x = (x1, . . . , xn) in�n, we define the �p-norm of x (quasinorm
when 0 < p < 1) and its (closed) unit ball by

�x�p = � n�
j=1 |xj|p�1/p, �x�∞ = maxj≤n |xj|, Bnp = �x � �n, �x�p � 1�.

The cube Bn∞ = [�1, 1]n often warrants the more convenient volume 1 normalization
Qn = 12Bn∞ = �� 12 , 12�n.

The known results about extremal volume hyperplane sections and projections of�p-balls are summarized in Tables 1 and 2 (that is, the known answers to Questions (I)
and (II) when B = Bnp and k = n � 1). We shall discuss them and many more in detail in
the next sections.

Table 1: Extremal volume hyperplane sections of �p-balls: min /maxa∈Sn−1 voln−1(Bnp � a⊥).
� < p < � � < p < ∞ p = ∞

min a = ( ��n , . . . , ��n ) [74] a = (�, �, . . . , �) [102] a = (�, �, . . . , �) [61, 62]
max a = (�, �, . . . , �) [102] ? a = ( ��� , ��� , �, . . . , �) [7]
Table 2: Extremal volume hyperplane projections of �p-balls: min /maxa∈Sn−1 voln−1(Proja⊥ (Bnp)).

p = � � < p < � � < p ≤ ∞
min a = ( ��� , ��� , �, . . . , �) [13, 130] ? a = (�, �, . . . , �) [24]
max a = (�, �, . . . , �) [folklore] a = (�, �, , . . . , �) [24] a = ( ��n , . . . , ��n ) [24]
1.4 Existing literature and our aim
There is of course a vast body of literature on the subject. Ball’s survey [14] presents
stochastic comparison methods and applications of the celebrated Brascamp–Lieb in-
equalities to derive sharp bounds on sections. Koldobsky, Ryabogin, and Zvavich’s sur-
vey [78] and Koldobsky’s monograph [75] bring a common Fourier analytic treatment to
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bounds on both sections and projections. The aim of this chapter is to update on these
and gather in one place what we know to date, as well as highlight what we would like
to know around Questions (I) and (II), presenting 11 conjectures. We also showcase a
unifying probabilistic point of view (via Khinchin-type inequalities) which goes hand
in hand with the Fourier analytic methods, allowing to obtain additional insights and
sharper results.

2 Sections
The goal here is to give a comprehensive account of known results concerning Ques-
tion (I), with some indication of methods to which we come back in Section 4. We begin
with some general remarks. A convex body K in�n is called isotropic if it has volume 1,
its barycenter is at the origin, and its covariance matrix is proportional to the identity
matrix, that is,

voln(K) = 1, �
K
xdx = 0, �

K
xixjdx = L2Kδij .

The positive proportionality constant LK is called the isotropic constant of K . Every con-
vex body admits an affine image which is isotropic (diagonalizing the covariance ma-
trix). It turns out that for symmetric isotropic convex bodies, volumes of all sections of
a fixed dimension are comparable.

Theorem 3 (Hensley [63]). Fix 1 � l � n. There are positive constants cl , c�l which depend
only on l such that for every symmetric convex body K in�n which is isotropic and every
l-codimensional subspace H in �n, we have

cl
LK
� voln−l(K � H)1/l � c�l

LK
.

To illustrate the key insight of Hensley’s argument, let us consider the hyperplane
case: We take H = a⊥ for a unit vector a and let

f (t) = voln−1�K � (H + ta)�, t � �. (2.1)

By the Brunn–Minkowski inequality, this defines a log-concave function. By the assump-
tions on K , it is even and integrates to 1. We claim that f (t) is the probability density
function of the random variable �a,X�, where X is uniform on K . Indeed,

�� n�
i=1 aiXi � s� = ���a,X� � s� = voln−1��x � K : �a, x� � s�� = s�−∞ f (t)dt,
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by Fubini’s theorem. Crucially,

voln−1�K � a⊥� = f (0). (2.2)

Since by isotropicity �|�a,X�|2 = L2K , we have �� t2f (t)dt = L2K . It then remains to ex-
tremize the value of f (0) among all such densities. Using a “moving mass to where it is
beneficial” type of argument (see the proof of Theorem 4 below), a sharp lower bound
is obtained by considering a uniform density (in higher dimensions, i. e., l > 1, isotrop-
icity naturally dictates a uniform density on a Euclidean ball), whilst for a sharp upper
bound, using convexity, the comparison is made against a symmetric exponential den-
sity (in higher dimensions, the argument is more complicated and not sharp anymore –
see [63, Lemma 3]).

Bourgain in [29] used the property of hyperplane sections having comparable vol-
ume to obtain bounds on maximal functions. He asked whether the isotropic constants
LK over all K in all dimensions are uniformly bounded by a universal constant and,
equivalently, whether every (symmetric) convex body of volume 1 admits a hyperplane
section of volume at least a universal constant. This has become one of the central ques-
tions in asymptotic convex geometry, the hyperplane or slicing conjecture; see, e. g., [31]
for a comprehensivemonograph, [73] for a recent survey, and [67, 72] for the best results
to date.

By Theorem 3, for two arbitrary subspaces H1,H2 of codimension k, we have�volk(K � H1)
volk(K � H2)�1/k � Ck

with Ck = c�k
ck . Hensley’s proof gives an upper bound on Ck of order k!, which was im-

proved to �k by Ball in [8], who conjectured an optimal bound to be in fact of constant
order, which remains open and turns out to be equivalent to the slicing conjecture. Im-
plicit in his work and elucidated by V. Milman and Pajor in their seminal work [104] is
the following reason for that equivalence: For a symmetric isotropic convex body K in�n and a k-codimensional subspaceH in�n, there is a symmetric k-dimensional convex
body C in H⊥ such that

c1
LC
LK
� voln−k(K � H)1/k � c2 LCLK ,

where c1, c2 > 0 are universal constants. The body C emerges from a generalization of
Busemann’s Theorem 1 to higher codimensions (see [8, 104]). SinceLK � LBn2 , if the slicing
conjecture is true, then LC � c3 for a universal constant c3 > 0; thus, it in particular
implies the existence of a universal constant M > 0 such that for all k-codimensional
subspaces H , we have

voln−k(K � H) � Mk . (2.3)
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2.1 Cubes
Recall that Qn = [� 12 , 12 ]n. As highlighted in the introduction, in the context of extremal
volume sections, it has always been the cube sparking most interest and attention. The
first sharp result concerned minimum volume hyperplane sections and was obtained
independently by Hadwiger in [61] and by Hensley in [62].

Theorem 4 (Hadwiger [61], Hensley [62]). For every unit vector a in �n, we have
voln−1�Qn � a⊥� � 1.

Equality holds if and only if a = ±ej for some 1 � j � n.
Proof. Let K = Qn and let us consider the function f from (2.1). Since Qn is isotropic,
the value of � t2f (t)dt = �Qn

�x, a�2dx = 1
12 does not depend on a (easily found by taking

a = e1). Moreover, �f �∞ = f (0), for f is even and log-concave. It is therefore enough to
show that for every probability density f , we have�f �2∞ � t2f (t)dt � 1

12 .
This goes back toMoriguti’s work [106] (rederived by Ball in [7] in a slightlymore general
case of p-norms). For the proof, we can assume that f is even, as otherwise we consider
g(t) = 1

2 (f (t) + f (�t)) and �g�∞ � �f �∞, whereas the second moments of f and g are
the same. Then we move mass towards the origin, as this is beneficial: formally, take
f0 = �f �∞1[−c,c], where c = (2�f �∞)−1. Clearly, �f0�∞ = �f �∞. We have� t2�f (t) � f0(t)�dt = ��t2 � c2��f (t) � f0(t)�dt � 0,
as the integrant is non-negative.

In words, the canonical coordinate subspaces uniquely minimize the volume of hy-
perplane sections of the cube. Soon after, this was extended to sections of arbitrary di-
mension by Vaaler [132], confirming Good’s conjecture.

Theorem 5 (Vaaler [132]). Fix 1 � k � n. For every k-dimensional subspace H in �n, we
have

volk(Qn � H) � 1.
Equality holds if and only if H is spanned by some k standard basis vectors.

Thus, every section of the cube has large volume. It is also “fat in all directions,” in
terms of quadratic forms; see Ball and Prodromou’s work [16]. Vaaler used log-concavity
and the notion of peakedness (introduced by Kanter in [69]) to make such comparison,
generalizing Hensley’s argument. Recently, Akopyan, Hubard, and Karasev [1] gave a
different proof based on topological methods.
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Thus, Vaaler’s theorem gives a complete answer to Question (I) for minimal volume
sections of the cube. Turning to the maximal ones, the first general upper bound for
hyperplane sections was given by Hensley in [62], viz. voln−1(Qn � a⊥) � 5 for every unit
vector a in �n, who also conjectured that the sharp bound would be with 5 replaced
by �2 attained at a = ( 1�2 , 1�2 , 0, . . . , 0). This was later confirmed by Ball in his seminal
work [7].

Theorem 6 (Ball [7]). For every unit vector a in �n, we have
voln−1�Qn � a⊥� � �2.

Equality holds if and only if a = (±ei ± ej)/�2 for some 1 � i < j � n.
Sketch of the proof. The starting point of Ball’s approach was Fourier analytic: If we fix
a unit vector a and let f be the probability density of �a,X�, where X is a random vector
uniform on Qn (thus having i. i. d. components Xj which are uniform on [� 12 , 12 ]), then
by (2.2) and the standard Fourier inversion formula,

voln−1�Qn � a⊥� = f (0) = 1
2π

∞�−∞ �f (t)dt = 1
2π

∞�−∞ n�
j=1 sin( 12ajt)1

2ajt
dt = 1π ∞�−∞ n�

j=1 sin(ajt)ajt
dt.

(This formula can perhaps be traced back to Pólya’s work [119], and was also used by
Hensley.) The next crucial idea is to apply Hölder’s inequality with the weights pj = a−2j
to get the bound∞�−∞ n�

j=1 sin(ajt)ajt
dt � n�

j=1� ∞�−∞ �������� sin(ajt)ajt
��������a−2j dt�a2j = n�

j=1 Ψ�a−2j �a2j (2.4)

with Ψ(p) = �p�∞−∞ | sin tt |pdt, p � 1 (a similar trick was also used in Haagerup’s seminal
work [60] on sharp constants in Khinchin inequalities). Themost technically challenging
and rather intricate is the problem of maximization of Ψ. The so-called Ball integral
inequality which he established to finish his proof asserts that

1
π

∞�−∞ �������� sin tt ��������pdt � � 2p , p � 2, (2.5)

with equality if and only if p = 2. This completes the proof in the case where all|aj| � 1�2 . The complimentary case is dispensed with by a geometric argument justifying
that voln−1(Qn � a⊥) � 1|aj | for each j. Indeed, projecting the section onto e⊥j changes its
volume by the factor |�a, ej�| and it is contained in the projection of the entire cube,
voln−1�Qn � a⊥� = 1|�a, ej�| voln−1�Proje⊥j �Qn � a⊥�� � 1|�a, ej�| voln−1�Proje⊥j (Qn)� = 1|aj| .
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Wemention in passing that this integral inequality has been quite influential, with a
very powerful method developed by Nazarov and Podkorytov in [109] to give a “simple”
proof, as well as many extensions, generalizations, discrete versions, or even stability
properties (see [5, 47, 70, 95, 100, 101]).

Quite remarkably and unexpectedly, the�2 bound allows to produce a very simple
counterexample to the famous Busemann–Petty problem posed in [34]: If for two sym-
metric convex bodies K and L in �n, we have voln−1(K � a⊥) � voln−1(L � a⊥) for every
vector a, does it follow that voln(K) � voln(L)? Indeed, Ball observed in [9] that since the
volume of the hyperplane sections of the unit volume Euclidean ball in high dimensions
is roughly �e and �2 < �e, it suffices to take K = Qn, and for L, it suffices to take a ball
of a slightly smaller radius. This argument in fact works in all dimensions n � 10. Later,
in [58], Giannopoulos used similar ideas involving cylinders to produce such elegant
and simple counterexamples in dimensions n � 7. The answer to the Busemann–Petty
problem is negative for n � 5 and positive for n � 4. This is the result of significant work
involving deep Fourier-analytic insights, see [57]. We refer for instance to Koldobsky’s
comprehensive monograph [75] for a full account.

The situation for upper bounds on volumeof sections ofmore than one codimension
is not fully understood. Ball obtained two general bounds.

Theorem 7 (Ball [10]). Fix 1 � k � n. For every k-dimensional subspace H in �n, we have
voln−1(Qn � H) � min��nk k ,�2n−k�.

The first bound � nk k is optimal when k divides n. Rogalski’s question asks for the

symmetric convex body of largest volume ratio (see [10]). It turns out that the bound� nk k
is equivalent to the fact that the cube is such a maximizer. The second bound �2n−k is
better than the first one for k � n

2 and turns out to be sharp in this case. Both bounds rely
heavily on Ball’s ingenious geometric version of the Brascamp–Lieb inequality (from
[30]), which provides a multi-dimensional analog of Hölder’s inequality. The first bound
uses it in a direct way (applied to indicator functions of intervals), whereas the second
bound applies it to the Fourier analytic formula. As already mentioned, the exponential
bound�2n−k in codimension n � k is largely motivated by the slicing problem; see (2.3),
providing an explicit constant for the cube.

These bounds, although sharp for many values of k and n, leave many other cases
open. A sort of folklore conjecture (see, e. g., [65, 115]) states that for arbitrary k and n,
the maximal volume section of the cube is attained at an affine cube. Specifically, given
1 � k � n, let n = k� + r with r being the remainder from the division of n by k. We
define the following k orthogonal vectors in �n:

uj+1 = ej�+1 + ej�+2 + � � � + e(j+1)�, 0 � j < k � r,
uk−r+j = e(d−r)�+(�+1)j+1 + e(d−r)�+(�+1)j+2 + � � � + e(d−r)�+(�+1)(j+1), 0 � j < r.
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Let H∗ be the k-dimensional subspace spanned by them. Then
Qn � H∗ = � k�

j=1 tkuk , |t1|, . . . , |tk | � 12�,
which is an affine cube of volume

volk�Qn � H∗� = k�
j=1 |uj| = ��k−r�� + 1r .

Note that this becomes�n/kk when k divides n and�2n−k when k � n/2.
Conjecture 1. Let 1 � k � n. For every k-dimensional subspace H in �n, we have

volk(Qn � H) � volk�Qn � H∗�.
In addition to Ball’s results of Theorem 7, this conjecture has recently been con-

firmed for planar sections, i. e., when k = 2, by Ivanov and Tsiutsiurupa in [66], who
developed local conditions for extremal subspaces.

At the end of this subsection, wemention several loosely related extensions of these
fundamental results.

Other measures

Let γn denote the standard Gaussian measure on �n, that is, the Borel probability
measure on �n with density (2π)−n/2e−|x|2/2, whereas for a subspace H , let γH be its
counterpart on H , that is, the Borel probability measure supported on H with density(2π)− dimH/2e−|x|2/2 (with respect to Lebesgue measure on H). Due to the lack of homo-
geneity, now of course the cube’s side lengths may play a role. For the lower bounds,
Barthe, Guédon, Mendelson, and Naor [22] established an analog of Vaaler’s theorem.

Theorem 8 (Barthe–Guédon–Mendelson–Naor [22]). Fix 1 � k � n. For every k-dimen-
sional subspace H in �n, the function

t �� γH (tQn � H)
γk(tQk)

is non-increasing on [0,+�). In particular (letting t ��), for every t > 0, we have
γH (tQn � H) � γk(tQk).

Their argument follows Vaaler’s approach, crucially using the product structure of
Gaussian measure. Using Ball’s geometric form of the Brascamp–Lieb inequality, they
also obtain an upper bound, similar to his bound for volume.
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Theorem 9 (Barthe–Guédon–Mendelson–Naor [22]). Fix 1 � k � n. For every k-dimen-
sional subspace H in �n and every t > 0, we have

γH (tQn � H) � γk�t�nk Qk�.
Again, this is sharp whenever k divides n. The maximal-Gaussian volume hyper-

plane sections of cubes are not known for all values of t. Zvavitch has shown in [135] that
the hyperplane ( 1�2 , 1�2 , 0, . . . , 0)⊥ cannot be extremal for all dilates because the bound
from Theorem 9 in the case k = n � 1 is tight as t � �. König and Koldobsky [85]
found conditions on product measures ensuring that the hyperplane ( 1�2 , 1�2 , 0, . . . , 0)⊥
gives the maximal volume among all hyperplanes a⊥ with maxj |aj| � 1�2 . When spe-
cialized to the standard Gaussian measure, they additionally obtained that the hyper-
plane ( 1�2 , 1�2 , 0, . . . , 0)⊥ yields maximal volume (among all hyperplanes) if and only if
t < t0 = 1.253 . . . . Sharp upper bounds for t > t0 are not known.
Cylinders

Dirksen [46] studied the extremal central sections of the generalized cylinders Zr = Qn◊(rBm2 ), r > 0, m, n � 1. He found sharp upper bounds in the 3-dimensional case of an
ordinary cylinder, i. e., m = 2, n = 1, as well as upper bounds in the general case, sharp
for large radii, developing Fourier analytic formulas and delicate integral inequalities
involving Bessel functions.

Perimeter

Answering a question of Pełczyński about hyperplane sections of maximal perimeter
(i. e., sections with the boundary of the cube), König and Koldobsky [86] have shown
that the extremal direction is the same as for the volume.

Theorem 10 (König–Koldobsky [86]). Let n � 3. For every unit vector a in �n, we have
voln−2��Qn � a⊥� � 2�(n � 2)�2 + 1�.

This bound is attained if a = (±ei ± ej)/�2 for some 1 � i < j � n. This theorem also
leads to counterexamples to a perimeter version of the Busemann–Petty problem in
n � 14 dimensions. For the proof, they derive a Fourier analytic formula for the perime-
ter; its analysis involves new ingredients, most notably local conditions for constrained
extrema, as well as subtle technical estimates around Ball’s integral inequality.
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Diagonal sections

Herewe consider the volume of the section by the hyperplane perpendicular to themain
diagonal

αn = voln−1�Qn � (1, . . . , 1�����������
n
)⊥�, n � 1.

Perhaps amore natural interpretation of the sequence α1, . . . , αn is as the volumes of the
sections of Qn by hyperplanes perpendicular to the diagonals of subcubes of growing
dimension, for 1 � k � n, where we have

voln−1�Qn � (1, . . . , 1�����������
k
, 0, . . . , 0�������������

n−k )⊥� = αk .
Theorems 4 and 6 in particular assert that α1 � αi � α2. Interestingly, the volumes of the
diagonal sections form a (strictly) increasing sequence.

Theorem 11 (Bartha–Fodor–González [18]). We have α1 < α3 < α4 < α5 < � � � < α2.
Their approach starts with Pólya’s formula αn = �nπ �∞−∞( sin tt )ndt and is based on

an intricate asymptotic analysis by means of the Laplace method. They first argue that
the sequence (αn) increases for all n � n0 for some n0. Then, using numerical estimates,
they bound n0 and deal with n � n0 by computer assisted calculations. Their arguments
also show that the sequence (αn) is eventually concave.

It is tempting to believe that critical hyperplane sections must be diagonal, that is,
if a �� voln−1(Qn � a⊥) has an extremum at a unit vector a∗, then a∗ is proportional to a
diagonal (1, . . . , 1, 0, . . . , 0). Ambrus [3] and Ivanov and Tsiutsiurupa [66] recently inde-
pendently found an elegant local condition (with vastly different methods). Moreover,
Ambrus confirmed this for n � 3 and disproved it for n = 4.
Discrete version

Melbourne and Roberto [101] have derived a sharp discrete analog of Ball’s upper bound
for hyperplane sections.

Theorem 12 (Melbourne–Roberto [101]). Let n, �1, . . . , �n � 1 and t, k1, . . . , kn be integers.
Then �����������z � �n � n�

j=1 [kj , kj + �j � 1], n�
j=1 zj = t����������� < �2 �nj=1 �j��nj=1(�2j � 1) .
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The constant�2 is the best possible, as can be seen by discretizing Ball’s extremizer
(by taking �1 = �2 = m, �3 = � � � = �n = 1 and lettingm��). Mimicking Ball’s approach,
the following integral inequality lies at the heart of the argument:

1/2�−1/2 �������� sin(nπt)n sin(πt) ��������pdt < � 2
p(n2 � 1) , p � 2, n = 2, 3, . . . .

This is in fact stronger than Ball’s inequality (2.5) and recovers it by letting n��. Mel-
bourne and Roberto developed a new viewpoint on establishing such delicate bounds
for oscillatory integrands, borrowing and combining ideas from majorization and opti-
mal transport.

Chessboard cutting

It is folklore that a line canmeet the interiors of nomore than 2N�1 squares of the usual
N ◊N chessboard and this bound is tight (consider the diagonal pushed down a bit). We
refer to Bárány and Frenkel’s work [35] for a short argument as well as precise estimates
for a 3-dimensional analog. To tackle the problem in higher dimensions, in [36] they
introduced the following quantity involving volumes of hyperplane sections of the cube:

Vn = maxv∈�n �u�1|v| voln−1�Qn � v⊥�.
They have shown that if the cube [0,N]n is divided into Nn unit cubes in the usual way,
then the maximal number of unit cubes that a hyperplane can intersect equals�1 + o(1)�VnNn−1
for a fixed n � 1 as N ��. Confirming a conjecture from [36], Aliev recently found the
constant Vn [2].

Theorem 13 (Aliev [2]). Let n � 1. We have Vn = �n voln−1(Qn � (1, . . . , 1)⊥).
In words, it is the diagonal section that maximizes Vn; thus, �n � Vn � �2�n and

Vn � � 6
π�n for large n. Aliev’s argument is purely geometric with the main observation

being that the hyperplane parallel to (1, . . . , 1)⊥ supports the intersection body of the
cube.

Stability

With additional insights gained from a certain probabilistic point of view (see Section 4),
Chasapis and the authors recently obtained [42] a dimension-free stability result for both
lower and upper bounds for hyperplane sections.
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Theorem 14 (Chasapis–Nayar–Tkocz [42]). There are universal constants c1, c2 > 0 such
that for every unit vector a in �n with a1 � � � � � an � 0, we have

1 + c1|a � e1|2 � voln−1�Qn � a⊥� � �2 � c2��������a � e1 + e2�2 ��������.
The exponents 2 and 1 on the left- and right-hand sides, respectively, are the best

possible, as can be explicitly verified for n = 2. In an independentwork [100],Melbourne
and Roberto obtained a similar result.

2.2 Balls of p-norms
We begin with amonotonicity result for the parameter p discovered byMayer and Pajor
[102].

Theorem 15 (Meyer–Pajor [102]). Fix 1 � k � n. For every k-dimensional subspace H in�n, the function
p �� volk(Bnp � H)

volk(Bkp)
is non-decreasing on [0,+�). In particular, comparison with the Euclidean ball yields

volk�Bnp � H� � volk�Bkp�, 0 < p < 2,
volk�Bnp � H� � volk�Bkp�, p > 2.

In each inequality, equality holds if and only if H is spanned by some k standard basis
vectors.

Meyer and Pajor established this theorem for p � 1, which was extended later to
p < 1 independently by Barthe [19] and Caetano [39]. Letting p � � recovers Vaaler’s
theorem, Theorem 5, for the cube sections. Vaaler’s argument uses Kanter’s peakedness
to make a comparison between uniform and Gaussian distributions. The key point in
[102] was that the same comparison holds across the whole family of probability mea-
sures with densities {e−cp|x|p }p>0. We will present this crucial idea in a probabilistic set-
ting in Section 4.

More is known for hyperplane sectionswhen 0 < p < 2.Meyer and Pajor [102] found
that the minimal volume hyperplane sections of the cross-polytope Bn1 are attained by
the diagonal directions and conjectured the same for the entire range 0 < p < 2, con-
firmed later by Koldobsky in [74] in a strong Schur convexity-type result.



Extremal sections and projections of certain convex bodies: a survey � 357

Theorem 16 (Koldobsky [74]). Let 0 < p < 2. For every two unit vectors a and b in�n such
that (b21 , . . . , b2n)majorizes (a21 , . . . , a2n), we have

voln−1�Bnp � a⊥� � voln−1�Bnp � b⊥�.
For background on majorization and Schur convexity, we refer for instance to [25].

In particular, since � 1n , . . . , 1n� � �a21 , . . . , a2n� � (1, 0, . . . , 0),
for an arbitrary unit vector a in �n, the minimal and maximal volume sections fol-
low. What makes the range 0 < p < 2 so much more tractable compared to p > 2
is the fact that the Fourier transform of e−|x|p is a non-negative function of the form
t �� �∞0 e−ut2dμ(u), a Gaussian mixture. In fact, the same also holds for e−|x|p , which al-
lowed the authors of [49] to bypass the Fourier analytic arguments entirely. We return
to this in Section 4.

The maximal volume hyperplane sections of Bnp-balls for 2 < p < � are unknown.
Oleszkiewicz established in [113] that Ball’s upper bound for the cube, Theorem 6, does
not extend to all p > 2, as it fails for all p < 26.265 . . . and large enough dimensions
(by comparing the cube’s extremizing hyperplane (1, 1, . . . , 0)⊥ to the diagonal one(1, 1 . . . , 1)⊥ in the limit n��). We conjecture that in each dimension there is a unique
phase transition point.

Conjecture 2. For every n � 3, there is a unique p0(n) such that
max
a∈Sn−1 voln−1�Bnp � a⊥� = �voln−1(Bnp � (1, . . . , 1)⊥), 2 < p � p0(n),

voln−1(Bnp � (1, 1, 0, . . . , 0)⊥), p � p0(n).
For lower-dimensional sections, there is a general bound of Barthe which extends

a corresponding result for the cube from Theorem 7. The argument also crucially relies
on the Brascamp–Lieb inequalities.

Theorem 17 (Barthe [19]). Let p � 2. Fix 1 � k � n. For every k-dimensional subspace H
in �n, we have

volk�Bnp � H� � �nk�k(1/2−1/p) volk�Bkp�.
As for the cube, this is sharp when k divides nwith the same extremizing subspace.
Using a direct argument involving triangulation and convexity of certain functions,

Nazarov has shown that planar sections of the cross-polytope of minimal area are at-
tained at regular polygons.
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Theorem 18 (Nazarov [42]). Let n � 3. For every 2-dimensional subspace H in�n, we have
vol2�Bn1 � H� � n2 sin3( π2n )cos( π2n ) ,

which is optimal, attained when Bn1 � H is a regular 2n-gon.

All known results from Table 1 on extremal volume hyperplane sections for �p-balls
admit robust versions (recall also Theorem 14).

Theorem 19 (Chasapis–Nayar–Tkocz [42]). For every p > 0, there is a positive constant cp
such that for every n � 1 and every unit vector a = (a1, . . . , an) in �n with a1 � a2 � � � � �
an � 0, we have

voln−1(Bnp � a⊥)
voln−1(Bnp � e⊥1 ) � 1 + cp|a � e1|2, 2 < p ��,

voln−1(Bnp � a⊥)
voln−1(Bnp � ( e1+⋅⋅⋅+en�n )⊥) � 1 + cp n�

j=1�a2j � 1/n�2, 0 < p < 2,
voln−1(Bnp � a⊥)
voln−1(Bnp � e⊥1 ) � �ap1 + �1 � a21�p/2�−1/p, 0 < p < 2.

We finish this subsection with Vaaler’s conjecture on general rather precise lower
bounds which have been verified to a large extent for �p-balls.
Conjecture 3 (Vaaler [132]). Let K be a symmetric isotropic convex body in �n. Then for
every non-zero subspace H in �n of dimension 1 � k � n, we have

volk(K � H) � 1.
Noteworthily, if true, it implies the slicing conjecture (made independently of it); see

Hensley’s theorem, Theorem 3. Vaaler’s theorem confirms this inequality for the cube
(which is tight). Meyer and Pajor’s sharp lower bound gives this inequality for K = Bnp
with 2 < p < � and all subspaces (see [102]), as well as 1 < p < 2 and all hyperplanes
(see Schmuckenschläger’s note [127]); however, these are not tight anymore.

2.3 Simplices
Here we discuss results concerning sections of regular simplices. It will be most conve-
nient to consider a regular n-dimensional simplex of side length�2 embedded in �n+1,

Δn = �x � �n+1, x1, . . . , xn+1 � 0, n+1�
j=1 xj = 1�.
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Central sections will refer to those by (affine) subspaces passing through the barycenter( 1n+1 , . . . , 1
n+1 ) of Δn. In particular, if a is a unit vector in�n+1 with�n+1j=1 aj = 0 (so parallel

to the hyperplane containing Δn), then Δn�a⊥ is a central hyperplane section of Δn. Such
sections of maximal volume have been determined by Webb in [134].

Theorem 20 (Webb [134]). For every unit vector a in �n+1 with �n+1j=1 aj = 0, we have
voln−1�Δn � a⊥� � 1�2 �n + 1(n � 1)! .

This is attained if and only if a⊥ passes through some n � 1 vertices of Δn.
Webb gave two proofs, both based on an elegant probabilistic formula,

voln−1�Δn � a⊥� = �n + 1(n � 1)! fa(0),
where fa is the probability density of �n+1j=1 ajXj with Xj being i. i. d. standard exponen-
tial random variables, with density e−x supported on (0,+�). Thus, his result becomes
fa(0) � 1�2 with equality if and only if n�1 of the aj vanish. His first proofmimicked Ball’s
Fourier analytic approach with the crucial bound coming from Hölder’s inequality and
an integral inequality. His second proof was probabilistic, exploiting log-concavity.

Webb also found that the 1- and 2-dimensional central sections of Δn of maximal
volume are attained at lines and planes passing through a vertex and an edge of Δn,
respectively (see his PhD thesis [133], as well as [94] for a different argument in the line
case).

For general upper bounds on central sections, following the approach involving
Ball’s geometric form of the Brascamp–Lieb inequality, Dirksen [45] obtained the fol-
lowing result.

Theorem 21 (Dirksen [45]). For every k-dimensional subspace of �n+1 passing through
the barycenter of the simplex Δn, we have

volk−1(Δn � H) � k
k

2(n+1)(k � 1)! .
Moreover, if dist(H , ej) � � n+1−kn+2−k for each j � n + 1, then

volk−1(Δn � H) � 1(k � 1)!� n + 1
n + 2 � k ,

which is sharp, attained when H contains k � 1 vertices of Δn.
As opposed to symmetric convex bodies for whichmaximum volume sections by all

affine subspaces of a fixed dimension always occurwhen they pass through the barycen-
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ter (by the Brunn–Minkowski inequality), for the simplex such a question becomes non-
trivial. Webb pointed out in [134] that combining two results of Ball yields that for fixed
1 � k � n, we have

volk(Δn � H) � volk(Fk),
for all (k + 1)-dimensional affine subspaces H in �n+1, where Fk is a k-dimensional
face of Δn, that is, the k-dimensional slices of Δn of maximal volume are exactly the
k-dimensional faces. To explain this, fix H and consider the maximum volume ellip-
soid, say E∗ contained in the convex body K = Δn �H . Ball found [11] that the n-simplex
has maximal volume ratio among all convex bodies in�n. The volume ratio of a convex
body C in�n is vr(C) = (voln(C)/ voln(E))1/n, where E is the maximum volume ellipsoid
in C. Thus,

volk(Δn � H) = vr(K)k volk�E∗� � vr(Fk)k volk�E∗�.
Moreover, Ball has shown in [12] that among all k-dimensional ellipsoids in Δn, the Eu-
clidean balls inscribed in k-faces havemaximal volume; thus, they are themaximal vol-
ume ellipsoids in Fk . Therefore,

vr(Fk)k volk�E∗� � volk(Fk).
In [55], Fradelizi has given a different argument, deriving this fact from a more general
result for cones in isotropic position.

Lower bounds are much less understood.

Conjecture 4. For every unit vector a in �n+1 with �n+1j=1 aj = 0, we have
voln−1�Δn � a⊥� � � n

n + 1�n−1/2 �n + 1(n � 1)! ,
which is attained when a⊥ is parallel to a face of Δn.

This has been confirmed in low dimensions (n � 4) by Brzezinski [32]. He also no-
ticed that a bound of the correct order but off by a multiplicative constant follows by
applying Fradelizi’s theorem from [55] to Webb’s result stated above.

2.4 Complex analogs
If we consider �n as a Hilbert space equipped with the standard (complex) inner prod-
uct and volume (Lebesgue measure after the natural identification �n � �2n), most of
the results about extremal volume sections (of real spaces) considered thus far beg for
their natural complex counterparts. Vaaler’s theorem and its generalization of Meyer
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and Pajor admit such extensions, with almost the same proofs, as was pointed out in
their papers.

Theorem 22 (Vaaler [132], Meyer–Pajor [102]). Let 1 � k � n and let H be a (complex)
k-dimensional subspace in �n. Then

vol2k�Bnp,� � H� � vol2k�Bkp,��,
when 2 � p ��. The reverse inequality holds when 0 < p � 2.

Here,

Bnp,� = �z � �n, � n�
j=1 |zj|p�1/p � 1�

is the unit ball of the complex �p(�n)-space; in particular, B∞∞,� is the polydisc (the Carte-
sian product of the unit discs in �). In fact, their proofs yield a further extension from
Bnp,� to bodies which are �p-sums of Euclidean spaces of arbitrary dimensions, which has
been in turn significantly generalized by Eskanazis in [48] (see Theorem 26 below).

Ball’s cube slicing result of Theorem 6 has been extended to the complex setting by
Oleszkiewicz and Pełczyński in [114], who proved the following sharp polydisc slicing
bound.

Theorem 23 (Oleszkiewicz–Pełczyński [114]). For every unit vector a in �n, we have
vol2n−2�Bn∞,� � a⊥� � 2π2n−2.

Equality holds if and only if a = (ξei + ηej)/�2 for some 1 � i < j � n and ξ , η � � with|ξ|, |η| = 1.
The proof strategy follows the same path of the Fourier analytic formula and de-

factorization by means of Hölder’s inequality; however, new technical challenges arise.
The heart of the proof is the following analytical inequality:∞�

0

��������2J1(t)t ��������ptdt � 4p , p � 2 (2.6)

(cf. (2.5)), where J1 is the Bessel function of the first kind of order 1. Its proof rests on
precise pointwise bounds on J1 as well as an interpolation argument. A new different
proof has been very recently given in [101]. Moreover, the upper bounds for higher codi-
mensions of Theorem 7 can be transferred almost ad verbatim to the complex case as
well (as was remarked by Barthe and Koldobsky; see [114]).

The exact analog of the sharp upper bound on the perimeter from Theorem 10 also
holds, as shown by König and Koldobsky in [86].
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Sharp upper bounds even on hyperplane (complex codimension 1) sections in the
range 2 < p < � remain open. For the same reasons as in the real case, the range
0 < p < 2 is more tractable and we have the following analog of Koldobsky’s theorem,
Theorem 16.

Theorem 24 (Koldobsky–Zymonopoulou [80]). Let 0 < p < 2. For every two unit vectors a
and b in �n such that (|b1|2, . . . , |bn|2)majorizes (|a1|2, . . . , |an|2), we have

vol2n−2�Bnp,� � a⊥� � vol2n−2�Bnp,� � b⊥�.
Finally, a complex version of Busemann’s theorem, Theorem 1, has been developed

byKoldobsky, Paouris, and Zymonopoulou in [77], whereas a full solution to the complex
Busemann–Petty problem is due to Koldobsky, König, and Zymonopoulou [76].

2.5 Miscellanea
We finish this section with a brief account of various results related to and motivated
by sharp bounds on volumes of sections.

Slabs

For a unit vector a in �n and t > 0, we set
Ha,t = �x � �n, �����x, a����� � t�

to be the (symmetric) slab of width 2t orthogonal to the direction a (in other words, a
thickening/enlargement a⊥ + tBn2 of the hyperplane a⊥). Answering a question of V. Mil-
man, Barthe andKoldobsky in [23] have established the following extension ofHadwiger
and Hensley’s Theorem 4.

Theorem 25 (Barthe–Koldobsky [23]). For every unit vector a in �n and 0 � t � 3
8 , we

have

voln(Qn � Ha,t) � voln(Qn � He1 ,t).
They derived this from a sharp inequality for unimodal log-concave densities in one

dimension, expanding on Hensley’s approach.
In words, Hadwiger and Hensley’s result is stable in that, independent of the di-

mension, coordinate slabs contain the least volume of the unit cube among all symmet-
ric slabs of fixed width at most 3/4. This bound is in the spirit of the concentration of
measure (see [28, 89, 90]), providing a sharp lower bound of small enlargements on the
volume 1/2 half-spaces {x � �n, �x, a� � 0} in Qn. The threshold 3

8 is suboptimal: in the
2-dimensional case, a direct calculation from [23] shows that at t = �2�1 the extremizing
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slab changes from the coordinate one to the diagonal one. The sharp behavior in higher
dimensions is not clear. The paper [23] provides asymptotic results that the slabs orthog-
onal to the main diagonal are optimal for large t of the order�n as n�� (developing
en route very interesting conditions for convexity properties of Laplace transforms),
with a precise non-asymptotic result for the range 1

2�n � 1 � t � 1
2�n obtained recently

by Moody, Stone, Zach, and Zvavitch [105].
A detailed analysis of the (local as well as global) extremal slabs in the 2- and

3-dimensional cases has been conducted by König and Koldobsky [83], whereas in [84],
they obtained a complex analog of Theorem 25.

Block subspaces

Eskenazis [48] gathered under one umbrella the results on slicing �p-balls, both real and
complex, when 0 < p < 2, thus significantly generalizing and unifying Theorems 16, 22,
and 24.

Theorem 26 (Eskenazis [48]). Let m, n be positive integers and let 0 < p < 2. Suppose
X = (�m, � � �) is a quasinormed space which admits an isometric embedding into Lp. For
every two unit vectors a and b in�n such that (b21 , . . . , b2n)majorizes (a21 , . . . , a2n), we have

volmn−m�Bnp(X) � Ha� � volmn−m�Bnp � Hb�.
Here,

Bnp(X) = �x = (x1, . . . , xn) � �m ◊ � � � ◊ �m, � n�
j=1 �xj�p�1/p � 1�

is the unit ball of the �p-sum of X , whereas

Ha = �x = (x1, . . . , xn) � �m ◊ � � � ◊ �m, n�
j=1 ajxj = 0�

is a block subspace of codimension m in (�m)n. In particular, X = �m2 with m = 1, 2
recovers Theorems 16 (when p < 2), 22, and 24. The point is that there is a plethora
of non-Hilbertian examples treated by this general result, most notably X = �mq with
p � q � 2.

Eskenazis’ argument builds on [49], with the key new ingredient being Lewis’ rep-
resentation guaranteeing that the norm on X which embeds isometrically into Lp, p > 0,
admits a form �x� = � �

Sm−1
�����Ux, θ�����pdμ(θ)�1/p, x � �m,
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for some invertible linear map U :�m � �m and an isotropic Borel measure μ on the
unit sphere Sm−1 [91, 126]. The restriction p < 2 is not needed here, but is included to
bring about Gaussian mixtures (as highlighted after Theorem 16).

For the regime p > 2, only the case p =�, X = �m2 has been considered, i. e., sections
of

Bn∞��m2 � = Bm2 ◊ � � � ◊ Bm2�������������������������
n
,

for which Brzezinski [32] obtained that for every n,m � 2 and every unit vector a in�n,
we have

volmn−m�Bn∞��m2 � � Ha� � (m + 2)m/22m/2−1mΓ(m/2) . (2.7)

This is asymptotically sharp as n � � because the right-hand side equals exactly
limn�∞ volmn−m(Bn∞(�m2 ) � H( 1�n ,..., 1�n )). The case m = 2 is special in that this limit also
equals Am,n = volmn−m(Bn∞(�m2 ) � H( 1�2 , 1�2 ,0,...,0)), whilst for every m > 2, the limit is
strictly larger than Am,n. In other words, Ball’s upper bound from Theorem 6 does not
generalize to block subspace sections of Bm2 ◊ � � � ◊ Bm2 for any m > 2 (but it does when
m = 2, as we have seen in Oleszkiewicz and Pełczyński’s theorem, Theorem 23).

We finish with Eskanazis’ conjecture on sharp lower bounds by block subspaces,
generalizing Hadwiger and Hensley’s theorem, Theorem 4.

Conjecture 5 (Eskenazis [48]). Let m, n � 1. Let K be a symmetric convex body in�m. For
every unit vector a � �n, we have

volmn−m(K ◊ � � � ◊ K � Ha) � volm(K)n−1.
Non-central sections

In this context, perhaps the most natural question to ask is about extremal volume sec-
tions by affine subspaces at a fixed distance t > 0 from the origin. This has arguably
proved to bemore difficult than the question of central sections, even for the cube. Sharp
results for line sections have been found in [105] for the cube and in [94] for the cross-
polytope. For hyperplane sections, we have the following conjecture of V. Milman (see
[83]).

Conjecture 6 (V. Milman [83]). The minimum and maximum of voln−1(Qn � H) over the
affine hyperplanes H at a fixed distance t > 0 from the origin are attained when H is or-
thogonal to a diagonal direction (1, . . . , 1, 0, . . . , 0)with a suitable number of 1’s depending
on t.
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There are several partial results supporting it. König and Koldobsky verified that it
holds in low dimensions (n = 2, 3) [83]. Moody, Stone, Zach, and Zvavitch have estab-
lished that in the range 1

2�n � 1 < t < 1
2�n the main diagonal direction gives the maxi-

mal section [105], later extended to all t > 1
2�n � 2 by Pournin in [116], where one of the

key ideas was to employ a noteworthy combinatorial formula for sections of the cube,

voln−1�[0, 1]n � �x � �n, �x, a� = b�� =�
v

(�1)∑ vj |a|(b � �v, a�)n−1(n � 1)!� aj ,
where the sum is over the vertices v of the cube [0, 1]d such that �v, a� � b (see also
[17]). In a recent preprint [117], Pournin also showed that the main diagonal direction
is strictly locally maximal for t = Ω( �nlog n ), derived from general local conditions for all
diagonal directions. König and Rudelson [87] obtained dimension-free lower bounds on
non-central sections of the cube as well as the polydisc. König [82] treated non-central
extremal volume as well as perimeter sections of the regular simplex, cube, and cross-
polytope, when the distance t is fairly large, also investigating local behavior for the
entire range of t.

Probabilistic extensions

There is a natural link between the volume of sections and negative moments of linear
forms, which goes back at least to Kalton and Koldobsky’s work [68]. To illustrate it, first
note that the value at say x = 0 of a probability density f on � which is continuous at 0
can be obtained by taking the limit of its negative moments,

f (0) = lim
q�−1+ 1 + q2 � |x|qf (x)dx. (2.8)

In view of this and the basic probabilistic formula for sections (2.2), the sharp bounds
for hyperplane sections of the cube from Theorems 4 and 6 can be phrased as

1 � lim
q�−1+ 1 + q2 ����������� n�j=1 ajUj����������q � �2

for all unit vectors a in �n, where U1,U2, . . . are i. i. d. random variables uniform on[� 12 , 12 ]. Do such inequalities remain true with a fixed q? The answer is known for the
cube andpolydisc,where a sharp phase transition of the extremizer occurs for the upper
bound with diagonal directions entering the picture.

Theorem 27 (Chasapis–König–Tkocz [41]). Let �1 < q < 0. Let U1,U2, . . . be i. i. d. random
variables uniform on [� 12 , 12 ]. For every n � 1 and unit vectors a in �n, we have

�|U1|q � ����������� n�j=1 ajUj����������q � ��|(U1 + U2)/�2|q, �1 < q � q0,
limm�∞ �|(U1 + � � � + Um)/�m|q, q0 � q < 0.



366 � P. Nayar and T. Tkocz

The constant q0 = �0.79 . . . is given uniquely by equating the two expressions on the right-
hand side.

A similar behavior has been established for the polydisc slicing by Chasapis, Singh,
and Tkocz in [43], with the phase transition “moving to the left” where the negative
moments recover volume.

3 Projections
We turn our attention to Question (II) from the introduction about projections of ex-
tremal volume of basic convex bodies such as the cube, simplex, and cross-polytope, as
well as the family of �p-balls. As we will see, our understanding of hyperplane projec-
tions of �p-balls is at the same level as for sections (see Tables 1 and 2), whilst in general
much less is known, particularly for lower-dimensional projections. The methods also
seem to shift from analytic to more of an algebraic or combinatorial nature.

3.1 Cubes
Thanks to Cauchy’s formula from Theorem 2, extremal volume projections on hyper-
planes are easy to determine, for the surface areameasure of the cubeQn is the counting
measure�nj=1 δ±ej of the set of the 2n vectors {±ej , j � n} outer normal to the facets ofQn;
thus, for every unit vector a in �n, we have

voln−1�Proja⊥ (Qn)� = n�
j=1 |aj|.

Therefore,
1 � voln−1�Proja⊥ (Qn)� � �n,

by squaring and neglecting the off-diagonal terms for the lower bound and simply ap-
plying the Cauchy–Schwarz inequality for the upper bound. The former is attained if
and only if Qn is projected onto a coordinate hyperplane and the latter is attained if and
only if Qn is projected onto a hyperplane orthogonal to a main diagonal.

A zonotope is the Minkowski sum of intervals. Orthogonal projections of the unit
cube Qn = [� 12 , 12 ] are zonotopes and, conversely, every zonotope can be obtained as
such a projection (of a possibly rescaled and translated cube in a sufficiently high di-
mension). Shephard’s decomposition of zonotopes into parallelepipeds led him in [129]
to the following classical formula for volume: If v1, . . . , vn are vectors in �k , then the
volume of the zonotope Z = �nj=1[0, vj] is expressed as

volk(Z) = �
1≤j1<⋅⋅⋅<jk≤n����det[vj1 . . . vjk ]����,
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where [vj1 . . . vjk ] is the k ◊ k matrix with columns vj1 , . . . , vjk . For the orthogonal pro-
jection of the cube Qn onto a k-dimensional subspace H , the vectors vj can be taken as
columns of the k ◊ nmatrix whose rows form an orthonormal basis of H , leading to the
constraint �

1≤j1<⋅⋅⋅<jk≤n����det[vj1 . . . vjk ]����2 = 1,
by the Cauchy–Binnet formula. Then, exactly as in the codimension 1 case, we obtain
upper and lower bounds on the volume. This argument goes back to Chakerian and
Filliman’s work [40].

Theorem 28 (Chakerian–Filliman [40]). Fix 1 � k � n. For every k-dimensional subspace
H in �n, we have

1 � voln−1�ProjH (Qn)� � min���nk�, volk−1(Bk−12 )k
volk(Bk2 )k−1 �nk�k/2�.

The lower bound is clearly sharp, attained at coordinate subspaces. It also instantly
follows from Vaaler’s theorem, Theorem 5, upon observing that projections contain sec-
tions. The first upper bound ��nk� is sharp only when k = 1, n � 1. The second upper
bound is obtained differently, by invoking quermassintegrals (which are additive under
Minkowski sums, so they go hand in hand with zonotopes), combined with Urysohn’s
inequality. A simpler version of the same idea is to note that every k-dimensional pro-
jection has diameter at most the diameter of the cube �n; thus, by the isodiametric in-
equality, its volume is at most volk(Bk2 )(�n/2)k . All these bounds are of the order nk/2
for a fixed k as n��, which is tight. The second of the upper bounds in Theorem 28 is
asymptotically better than the first one. Ivanov [64] has developed local conditions for
maximizers of k-dimensional projections.

In [40], using the isoperimetric inequality for polygons, Chakerian and Filliman ad-
ditionally obtained a sharp bound for 2-dimensional projections (and thus also (n � 2)-
dimensional ones – see Theorem 31 below).

Theorem 29 (Chakerian–Filliman [40]). For n � 2 and for every 2-dimensional subspace
H in �n, we have

voln−1�ProjH (Qn)� � 1
tan( π2n ) .

Soon after, Filliman [51] discovered a general principle that maximizing volume
of the larger class of zonotopes Z = �nj=1[� 12vj , 12vj] with the constraint �nj=1 |vj|2 =
n on the vectors vj in �k amounts to maximizing it over all zonotopes which are
k-dimensional projections of the cube. This allowed him to extend the previous esti-
mate to 3-dimensional projections.
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Theorem 30 (Filliman [51]). For n � 3 and for every 3-dimensional subspace H in �n, we
have

vol3�ProjH (Qn)� � �n/3tan( π
2n−2 ) .

This is sharp not only for n = 3, but also for n = 4 with the extremal projection
being the rhombic dodecahedron and for n = 6 with the extremal projection being the
triacontahedron.

We finish with a striking and remarkable feature of the cube: Its projections onto
orthogonal complementary subspaces have the same volume.

Theorem 31 (McMullen [99], Chakerian–Filliman [40]). Let 1 � k � n. For every k-dimen-
sional subspace H in �n, we have

volk�ProjH (Qn)� = voln−k�ProjH⊥ (Qn)�.
This has been found by McMullen and independently by Chakerian and Filliman,

using the same approach based on Shephard’s formula. In particular, sharp bounds on
volumes of k-dimensional projections are equivalent to those on (n � k)-dimensional
ones.

3.2 Simplices
Recall that Δn is the n-dimensional regular simplex with edge length �2, assuming for
convenience in this section that Δn is embedded in�n. The projections of the regular sim-
plex onto certain orthogonal complementary subspaces are conjectured to yield mini-
mal and maximal volume, in huge contrast to the cube, where we have seen in Theo-
rem 31 that such projections always have the same volume.

Conjecture 7 (Filliman [54]). Fix 1 � k � n. Let H∗ be a k-dimensional subspace in�n such
that T∗ = ProjH∗ (Δn) is a k-dimensional simplex, with the vertices of Δn projecting only
onto the vertices of T∗, as evenly as possible: For each i � k + 1, letting wi be the number
of vertices of Δn projecting onto vertex i of T∗, we have

wi = �� + 1, 1 � i � r,�, r < i � k + 1,
where we divide n + 1 by k + 1 with the remainder r � {0, . . . , k}, n + 1 = (k + 1)� + r. Then

min
H⊂�n

dimH=k volk�ProjH (Δn)� = volk(T∗).
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Moreover, the polytope T∗ = ProjH⊥∗ (Δn) is conjectured to maximize the volume of projec-
tions onto the (n � k)-dimensional subspaces,

max
H⊂�n

dimH=n−k volk�ProjH (Δn)� = voln−k�T∗�.
Filliman developed exterior algebra techniques [53] and used them [54] to confirm

this conjecture in the following cases: for the minimum, k = 1, 2, n � 1 and n is arbitrary
or n � 6 and k is arbitrary; for the maximum, k = 1, 2, n � 1 and n is arbitrary, k = n � 2
and n � 8, or k = 3 and n = 6.
3.3 Cross-polytopes
In view of Cauchy’s formula from Theorem 2, the volume of hyperplane projections of
the cross-polytopeBn1 admits a natural probabilistic expression. Since it has 2n congruent
(simplicial) facets of (n�1)-dimensional volume �n(n−1)! with outer normals 1�n (±1, . . . ,±1),
for every unit vector in �n, we have

voln−1�Proja⊥�Bn1 �� = 1
2(n � 1)! �ε∈{−1,1}n�����a, ε����� = 2n−1(n � 1)!����������� n�j=1 ajεj����������,

where the expectation is over independent random signs εj , �(εj = ±1) = 1
2 . Given the

constraint |a| = 1, the question about extremal volume projections thus becomes that of
finding the best constants c, C in the homogeneous inequalities

c��������� ajεj
������2�1/2 � �������� ajεj

������ � C��������� ajεj
������2�1/2. (3.1)

Such Lp-moment comparison inequalities go back to Khinchin’s work [71] on the law
of the iterated logarithm. This motivated and should be contrasted with an analogous
probabilistic viewpoint on sections from Theorem 27, where instead of the L1-norm, we
have the limit of theLq-normas q � �1. A sharp upper bound follows easily from Jensen’s
inequality, �������� ajεj

������ � ��������� ajεj
������2�1/2 = |a| = 1,

attained if and only if a = ±ei for some i � n, that is, the maximum volume projection
occurs at precisely coordinate subspaces. The reverse inequality is much deeper: In a
different context, a sharp lower bound was conjectured to be attained at vectors a =±ei±ej�2 , i �= j, by Littlewood in [93] (cf. Ball’s extremizer from Theorem 6), proved much
later by Szarek in [130], with subsequently simplified and quite different proofs [60, 88,
131]. We state it here rephrased in terms of volumes of projections, together with the
simple upper bound.
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Theorem 32 (Szarek [130]). Let n � 2. For every unit vector in �n, we have
1�2 voln−1�Bn−11 � � voln−1�Proja⊥�Bn1 �� � voln−1�Bn−11 �.

The lower bound is attained if and only if a = ±ei±ej�2 for some i �= j, whilst the upper bound
is attained if and only if a = ±ei for some i.

A stability version has been derived by De, Diakonikolas, and Servedio [44] (see also
[100] for a local statement with explicit constants).

Much less is known in higher codimensions. In analogy to Vaaler’s theorem, Theo-
rem 5, for the cube, it is natural to conjecture that maximal volume projections of the
cross-polytope Bn1 occur at coordinate subspaces.

Conjecture 8. Fix 1 � k � n. For every k-dimensional subspace H in �n, we have
volk�ProjH�Bn1 �� � volk�Bk1 �.

This conjecture has appeared in this generality in Ivanov’s work [65], who has con-
firmed it for k = 2, 3 and arbitrary n, using perturbation methods for frames (see also
[64]). Earlier, Filliman [52] established the same for k = 2, using different,more algebraic
methods of his work [53], also reducing the case of k = 3 with arbitrary n to n � 42. For
minimal volume projections, we have the following dual analog of Conjecture 1 for the
cube.

Conjecture 9 (Ivanov [65]). Fix 1 � k � n. Let H∗ be the k-dimensional subspace from
Conjecture 1. For every k-dimensional subspace H in �n, we have

volk�ProjH�Bn1 �� � volk�ProjH∗�Bn1 ��.
This has been confirmed for k = 2 by Ivanov in [65]. As for the cube, the conjectured

maximizer is an affine cross-polytope.

3.4 Balls of p-norms
The sharp results on hyperplane projections of the cross-polytope have been extended
by Barthe and Naor in [24] to �p-balls (with p � 2), thereby bringing the knowledge on
extremal volume hyperplane projections to the same level as for sections (see Tables 1
and 2).

Theorem 33 (Barthe–Naor [24]). For every unit vector a in �n, the function
p �� voln−1(Proja⊥ (Bnp))

voln−1(Bn−1p )
is non-decreasing on [1,+�).
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This can be viewed as a counterpart of Meyer and Pajor’s theorem, Theorem 15, for
hyperplane projections. It is an interesting open question to find such a monotonicity
result for all subspaces. As for the cross-polytope, it is Cauchy’s formula that allows to
obtain a probabilistic expression for the volume in the hyperplane case. Barthe and
Naor’s argument goes as follows.

First, the surface area measure is related to the cone volume measure, by a general
relation of Naor and Romik [107]. To sketch this, let σK be the normalized surface area
measure on �K and let S be the not normalized surface area measure, that is, S(A) =
voln−1(�K � A)/ voln−1(�K). Let μK be the normalized cone volume measure, that is, for
A � �K , let μK (A) = voln(conv({0}�A))/ voln(K). Let C denote its not normalized version.
Lemma 34. If K is a symmetric convex body in�n, then σK is absolutely continuous with
respect to μK and for almost all x � �K one has

dσK
dμK
(x) = n voln(K)

voln−1(�K) ������� � �K�(x)����.
Sketch of the proof. For points x such that x is perpendicular to the surface of K one has|x| �dS(x) = ndC(x). If the angle between the surface and x is α, then | cos α| � |x| �dS(x) =
ndC(x). We clearly have | cos α| = |�n(x), x/|x|�|. Let z = �� � �K (x). If x � �K , then
1+ε = �x+εx�K � �x�K +ε�z, x� = 1+ε�z, x�, which gives �z, x� = 1. Also, z is a vector per-
pendicular to �K . Thus, n(x) = z/|z|.We obtain | cos α| = 1|x| �|�n(x), x�| = |�z,x�||x|⋅|z| . This gives

voln−1(�K)dσK (x)|�(� � �K )(x)| = dS(x)|�(� � �K )(x)| = |�z, x�||z| dS(x) = ndC(x) = n voln(K)dμK (x).
From Lemma 34 we therefore get| Proja⊥ K | = n2 voln(K) ��K �������� � �K�(x), a�����dμK (x), (3.2)

since (�� � �K )(x) = n(x)|(�� � �K )(x)|.
Second, the cone volumemeasure μBnp enjoys a probabilistic representation in terms

of i. i. d. random variables, discovered by Rachev and Rüschendorf [120] and indepen-
dently by Schechtman and Zinn [125]. We shall also later need a modification of the rep-
resentation of the uniform measure on Bnp obtained in [22] by Barthe, Guédon, Mendel-
son, and Naor. Let us formulate a generalization of these results discussed in [118].

Lemma 35. Let K be a symmetric convex body and let Z be any random vector in�n with
density of the form f (�x�K ) for some continuous f : [0,�) � [0,�). Let U be a random
variable uniform in [0, 1], independent of Z. Then:
(a) Z�Z�K has distribution μK and U 1/n Z�Z�K is uniformly distributed on K,
(b) Z�Z�K and �Z�K are independent.
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In particular, for K = Bnp one can take Z = (Y1, . . . , Yn), where Yi are i. i. d. randomvariables
having densities (2Γ(1 + 1

p ))−1e−|t|p .
Proof. We first claim that for any integrable h : �n � � the following identity holds:

� h = n|K | ∞�
0
rn−1 ��K h(rz)dμK (z)dr. (3.3)

To show it one can assume that h = 1A, where A = [a, b] � A0, where A0 � �K , as these
sets generate the σ-algebra of Borel sets in �n. For z � �K and r > 0 we then have
h(rz) = 1[a,b](r)1A0 (z). Thus, (3.3) reduces to

|A| = |K |� b�
a
nrn−1dr�μK (A0) = |K |�bn � an�μK (A0) = ����[a, b]A0���� (3.4)

and is therefore true. Now, let us notice that for ϕ : �n � � and ψ : �� � we have��ϕ� Z�Z�K �ψ��Z�K�� = ��n ϕ� x�x�K �ψ��x�K�f ��x�K�dx= n|K | ∞�
0
ψ(r)f (r)rn−1dr ��K ϕ(z)dμK (z).

Taking ϕ,ψ � 1 we learn that n|K |�∞0 f (r)rn−1dr = 1. Thus, taking ψ � and next ϕ � 1 we
arrive at

��ϕ� Z�Z�K �� = ��K ϕ(z)dμK (z), ��ψ��Z�K�� = n|K | ∞�0 ψ(r)f (r)rn−1dr.
The first equation shows that Z�Z�K has distribution μK . Moreover, we get��ϕ� Z�Z�K �ψ��Z�K�� = ��ϕ� Z�Z�K ����ψ��Z�K��,
which shows (b). Finally, (3.4) together with the fact that U 1/n has density nrn−1 on [0, 1]
shows that |A||K | = ��U 1/n � [a, b]��� Z�Z�K � A0� = ��U 1/n Z�Z�K � A�,
which shows the second part of point (a).

We can now prove the probabilistic formula for the volume of the hyperplane pro-
jection of Bnp .
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Lemma 36. For p > 1 and every unit vector a � �n, we then have
voln−1�Proja⊥�Bnp�� = voln−1(Bn−1p )�|X1| ����������� n�j=1 ajXj����������, (3.5)

where X1, . . . ,Xn are i. i. d. random variables with density fp(x) = p
2(p−1)Γ(1/p) |x| 2−pp−1 e−|x| pp−1 .

Proof. By (3.2) and Lemma 35(a) for some constant cp,n we have
voln−1�Proja⊥ Bnp� = C(p, n)����������� n�i=1 ai��������YiS ��������p−1 sgn�YiS �����������= C(p, n) � �Sp−1�Sp−1 � ����������� n�i=1 ai��������YiS ��������p−1 sgn(Yi)����������= C(p, n)�Sp−1 � ����������� n�i=1 ai|Yi|p−1 sgn(Yi)����������.

It now suffices to observe that Xi = |Yi|p−1 sgn(Yi) for p > 1 have densities fp. We then
compute Cp,n by taking a = e1.

Next, Meyer and Pajor’s arguments involving peakedness are replaced by the
stochastic convex (Choquet) ordering, where the independence of Xj is crucial. For
p > 2, additional structure emerges: Xj are Gaussian mixtures. This leads to an analog
of Koldobsky’s theorem, Theorem 16, the proof of which was later simplified in [49] by
bypassing the Fourier analytic arguments (we shall discuss the arguments in Section 4).

Theorem 37 (Barthe–Naor [24]). Let p > 2. For every two unit vectors a and b in �n such
that (b21 , . . . , b2n)majorizes (a21 , . . . , a2n), we have

voln−1�Proja⊥�Bnp�� � voln−1�Projb⊥�Bnp��.
In the range 0 < p < 1, Cauchy’s formula cannot be applied due to the lack of con-

vexity and no non-trivial bounds are known. When 1 < p < 2, the maximal volume hy-
perplane projection is onto a coordinate subspace, as follows from Theorem 33, whereas
theminimal one is not known. Barthe and Naor [24] have shown that the cross-polytope
minimizer ( 1�2 , 1�2 , 0, . . . , 0)⊥ is beaten by the diagonal one for every p > p0 = 4

3 in large
enough dimensions (in particular, as Oleszkiewicz has pointed out in [113], there is no
“formal duality” with sections, for there is not such a phase transition at p0

p0−1 = 4).
For higher codimensions than 1, plainly Meyer and Pajor’s theorem, Theorem 15,

gives a sharp lower bound: For every p � 2, 1 � k � n, and k-dimensional subspace in�n, we have
volk�ProjH�Bnp�� � volk�Bnp � H� � volk�Bkp�,
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attained at coordinate subspaces. For 0 < p < 2, using his reverse form of the Brascamp–
Lieb inequality from [20], Barthe [21] has established the following lower bound.

Theorem 38 (Barthe [21]). Let 0 < p < 2. Fix 1 � k � n. For every k-dimensional subspace
H in �n, we have

volk�ProjH�Bnp�� � �kn�k(1/p−1/2) volk�Bkp�.
This is optimal when k divides n and p � 1 (attained at subspaces from Conjec-

ture 1).

4 Methods
Wewould like to present and emphasize one particular probabilistic point of viewwhich
gathers the major results for both sections and projections under the same umbrella.
The point is that as it is very natural to set up hyperplane projection problems as sharp
L1–L2 comparison inequalities (thanks to Cauchy’s formula; see, e. g., (3.5)), the same
probabilistic picture captures sections upon changing theL1-norm toLq-normswith neg-
ative exponents q.

4.1 Sections
This is a straightforward extension to higher codimensions of Kalton and Koldobsky’s
observation made in [68]; recall (2.8).

Lemma 39 ([42]). Let K be a body in�n of volume 1, star-shapedwith respect to the origin.
Let H be a k-codimensional subspace in �n and let X be a random vector uniform on K.
Let � � � be a norm in H⊥ with the unit ball B. Then

voln−k(K � H) = lim
q�−k+ k + q

k volk(B)�� ProjH⊥ X�q.
Proof. If we let f :H⊥ � [0,+�) be the density of ProjH⊥ X , as in (2.2), we have

voln−k(K � H) = f (0).
The function x �� k−q

k volk (B) �x�−q as q � �k+ behaves like the Dirac delta at 0: If f is
continuous at 0 and integrable, then

lim
q�−k+ k + q

k volk(B) �H⊥ �x�−qf (x)dx = f (0),
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and the lemma follows. To justify the last identity, for simplicity we identifyH⊥ with�k
and fix ε > 0. The set {x, f (x) < f (0) + ε} contains a neighborhood of 0, say δB. Then

k + q
k volk(B) ��k �x�qf (x)dx � �f (0) + ε� k + q

k volk(B) �δK �x�qdx + k + q
k volk(B)δq ��k f= �f (0) + ε�δk+q + k + q

k volk(B)δq ��k f
(the last equality follows by the homogeneity of volume and the layer cake represen-
tation). Taking lim sup as q � �k gives an upper bound of f (0) + ε. A lower bound is
obtained similarly (the second term above can be dropped).

For hyperplane sections of the cube, the limit can be evaluated, which leads to a
particularly handy expression.

Lemma 40 (König–Koldobsky [83]). Let ξ1, ξ2, . . . be i. i. d. random vectors uniform on the
sphere S2 in �3. For a unit vector a in �n, we have

voln−1�Qn � a⊥� = ����������� n�j=1 ajξj����������−1.
Proof. Lemma 39 yields

voln−1�Qn � a⊥� = lim
q�−1+ 1 + q2 ����������� n�j=1 ajXj����������q,

where X = (X1, . . . ,Xn) is uniform on Qn, that is, the components Xj are independent
uniform on [� 12 , 12 ]. By Archimedes’ hat-box theorem, �ξj , e1� has the same distribution
as 2Xj , which allows to get for every fixed q > �1

1 + q
2 ����������� n�j=1 ajXj����������q = 2−1−q����������� n�j=1 ajξj����������q

(see, e. g., [41] for all details). Taking the limit finishes the proof.

Remark 41. Replacing ξj by i. i. d. random vectors uniform on a higher-dimensional
sphere, say Sd+1, and the exponent �1 by �d results in a formula for sections of balls in�∞(�2) by block subspaces (see [32, Proposition 3.2]).

To illustrate the applicability of this lemma, we sketch the proof of the lower bound
of Theorem 14, the Hadwiger–Hensley bound with an optimal deficit.
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Proof (Sketch). The key is to write���������� n�j=1 ajξj����������2 =�i,j aiaj�ξi, ξj� = 1 + 2�i<j aiaj�ξi, ξj�.
The random variable R = 2�i<j aiaj�ξi, ξj� has mean 0. Thus, by convexity,�(1 + R)−1/2 � �(1 � R/2) = 1.
To improve upon this, it suffices to use a more precise pointwise inequality, say(1 + r)−1/2 � 1 � 12 r + 13 r2 � 5

24 r
3, r > �1,

and estimate �R2 and �R3, which are explicitly expressed in terms of aj .
For Bnp-balls, a direct application of Lemma 39 leaves us with a random vector uni-

form on Bnp with mildly dependent components. This however can be circumvented
thanks to the homogeneity of Lq-norms.

Lemma 42 ([42]). Let p > 0 and let Y1, Y2, . . . be i. i. d. random variables with density
e−βpp |x|p , βp = 2Γ(1+ 1/p). Let H be a subspace in�n of codimension k such that the rows of
a k◊nmatrix U form an orthonormal basis of H⊥. Let v1, . . . , vn � �k denote the columns
of U. Then

voln−k�Bnp � H� = voln−k�Bn−kp � limq�−k+ k + q
k volk(B�⋅�)����������� n�j=1 Yjvj����������q,

where � � � is a norm on �k with unit ball B�⋅�.
Proof. Let X = (X1, . . . ,Xn) be a random vector uniform on Bnp . Lemma 39 then gives the
desired formula with Xj in place of Yj and without the factor voln−k(Bn−kp ). To pass to Y
we shall use Lemma 35, which ensures that for Y = (Y1, . . . , Yn) and S = (�ni=1 |Yi|p)1/p
the random vector Y

S is independent of S and moreover U
1/n Y

S is uniformly distributed
in Bnp if U is independent of Yi and uniform on [0, 1]. Therefore,
����������� n�j=1 Xjvj����������q = ����������� n�j=1 U 1/n Yj

S vj
����������q = ��Uq/n� � �[Sq]�[Sq] � ����������� n�j=1 YjS vj����������q = �[Uq/n]�[Sq] � ����������� n�j=1 Yjvj����������q.

This has been instrumental in the proof of Theorem 19. For a simpler application,
the Meyer–Pajor monotonicity result from Theorem 15 holds in fact for Lq-norms. In
view of the previous lemma, this readily implies their theorem.
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Theorem 43. For p > 0, let Y (p)1 , Y (p)2 , . . . be i. i. d. random variables with density e−βpp |x|p ,
βp = 2Γ(1 + 1/p). For every vectors v1, . . . , vn in �k and �k < q < 0, the function

(p1, . . . , pn) �� ����������� n�j=1 Y (pj)j vj
����������q

is non-decreasing in each variable.

Proof. Following Kanter [69], we say for two probability measures μ and ν on�n that ν
is more peaked than μ if ν(K) � μ(K) for every symmetric convex set K in�n. Crucially,
this is preserved by taking products and convolutions of even log-concavemeasures (see
[69, Corollaries 3.2 and 3.3]). If 0 < p < p�, then the density of Y (p�)1 intersects the density
of Y (p)1 exactly once and dominates it (pointwise) near the origin. Thus, Y (p�)1 is more
peaked than Y (p)1 and consequently � Y (p�j )j vj is more peaked than � Y (pj)j vj if pj � p�j . In
particular, for every t > 0,������������ n�j=1 Y (pj)j vj

���������� � t� � ������������ n�j=1 Y (p�j )j vj
���������� � t�

and the result follows by integrating in t.

The measure with density e−βpp |x|p from Lemma 39 enjoys a Gaussian mixture form
when 0 < p < 2. This in turn provides good convolution properties, allowing in particu-
lar to evaluate the limit from Lemma 39. We say that a random variable X is a (symmet-
ric) Gaussian mixture if X has the same distribution as RG for some non-negative ran-
domvariableR and a standard Gaussian randomvariableG, independent ofR. Gaussian
mixtures are continuous, i. e., have densities, and X is a Gaussian mixture if and only if
its density f is of the form

f (x) = ∞�
0
e−tx2dν(t)

for a Borel measure ν on [0,+�). By Bernstein’s theorem, this is equivalent to g(x) =
f (�x) being completely monotone, that is, (�1)ng(n)(x) � 0 for all n � 0 and x > 0, which
gives a practical condition.We refer to [49] for further details andmore examples. Thus,
if X1, . . . ,Xn are independent Gaussian mixtures, say Xj = RjGj , and v1, . . . , vn are vectors
in�k , then, conditioned on the values of Rj ,�Xjvj is a centered Gaussian random vector
in �k with covariance matrix �R2j vjv�j .
Lemma 44 ([49, 108]). Let 0 < p < 2. There are non-negative i. i. d. random variables
R1,R2, . . . such that for every subspace H in �n of codimension k, we have

voln−k�Bnp � H� = voln−k�Bn−kp ���det� n�
j=1 Rjvjv�j ��−1/2,
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where v1, . . . , vn are vectors in �k such that the rows of the k ◊ n matrix with columns
v1, . . . , vn form an orthonormal basis of H⊥.
Remark 45. To describe the distribution of Rj , for 0 < α < 1, we let gα be the den-
sity of a standard positive α-stable random variable Wα, i. e., with the Laplace trans-
form �e−uWα = e−uα , t > 0, and we let V1,V2, . . . be i. i. d. random variables with density�π
2Γ(1+1/p) t−3/2gp/2(t−1). Then Rj = (�V−1/2j )2Vj; see [49].
Proof of Lemma 44. Yj from Lemma 39 are Gaussian mixtures, say Yj = TjGj for some
non-negative random variables Tj and standard Gaussians Gj , all independent. Then,
conditioned on Tj , the limit in Lemma 39 gives the density at 0 of the random variable� Yjvj , which, as we said, is centered Gaussian in�k with covariance� T2j vjv�j ; thus, its
density at 0 equals (2π)−k/2(det[�nj=1 T2j vjv�j ])−1/2.

For hyperplane sections, this formula directly explains Koldobsky’s Schur convexity
result from Theorem 16.

Proof of Theorem 16. We first observe that if F : �n � � is convex and permutation-
symmetric, then F is Schur convex, namely x � y implies F(x) � F(y). Indeed, it is a stan-
dard fact (see [25]) that there exist (λσ)σ∈Sn , where Sn stands for the set of permutations of{1, . . . , n}, such that λσ � 0,�σ∈Sn λσ = 1, and x = �σ∈Sn λσyσ , where yσ = (yσ(1), . . . , yσ(n)).
Thus,

F(x) = F� �
σ∈Sn λσyσ� � �σ∈Sn λσF(yσ) = �σ∈Sn λσF(y) = F(y).

For a unit vector a in �n, Lemma 44 yields
voln−1�Bnp � a⊥� = voln−1�Bn−1p ��� n�

j=1 a2j Rj�−1/2.
Since (�)−1/2 is convex, the right-hand side is clearly convex and permutation-symmetric
(Rj are i. i. d.) as a function of (a21 , . . . , a2n) and thus it is also Schur convex.
4.2 Projections
Somewhat analogous to the Fourier analytic approach to sections, there is a formula
for the volume of hyperplane projections of a convex body as the Fourier transform
of its curvature function, as discovered by Koldobsky, Ryabogin, and Zvavitch [79] (see
also their survey [78]). We do not touch upon this connection here at all. Instead, we
focus on a probabilistic perspective and highlight two approaches to the L1–L2 moment
comparison inequalities like (3.1), arising in hyperplane projections.
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As we have just seen for sections, for Gaussian mixtures, thanks to their good ad-
ditive structure, we readily get precise Schur majorization-type results. This proof is
from [49].

Proof of Theorem 37. Recall formula (3.5) for hyperplane projections. For p > 2, the den-
sity fp(t) of Xi is completely monotone; thus, Xj are Gaussian mixtures, say Xj = RjGj for
some i. i. d. non-negative random variables Rj and standard Gaussians Gj , all indepen-
dent. Then, adding the Gaussians first conditioning on Rj yields

����������� n�j=1 ajXj���������� = �� n�
j=1 a2j R2j�1/2�|G1|. (4.1)

As in the proof for sections, the Schur concavity result follows from the concavity
of (�)1/2.

The same argument bluntly extends to arbitrary Lq-norms, giving sharp Khinchin
inequalities (see [6, 49]).

When 1 � p < 2, the density of Xj in (3.5) is bimodal and understanding the L1-norm
of their weighted sums is elusive, mainly due to complicated cancelations – a problem
which completely disappears in (4.1). For p = 1, Xj become discrete (symmetric random
signs). We present two completely different Fourier analytic proofs. The first proof, due
to Haagerup, is in the same spirit as Ball’s proof from [7] for hyperplane cube sections.

Proof of Theorem 32 (Haagerup [60]). We want to minimize �|� ajεj| subject to � a2j =
1. We can assume that all aj are positive. If at least one exceeds 1�2 , say a1 > 1�2 , by
averaging over the other coefficients we obtain

�������� ajεj
������ � �ε1 ��������a1ε1 + ��j>1 ajεj�������� = a1 > 1�2 ,

as desired. Now we assume that for all j, aj � 1�2 . A starting point is the Fourier analytic
formula |x| = 1π �� �1 � cos(tx)�t−2dt, x � �.
Thus, for an integrable random variable X ,�|X | = 1π �� �1 � Re��eitX��t−2dt
(see also [60, Lemmas 2.3 and 4.2] and [59, Lemma 3]). In particular, using independence
and �eitεj = cos t, we get
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�������� ajεj
������ = 1π �� �1 �� cos(taj)�t−2dt.

By the AM-GM inequality, this gives the following bound:�������� ajεj
������ �� a2j F�a−2j �

with

F(s) = 1π ���1 � ��������cos� t�s���������s�t−2dt, s > 0.
See (2.4) and the ensuing function Ψ in Ball’s proof. Here, however, function F can be
expressed explicitly. Using �∞n=−∞ 1(t+nπ)2 = 1

sin2 t , we arrive at

F(s) = 1
π�s �� �1 � | cos t|s�t−2dt = 1

π�s ∞�n=−∞ π/2�−π/2�1 � (cos t)s�(t + nπ)−2dt= 1
π�s π/2�−π/2�1 � (cos t)s� sin−2 tdt= 2�πs Γ( s+12 )Γ( s2 ) .

Claim. F(s) increases on (0,+�).
Using this claim and the fact that aj � 1�2 for all j, we finish the proof,�������� ajεj

������ �� a2j F�a−2j � �� a2j F(2) = F(2) = 1�2 .
Noteworthily, this is tight when n = 2 and a1 = a2 = 1�2 .

To show the claim, we note that lims�∞ F(s) = � 2
π (e. g., by Stirling’s formula) and

that

F(s + 2) = � s
s + 2 s + 1s F(s) = �1 � 1/(s + 1)2�−1/2F(s),

which iterated yields F(s + 2n) = F(s)�n−1k=0(1 � 1/(s + 2k + 1)2)−1/2, so letting n��,
F(s) = � 2π ∞�k=0�1 � 1/(s + 2k + 1)2�1/2.

The second proof uses the machinery of Fourier analysis on the discrete cube{�1, 1}n. We refer for instance to [111, Chapter 1] for basic background.
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Proof of Theorem 32 (Kwapień–Latała–Oleszkiewicz [81, 88, 112]).
Weworkwith L2({�1, 1}n,�) equippedwith the product probabilitymeasure on the cube{�1, 1}n, i. e., the distribution of (ε1, . . . , εn), and the inner product �f , g� = �[f (ε)g(ε)],
f , g: {�1, 1}n � �. Let

f (x) = ���������� n�j=1 ajxj����������, x � {�1, 1}n.
We write its discrete Fourier expansion with respect to the orthonormal system of the
Walsh functions wS(x) = �j∈S xj indexed by the subsets S � {1, . . . , n} with w�(x) � 1.
We have

f (x) =�
S
bSwS(x), bS = �f ,wS�.

Since f is even, bS = 0 provided |S| is odd. The crux is to consider the Laplace operator
L acting on L2({�1, 1}n,�), (Lg)(x) = 12 �y∼x�g(y) � g(x)�,
where the sum is over all neighbors y of x, i. e., the points in {�1, 1}n differing from x by
one component. As can be checked, the Walsh functions are its eigenfunctions, LwS =�|S|wS , and for even functions g, we have the following Poincaré-type inequality:�g,�Lg� � 2 Var(g).
Claim. We have (�Lf )(x) � f (x) for every x � {�1, 1}n.

Using this claim in the Poincaré inequality,

2��f 2 � (�f )2� � �f ,�Lf � � �f , f � = �f 2,
which gives�f � 1�2 (�f )2, as desired. The claim follows from rearranging the following
consequence of the triangle inequality:|�a1x1 + a2x2 + � � � + anxn| + |a1x1 � a2x2 + � � � + anxn| + � � � + |a1x1 + a2x2 + � � � � anxn|� (n � 2)|a1x1 + � � � + anxn|.

We stress out that this proof is extremely robust: It only uses the triangle inequality
and hence extends ad verbatim to the case where the coefficients aj are vectors in an
arbitrary normed vector space.

The history of this argument is a bit convoluted. Latała and Oleszkiewicz’s work
[88] contains all the crucial ideas of the modern proof presented above; however, it is
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not written in a Fourier analytic language. The proof presented here was devised by
Kwapień and is based on the Walsh functions (the characters of {�1, 1}n). As we have
seen, one of its main components is a strengthened Poincaré-type inequality in the pres-
ence of symmetry, the idea of which appeared first in [81] (in the continuous case), ex-
tended to the discrete case in [112] (perhaps the first place where this proof appears in
print). Oleszkiewicz presented this proof in 1996 at MSRI (during a workshop in har-
monic analysis and convex geometry).

We finish with a sketch of the Barthe–Naor proof from [24] of the monotonicity
result from Theorem 33 featuring yet another tool, useful in proving Khinchin-type
inequalities: the stochastic convex ordering. This circle of ideas was further developed
in [50].

In the simplest setting sufficient for our purposes, for two symmetric random vari-
ablesX and Y , we say that Y dominates X in the convex (or often called Choquet) stochas-
tic ordering if�ϕ(X) � �ϕ(Y ) for every even convex function ϕ:�� [0,+�]. It is clear
that this tensorizes and is preserved by convolution: If Y dominates X and Z is a sym-
metric random variable, independent of them, then Y +Z dominates X +Z. We will only
need the following sufficient condition.

Lemma 46. If random variables X and Y satisfy �|X | = �|Y | and have even densities f
and g, respectively, and there are 0 < x1 < x2 such that {t � 0, g(t) < f (t)} is the interval(x1, x2) (f and g intersect twice), then Y dominates X in the convex stochastic ordering.

Proof. Let ϕ:�� [0,+�] be an even convex function. Thanks to the symmetry of X , Y
and the constraint �|X | = �|Y |, the desired inequality �ϕf � �ϕg is equivalent to∞�

0
�ϕ(x) � αx � β��g(x) � f (x)�dx � 0

with some (any) α, β � �. We choose α, β as the unique parameters such that the convex
function ψ(x) = ϕ(x) � αx � β vanishes at x1 and x2. Then, by convexity, ψ � 0 on (x1, x2)
and ψ � 0 outside that interval. Thus, the integrand is pointwise non-negative.
Proof of Theorem 33. In view of (3.5), we aim at showing that the function

p �� 1�|X (p)1 |�������� ajX (p)j ������
is non-decreasing on [1,+�), where X (p)j are i. i. d. random variables with density pro-
portional to |x| 2−pp−1 exp{�|x| pp−1 }. By the tensorization property, it suffices to prove that for
1 � p < q, X (q)1 /�|X (q)1 | dominates X (p)1 /�|X (p)1 |. This readily follows from Lemma 46.
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5 Other connections
We close this survey with two tangential topics related to sections: an application of
Ball’s cube slicing inequality to entropy power inequalities and a reformulation of the
conjectural logarithmic Brunn–Minkowski inequality in terms of sections of the cube.

5.1 Entropy power inequalities
Recall (2.2), viz. the volume of a central hyperplane section by a⊥ is the maximum value
of the density of the marginal �a,X� = � ajXj (there f (0) = �f �∞ by the symmetry and
log-concavity of X). The maximum density functional

M(X) = �f �∞
of a randomvectorX in�n with density f is closely related to classical topics in probabil-
ity such as the Lévy concentration function, small ball estimates, and anticoncentration,
as well as information theory, particularly the entropy power inequalities. We refer to
the comprehensive surveys [96, 110]. The entropy power inequality originated in Shan-
non’s seminal work [128] and asserts that the entropy power

N(X) = exp� 2nh(X)�, h(X) = � ��n f log f ,
is superadditive: For independent random vectors X and Y in �n, we have

N(X + Y ) � N(X) + N(Y ),
and plainly, by induction, the same is true for arbitrarily many independent summands.
In analogy, we let

N∞(X) = exp� 2nh∞(X)� = M(X)−2/n, h∞(X) = � log �f �∞,
be the �-entropy power of X , sometimes called the min-entropy power (because for
a fixed distribution, it is the smallest entropy power across the family of all Rényi en-
tropies). The min-entropy power inequality in dimension 1 reads as follows.

Theorem 47 (Bobkov–Chistyakov [27], Melbourne–Roberto [100]). Let X1, . . . ,Xm be inde-
pendent random variables with bounded densities. Then

N∞(X1 + � � � + Xm) � 12 m�
j=1N∞(Xj)
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with equality if and only if two of these variables are uniform on A and c � A, respec-
tively, for some set A in� of finite measure and some c � �, while the other variables are
constant.

Bobkov and Chistyakov proved this inequality with the sharp constant 12 using Ball’s
cube slicing inequality, whereas the equality conditions have recently been established
by Melbourne and Roberto using their robust version (see Theorem 14).

The argument rests on the following subtle comparison due to Rogozin.

Theorem 48 (Rogozin [122]). Let X1, . . . ,Xm be independent randomvariableswith bound-
ed densities and let U1, . . . ,Um be independent uniform random variables on intervals cho-
sen such that M(Xj) = M(Uj) for each j. Then

M(X1 + � � � + Xm) � M(U1 + � � � + Um).
Theorem 47 then follows by invoking Ball’s theorem, Theorem 6, which after incor-

porating the variance constraint amounts to

M(U1 + � � � + Um) � �2�M(U1)−2 + � � � +M(Um)−2�−1/2.
In [97], Madiman, Melbourne, and Xu developed multivariate generalizations of Ro-
gozin’s result where the extremal distributions are uniform on the Euclidean ball. They
have combined it with Brzeziński’s bound (2.7) to obtain an extension of Theorem 47
to �n-valued random vectors with the sharp constant 1

2 replaced by Γ(1+n/2)2/n(1+n/2) , which
is asymptotically sharp (as m � �). Previously, using a different argument exploit-
ing Young’s inequalities with sharp constants, Bobkov and Chistyakov in [26] obtained
such an extension with a slightly worse constant 1

e (“attained” as n � �), whereas in
[121], Ram and Sason obtained constants dependent on the number of summands. An-
other direction, related to higher-dimensionalmarginals, has been explored by Livshyts,
Paouris, and Pivovarov in [95].

We end this subsection with a conjectural entropic Busemann-type result.

Conjecture 10 (Ball–Nayar–Tkocz [15]). Let X be a symmetric log-concave random vector
in �n. Then

v �� �N��v,X�� = eh(�v,X�)
defines a norm on �n.

Note that Busemann’s theorem, Theorem 1, is equivalent to this statement with
N∞(�) in place of the entropy power N(�) (for uniform distributions on symmetric
convex bodies which generalizes to all symmetric log-concave distributions by Ball’s
results from [8]). What supports this conjecture is the fact that �N(�v,X�) defines an
e-quasinormwhich is also a 1

5 -seminorm (see [15]), and the conjecture holds for theRényi
entropy power of order 2 (see [92]). For extensions to κ-concave measures, see [96].
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5.2 The logarithmic Brunn–Minkowski conjecture
In [37], Böröczky, Lutwak, Yang, and Zhang conjectured a strengthening of the Brunn–
Minkowski inequality in the presence of symmetry and convexity, namely

voln�Mλ(K , L)� � voln(K)λ voln(L)1−λ,
for all symmetric convex sets K and L in �n and every 0 � λ � 1, whereMλ(K , L) is the
intersection of the symmetric strips

Sθ = �x � �n, �����x, θ����� � hK (θ)λhL(θ)1−λ�
over all unit vectors θ in Sn−1. Here, as usual hK (θ) supy∈K�θ, y� denotes the support func-
tional of K . Still resisting significant efforts of many researchers over a decade, this far-
reaching conjecture stems from the so-called logarithmicMinkowski problem (see [38]);
we refer to E. Milman’s recent work [103] for further comprehensive background, refer-
ences, and the best results to date. Relevant to us is an equivalent formulation in terms
of a certain convexity property of volumes of sections of rescaled cubes.

Conjecture 11. Let 1 � k � n. For every k-dimensional subspace H in �n, the function(t1, . . . , tn) �� volk�diag�et1 , . . . , et1�Bn∞ � H�
is log-concave on �n.

For precise statements and explanations of equivalences for this and similar formu-
lations, we refer to [108, 123, 124]. Here, as usual diag(et1 , . . . , etn ) is the n ◊ n diagonal
matrix with the diagonal entries et1 , . . . , etn , so that diag(et1 , . . . , et1 )Bn∞ = [�et1 , et1 ]◊ � � �◊[�etn , etn ]. In fact, we conjecture that the conjecture remains true with Bnp in place of
the cube Bn∞ for every p � 1; we have been able to verify this for p = 1 in [108] using
Lemma 44.
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