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Abstract: We prove that for d > 0 and k > 2, for any subset A of a discrete cube {0, l}d , the k—higher
energy of A (i.e., the number of 2k—tuples (a1,as,...,ax) in A% with a) —ay = a3 —as = --- =
ark—1 — apy) is at most ]A|1°g2(2k+2), and log, (2% +2) is the best possible exponent. We also show that
ifd > 0 and 2 < k < 10, for any subset A of a discrete cube {0, l}d, the k—additive energy of A (i.e.,
the number of 2k—tuples (ay,az,...,axy) in A with a; +ay + - +ay = agy1 + agyo + - +azy) is

at most |A|10g2 (zkk), and log, (zkk) is the best possible exponent. We discuss the analogous problems for
the sets {0,1,...,n} forn > 2.

1 Introduction

The additive energy E(A) of a finite subset A of an additive group G is defined as the number of quadruples
(ay,az,a3,a4) € A X A X A X A such that a; +a, = az + a4 (see [12]). Observe that for any triple (a,a,a3) there
is at most one a4 such that a; +a> = a3 + ay, so we have the trivial upper bound E(A) < |A|* (here |A| denotes the
cardinality of A). This bound is attained, for example, when A is itself a finite group. Considering the diagonal
solutions a; = a3 and a, = a4 we also observe the trivial lower bound E(A) > |A|*.

1.1 Higher energies
We define the k—higher energy of a set A C {0,1}¢ C Z¢ by

Ec(A) == {(a1,a2,...,a0-1,a0) €EA* 1a1 —ay = a3 —ay = -+ = ay—1 —ax}|.
This has been studied by many authors, see [9], [10]. In this case we have the trivial bounds |A[¥ < Ex(A) < A1,

Theorem 1. Let d >0, k > 2, and let A C {0,1}%. Then Ex(A) < |A|%, where q; = log, (2X +2). Furthermore,
the exponent gy, cannot be replaced by any smaller quantity.
Remark 2. This Theorem extends a result obtained by Kane—Tao [5, Theorem 7] for k = 2.

The second claim in our Theorem 1 follows considering the case A = {0, 114, in this case we have |A| =
{0, 1114 = 27 and Ey({0, 1}4) = (2% +-2)".
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1.2 k-additive energies

We discuss another generalization of Kane-Tao result [5, Theorem 7]. We define the k-additive energy Ej(A) of
a subset A of an additive group G as the number of 2k—tuples (a1,ay,...,ax) in A%* with a; +a +--- +a, =
i1+ agya + -+ ay. In this case the trivial bounds are |A[¥ < E;(A) < |A|**~!, and we have the following
refinement in the cube {0, 1}.

Theorem 3. Letd >0, 2 <k < 10, and let A C {0,1}. Then Ex(A) < |A|P%, where p; :=log, ( ) Furthermore,
the exponent py cannot be replaced by any smaller quantity.

Remark 4. Theorem 3 also extends a result obtained by Kane—Tao ([5, Theorem 7]).

4k 2k 4k
From the well-known bounds for the central binomial coefficient N < ( ) < NET one recovers

pr<2k—1. (1.1)

As previously, the second claim in our Theorem 3 follows considering the case A = {0, 1}¢, since in this case
d
we have |A| = |{0,1}|? =29 and Ex(A) = {Z;(:o (lf) 2] = (zkk )d. We prove this theorem by induction on d together

with the following subtle inequality for Legendre polynomials.

Lemma 5. Let 2 < k < 10 and py =log, (%). If a,b > 0, then

ko k\? ;
Z() " T P < (a+ D). (1.2)

j=0\J

The polynomials Qy(t), k > 0, defined by

1 d" D = i
2Tk!dtk — zkz z—1 (t+1)/

are called Legendre polynomials. They are orthogonal with respect to Lebesgue measure on the interval [—1, 1],
each Q(r) has degree k, and they satisfy normalization constraint Q(1) = 1. Dividing both sides of (1.2) by

aP* (without loss of generality assume a # 0), then (1.2) takes the form (y — 1)fQy (”1> < (14 y*/P)Pe with

= (b/a)P/* > 0. If we let 1 := y tl —7 (without loss of generality assume y > 1), then (1.2) is the same as

k k N\ Pk
t—1\m t+1\m
Qk(z)§<<2>”+<;>“> forall ¢> 1.

This explains the reason we call Lemma 5 the inequality for Legendre polynomials.

Ok(t) =

1.3 More general discrete cubes

Let d > 0. Let us consider additive energies of subsets of general discrete cubes! {0,1,...,n}?. Let t, be the

smallest number such that
Ey(A) < |AJ"

I'A related problem about the lower bound for the size of sumsets of subsets of the general discrete cube was studied, e.g., in [1, Theorem
5]
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for all A C {0,1,... ,n}d. We have seen that in both Theorem 1 and Theorem 3 we have g = log E({0.1}7) and

log [{0, 1}/
Dr = %. Thus, one could a-priori expect a similar phenomenon for the additive energy of {0,1,...,1n}.

However, it turns out that this is not the case in general, not even for the discrete cube {0, 1,2}¢.

Proposition 6. The following inequality holds

logE>({0,1,2}9)
log|{0,1,2}4]

2

Although finding the precise values of the optimal powers #, for general discrete cubes {0, 1,...,n}¢ seems to
be a difficult problem, we obtain some bounds describing the asymptotic behavior of #, as n goes to infinity.

Proposition 7. Ifn =2m — 1, then

16m3—|—2m> S5 log(3/2)

3>, >1 o\
= fn = OBom < 3 log(2m)

If n =2m, then

16m3+24m2—|—14m+3) o3 log(3/2)

3>t,>1 — .
= fn = 082m < 3 log(2m)

2 Proof of Theorem 1

The proof of Theorem 1 proceeds via induction on d. Observe that the result is trivial for d = 0. Assume now that
d > 1 and that the result has been established for d — 1. Any set A C {0, 1} can be written as

A= (Ao x {0}) 8 (A; x {1})

for some Ag,A; C {0, l}dfl, where W means disjoint union. Then we have

Ex(A) = |{(a1,a2,...,a%) € (Agx A1) 1a) —ay =a3 —as = - = a1 —ay}|
+{(ar,a2,...,ax) € (A1 xAg) ta1 —ay =a3 —ag = - = agy_1 —an}|
k
k . .
1 () ) € (43 < A
i=0
taj—ay=az—as =+ =dap_1 —ay}|
" _ k—1 k
=C+CG +Ek(A0> +Ek(A1) + Z <i>C,-7k. 2.1)
i=1

The next proposition plays a fundamental role in our proof.

Proposition 8. Forall 1 <i < k—1we have that
Cik < [Ao|F4]Ay| T4,

Moreover, we have that
i 79 i 79
C1 < |A()| 2 ’A1| 2 and C2 < |A()| 2 ‘Al‘ 2,
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Proof of Proposition 8. We observe that
E(A) ==Y (xaxxa) (),
x€74

where )4 denotes the characteristic function of the set A, and f x g denotes the correlation of the functions f and g
defined by fxg(x) := ¥yez4 f(y)g(x+y) [10, Equation 7]. Moreover, by Holder’s inequality we have

Cix = Z (XAO *on)i(x) (%Al *%Al)kii(x)

xezZ4
< ( Z (XAo*XAo)k(x)) ( Z (%Al *XAl)k(x))
xcZ4 xez4

~1 ~k=i
=E{ (Ao)E" (A1)

qy (k—i)

o
< Ao FlAi]

The first identity follows from the facts that Y4, * X, (x) counts the number of pairs (y,z) € A3 such that z —y = x,
and Y4, x Xa, (x) counts the number of pairs (y,z) € A? such that z —y = x. We define

feg:= Y fla)f(az)... fla)g(br)g(b2). .. g(by).
ay,az,....ar {0,134
by,by,....br{0,1}¢
ai—bi=ay—by="=ay—by
Then
feg=
Y Y  fla)fla+e)f(ai+c3)... flar+ck)
C2,C3,..., L‘ke{—l,o,l}d QIE{O,I}d
a|+c'i€{0,1}d

X Y, g(bi)g(bi+ca)g(bi+c3)...8(b1 +cx)
b e{0,1}¢
b1+Ci€{0,1}d

Therefore, by the Cauchy-Schwarz inequality we obtain
C1 = X @ X < (Xag ® 2a0) /(4 0 2a,)'?
= B (A0)E (A1) < Aol * i .
Similarly C; < |Ao|? |A;]7 . O

Then, from (2.1), using Proposition 8 we obtain

- _ B =1k
B =i+ G Bilan) + Bian + X () e
i=1

ax a & [k i ke
§2|A0‘2|A1|2 +Z ; |A0|qu‘A1’ T 9k
i=0

= 2|40 T |A1] 7 + (40| F +]A41| %)X,
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Thus, to complete the inductive argument, it is enough to prove that for x = |Ag| and y = |A;| one has

2Ty 4 (xF +yt )< (x+y)%. (2.2)

Lemma9. Forall a € [0,1] we have

NS

@ +(1-a)t Y +2a%(1-a)? < 1. 2.3)

Observe that (2.2) follows from (2.3) by taking a = % A key ingredient in the proof of Lemma 9 is the
following result established by Carlen, Frank, Ivanisvili and Lieb [2, Proposition 3.1].

Proposition 10. For all a € [0,1] and p € (—0,0]U][1,2]

2a%(1—a)t ’
(@”+(1—a)’) 1+(M) <L (24

Moreover, the reverse inequality holds if p € [0, 1] U[2,0).

Proof of Lemma 9. We observe that (2.3) is equivalent to proving

qk k
2ka2k(1—a) 1
a* +(1—a) (ax +(1—a)* )k

Since k < g =1log,(2F+2) < k+ 1 for all k > 2, by taking p = % in Proposition 10 we obtain

’1k_1

%N\ F

2a2% (1 —a)x \* 1

1+ (—)A < _— 2.5)
aT—l—(l—a)T 03

Thus, it is enough to prove

2%
2ka3§(1 a)% ¢ 2a2k(1—a)211(c Ik
| S ) < 1+ e
a7+(1—a)7 aT—I—(l—a)T
2az§( a)
ak+(1 a)k

»\§ ¥\§

Defining u := (observe that p € [0, 1] by AM-GM inequality), it is enough to prove

k
u %
! 2k—1 < (L po ) k

2%
for all u € [0,1]. By letting z := u %, we reduce the problem to proving

Z _
gt < (12 (26)
for all z € [0, 1]. The equality holds at z =0 and z = 1. Moreover, the left hand side of (2.6) is convex in z (as

2 <k < gx), and the right hand side is concave (as k < gy < k+ 1). Therefore (2.6) holds for all z € [0, 1].
O

DISCRETE ANALYSIS, 2023:13, 16pp. 5


http://dx.doi.org/10.19086/da

J. DE DI10OS PONT, R. GREENFELD, P.IVANISVILI AND J. MADRID
3 Proof of Theorem 3

In this section we show how to obtain Theorem 3 from Lemma 5, and then we prove this lemma. As before, we
proceed via induction. Clearly, the result holds for d = 0. Assume now d > 1, and the result has been established
ford — 1. Any set A C {0,1}¢ can be written as

A= (Agx{0})W (A x{1})

for some Ag,A; C {0,1}4-1.
We have

Ek(A):Ek(A ) +Ex(A1)
_ 2
Z < > ’{ (ar,az,...,a) EAE')XA]{ﬂ. ><A6 XAlfii
tay+-cFap = ag - +axd|

k—1 k 2
Er(Ao) +Ex(A1) + ) (;) ke 3.1)

i=1

Similarly to Proposition 8, we have

Proposition 11. Forall 1 <i <k—1 the following inequality holds
Cix < |Ao|FPe|A | 7P, (3.2)

Observe that Theorem 3 follows from Proposition 11. Indeed, by (3.1), Proposition 11 and (1.2) we have

2
Ex(A) = Ex(Ao) + Ex(A1) +Z <k) ik

i=1
< Ex(Ao) + Ex(Ar) Z ( ) \Ao\épk|z41|%pk
< (lAol + A+ [)"*
= Jap
Proof of Proposition 11. We observe that

Cik =Y |2ao i1 Xao * Xay #k—i-1 2Xa, (%)%,

xeZ4

where, for compactly supported f, g, we define f*g(x) := ¥ ez f(v)g(x —y) and *; := *(*;_1). Indeed, this
follows from the fact that

XAo *i—1 XAo * XA, ¥k—i—1*Xa, (%)

counts the number of k-tuples (aj,az,...,a;,dit1,...,ax) € Af) X A'l‘_i such that a; +az + -+ - +a; = x. Then, by
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Plancherel’s theorem and Holder’s inequality we obtain
Cik =Y |Xao*i-1 Xao * XA, *k—i-1 XA, (x))?
xeZ4

= [ 120,00 P10, )P V()

( /W | R4 (y)\z"dm(y))i ( /T i, (y)lz"dm(y)>

k=i
k

<
i k—i
k k
= ( Y %Ao|2> ( Y a s XA1|2>
xezd xeZ4
i % P (k—i)py
=E{(A))E," (A1) < Aol F [A1] T,
]

where m is the Haar measure on T¢ with m(T¢) = 1.
Proof of Lemma 5. After re-scaling, we observe that to prove (1.2) it is sufficient to show
(3.3)

k k 2 )
Z <) xPER < (1 4 x) P
i=0 \!

for all 1 < x < oo. Moreover, after a change of variable, this is equivalent to proving that
(3.4)

k 2
k . &

g(y) =Y, <l> Y < (14y%)e = hy(y)

i=0

for all 1 <y < oo, where o := % € (1/2,1). Let f(y) := loghi(y) — loggk(y). We need to show f(y) > 0 for all

y > 1. Observe that f(1) = 0. Moreover
lim f(y) = lim1 e+ =0
A ING I A
and, since
1\ k £ 1
<a—|—1> Zl—i—a—ya and ;)(i) y_’:1+0(;),

we have f(y) > 0 whenever y is sufficiently large. Thus, it is sufficient to prove that f’ changes sign at most once in

(1,00). Observe that

2, ) 2.
X () Y k=X, (§) iy
= S .
(14+3) (250 ()¥)
)Ziyi changes sign in (1,00) at most once. We define

Thus, we need to prove that y*Y'X (lf) yilk—i) =Yk, (lf
k k 2 ) k k 2 )
#(y) :=log (y“Z < > y’(k—i)> —log (Z () iy’) .
i=0

i=0 L
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We then have ¢ (1) = 0 and

nZyn—l +0(yn—2)
o(y) = alog(y) +log < 00T > as y—oo.

Hence limy_,.. ¢ (y) = —oo?. It suffices to show that ¢’ changes sign (from + to -) at most once in (1,0). Observe
that

k(i1 ko (k22 i1

oy 0 Yig ()Y k=i Xi(;) iy
Yio (1) yi(k—1i) Yio (1) 1y
B Z,’ziociyl
2 . . 2.\’
y (B0 (9" —-0) (X0 () i)

where

G= ¥ (".)2(’1‘)2[a<k—z>j+(k—z>u—ﬁ<k—z>1

jHi=i \J
0<j,l<k
K2 (k\*
=) (J) <1> jlk—=1)(ot+1—j) foralli, 0 <i<2k.
o
050k

Let P(y) := Y%, Ciy'. We would like to show that P(y) changes sign at most once from + to — in (1, o). First, we
claim P(y) is a palindromic polynomial, i.e., C; = Cy;_; for all i = 0,. .. k. Indeed,

o= () (8) ien@ri-n-

ji=2k—i \J
0<jI<k

k \2/ &k \2
. (k= (k=) (k= 1) (ec+ (k— j) — (k—1)).
(mg);fg{z):i (k— J> (k— l) g /

If we denote / = k — j and j = k — [, then we obtain

Cui= Y, <§>2<€>2.}(k— D(e+1— ),

i+f~:i ']
0<j,i<k

which coincides with C;. Since P is the palindromic polynomial it follows that yy is its positive root if and only if
P(1/yo) = 0. Therefore, to show that P(y) changes sign from + to — at most once in (1,00), it suffices to verify
that P(y) has at most two roots in (0,e). By Descartes’ rule of sign change P(y) has at most two positive roots if
there is at most two sign changes between consecutive (nonzero) coefficients C;, 0 < i < 2k. Since C; = Cyy_; it
suffices to show that there is at most one sign change between consecutive (nonzero) coefficients, C; for 0 <i < k.
Since Cy = 0 we should consider coefficients C; with 1 <i <k. In the table below C; := sign(C;), and 2 < k < 10.

2Here we use the notation V(y) = O(U(y)) at yo to denote that an estimate of the form |V (y)| < C|U(y)|, with some constant C > 0,
holds around yj.
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0.81
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qr(x)

041

021

0.0+ T T T T ]
0.0 0.2 0.4 0.6 0.8 1.0

3.1

Figure 3.1: Graphs of g, (x) for k € {2";1 < n < 20}. The picture suggests that gx(x) < 1 for all x € [0, 1]. Lower
graphs correspond to larger values of k.

] k C; C C C CI C ¢ C G CTO‘
2 -1 1
3 -1 1 1
4 -1 1 1 1
5 -1 1 1 1 1
6 -1 1 1 1 1 1
7 -1 -1 1 1 1 1 1
8§ -1 -1 1 1 1 1 1 1
9 -1 -1 -1 1 1 1 1 1 1
0 -1 -1 -1 1 1 1 1 1 1 1

O]

Remark 12. It seems to us that Lemma 5 holds for all £ > 2. We have verified at most one sign flip of the numbers
Ci, 1 <i < konacomputer for £ < 100. It is an interesting question to verify that there is at most one sign flip in
the sequence of C; for all .

Note added in proof

Motivated by Remark 12, Vjekoslav Kovac recently proved inequality (1.2) for all k > 2, see [7].
Remark 13. To prove (3.3) it suffices to show

ko (k2 pr(k—i) /K
_ T (i) x <1 (3.5)

Pelx): (tor =

for all x € [0, 1]. The inequality (3.5) can be easily verified around x = 0. One can also verify it around x = 1.
Therefore, to obtain the desired inequality in the whole interval [0, 1] it would be enough to prove that each ¢ has
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+1

CODoE

[Exalalelv]

—0 300z

—0 00

—0.3005

(R} Gz G (R [ER=] 1a

Figure 3.2: Graph of y;3(x). We observe that y3(x) is concave, and y;3(x) intersects the line y = 1 at only one point
in (0,1).

only one critical point in (0, 1). We observe that x is a critical point of ¢ if and only if

(19790 = ¥ (k) ["k“‘i)xﬁ"k”u x) —pkxpk"k’] ~o,

i=0 \! k

or, equivalently
k=1

N2 Thk—i iy @, ki
Wi (x) i = Z <l> |:kxl7kk1 _kxpkk:l =1.

i=0
Therefore, as y;(0) = 0 and yi(1) = 1, in order to establish the desired inequality, i.e., @ (x) < 1 for all x € (0, 1),
it would be enough to prove that y;(x) is concave. For small values of k, one can establish the concavity of y;;
in particular, this is the approach of Kane-Tao [5] for k = 2. Figure 3.2 illustrates that y; is concave for k = 3.
Unfortunately, this is no longer the case if & is large; e.g., Figure 3.3 illustrates the non-concavity of y; for k as
small as 7 already. Another approach to prove Lemma 5 would be to show ¢4 (x) < ¢ (x) which numerically
seems correct.

4 Proofs of Propositions 6 and 7

The proof of Kane-Tao [5] of the {0, 1}-analogue, as well as the proofs of Theorems 1 and 3 are based on the
following two steps:

* Guessing the extremizer to the inequality (which, in those cases, happened to be the entire set).

* Showing an inductive bound that allowed us to see that the extremizer candidate is indeed the extremizer.

In the {0,1,2}" or more general cases the entire set is not generally the extremizer, and finding the extremizer
becomes a key step of the proof:

DISCRETE ANALYSIS, 2023:13, 16pp. 10
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19010

1045
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(X ) O 2 Cat L& [EX= 14a

Figure 3.3: Graph of y7(x). We observe that y7(x) is not concave, however y7(x) still intersects the line y = 1 at
only one point in (0, 1).

* We first construct an auxiliary problem that inducts, or, in this case tensorizes essentially by construction.
Solving this problem is essentially equivalent to guessing the extremizers in the previous problems.

* We then show that the solution to this auxiliary problem gives rise to sharp (almost) extremizers of the
original problem. This step is new, and necessary due to the fact that the extremizing sets are in general far
from being product sets.

4.1 The auxiliary (discrete restriction) problem

For each specific instance of interest (in our case {0,1,2}) the auxiliary problem will then reduce to solving a
finite-dimensional optimization problem closely related to the inequalities studied in the previous sections. The
way to define these problems will be by defining auxiliary quantities frequently appearing in the discrete restriction
theory.

Definition 14 (Discrete extension constants). Given positive integers k,d, and a finite subset A C Z¢, we define:

* The discrete extension constant DE;,_,;2(A) as the smallest constant such that, for any function f: A — R it
holds that

L
2k

Y F@n) e f@) - f 1) e FOR)| < DEgo (A Fllioca)- @.1)
e
Yxi=Lyi

* The restricted discrete extension constant DE,,_,;(A), which is the best possible constant so that (4.1) holds
for all functions f: A — {0,1}.

DISCRETE ANALYSIS, 2023:13, 16pp. 11
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The quantities DE, DE have essentially the same value (Lemma 19), but DE is much easier to work with
(Lemma 18). Moreover, understanding for which ¢ we have DE,, ;2 ({0,1,2}¢) < 1 is essentially equivalent to
proving Proposition 6.

Lemma 15. Let A be a finite subset of Z¢. Let 1 < p = %, and C > 0. The following statements are equivalent:

1. For all subsets B C A, it holds that
Ei(B) < C*|BJP.

DE,,_,;x(A) <C.
Proof. Set f in the definition of DE to be equal to xz for B as in part (1). O

The constant DE is called the discrete extension constant because it is, indeed, the operator norm of an extension
operator.

Lemma 16 (Fourier transform). Let A be a finite subset of 7. Then DE,;,_,;(A) is the operator norm of the
extension operator® E(f) = F{f} from 19(A) C 19(Z%) to L*(T?).

Proof. By definition, DE,,_,;2(A) is the best constant such that, for any function f : Z¢ — R supported on A, it
holds that:

k
1% % -5 f iy < DBrucye(A) Fllracze.

k times

At the same time, by Plancherel’s theorem and the product-convolution rule

1Ml zay = 1T H iz eray = 1T N 2wty = 1T 2k -
O

Remark 17. Lemma 16 above shows that the constants DE;,_, ;2 (A),DE,,_, ;2 (A) make sense for arbitrary 2k € R,
and not just even integers.

The following lemma is essentially [3, Proposition 3.3]. For completeness of the argument we include the proof
here.

Lemma 18 (Tensorization Lemma). Let g < 2k. Then for A C 74 BC 7% AxBCZ x 7% we have

DElq_>L2k(A X B) = DElq%sz(A)DElq%sz(B).

Proof. The “>” inequality follows by testing the left hand side operator with the tensor product of (almost)
extremizers to the right hand side.

For the opposite direction, let f: A x B — C , and f : T x T% — C be its Fourier transform. Let F, 7, be
the Fourier transforms on Z% and Z%. The goal is to estimate

I1F2{F 11} Oers 22 2t ey e | 26 e -
Fixing x,, we apply the DE inequality

[F2{F1fHxn,x2) || 2y emaay < DEgo, 26 (B)|F1f (x1,0) 19 ) -

3Here we denote by F{f} the Fourier transform of f, i.e., F{f}(z) = YLyeza f (k).
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Now, using the hypothesis that 2k > g, we can reverse the norms

I1F1f Cer, D) s ves) 2t ey < TS Gen, D)l ey emeny e ves) -

Now the DE inequality can be applied again to ||F; f(x1,b)]] 12 (xyeTér)- Joining it all together

1F2(F1 1) Ger,22) | 2t 0y e ) 124 (e ) <
< DEyy_,;2(B) DEyy_, 12 (A) || £ (@, D) |l1a(acayioves) -

4.2 Relating the Discrete extension problem and the original problem

In this section we show that the discrete extension constants DE,, ;% (A?) and DE,_,; 2 (A¢) grow similarly as d
goes to infinity. This will allow us to compute the assymptotic behavior of DE in order to find the (much harder)
assymptotics for DE. The next lemma is inspired by Bourgain’s logarithmic pigeonhole principle (see [11]).

Lemma 19 (Comparison Lemma). Forallg > 1, k> % A C 74 it holds that
DE,,_,;%(A) <DE;,_,;x(A) < (2+10g|A|)DE;;_, ;2 (A).

Proof. The first inequality follows by the fact that DE is a maximum over a larger class of functions. For the second
one, let f: A — R. Without loss of generality assume || f{|;=(4) = 1, and that f is nonnegative. We can decompose
f as asum
P = X 2760 + Ao
i>1
2t'l§ |A|
with the property that & : A — {0,1}, and 0 < fo(x) < |A|~!. The value of g(x) is the i—th digit of the boolean
expantion of f(x). Moreover, ||fo||;1 < 1. There are, moreover at most (log|A| + 1) different €. By the triangle
inequality, we have
1 lz2eeray <Y 27 N8l e pay + | foll 2t oy -
>
22l
We bound the sum by the maximum element in the sum (times the number of elements), and the term || fo|| 24(T?)
by 1, to obtain
171l z2¢(pay < (1+log(|A])) max 27| ot a) + 1.

Now, by applying the DE bounds on & we get

1 llz2kcray < (1+10g(JA])DEy 121 (A) max2~[leil|oca) + 1.

By construction 27/||&]|za(a) < || f||z4(a)- By checking against a singleton, DE is always at least 1, and || f|[;4(4) >
| f1l7=(4) = 1. Combining all this, we obtain

11l 2t rey < (2+Log(|A) DBy 2 (A)]| fllis(a) -
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Remark 20. The exponent of the log in Lemma 19 is probably not sharp (see, for example, the gains in the log-power
in [4, Theorem 1.1] or [8, Lemma 2.4]). Finding the sharp exponent is not necessary for our purposes. We thank A.
Mudgal for this remark.

The results from this section yield the relationship between Proposition 6 and the discrete extension constant,
as follows.

Proposition 21. Let A be a finite subset of Z. Let 1 < p = %, and C > 0. The following are equivalent:
1. An inequality of the form
Ex(X) < CIX]P
holds for all X C A d>0.
2. An inequality of the form
Ex(X) < |XP.

holds for all X C A4, d > 0.
3. DE;y_;2x(A) < 1.

Proof. Clearly, (3) = (2) (by Lemma 18 and Lemma 15), and (2) = (1). We show that (1) = (3). By Lemmas 19
and 18 we have
DE,,_,;2(A%) < DE,,_,;2(A)? < (2+dlog|A|)DE,,_, ;2 (AY). (4.2)

Observe that by Lemma 15, (1) is equivalent to

supDEjq 2 (A7) < eo. 4.3)
d

By equation (4.2), equation (4.3) is equivalent to

DEy,_,x(A)! <1
and the result follows. U
Remark 22. The proof of Theorem 21 extends to any finite subset A of an abelian group G without any significant
changes, using that the group generated by A inside of G is locally compact and abelian with the discrete topology.
4.3 Concluding the proofs of Propositions 6 and 7

Proof of Proposition 6. Applying Proposition 21 with A = {0,1,2} C Z and k = 2 shows that #, is equal to the
smallest p such that

XP - yP 4 2P 4 4(xP/2yPI2 4 xP/22PI2 4 yP/27P/2) 4 4xP 2P/ 4 op /4 <1
(x+y+z)P -

i

for all x,y,z > 0. In particular, taking x = 1 and y = z = 1 /2 we obtain
n >inf{p € [2,3]: 47 —27 —12(2"/*)—6 > 0}
=inf{2log,w: w € [2,2v2], w* —w? — 12w — 6 > 0}

logE({0,1,2}9)
log|{0,1,2}4] °

> 2log,(2.5664) > log; 19 =
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Proof of Proposition 7. The upper bound is trivial, so we focus our attention on the lower bounds. Consider
the case n = 2m — 1. We prove that E({0,1,...,2m—1}) = 16’”3%2’". We start observing that for any a €
{0,1,...,2m — 1} the 4-tuple (a,a,a,a) is a solution. Moreover, for all a,b € {0,1,...,2m} we have that
(a,b,a,b),(a,b,b,a), (b,a,b,a) and (b,a,a,b) are also solutions. This gives a total of 2m +4(%") trivial solu-
tions.

Then, we observe that the m couples (0,2m —1),(2,2m—3),(3,2m—4),...,(m— 1,m) add up to 2m — 1, this
gives 8(’;) nontrivial solutions. Similarly, the couples adding up to 2m — 2 and 2m give 8('"2_ 1) + 4(”’1_1) solutions.
More generally, we have that considering the couples adding k or 4m — 2 — k we obtain 8 ( (kéﬂ) non-trivial solutions

if k is odd and 8(*/?) +4(*/?) if k is even. Therefore

E>({0,1,....2m—1})

:2m+4<2;") +8("2“> +4 (821 <§)> +2 <4lgk>

_16m® +2m
=G

The case n = 2m follows similarly. a
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