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A data structure is history independent if its internal representation reveals nothing about the history
of operations beyond what can be determined from the current contents of the data structure. History
independence is typically viewed as a security or privacy guarantee, with the intent being to minimize
risks incurred by a security breach or audit. Despite widespread advances in history independence, there
is an important data-structural primitive that previous work has been unable to replace with an equivalent
history-independent alternative—dynamic partitioning. In dynamic partitioning, we are given a dynamic
set S of ordered elements and a size-parameter B, and the objective is to maintain a partition of S into
ordered groups, each of size ©(B). Dynamic partitioning is important throughout computer science, with
applications to B-tree rebalancing, write-optimized dictionaries, log-structured merge trees, other external-
memory indexes, geometric and spatial data structures, cache-oblivious data structures, and order-maintenance
data structures. The lack of a history-independent dynamic-partitioning primitive has meant that designers
of history-independent data structures have had to resort to complex alternatives. In this paper, we achieve
history-independent dynamic partitioning. Our algorithm runs asymptotically optimally against an oblivious
adversary, processing each insert/delete with O(1) operations in expectation and O(B log N/loglog N) with
high probability in set size N.
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1 INTRODUCTION

A data structure is said to be history independent (HI) if its internal representation reveals nothing
about the history of the past operations beyond the current contents of the data structure [40, 44].
History independence is typically viewed as a security or privacy guarantee, with the intent being
to minimize risks incurred by a security breach or audit. Motivation includes preventing voting
machines from leaking information about how people voted from the order in which they voted
(e.g., [34]), stopping files revealing damaging and embarrassing information that their creators
thought had been erased [31, 35, 36, 44], and databases revealing that some of their data or metadata
has been removed (e.g., due to a court order that must remain confidential) [30, 38, 42, 62].

For an example of an important data structure that is not history independent, consider the
classic B-tree [12, 26], the well-known indexing structure used in databases, file systems, and
key-value stores. B-trees support insertions, deletions, and searching in O(loggz N) I/Os, where
N is the number of elements in the B-tree and B is the disk-block size. B-tree inserts/deletes are
supported by dynamically partitioning the N key-value pairs into leaf blocks and dynamically
partitioning the pivot keys at each level of the tree into internal nodes—and all of this partitioning
is based on simple splitting and merging rules. B-trees are not history independent, because these
splitting/merging rules means that an observer who examines the balance information in a B-tree,
including which nodes are mostly full, may learn which elements might have been inserted recently
and which were inserted a long time ago.

The challenge in making B-trees history independent is that the dynamic partitioning (i.e.,
node splitting/merging) is not history independent. Thus, as we describe below, researchers have
proposed history-independent alternatives to the B-tree, which have worse performance bounds
than B-trees, place restrictions on B, and are more complicated. These include Golovin’s B-treap [32]
and B-skip-list [31, 33], Bender et al’s history-independent external-memory skip list [13] and
history-independent cache-oblivious B-tree [13]. A history-independent dynamic partitioning
scheme would obviate the need for such alternatives—e.g. by making a regular B-tree itself history
independent—and so could many other data structures.

The history of history independence. There are different degrees of history independence [35,
36, 44]. A data structure is weakly history independent (WHI) if it leaks no additional information
to an observer who observes the memory representation once, besides the contents at the time of
observation. A data structure is strongly history independent (SHI) if it leaks no additional
information to an observer who sees the memory representation multiple times. A history-
independent data structure is auditable [34] if the data structure can quickly prepare for an
observation. ! In each case, we assume that an observer can see a memory representation before or
after, but not during an update operation. History independence was introduced by Micciancio [40],
who showed how to build a search tree with a history-independent structure. Naor and Teague [44]
showed that even the bit representation of a data structure (e.g., the memory addresses where
the tree nodes are stored) can leak information to an observer. They formalized the now classical
notions of history independence, including the strong and weak variants, and showed how to build
strongly history-independent dictionaries (trees and hash tables). Hartline et al. [35, 36] showed
a data structure is SHI if and only if each state of the data structure has a unique (canonical)
representation, after initial random bits (which could, e.g., be used to define random hash functions)
are set, provided the state graph is strongly connected (i.e., all states of the data structures are

For example, the on-disk data structure storing a database’s data may have a transaction log. Since the transaction log
records recent transactions, by definition it is not history-independent. However, the data structure could be audible, since
the transition log could be flushed in preparation for an observation.
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mutually reachable). For simplicity, since all data structures considered in this paper have strongly
connected state graphs, we take this as a definition of SHI in this paper.

Definition 1.1 (Theorem 1 in [35]). A data structure of an abstract data type whose state graph is
strongly connected is strongly history independent (SHI) if, after all initial random bits have been
initialized, each logical state of the abstract data type has a canonical representation in memory.

There is a large literature on designing data structures to be history independent without
an asymptotic slow down as compared to their non-history independent counterparts [1, 13,
21, 23, 32, 33, 35, 36, 40, 43, 44], including fast history-independent constructions for cuckoo
hash tables [43], linear-probing hash tables [21, 34], other hash tables [21, 44], trees [1, 40]
memory allocators [34, 39, 44], write-once memories [41], priority queues [23], union-find data
structures [44], external-memory dictionaries (e.g., for a database or key-value store) [13, 31-33],
file systems [8, 10, 11, 52], cache-oblivious dictionaries [13], order-maintenance data structures [21],
packed-memory arrays/list-labeling data structures [13, 15], and geometric data structures [60].
Given the strong connection between history independence and unique representability [35, 36],
some data structures that predate the formalism can be made history independent, including ordered
linear probing/Robinhood hashing [2, 24], skip lists [49], treaps [7], and other less well known
deterministic data structures with canonical representations [4, 5, 50, 56, 57]. This foundational
algorithmic work on history independence has found its way into databases [10, 47, 53] and other
systems; there are now voting machines [20], file systems [8, 9, 11], and other storage systems [25]
that use history independence as an essential feature.

1.1 Dynamic Partitioning

Despite vigorous advances in history independence, there is one foundational data-structural
primitive that researchers have previously been unable to replace with an equivalent history-
independent alternative—dynamic partitioning. Dynamic partitioning is important throughout
computer science, but, as we saw earlier in the example of B-tree rebalancing [12, 26], it is especially
important in databases.

Dynamic partitioning is also used in write-optimized dictionaries such as B*-trees [19, 22] and
log-structured merge trees [45, 54], fusion trees [3, 6, 28, 46, 51, 58, 63], and many other data
structures.

In dynamic partitioning, we are given a set S of N ordered elements and a size-parameter B,
and the objective it to maintain a partition of S into ordered groups each of size ©(B). By “ordered
groups”, we mean that for any two groups, all of the elements in one group are smaller than all
of the elements in the other. The lack of any history-independent dynamic-partitioning primitive
has historically meant that designers of history-independent data structures have had to resort
to complex alternatives to avoid this primitive. Often these alternatives come with a significant
performance hit compared to non-HI alternatives.

Returning to the B-tree example, in a (non-history-independent) B-tree, dynamic partitioning
takes place at each level of the tree. A B-tree is a tree with size-B nodes and fanout ©(B), and
where all of the leaves are at the same depth. All of the elements stored in a B-tree are maintained
in sorted order in the leaf nodes. Thus, as leaves merge and split, the leaves implement a dynamic
O(B)-partitioning of the elements. Moreover, there is dynamic partitioning at each level of the
B-tree. The nodes at height 1 store pivot elements that define the partition at the leaves, and these
pivots are themselves partitioned into nodes, as defined by the pivots stored at height 2; and so on
up the tree.

B-tree rebalancing is fully defined by the dynamic partitioning algorithms at each level of
the tree. Traditional (non-history-independent) B-tree rebalancing/partitioning works as follows.
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When a node v gets too full (e.g. it has N, elements, with N, > B), it triggers a split into two nodes,
each with at most [N,/2] elements. When a node v gets too empty (N, < B/3), it triggers a merge
with a neighbor that is also a sibling (which could kick off an immediate split). The result is that
each group deterministically has at most B elements and at least B/3 elements, which implies that
its height is O(logg N) and its number of nodes is O(N/B).

This lazy splitting and merging policy guarantees good amortized update costs, but exhibits
hysteresis [37]. Specifically, the amortized number of elements per insert/delete that move from one
node to another is O(1). This is because after a node splits, there are Q(B) inserts/deletes before the
node splits/merges again. (In the language of dynamic partitioning, the element-movement cost is
the amortized number of elements per insert/delete that move from one group to another, and the
best we can hope for is O(1).) Similarly, after a node triggers a merge, there are Q(B) inserts/deletes
before another merge is triggered. (In the language of dynamic partitioning, the group-update cost
is the the total number of group boundaries that shift as a result of the insert/delete, and optimal
is O(1/B).) The hysteresis of this splitting/merging rule prevents an adversary from inserting an
element to trigger a split, deleting that element to trigger a merge, reinserting the element to trigger
a split, and so on. But hysteresis in the rebalancing policy—by definition—means that history is
taken into account in the rebalancing; hence, the need to prevent an adversary from pumping the
splitting/merging algorithm presents a fundamental roadblock to achieving a history independent
B-tree.

As noted above, many other database-indexing structures also use dynamic partitioning in some
way. In write-optimized dictionaries such as Bf-trees [18] or log-structured merge trees [45], the
dynamic partitioning at each tree level takes place on a subset of S. In some structures, such as
cache-oblivious B-trees [16] there is dynamic partition and smaller dynamic partitioning recursively
within. Dynamic partitioning is often important in disk-resident data structures, because in order
to have good I/O-complexity, we like to access/modify the data structure in chunks of size B, where
B is the I/O size.

Dynamic partitioning is used as a simple subroutine in data structures in RAM, rather than on
disk. E.g.., in fusion trees [3, 6, 28, 46, 51, 58, 63], partitioning takes place at the level of machine
words. (Fusion trees [3, 6, 28, 46, 51, 58, 63] are word-RAM dictionaries that support o(log N)-time
searches and updates.) In order-maintenance data structures [14, 27], dynamic partitioning is used
to support a kind of “indirection”. While the details don’t matter for the purpose of this paper, this
dynamic ©(log N)-partitioning enables the insertion performance to improve from O(log N), as in
earlier data structures [59], to O(1) [27].

1.2 Case Study of (Lack of) History-Independent Dynamic Partitioning

This subsection illustrates how algorithm designers have needed to twist themselves into pretzels
to find history-independent replacements for traditional data structures, when they have not had
access to history-independent ©(B)-partitioning. The result has been more complicated and less
performant data structures.

Once again, we first revisit the B-tree. One history-independent alternative to the B-tree is
Golovin’s B-skip-list [31, 33]. To adapt a traditional skip list? for external memory, it is natural
to modify the promotion probability from 1/2 to 1/B. Thus, with high probability in N, there are
O(logg N) lists instead of O(log, N) lists, as with a traditional skip list. Moreover, the expected

2A (traditional) skip list [48] is just a sequence of linked lists. The level 0 list maintains all of the elements in the skip list.
An element is promoted from level i to level i + 1 with probability 1/2, which means that that element is stored not only
in the level-i list but also in the level-i + 1 list. There are pointers between every instantiation of an element. The cost
for searching/inserting/deleting is O (log N) with high probability in N, where N is the number of elements in the skip
list [55].
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number of non-promoted elements in a list between promoted elements is B. Unfortunately, the
I/O-performance of an external-memory skip list is simply not as good as that of a traditional
B-tree. For starters, the search cost is O(logg N) I/Os in expectation, rather than O(logg N) I/Os
deterministically, as with a traditional B-tree. More problematically, we do not even have good
high-probability bounds. In fact, with high probability, there exist elements whose search cost
is O(log, N) I/Os [13], which is no better than if those elements were stored in a (non-external
memory) binary tree!

The reason for this decreased performance is that this randomized promotion mechanism does
an uneven job of dynamically partitioning the leaves. With high probability, there will be as many
as O(Blog N) elements between two promotions. On the other hand, we will see as few as ©(1)
elements between some promotions. That is, the partitioning of a B skip list is randomized with a
lot of variance: a group has size ©(B) an expectation, but with high probability, some groups have
size ©(1) whereas others have size ©(Blog N).

Bender et al [13] fix this drawback for some parameter choices by complicating the data structure.
They first impose B = Q(polylog N), and then they increase the promotion probability from to 1/B
to 1/VB. It turns out that with these restrictions, the search cost is O(loggz N) with high probability.
But now, almost all disk blocks are empty—only a 1/ v/B-fraction full in expectation. Thus, the
range-query performance and space usage are horrible. To fix range queries and space, they then
amalgamate nodes into supernodes within the bottom few levels of their external-memory skip list
and add extra internal pointers within the supernodes. Thus, for some values of B, the resulting
data structure has high-probability (but still not deterministic) search bounds of O(logz N). Even
given all of this effort: the data structure only works for some parameter choices; searches still only
achieve concentration bounds rather than deterministic bounds; and internal nodes are mostly
empty, meaning they are still wasting space, leading to worse search performance.

Another approach investigated by Golovin [31, 32] is a B-tree alternative that is built by modifying
a treap [7] for external memory. Once again, we have a data structure that is not a B-tree (e.g., leaves
are different depths), where search cost guarantees are not deterministic, and where space, range
queries, and/or high-probability bounds are not as good as a B-tree. A final approach is to replace
a B-tree with a history-independent B-tree [13] based on a history-independent packed-memory
array. Now the search cost is deterministic, and all leaves are at the same depth, but for some
workloads (e.g., sequential inserts and some relationships between B and N), the performance is
not as good as a B-tree.

The bottom line is that without a history-independent dynamic partitioning scheme that
deterministically guarantees ®(B)-sized groups, the above previous approaches have drawbacks,
in terms of performance and extra complications. Instead, with a history-independent, dynamic
partitioning scheme, we immediately achieve a traditional B-tree whose balance structure is history
independent, and where nodes deterministically have ©(B) elements. Making it fully history
independent is then trivial—just plug-in a history independent memory allocator.

The situation is similar with some other data structures that are based on dynamic partitioning.
For example, Blelloch and Golovin propose a history-independent order-maintenance data
structure [21]. But with a history-independent partitioning scheme coupled with a history-
independent weight-balanced dictionary [21], the data structure follows immediately. There are
other data structures (e.g., fusion trees) that have never been made history independent, perhaps
because they are too complicated to modify extensively. But given HI dynamic partitioning, they
can be made history independent without other modifications. See Appendix A.2.
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1.3 Our Results

In this paper, we establish that history-independent dynamic partitioning is achievable. In fact,
our schemes are strongly history-independent, meaning that after some random bits have been
initialized—these define a hash function—the partition is uniquely representable. That is, for
any choice of hash function and value for B, there is a unique way that a set S (|S| = Q(B)) gets
partitioned into groups whose sizes are all deterministically ©(B).

We give an algorithm that achieves (B, 2)-partitioning meaning that (deterministically) every
group in the partition has size between B/2 and B. The algorithm runs asymptotically optimally, in
expectation, against an oblivious adversary.

THEOREM 1.2 (GROUP-UPDATE COST). History-independent (B, 2)-partitioning of a set S of size
N > B can be maintained with group-update cost O(1/B) per insertion/deletion in expectation, and
O(log N /loglog N) with high probability in N.

THEOREM 1.3 (ELEMENT-MOVEMENT COST). History-independent (B, 2)-partitioning of a set S of
size N > B can be maintained with element-movement cost O(1) amortized per insertion/deletion in
expectation, and O(Blog N /loglog N) with high probability in N.

We extend these bounds to stricter regimes where the smallest partition has size at least B/«, for
arbitrary a > 1. See Appendix A.1.

We re-emphasize that the partitioning is deterministic. That is, there is no probability that the
partitions could get out of bounds.

Our partitioning algorithm is based on the protected Cartesian tree, an auxiliary data structure
that we introduce. A Cartesian tree is a well-known transformation of a numerical array into a tree
and is used, for example, in fast algorithms for computing least common ancestors [17].

Our actual algorithms do not compute protected Cartesian trees but heavily rely on the
relationship that we elucidate between protected Cartesian trees and partitions in our proofs.
Because we believe that protected Cartesian trees may have other uses, we also establish some of
their algorithmic properties.

Given Theorems 1.2 and 1.3, building a history independent B-tree is straightforward, since we
can just treat each level of a the B-tree as a partitioning problem on the pivots of the next level
down. As we will see, the analysis of the cost of maintaining HI B-trees is the challenge. This is
covered in Section 4. If we directly apply the bounds of Theorems 1.2 and 1.3, we would obtain
weak bounds. We are able to show that the HI B-tree can be maintained with O(loggz(N)/B) I/Os

log N

W) with high probability; see Theorem 4.5.

in expectation, and O(

1.4 Roadmap

In Section 2, we formally define the (B, «)-partitioning problem and give a static algorithm for
(B, 2)-partitioning. We extend this to a dynamic algorithm in Section 3. In Section 4, we use our
dynamic partitioning algorithm to build a history-independent B-tree. In Appendix A.1, we extend
our algorithm to (B, @)-partitioning for smaller values of a. In Appendix A.2, we describe how to
use our B-tree construction to build a history-independent fusion tree. In Appendix A.3, we provide
proofs that were deferred from the main body of the paper for space reasons.

2 PROTECTING THE FLANKS

As a warm-up for our HI dynamic partitioning solution, let us first describe an algorithm for
constructing a canonical static partition that is based on a simple protect-the-flanks technique.
The main idea of the protect-the-flanks technique is to choose pivots for recursively splitting
an ordered set so that the smallest and largest B/2 elements are not eligible. As we show, this
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simple approach is sufficient to define a canonical static partition; the challenge, which we address
subsequently, is to maintain such a partition dynamically.
We formalize the partitioning problem as follows:

Definition 2.1 ((B, a)-partitioning). Let S be an ordered set of size N. Let G be a partition of S.
We call every G € G a group; let G, (resp. Giax) be the minimum (resp. maximum) element in G;
the range of group G is [ Gmin, Gmax]-

For B> a > 1, G is a (B, a)-partition of S, if it satisfies the following invariants:

(1) Ordered groups. The ranges of all groups in G are disjoint.
(2) ©(B) cardinality. If N > B/« the size of each group G € G satisfies B/« < |G| < B, and thus
there are ®(N/B) groups. Otherwise, there is a single group of cardinality N.

For convenience, we will refer to (B, ©(1))-partitioning as © (B)-partitioning. When S changes
dynamically, we have dynamic (B, a)-partitioning (and ©(B)-partitioning):

Definition 2.2 (dynamic (B, )-partitioning). Maintain a (B, «)-partition of S when elements
can be inserted into or deleted from S. A problem instance is defined by a sequence o = 01, 03, . . .,
where each o; is the insertion of an element into S or a deletion of an element from S. The algorithm
proceeds in rounds:

e On deletion, the element is deleted from its group; on insertion, the element is added to a new or
existing group, subject to the ordered-groups invariant.

o Then a (possibly empty) set of shifts are performed, where each shift moves (the largest or
smallest) k elements (for 1 < k < B) from some group G to some (new or existing) group G’,
subject to the ordered groups invariant.

At the end of all shifts, the ©(B)-cardinality invariant is satisfied. Each shift has a cost, and the

objective is to minimize the sum of the costs of all shifts over the sequence o.

This definition is general enough that we need to tease apart different aspects of the cost of a
shift. The element-movement cost of a shift of k elements is k. The element-movement cost of a
round is the sum of the element-movement costs of its shifts, plus one for the element that is being
added or removed. The group-update cost of a round is the total number of shifts during that
round. So note that the original insertion of an element does not contribute to the group-update
cost.

In order to distinguish between different costs, we also define the CPU cost of an operation to
be the number of CPU operations necessary to perform the operation, and we define the I/O cost
of an operation to be the number of I/Os necessary to perform the operation.

2.1 Static (B, 2)-Partitioning
In this section we describe a static algorithm for constructing a canonical (B, 2)-partition. Before
we describe our algorithm, however, let us first give a few more definitions.

Consider a set S C U, where universe U admits a total order <. For notational convenience,
let —oo be the minimal element in U and oo be the maximal element in U. Define S restricted by
(u, v), denoted S[u, v], as follows: S[u,v] = {x € S|u < x < v}. Thus, S = S[—00, ]. The rank of
any element u € S is defined as rankg(u) = [{x € S|x < u}|. Denote |S| by N. We emphasize that
the restriction S[u, v] does not include the endpoints u, v, and so |S[u, v]| = ranks(v) —ranks (u) — 1.

Protected regions of a set. The protected region of S is the set P(S) = {x € S|ranks(x) <
B/2} U {x € S|rankg(x) > N — B/2}. Notice that if |S| < B, then P(S) = S. The unprotected
region of S is U(S) = S\ P(S), and we say that element u € S is unprotected if u € U(S). We
define the region covered by u as Ps(u) = {x € S | ranks(u) — B/2 < rank(x) < ranks(u) + B/2},
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and say that x is covered by u if x € Ps(u). Intuitively, the protected regions of an ordered set are
its “flanks.”

We also use a random hash function, h : U — [0, 1], which maps elements to real numbers
between 0 and 1, such that h’s random bits are set prior to our construction.?

For simplicity of presentation, we assume that there are no hash collisions, i.e., that h(x) is
unique for every x € U. This is relevant, as we often look for the element in a set with minimal
hash value.*

2.2 A Static Partitioning Algorithm

We define a partition on S by selecting a set of pivots {ps, ..., px}, where p; < p, < --- < pg. For
notational convenience, we will consider py = —co and py,; = oo. The pivots partition S into k + 1
groups Gy, Gy, ..., Gk, where G; = {y € S| p; <y < pis1}-

For any element x € U (which may or may not be in S), we also define the predecessor of x,
denoted pred(x), as the largest y € S such that y < x, and the successor of x, denoted succ(x), as
the smallest y € S such that x < y.

Since the pivots uniquely define the partition of S, we henceforth focus our algorithms and
analysis on the equivalent problem of pivot selection. Our static partitioning algorithm, which is
based on the simple protect-the-flanks technique, is as follows.

Algorithm 1: Static (B, 2)-Partitioning. We select the pivots recursively. The first pivot we select
is the unprotected element with the smallest hash, that is, the element p € U(S) such that h(p) is
minimized. We then recursively partition the two sets S[—oo, p] and S[p, o], selecting pivots from
each. The process terminates when no more selections can be made, i.e., when every recursive
subproblem has size less than B and therefore all elements are protected. See Figure 1.

2.3 Protected Cartesian Trees

We next introduce the “Protected Cartesian Tree” on a set S, which generalizes the classical notion
of a Cartesian tree [61].

Definition 2.3. Let each element x in ordered set S have an associated value, value(x). A Cartesian
Tree on S is a binary tree on S, such that:

(1) If u is a parent of v, then value(u) < value(v).
(2) An in-order traversal of the tree returns the elements of S in sorted order.

For example, value(x) could be the hash value, h(x). We next define a generalization of the
Cartesian tree, which we call the B-protected Cartesian tree on S (abbreviated simply as the
protected Cartesian tree on S).

We define the B-protected Cartesian tree on S, denoted Ts (or T when S is clear from context),
to be the internal nodes of a binary search tree, TS, which is defined recursively as follows. If
|S| < B (i.e., all elements in S are protected), then Tsisa single (leaf) node associated with S; hence,
in this case, Ts is empty. Otherwise, the root of Ty is the element u € U(S) such that value(u) is
minimized. The left child of u is the root of the recursively constructed tree on S[—co, u], denoted
TS[_oo,u], and the right child of u is the root of Ts[u,oo]. Thus, if either recursive Cartesian tree is a
leaf in T's, there is no corresponding child node in Ts. We refer to T's as the closure of the protected
Cartesian tree, Ts. See Figure 1.

3In practice, a pseudo-random hash function that maps elements to values having 3 log n bits should be sufficient.
4However, we can also handle hash collisions by tiebreaking deterministically. For example, if h(x) = h(y) for x # y, say
that the element with lower rank wins the tiebreak.
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Fig. 1. Recursive calls in the partition algorithm (1). (Top) Level 1; (Middle) level 2; (Bottom) level 3. Each box
shows the first digit of value(x) after the decimal point. Here, B/2 = 4 and protected regions are shaded
light blue. The protected Cartesian tree is shown with solid edges.

We refer to these recursive sets S[x, y] as subproblems, and say that a subproblem is nontrivial
if it contains at least B elements. In general, the protected Cartesian tree on S[x,y] has root
w € U(S[x,y]) that minimizes value(w), and left subtree TS[x,w] and right subtree TS[w,y]~

Observe that the protected Cartesian tree exactly specifies the recursive structure of Algorithm 1.
Specifically, the nodes are the pivots, and the left (resp. right) child of any node in the tree is the
root of its next left (resp. right) recursive subproblem. When Algorithm 1 is used to construct the
protected Cartesian tree on set S, we refer to it as COMPUTECARTESIAN(S).

Note that because T consists of the internal nodes of T, the protected Cartesian tree on S does
not contain all elements of S. In fact, at most a 2/B fraction of the elements of S appear in Ts.
Nevertheless, when we search in a protected Cartesian tree, we perform the search as a search in a
standard binary search tree, searching in the closure, Ts, of Ts, so that the result of the search ends
in a leaf of Ts.

The following lemma is intuitive, and its proof is deferred to Appendix A.3.1 for space.

LEMMA 2.4. For any set S with fixed hash function h, there is a unique protected Cartesian tree Ts
with values value(x) = h(x), and Ts is either empty or contains (N /B) nodes.

We reiterate that the set of nodes selected for the protected Cartesian tree with a random hash
function h is exactly the set of pivots selected by Algorithm 1. Thus, our lemmas about building
protected Cartesian trees translate directly into results about partitioning.
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CoOROLLARY 2.5. Algorithm 1 constructs a canonical protected Cartesian tree and (B, 2)-partition.

Next, we give some lemmas about protected Cartesian trees which are of independent interest.
The proof of Lemma 2.6 is deferred to Appendix A.3.1.

LEMMA 2.6. The protected Cartesian tree Ts on S with random hash function h has height
O(log(N/B)) with high probability in N.

COROLLARY 2.7. Each search operation in a protected Cartesian tree with a random hash function
has CPU cost O(log(N/B)) with high probability in N.

LEmMMA 2.8. It takes O(N) CPU operations to build a protected Cartesian tree with arbitrary values
on a set S, where |S| = N.

Proor. It is known that a Cartesian tree can be built in O(N) operations [29]. Given a Cartesian
tree T, we can build a protected Cartesian tree by trimming out protected nodes, since the relative
priorities between nodes are identical in protected and classical Cartesian trees.

We begin at the root a of the tree, and describe how to trim its left subtree; the right subtree
will be symmetric. We first trim b = pred(a) by removing it from T. We know that b has no right
subtree (since a is its direct successor and has higher rank) and we replace b’s left child as the new
right child of b’s parent. We next trim ¢ = pred(?) from T, noting that ¢ once again has no right
subtree, since b has been removed from T and a has higher rank. We repeat this process on the
B/2 elements which directly precede a in S. The next element x preceding these should not be
protected, and so it remains in the tree. We now trim the B/2 elements preceding x, and repeat
until we have reached the element of lowest rank in S.

Every element S is touched exactly once, either to prune it or decide it remains in T, so this
algorithm runs in O(N) operations. ]

In the next section, we consider the case when S is fully dynamic, meaning that elements are
inserted and deleted over time.

3 DYNAMIC HISTORY INDEPENDENT (B, 2)-PARTITIONING

Here we give expected and high-probability bounds on the element movement cost and group-
update cost of history-independent (B, 2)-partitioning.

The overall goal of this section is to establish that the adversary cannot change the partition
very much on an insertion. One component is to show that no matter where the adversary chooses
to insert elements, the probability that the tree changes is O(1/B). Our partition is based on a
protected Cartesian tree, and the issue we run into is that if the adversary chooses to insert at a
small number of specific ranks at the beginning or end of the set (e.g., at rank B/2), the probability
that the protected Cartesian tree changes can be w(1/B). Almost all other ranks do not cause
problems, but we do not want the adversary to have any options.

Our solution has several steps:

e Define a modular version of protected Cartesian trees and modular dynamic (B, 2)-
partitioning. This way there are no endpoints that the adversary can exploit.

e Turn the modular solution into a standard (linear) solution by cutting at the point of
modularity. This may make partitions at the endpoints too small.

e If an endpoint partition is too small, merge it with its neighbor. This will yield a linear
(3B/2, 3)-partition, or equivalently, a (B, 3)-partition by running this scheme with B’ = 2B/3.

e Convert the (B, 3)-partition into a (B, 2)-partition using the (B, &)-partitioning algorithm in
Appendix A.1.

See Section 3.4 for more details on this construction.
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3.1 Making the Algorithm Modular

The modification to modularize the algorithm is simple: when selecting the root, we choose the
element with minimal hash from all of S (i.e., no elements are initially protected). The rest of the
algorithm proceeds identically to COMPUTECARTESIAN, except that now there is “wrap-around” in
the set S. This means that both the protected regions on the two ends of S, and the resulting groups
are subject to wrap-around. For example, for element x with rank rankgs(x) = B/4, its protected
region is Ps(x) = {y € S|ranks(y) < 3B/4} U {y € S|ranks(y) > N — B/4}.

Since it is convenient to continue thinking about building protected Cartesian trees on linear
sets, we equivalently rotate the set S after selecting the first pivot z. For any element y € S, the
rank of y in the rotated set is defined to be rank(y) = (ranks(y) — ranks(z)) mod |S|. We now
proceed on the rotated set, so left, right, co, and —co are all well defined. Now the root of the tree
will have one child, which is the root of the rotated set. If we think of the protected Cartesian tree
on a linear set as having a dummy root which induces a trivial rotation, this is identical to the
structure we have previously defined. We reiterate that the protected Cartesian tree is an analytical
tool to select the pivots which are the boundary elements in a partition. Therefore, changes in the
relative ordering of pivot elements due to a rotation which keep the set of pivots the same would
have no impact on a partition of S.

The dynamic version of this algorithm, RECOMPUTECARTESIAN, is defined in Section 3.2

LEMMA 3.1. LetS C U be a set of size N > B, and Ts, the protected Cartesian tree on S with random
hash function h. Then every element in S has probability of ©(1/B) of being in Ts.

Proor. The proof follows by symmetry and because there are (N /B) pivots in Ts by Lemma 2.4.
Specifically, since hash function h is random, any element in S is selected as the root of Ts with equal
probability, so every element also has equal probability of initially being protected. Continuing
inductively on the left and right subproblems, every element has equal probability of being selected
as a node in Tg. [ ]

3.2 How the Protected Cartesian Tree Changes After Insertions

In this section, we will show how to maintain a protected Cartesian tree (and thus a modular
(B, 2)-partition) on a dynamically changing set.

For the remainder of this section, we will fix S C U and x € U \ S, and let S’ = S U {x}. We will
bound the number of pivots that differ between Tss and Ts. We build Ts by selecting a (possibly
new) root, and then recursively building the protected Cartesian tree, retaining as much of the
previous structure as possible.

Next, we describe the algorithm REcOMPUTECARTESIAN, which recomputes the protected
Cartesian tree after the insertion of x into S.

OBSERVATION 1. Since any set with a fixed hash function has a unique protected Cartesian tree,
REcoMPUTECARTESIAN is strongly history independent by Definition 1.1.

RECOMPUTECARTESIAN(S, X)

Case 0: |S’| < B. Then both protected Cartesian trees Ts and Ts are empty. Return the empty set.

Case 1: x has the minimum hash in §’. Then x is the new root of S’. Rotate S’ and return a tree
with x as the root and CompPUTECARTESIAN(S’) as the child of x.

Case 2: x does not have the minimum hash in S’. Then the prior root z of S still has minimal hash
and remains the root of S, and the elements in P(z) become protected. Return a tree with
z as the root and RECOMPUTESUBPROBLEM(S, x) as the child of z.

RECOMPUTESUBPROBLEM(R, x)
Let R = RU {x}.
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Base Case: All of R’ is protected, i.e., U(R’) = U(R) = 0. In this case, |R’| < B, and both protected
Cartesian trees Tg and Ty are empty. Return the empty set.

Case 1: x is inserted into the unprotected region of R, i.e., U(R’) = U(R) U {x}. Then we have
two cases for the root of R'.

Case 1A: x is the new root of R’. We recursively build the subtrees on the subproblems to the
left and right of x. Return a tree with x as the root, COMPUTECARTESIAN(R’ [ o0, x]) as
the left child of x, and CoMPUTECARTESIAN(R’ [x, 0]) as the right child.

Case 1B: The prior root z of R remains the root of R’. Then the recursive subproblem not
containing x is unchanged from R to R’, and its protected Cartesian tree T will also be
unchanged. Therefore, we can recurse only on the side containing x. If z < x, return
the tree with z at the root, T as z’s left child, and RECOMPUTESUBROBLEM(R| z, ], x)
as z’s right child. If x < z, return the tree with z at the root, T asz’s right child, and
RECOMPUTESUBPROBLEM(R[—o0, 2], x) as z’s left child.

Case 2:  x is inserted into the protected region P(R’) of R’. Since R’ is nontrivial, x’s insertion
causes one of the boundary elements y of P(R) to become uncovered. We have two
subcases, which mirror the subcases of Case 1.

Case 2A: y is the new root of R’. Once again, we recursively build its child subproblems. Return
a tree with y as the root, COMPUTECARTESIAN(R' [—co, y]) as the left child of y, and
CoMPUTECARTESIAN(R’ [y, o0]) as the right child.

Notice that since y was a boundary element in P(R), it is now either the smallest or
largest rank element in U (R”). Therefore, at least one of its child subtrees will be empty.

Case 2B: The prior root z of R remains the root of R’. As in Case 1B, the tree T of the
recursive subproblem not containing y is unchanged. If z < y, return the tree
with z at the root, T as z’s left child, and RECOMPUTESUBPROBLEM(R|[z, ], ) as z’s
right child. If y < z, return the tree with z at the root, T as z’s right child, and
RECOMPUTESUBPROBLEM(R[—09, 2], y) as z’s left child.

Some remarks are in order as to why Cases 1A/1B and 2A/2B are the only possibilities for root
selection of subproblems. That is, why can the root of R’ be only the previous root z of R, the
newly inserted element x (in Case 1), or the newly unprotected element y (in Case 2)? This follows
from the definition of Algorithm 1. The root of any subproblem is the unprotected element with
minimal hash. The only possibilities for the minimum hash element are the previous minimum
hash element, or an element that has newly appeared in U(R’). And at most one element has newly
appeared in U(R’): either x or y, depending on x’s placement.

If z remains the root, the same cases will hold for the recursive subproblem containing x, and
so on. If a Case 2 element exists in any subproblem, we call this the element unprotected by x
and denote it u(x). More precisely, u(x) (if it exists) is the element such that there is a subproblem
R C S so that u(x) was a boundary element in P(R), but after x’s insertion, u(x) € U(RU {x}). We
emphasize that there can be at most one element u(x), since x gets protected exactly once.

We summarize this discussion with the following useful lemma.

LeEmMA 3.2. Ts # T if and only if exactly one of the following holds: (1) x is a node in Ty, or (2)
u(x) is a node in Ts:, where u(x) is the (unique) element unprotected by x’s insertion.
Moreover, if Ts # Ty, then x or u(x) is the unique node of minimal depth in Ts: \ Ts.

LEmMA 3.3. If|S| = B, the probability that Ts + Ts is O(1/B).

Proor. By Lemma 3.2, we need only to bound the probability that x € Ts, and if element u(x)
exists, that u(x) € Ts'. We reiterate that by the strong history independence of protected Cartesian
trees, whether any element is a pivot depends only on its hash value and its relative rank, but does
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not depend on when it was inserted into $’. The claim follows by applying Lemma 3.1 and a union
bound to x and u(x). [ |

Now let’s examine what happens if there is at least one new node in Ts. In order to avoid
repeatedly writing “x or u(x), if u(x) exists”, we introduce the notation x to denote u(x) if it exists
and is a new pivot, and x otherwise. We reiterate that the value of x depends on x’s (protected or
unprotected) placement in the first subproblem (if any) in which a new pivot is found, but the value
of X is well defined and unique.

We will now bound the (expected and w.h.p.) number of changes in Ty . From the algorithm
description, as soon as any node changes from Ts to Ts, the entire subtree of this node is computed
from scratch. However, as we show, many of the pivots in the tree will generally remain the same,
and so most of the groups in the companion partition will be unchanged. We begin with some
structural lemmas regarding the subproblems corresponding to nodes in the protected Cartesian
tree. We will sometimes refer to the depth of a subproblem as the depth of its root node in the
protected Cartesian tree.

For simplicity, the following lemmas consider the case where x is not the (new) root of §’. We
will see in Lemma 3.13 that the case where the root changes is equivalent with slight modifications.

LEmMMA 3.4. Let S’[c,d] be a subproblem for Ts: such that c,d € Ts and the newly inserted element
x is not between c and d. Then S[c, d] is a subproblem for Ts, and Ts[c q] = Ts(c.a]-

Proor. Since ¢, d appear as pivots in both trees, the only way for S[c,d] not to be a valid
subproblem is if there is some element e € S[c,d]| which is selected in Ts before ¢ and d. In
particular, e is not covered by ¢ or d in S, and either h(e) < h(c) or h(e) < h(d). But §'[c,d] =
S[e, d], since x is the only new element in S” and is not in this range. So e is also not covered by
cordin §’, meaning it would have also been chosen first in Tg: since the hash values have not
changed. This would contradict the fact that S’ [c, d] is a valid subproblem. Thus there can be no
such e, and so S[c, d] is a valid subproblem.

Since S’ [c,d] = S[c,d], Ts[ca) = Ts'[c.q] by the uniqueness of protected Cartesian trees. [ ]

LEmMA 3.5. Every nontrivial subproblem in S’ to the left of x has left endpoint that is either —oo or
in Ts» N Ts. In other words, if one of the boundary nodes defining the subproblem is in Ts \ Ts, it must
be the right one.

Proor. Let S’ [y, z] be a nontrivial subproblem such that z < . If both y, z € Ts, we are done, so
we focus on the case that at least one of its endpoints is a new pivot in Ts,. We proceed by induction
on the depth of §'[y, z].

Base case: By Lemma 3.2, x is the node of lowest depth that is new in Tg/. Therefore, its left
recursive subproblem is the first subproblem to its left with an endpoint in Tg \ Ts. For this
subproblem, z = X, and y was chosen before x in Ts (otherwise we would not be recursing on
S’[y, x]), so by another application of Lemma 3.2, we must have either y = — or y € Ts.

Inductive step: Suppose y # —oo, and let S’ [g, w] be the subproblem that selects y as a root. We
must show that y € Ts.

If g, w € Ts, then y € Ts by Lemma 3.4 and we are done, so assume at least one of ¢, w is not in
Ts. S’[g, w] has lower depth than S’ [y, z], so by the inductive hypothesis, g € Ts U {—oc0}. Suppose
for contradiction that y ¢ Ts. Then there is some node v € Ts that covers y. We examine the cases
for where v resides in S’.

Case 1: v € U(S’'[q, w]). Then in particular, there is an element in U(S’[g, w]) with lower hash
than y, which contradicts the fact that y was chosen as the root of S’[g, w].
Case 2: v € Ps/(q). Then v would also be covered by ¢ in S since g € Ts U {—oo}.
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Case 3:0v € P;(w). First, note that we must have z < w, i.e., an endpoint of the subproblem
which picks y as a root cannot be between y and z. This is because we recurse on S’ [y, w]
after picking y, and S’[y, z] is a subproblem. Additionally, since S’[y, z] is a nontrivial
subproblem, rankg (z) —ranks (y) > B+1, and so ranks (w) —ranks (y) > B+ 1. Therefore,
o cannot both cover y and be in P¢(w).

All cases ended in a contradiction, so we must have y € Ts. ]
A symmetric argument implies the corresponding lemma on the right side of x.

LEMMA 3.6. Every nontrivial subproblem in S’ to the right of x has right endpoint that is either co
orin Tss N Ts. In other words, if one of the boundary nodes defining the subproblem is in Ts: \ Ts, it
must be the left one.

CoroLLARY 3.7. Letb € Ty \ Ts be a new pivot such that b # x. Then the child subtree of b that is
closer tox is empty.

Proor. Write S’ [w, z] for the subproblem that selects b as its root. Since b is a new pivot, we
know at least one of w, z is not in Ts by Lemma 3.4. By Lemma 3.2, b has greater depth than X, and
so both w and z are on the same side of X (because we recurse on either side after selecting x).
Suppose that it is the left side. By Lemma 3.5, w € Ts and z ¢ Ts. Then Lemma 3.5 also says that
S’[b, z] cannot be a nontrivial subproblem, so b’s right subtree is empty. The case that b is on X’s
right is symmetric. [ ]

LEmMmaA 3.8. Suppose Ts # Ts/. Then there is a path from X to the leaf level containing all changed
pivots to the left of X, and a path from x to the leaf level containing all changed pivots to the right of .

Proor. We define the left path recursively from X. Let x; be x’s left child in Ts/. If x; € Tg, then
by Lemma 3.4, there are no changed pivots to the left of x;, so we continue the path to x’s right
and select x; as x;’s right child. If instead x; ¢ Ts/, then by Lemma 3.7, x; has only one child, so we
select this child as x,. This path contains all changed pivots by construction, since every time we
select a direction in the path, the other direction either contains no changes or an empty subtree.
The path to the right of X is symmetric. [

This implies a bound on the total cost to maintain protected Cartesian trees, which is proved in
Appendix A.3.2 in the interest of space.

COROLLARY 3.9. The protected Cartesian tree Ts on S can be maintained with CPU cost O(1 +
log(N/B)/B) in expectation.

Recall that we analyze protected Cartesian trees in order to bound the costs of our dynamic
partitioning algorithm. When analyzing the number of pivots that change after an insert
(equivalently, the number of group boundaries that change), we can in fact show much tighter
bounds on the number of changes, as we shall see in the remainder of this section.

We need some additional structural lemmas on the configuration of pivots in order to bound
their changes. The next lemma says that when viewed in rank order, all changed pivots must be
contiguous (i.e., have no unchanged pivots between them.)

LEmMMA 3.10. Let Tsy \ Ts = {y1, ..., yx} be the set of new pivots, and let z € Ty N Ts. Then z < y;
oryg < z.

Proor. Suppose for the sake of contradiction that there is some pivot z € Ts N Tsr with y;, yj41 €
Ts \ Ts such that y; < z < y;4+1. Suppose also without loss of generality that y;,; < X, so that these
three pivots appear to the left of X in S’. If there exist unchanged pivots to the left of y;, there is
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some pivot w € Ts N Ty» with w < y;. If all pivots to the left are new, set w = —co. We can then
apply Lemma 3.4 to say that the subproblem S’[w, z] is also a subproblem in S, and will have an
identical subtree. But this contradicts the assumption that y; ¢ Ts. A symmetric argument shows
that the pivots to the right of X are also contiguous. [ ]

LEmMMA 3.11. Let Ts \ Ts = {y1,...,yr} be the set of new pivots. Then their hash values are
monotonically decreasing until X, and monotonically increasing after x. In other words, h(y;) >
h(yz) > -+ > h(y;—1) > h(X) < h(yi+1) < -+ < yx for somei.

Proor. Recall that the fact that y; = x for some i follows from Lemma 3.2. By Lemma 3.8, there
is a path downwards from X containing all of y, Y2, - - - , yi—1. By definition of a protected Cartesian
tree, any path downwards contains pivots with hashes in increasing order. So it remains to show
that the y; to the left of X appear in decreasing order by rank down this path.

Suppose for contradiction that y; has lower depth than y, for some y; < y, < X. Since y; is
selected before y,, we know that y, was selected as the root of some subproblem S’ [w, z], with
y; < w. But this contracts Corollary 3.7, which says that y; must have an empty right subtree. The
cham on the other side of x follows by symmetry. [ ]

LEMMA 3.12. IfTs # Ts, the probability of at least k new pivots in Ts is at most m

Proor. By Lemma 3.2, ¥ € Ts,. With k new pivots, there must be at least j = | k/2] pivots on
at least one of the two sides of Xx. Assume, w.l.o.g., that this occurs on the left side, and write
Y1, Y2, ..., Y; = X as the new pivots. By Lemma 3.11, we have h(y;) > h(y;) > --- > h(x). First, we
show by induction that for each i > 2, h(y;) has the minimal hash in S’ [y;, y;]. For the base case,
consider S’ [y, y2]. First, we claim that at least one of y;, y, has the minimal hash in S’ [y1, y2]. This
is true of any restriction S[u, v], because at the time the first of the two endpoints is selected as a
pivot, all elements in the subproblem are uncovered (and thus would have been selected as a pivot
instead if their hash was lower.) And since h(y;) < h(y;), it must be the element with minimal
hash. Now assume that for any z € S’ [y, y;], h(y;) < h(z). By an identical argument to the base
case, h(yi+1) < h(z) for any z € S'[y;, yi+1]. And A(yir1) < h(y;), so h(yi+1) has the minimal hash
in S’ [y1, 4] U S [yi, yira] = S [y, yina].

Now it remains to bound the probability of a sequence of new pivots in S* with the above property.

By the above argument, the new pivot y; has the minimal hash of $’[y1, y;], which contains at

least B<J

) elements. Since all hash Values are random, any individual element has the minimal
hash over this range with probability (j—l) . By the union bound, the minimal hash element in this
region is one of the B/2 elements with ranks in [rank” (x) — B/2, rank” (x)] with probability at most
]1 Then by an identical argument, the probabi]ity given y; of a new pivot y;_; that is lower than

all 22 1
=

) elements to its left is at most ~=5 5. The probability of both such pivots is then —

| RN

J’*l)! (Lk/ZJfl)!'

LEMMA 3.13. Let S be a set with |S| > B, and Ts be the protected Cartesian tree on S with random
hash function h. Then the number of pivots that change in Ts after an insertion into S is O(1/B) in
expectation and O(log N /loglog N) with high probability in N.

Contlnumg inductively, the probablhty of the entire chain is at most TDi

Proor. Letx € U\ S,and S’ = S U {x}. First consider the case that x is not the root of S’. Let X
be the random variable for the number of pivots in Tss \ Ts, conditioned on Ts # Ts. We compute
E[X] using Lemma 3.12.

|Ts |

E[X] = ZkPr sZ (I_k/zj—l)') o(1).
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By Lemma 3.3, Ts» # Ts with probability O(1/B). Thus the overall expected number of pivots in
Ts \ Ts is O(1/B).

Letc > 2,andletn = 2clog N

Toglog N By Lemma 3.12, the probability of n or more new pivots is at most
— Zfo(nlogn) — 2—O(clogN) — O(Nfc).

1
(Ln/2]-1)!
In the case that x is the root of §’, the preceding arguments regarding the chains of changed

pivots which must have monotonic hash values still hold, except that the rotation of the set, and
thus the definition of left and right, have changed. This may break the monotonic chains into three
pieces instead of two. The same bounds hold asymptotically by replacing k/2 with k/3. [ ]

3.3 Deletions

Let S € U, lety € S, and let S=35)\ {y}. Fix the randomness involved in the construction
of protected Cartesian trees. Then by the strong history independence of our construction, our
algorithm yields a unique Ts and a unique T3, no matter the order of operations. By Lemma 3.13,
there are O(1/B) changed pivots from T; to Ts in expectation, and O(log N/loglog N) with high
probability. Thus, we can conclude that the reverse operation of removing y yields the same number
of changes.

COROLLARY 3.14. Let S be set with |S| > B, and Ts, the protected Cartesian tree on S with random
hash function h. Then the number of pivots that change in Ts after a deletion is O(1/B) in expectation
and O(log N /loglog N) with high probability in N.

3.4 Reduction From Modular Partitioning to Linear Partitioning

To transform a modular partition into a linear partition, we need a scheme to separate the first
and last groups. We base our (B, 2)-partition on a (B, 3)-partition, as described in the proof of the
following theorem.

THEOREM 3.15 ((B, 3) — partitioning). History-independent (B, 3)-partitioning of a set S of size
N > B can be maintained with: group-update cost O(1/B) per insertion/deletion in expectation and
O(log N/loglog N) with high probability in N; and element-movement cost O(1) amortized per
insertion/deletion in expectation, and O((Blog N)/loglog N) with high probability in N.

Proor. The (B, 3)-partition follows from the modular partition, above. First run modular (B’, 2)-
partitioning with B” = 2B/3. This produces groups of size between B’ /2 = B/3 and B’ = 2B/3. Then
split the group that crosses the modular boundary obtain a linear partition. If the first (resp. last)
group is smaller than B/3, merge it with its neighboring group. This yields groups as large as B
and as small as B/3, yielding a linear (B, 3)-partition.

Recall that pivot changes in the protected Cartesian tree correspond to group boundary changes
in the dynamic partitioning scheme. Therefore, Lemma 3.13 and Corollary 3.14 immediately imply
the group-update costs.

Each group boundary change causes up to B elements to change groups, so applying a factor B
to the group-update costs gives the element-movement costs. [ ]

To obtain a linear (B, 2)-partition, run the (B, a)-partitioning scheme detailed in Appendix A.1
with a = 2. Therefore Theorem A.2 immediately implies Theorems 1.2 and Theorem 1.3.

4 HISTORY INDEPENDENT B-TREES

In this section, we construct a dynamic history-independent B-tree using dynamic partitioning. Let
S C U. We construct the B-tree B(S) as follows.
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(1) Build Ts, = T, the protected Cartesian tree on S, using random hash function hg. Let $; =
{p1, .., pr} denote the set of pivots in Ts, where the p; are ordered with respect to the ordering
on S. Each element in S; is a boundary element of the leaf nodes in B(S). That is, the i-th leaf
of B(S) contains, in rank order, all elements y € S such that rank(p;) < rank(y) < rank(p;.+1)
(again with the convention that py = —0.)

(2) Build Ts,, the protected Cartesian tree on S, using random hash function h; which is
independent of hy. Let S, = {q1,...,q;} denote the set of pivots of Ts, in sorted order.
The nodes at height 1 of B(S) are defined as the elements in S; partitioned by the elements
of S, as above. The parent of the leaf node with left boundary element y is the node at height
1 containing y.

(3) Repeat this process, building the height i nodes from Tg,, until |S;| < B, at which point S;
becomes the root of B(S).

The use of our history-independent (B, 2) partitioning scheme to build 8(S) immediately implies

the following lemmas.

LEmMA 4.1. B(S) is strongly history independent.
LeMMA 4.2. Each node in B(S) contains between B/2 and B elements.
COROLLARY 4.3. B(S) has height O(logz(N)) deterministically.

Proor. By Lemma 2.4, ‘|TT(éSl)\ = O(1/B) for all i. Thus, the process to construct B(S) terminates

in O(logg(N)) rounds. [ |

COROLLARY 4.4. Each search operation in B(S) has worst cast CPU cost O(log(N)) and worst case
I/O cost O(logg(N)).

Proor. The I/O cost follows from the height of B(S). And since the pivots in any node of B(S)
are in rank order, we can perform rank operations in each node in O(log B) CPU operations. =

The following theorem is a consequence of Theorem 1.2 on the group-update cost of dynamic
partitioning. We consider the costs incurred by the protected Cartesian trees used to build all levels
of a history-independent B-tree, and the way that pivot changes affect higher levels of the B-tree.

THEOREM 4.5. Each insertion/deletion in B(S) has I/O cost that is the search cost of O(loggz N),

plus an additional update cost of O(logg(N)/B) in expectation and O ( ) with high probability

inN.

loglog B

Proor. We refer to insertions in this proof for convenience, but deletions will be symmetric by
Corollary 3.14.

We insert the new element in its location, which requires a search from the root to the target
leaf. This may induce node splits or merges. If there are no node splits or merges (i.e., no group
updates), then there are no additional I/Os for our insert. On the other hand, if there are additional
splits/merges at a level, then we bound the I/O cost of these by the group-update cost at that level.

Letx € U\ S, S = SU {x}. Let £ = ©(logz(N)) denote the height of 8(S’), and let X; be a
random variable for the number of new pivots at height i of 8(S") compared to B(S). We want to
bound E[X] for X = Xo + - - - + X,.

Let k > 0. Since the protected Cartesian tree selects one pivot every B/2 to B elements, in the
event that X, = k, we know that ©(k/B) of these are new pivots in T,. This is because the k new
pivots from the leaf level are immediately new elements in the set S;, and they form a contiguous
run by Lemma 3.10. Therefore, ©(k/B) of them are selected as pivots in Ts,. We refer to these as the
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automatic pivots at height 1. Similarly, we have ©(k/B') automatic pivots in Ts,. So in aggregate,
when Xy = k, the k new pivots at level 0 of the tree result in O(k) automatic pivots in B(S).

Let Y; be the random variable for the new pivots in Ts, that are not automatic. Once again, k’
new pivots counted in Y; will induce O(k”) automatic new pivots at higher levels. In general, let Y;
be the new pivots that are not automatic from any lower levels, and let Y = Yy + Y; + - - - V7. By the
preceding argument, X = O(Y).

Pivot changes form a contiguous run by Lemma 3.10. Since Y; only counts non-automatic pivots,
it is equivalent to counting the possible pivot changes that result from two insertions: the leftmost
and rightmost new pivots in S;. Since each insert into a protected Cartesian tree has expected cost
O(1/B), we have E[Y;] < 2E[X;] = O(1/B). Therefore, E[Y] = O((logg N)/B). In particular, this
term is asymptotically smaller than the search cost.

To get high probability bounds, we union bound over the two non-automatic inserts in Y; that are
to the left and right of the automatic pivots. By Lemma 3.12, Pr[Y; > k] < 2Pr[X; > k] < m

We want to bound the probability that Y = }} Y; > 10125%. The Y; are independent by construction,

so for any values a4, . .., ar,

t
Pr((Yr =a) A+ A (Y= a)] = [ [ Prl(¥ = ap)].
i=1

s _ clogN
Write L = w,

all of the a; are equal to a = L/¢. This has probability

for some constant c. By convexity, the probability that Y = L is maximized when

— 9=O(t(aloga)) _ 5=O(Llog(L/0))

4 1 4
1;[Pr[(Y,- —a)] < (—(W2J . 1)!)

Also,

Llog(L/t) = ICIOgN (ClOgN IOgB) _ clogN ( clog B

og loglogB) = 0O(clogN),

oglog B loglog B ' logN | loglogB

so we can bound the above probability by N~¢" for some constant ¢’. Finally, we union bound
over the polynomially many different combinations of ¢ values that sum to L, so picking constants
appropriately, the probability that Y > L is bounded by N~ [ ]

The following results from Theorem 4.5, and the fact that we perform O(B) CPU operations
within each block when updating group boundaries.

THEOREM 4.6. Each insertion/deletion in B(S) has CPU cost that is the search cost of O(log N),
plus an additional update cost of amortized O(logg(N)) in expectation and O(lfgl?—fg]\;) with high
probability in N.
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A APPENDIX

In this appendix, we provide details that were omitted in the body of this paper due to space reasons.

A.1 (B, a)-Partitioning
In this section, we generalize Theorem 3.15, which gives a linear (B, 3)-partitioning, to yield a linear
(B, a)- partitioning for any @ = 1+ ©(1). Recall that in a (B, a)-partition, we must maintain groups
G of size £ < |G| < B. Since a (B, a)-partition immediately gives a (B, a)-partition of values of
a > a, We restrict our attention to the range 1 < o < 2.

We define the following values:

ey=a-1

oo =1+y/2
e’ =1+y/4
e B =Ba"/a’

24
® C = Y 2
o d= g
We will also use the notation [n] to denote the set {1,2,...,n}.

We first describe an algorithm for (B, @)-partitioning. The algorithm has two random blurring
parameters. These are not needed for correctness, which is established in Lemma A.1. They will be
used to establish performance bounds, which are established in Theorem A.2.

Dynamic (B, «r)-Partitioning. Let S C U be a dynamic set.
(1) Run dynamic (cB’, 3)-partitioning on S to produce supergroups Fi, ..., F,.
(2) Run dynamic (dB’, 3)-partitioning within each supergroup F; to produce minigroups Hj.
(3) For each supergroup F;, let M; = |F;|. Set k; = iM +r’] to be the total number of groups that

we generate, where r; € [B’] is a random blurring parameter that is determined based on a
hash function of the first pivot in F;.

(4) Set 7; = = to be the minimum threshold of each group. Our construction will guarantee
that all but the last group has size at least 7;, and we will give a lower bound on how much
the size of the last group dips below 7;.

(5) For each supergroup F;, form groups G{ by greedily gluing together adjacent minigroups Hf
from left to right until each group has at least le =7+ s{ elements, where slj € [dB’] in each
group is a random blurring parameter determined by hashing the value of the first pivot of
the group G{ . We refer to Tl.j as the threshold for group Glj . The last group comprises the
left-over elements in F;.

(6) The resulting groups G; form the (B, a)-partition.

LEmMA A.1. This algorithm produces a dynamic (B, @) -partition.

Proor. The algorithm is strongly history independent, since the supergroups and minigroups
are produced by a strongly history independent algorithm, and the groups are determined only by
the number of elements in each minigroup and the blurring values, which are based on hashes of
their elements.

We need to argue that this algorithm produces a valid (B, &)-partition, that is, that each group
G; has between B/« and B elements. Fix a supergroup F;. For ease of notation, we will drop the
subscript i and write F = F;, Gl = Gi M=M,k=k,r=r,r=rands/ = sj

First we argue that each group formed within F has size at most B. By construction, k > g’{
and so 7 < B’. Additionally, we add minigroups to group G’ until we are over its threshold
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) = r+s/ < r+dB’. And since minigroups are produced by a (dB’, 3)-partition, they have size at
most dB’. Therefore, the size of a group is at most

’” 2 7 2 2
100a” + 100 + 25y +
T+2dB'£B’(1+2d)=B~a— 1+ Y =B-—Y=B-#<B,
a’ 100a”” 100a’ 100 + 50y

where the last inequality follows since & < 2 means y < 1, and thus y? < 25y.

Now we must show that each group has size at least B/a. There are two things to prove: (1) our
minimum threshold 7 produces groups that are large enough, and (2) the last group in F (the group
with the highest ranks) is not too small.

Let us first consider a group G’ that is not the last one. By construction k < [%] < M%B/ and

j MB'
so |G/| > 7 2 §5.55 - Therefore,

. MB’ B/ (M +2B’) — 2(B)? B 2(B’)?
T2 = = L S—
M+ 2B’ M+ 2B’ M+ 2B
Since the supergroups are produced from a (c¢B’, 3)-partition, we have that M > ¢B’/3 = 873/.
Therefore,
2(B’ 2 2(B’ 2 B’ B'v/4 B(a’ -1
(B) __2BY By Byt B _ g
2B +M ~ 2B +8B'/y y+4 y/4+1 o
Putting these together, we have that the number of elements in G/ is at least
; B')? B B _B
|GJ|ZTZB'—LzB'—B'(l—l/a”)z—=—>—, (1)
M+ DB a’ ad o«

as desired.

Finally, let us consider the last group. We set our minimum threshold 7 so that if all prior groups
had exactly 7 elements, the last group of remaining elements would also have size 7. Each of the
previous k — 1 groups can exceed their thresholds 7/ by at most dB’, and so they can exceed the
minimum threshold 7 by at most dB’ + s/ < 2dB’. Therefore, the last group can underflow the
minimum threshold by at most 2dB’ (k — 1), meaning that it has size at least 7 — 2dB’(k — 1).

Note that in the case that 7 is fractional, we may be concerned about accumulations from extra
elements in each prior minigroup due to rounding up from their thresholds. In fact, since the
minigroup size is always under 7 + s/ without the first element of the minigroup (or else we would
not have added the last minigroup), the excess number of elements from the last minigroup is at
most dB’ — 1. Therefore 7 +s/ + dB’ < 7+ 2dB’ is an accurate bound on the number of elements in
each prior minigroup including rounding.
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The last group therefore has size at least

M
r—de’(k—1)2r—de’(§+1) (Since k < ¥ +2)
B p . .
> —-2d(M+B) (Since 7 > B/a’ by Equation 1)
a
B 24B’
> — - Zd( +B') (Since M < ¢B’ = 24B' [y)
a Y

B ¥Y?  (24B +yB
a Y

B y? (258
a’ 100a” \ y

v
|

so it remains to show that 1_73/ > 1/a. Recall that y < 1, so we have
y=y
Y=y +4+2y>4+2y
4+3y—y* > 4+2y

4-y+y) =4+2y
4-y 4-y S 1 1
4 4+2y T 1+y o

as desired. [ ]

THEOREM A.2 ((B, &)-PARTITIONING). Foranya = 1+©(1), history-independent (B, a)-partitioning
of a set S of size N > B can be maintained with: group-update cost O(1/B) per insertion/deletion in
expectation and O(log N /loglog N) with high probability in N; and element-movement cost O(1)
amortized per insertion/deletion in expectation, and O(Blog N /loglog N) with high probability in N.

Proor. For the group-update cost, notice that, for constant «, there are ®(1) groups per
supergroup. Thus, we can afford to rebuild the supergroup whenever a group changes, for a
group-update cost of ©(1). We need to prove that this happens with probability O(1/B).

There are three events that can cause a rebuild of a supergroup. Suppose that an insertion or
deletion affects group i, and for convenience, we will drop the subscript i on all variables.

(1) New pivots of minigroups could be introduced or removed.
(2) The number of groups k = [(M +r)/B’] could change, meaning that = changes.
(3) On an insert, the size of a minigroup could increase by 1, which means that a particular
minigroup, which used to be assigned to one group, now gets assigned to the next group.
Or the reverse, where on a delete, the size of a minigroup decreases, which means that a new
minigroup gets assigned to one group earlier.
Case (1): On any insert or delete, the probability of a pivot change is O(1/B) by Lemma 3.3.
Cases (2) and (3) are the reason we introduced random blurring, because some particular insertion
could cause some threshold to be crossed. If the adversary knew what this threshold was, they
could insert and delete across the threshold over and over.
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For Case (2), k increases by 1 when M’ + r is a multiple of B’ and is increased by 1. But r is a
random variable that is selected uniformly over [B’] = [@(B)]. Thus, the probability that any one
insertion is exactly at the point where B’ divides M’ + r is O(1/B).

For Case (3) instead of picking a threshold for a group size of exactly z, we change the threshold
tober+s/, fora randomly chosen s/ € [dB’] in each group G/. So now, since there is a random
threshold in a group, the probably that any insert triggers a minigroup getting pushed out of/into a
group is O(1/dB’) = O(1/B).

Finally, we can have changes in the pivots that divide the set into supergroups. The supergroups
are formed by a (B, 3)-partition, so Theorem 3.15 gives O(1/B) supergroup pivot changes in
expectation. And again, we can afford to rebuild all ®(1) pivots within the supergroups if a
supergroup pivot changes for no extra asymptotic cost. Putting these all together gives the expected
group-update cost of O(1/B).

For the high probability bound, since the partition into supergroups is done using a
(B, 3)-partitioning, Theorem 3.15 gives O(log N/loglog N) supergroup boundary changes per
insertion/deletion w.h.p., and each supergroup can only have O(1) group boundary changes.

To establish bounds on the element movement cost, notice that each group boundary change
causes up to B elements to change groups, so we have amortized element-movement costs of O(1)
in expectation and O((Blog N)/loglog N) with high probability. ]

A.2 History-Independent Fusion Trees

Fusion trees are search trees that operate in the word-RAM model and support insert and delete
update operations and predecessor and successor search operations in O([log N/logw]) time,
where w is the word size. For example, if w € ©(log N), then a fusion tree supports update and
search operations in O(log N /loglog N) time. It achieves these bounds by using constant-time bit-
parallel word operations that are common in modern CPUs, such as bit shifting, bitwise AND, OR,
and XOR operations, and the most-significant bit (MSB) operation (which is equivalent to casting
an integer to a float and reading the exponent field). Previous implementations of fusion trees, as
described in the literature, are not history independent, however; see, e.g., [3, 6, 28, 46, 51, 58, 63].

In this section, we describe how our results imply efficient constructions for history-independent
fusion trees. The key observation is to note that a fusion tree is structurally a B-tree with branching
factor B = w'/¢, for a small constant ¢, which is typically 2, 5, or 6; see, e.g. [3, 6, 28, 46, 51, 58, 63].
Thus, the height of a fusion tree is O(log N/log w). Each node, v, in a fusion tree is implemented
as a sorted packed array of at most B keys, just like in a B-tree, plus a memory word that stores
compact (e.g., w!/°-sized) sketches in a packed array for each of the keys stored at o. Moreover, this
packed representation supports performing predecessor and successor operations with respect to
the set of keys stored at v in O(1) time using bit-parallel word operations [3, 6, 28, 46, 51, 58, 63].
Furthermore, the packed array of sketches stored at a node in a fusion tree is canonical, since it
is based on choosing bit positions for the places that have two subtrees in a binary trie for the
keys stored at the node; e.g., see [3, 6, 28, 46, 51, 58, 63]. Thus, we can maintain a fusion tree to be
history independent by maintaining its corresponding B-tree to be history independent.

Searching in a fusion tree can be done in time proportional to its height, in the word-RAM
model [3, 6, 28, 46, 51, 58, 63], by using bit-parallel word operations. This is achieved by performing
the comparison and branching operations for each node in O(1) time when searching for a
predecessor or successor of search key, x, while traversing down the B-tree structure of the
fusion tree. In other words, the search time in a fusion tree corresponds to the I/O complexity for
searching in its corresponding B-tree.

In contrast, the cost for performing an insert or delete in a fusion tree instead corresponds to the
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CPU cost for an insert or a delete in its corresponding B-tree, since performing a split or merge
operation for sibling nodes in a fusion tree takes ©(B) time [3, 6, 28, 46, 51, 58, 63]. The reason for
this is that doing a split and merge operation for sibling nodes in a fusion tree still requires moving
the (full-sized) keys between the nodes as well as the bit-parallel word operations necessary to
create new packed arrays of the sketches for the keys for the merged or split nodes. Thus, given
our results described above, which we have characterized in terms of CPU costs and I/O costs for
history-independent B-trees, we have the following theorem.

THEOREM A.3. One can maintain a strongly history-independent fusion tree of size O(N) in the
word-RAM model, with word size w, that supports searching in O([log N /log w]) time, in the worst
case, and insertion/deletion in O([log N /log w]) time in expectation.

A.3 Deferred Proofs
A.3.1  Proofs for Section 2.

Proor oF LEMMA 2.4. The uniqueness of Ts follows immediately from the recursive construction.
The root is unique. Thus, recursively, each of the children is unique.

To prove the size bounds, suppose that |S| > B, so that Ts is nonempty. Write the nodes of Ts as
t; <ty < -+ < f. For any consecutive pair t;, t;;1, we claim that B/2 < |S[t;, t;41]| < B. Indeed, this
interval cannot be larger, or there would be an additional pivot in between t; and t;;;. Conversely,
there cannot be fewer than B/2 elements between them, or one would be in the protected region of
the other (and thus not eligible for selection as a pivot).

Since there are between B/2 and B elements in S between successive elements in Tg, we must
have that |Ts|/|S| = ©(1/B). [

PROOF OF LEMMA 2.6. Let w be the root of a subproblem S = S[u,v]. We say that w is good
if ‘Ui—s)l < rankg(w) < m. Since the root is equally likely to be any element in U(S), the
probability that w is good is at least 1/2 (where the randomness is taken over the choice of hash
function h).

Let x be a leaf in Ts, and consider the pivots encountered along the root-to-leaf path to x. After
each good pivot, each child interval has size at most 3/4 of the parent interval, and so the root-to-leaf
path to x can have at most log, ; N/B = O(log(N/B)) good pivots before reaching x. By a standard
Chernoff bound, the root-to-leaf path to x has length O(log(N/B)) with high probability in N.
Taking a union bound over all ®(N/B) leaves, the protected Cartesian tree has height O(log(N/B))
with high probability in N. [ ]

A.3.2  Proofs for Section 3.

ProOF OF COROLLARY 3.9. Let z be the root of Ts, and let M = |[U(S")|. If N < B+ 0(B), then
the bound holds trivially, so we consider N > B + ©(B) and claim that the probability that z is
not the root of Tss is O(1/M). Indeed, the only elements that can be selected as the root of Ts: by
RECOMPUTECARTESIAN(S, x) are X and z. And X has the minimal hash in U(S”) with probability
1/|U(S’)| by the randomness of hash values. Since M = N — B = ©(N), this probability is O(1/N).
In this case, we charge all ©(N/B) nodes in the tree to z, since at worst we have to touch all
descendants of z in implementing the changed root. Thus the contribution of z to the expected
number of operations is O(1/B).

By Lemma 3.8, all changed nodes will be found it at most two root-to-leaf paths. Let z’ be a
node in one of these paths, where z’ is the root of some subproblem S of size N > B+ ©(B),
and M’ = |U(S)|. Once again, the probability that z’ is no longer the root of T5 is 1/M’, and in
this event we charge z’ with all N’/B nodes in its subtree. Since N’ and M’ differ by ©(B), the
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contribution of z’ to the expected number of changes is O(1/B). By Lemma 2.6, the root-to-leaf
path has length O(log(N/B)) with high probability in N, thus we have at most this many nodes
contributing O(1/B) to the expectation.

At the leaf level, subproblems may have a higher probability of changing their root because
their unprotected region has size o(B). However, since leaves have no children, we change only
one node in this event. Thus the final subproblem in the root-to-leaf path contributes at most 1 to
the expectation. Putting these together, the expected number of operations to update the tree is
O(log(N/B)/B +1). [
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