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Abstract
Previous research has shown that federated learn-
ing (FL) systems are exposed to an array of se-
curity risks. Despite the proposal of several de-
fensive strategies, they tend to be non-adaptive
and specific to certain types of attacks, rendering
them ineffective against unpredictable or adap-
tive threats. This work models adversarial feder-
ated learning as a Bayesian Stackelberg Markov
game (BSMG) to capture the defender’s incom-
plete information of various attack types. We pro-
pose meta-Stackelberg learning (meta-SL), a prov-
ably efficient meta-learning algorithm, to solve
the equilibrium strategy in BSMG, leading to an
adaptable FL defense. We demonstrate that meta-
SL converges to the first-order ε-equilibrium point
in O(ε−2) gradient iterations, with O(ε−4) sam-
ples needed per iteration, matching the state of the
art. Empirical evidence indicates that our meta-
Stackelberg framework performs exceptionally
well against potent model poisoning and back-
door attacks of an uncertain nature.

1. Introduction
Federated learning (FL) provides a way for several devices
possessing private data to collaboratively train a learning
model without the need to share their local data (McMa-
han et al., 2017). Nonetheless, FL systems remain suscep-
tible to antagonistic attacks, including untargeted model
poisoning and specific backdoor attacks. To counter these
vulnerabilities, a range of robust aggregation techniques
like Krum (Blanchard et al., 2017), coordinate-wise me-
dian (Yin et al., 2018), trimmed mean (Yin et al., 2018), and
FLTrust (Cao et al., 2021) have been suggested for defense
against non-specific attacks. Furthermore, different post-
training protective measures like Neuron Clipping (Wang
et al., 2022) and Pruning (Wu et al., 2020) have been re-
cently introduced to reduce the impact of backdoor attacks.

Existing defenses typically are built to resist specific attack
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Figure 1. A schematic illustration of the meta-Stagberg game
framework. In the pertaining stage, a simulated environment is
constructed using generated data and a set of attacks. The defender
utilizes meta-Stackelberg learning (Algorithm 2) to obtain the meta
policy θ and the adaptation Ψ in (2). Then, in the online execution,
the defender can adapt its defense to Ψ(θ, τ) using received feed-
back τ in the presence of unknown attacks.

types and attacks that do not evolve in response to defensive
measures. In this work, we introduce a meta-Stackelberg
game (meta-SG) framework that delivers robust defensive
performance, even against adaptive attacks such as the re-
inforcement learning (RL)-based attack (Li et al., 2022a),
which current state-of-the-art defenses struggle to address,
or an amalgamation of different attack types like the simulta-
neous occurrence of model poisoning and backdoor attacks
(see Section 5).

Our meta-SG defense framework is established on several
key observations. Firstly, the issue of resilient federated
learning in the face of a non-adaptive attack can be perceived
as a Markov decision process (MDP), where the state rep-
resents model updates from selected devices and the action
refers to the gradient for updating the global model. More-
over, when the attack is known beforehand, the defender
can employ the limited amount of local data at the server
and publicly accessible data to construct an (approximate)
MDP model and determine a robust defense policy prior to
the commencement of FL training. Secondly, for situations
where the attack is adaptive but with specific parameters,
we can articulate a Markov game between the attacker and
the defender and establish a robust defense by solving the
Stackelberg equilibrium of the game, wherein the defender
is the leader and the attacker the follower. This approach
is applicable to both single and multiple concurrent attacks
and may yield an (almost) optimal defense. Thirdly, in more
realistic scenarios where attacks are unknown or uncertain,
the issue can be framed as a Bayesian Stackelberg Markov
game (BSMG), offering a comprehensive model for adver-
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sarial FL. Nonetheless, the standard solution concept for
BSMG, the Bayesian Stackelberg equilibrium, is aimed at
the expected case and does not adapt to the actual attack.

In this study, we introduce a novel solution concept, the
meta-Stackelberg equilibrium (meta-SE), for BSMG as a
systematic approach to creating resilient and adaptive de-
fenses for federated learning. By merging meta-learning
with Stackelberg reasoning, meta-SE provides a computa-
tionally efficient method to handle information asymmetry
in adversarial FL and facilitates strategic adaptation dur-
ing online execution amidst multiple (adaptive) attackers.
Prior to training an FL model, a meta-policy is trained by
resolving the BSMG using experiences sampled from a set
of potential attacks. During FL training when confronted
with an actual attacker, the meta-policy rapidly adapts using
a relatively small batch of samples gathered in real-time. Im-
portantly, our proposed Meta-SG framework only requires a
rough estimate of potential attacks during meta-training due
to the generalization capability offered by meta-learning.

To solve the BSMG in the pre-training stage, we develop a
meta-Stackelberg learning (meta-SL) algorithm, based on
the concept of debiased meta-reinforcement learning (Fallah
et al., 2021). Meta-SL is proven to converge to the first-order
ε-approximate meta-SE in O(ε−2) iterations, and the corre-
sponding sample complexity per iteration is O(ε−4). Such
algorithmic complexity aligns with the latest complexity re-
sults in nonconvex bi-level stochastic optimization (Ji et al.,
2021). Due to the conflicting interests between the defender
and the attacker in FL, the ensuing BSMG is strictly com-
petitive, which can be seen as a generalization of zero-sum.
Therefore, meta-SL does not require second-order deriva-
tives of the attacker’s value function (the low-level problem),
even though the Hessian of the defender’s value function
remains due to the meta adaptation. Inspired by Reptile
(Nichol et al., 2018), a first-order meta-learning algorithm,
we propose a fully first-order pre-training algorithm, re-
ferred to as Reptile Meta-SL, as a substitute for meta SL in
our experiments. Reptile Meta-SL uses only the first-order
stochastic gradients of the attacker’s and defender’s objec-
tive functions to solve for the approximate equilibrium. As
evidenced by numerical results in Section 5 and Appendix,
it is effective in managing adaptive and/or uncertain (or
unknown) attacks.

Our contributions can be summarized as follows, with the
discussion of related work relocated to the Appendix due to
space constraints:

• We tackle vital security issues in federated learning in
the face of multiple adaptive (non-adaptive) attackers of
uncertain or unknown types.

• We devise a Bayesian Stackelberg game model (Sec-
tion 2.2) to encapsulate the information asymmetry in
adversarial FL under uncertain or unknown adaptive at-
tacks.

• To provide the defender with strategic adaptability, we in-
troduce a new equilibrium concept, the meta-Stackelberg
equilibrium (Definition 3.1). Here, the defender (the
leader) commits to a meta policy and an adaptation strat-
egy, leading to a data-driven method to handle information
asymmetry.

• To learn the meta equilibrium defense during the pre-
training phase, we develop meta-Stackelberg learning (Al-
gorithm 2), an efficient first-order meta RL algorithm.
This algorithm provably converges to ε-approximate equi-
librium in O(ε−2) gradient steps with O(ε−4) samples
per iteration, matching the state-of-the-art efficiency in
stochastic bilevel optimization.

• We carry out comprehensive experiments in real-world
scenarios to demonstrate the outstanding performance of
our proposed method.

2. Model Formulation
2.1. Federated Learning and Threat Model
FL objective. Consider a learning system that includes
one server and n clients, each client possesses its own pri-
vate dataset Di = (xj

i , y
j
i )

|Di|
j=1 and |Di| signifies the size of

the dataset for the i-th client. Let U = {D1, D2, . . . , Dn}
represent the compilation of all client datasets. The objec-
tive of federated learning is defined as identifying a model
w that minimizes the average loss across all the devices:
minw F (w,U) := 1

n

∑n
i=1 f(w,Di), where f(w,Di) :=

1
|Di|

∑|Di|
j=1 ℓ(w, (x

j
i , y

j
i )) is the local empirical loss with

ℓ(·, ·) being the loss function.
Attack objective. We consider two major categories of
attacks, namely, backdoor attacks and untargeted model poi-
soning attacks. Our framework can be extended to other
attack scenarios. For simplicity, assume that the first M1

malicious clients carry out the backdoor attack and the fol-
lowing M2 malicious clients undertake the poisoning attack.
The model poisoning attack aims to maximize the average
model loss, i.e., maxw F (w); the backdoor attack aims to
preserve decent performance on clean test inputs (“main
task”) while causing misclassification of poisoned test in-
puts to one or more target labels (“backdoor task”). Each
malicious client in the backdoor attack produces a poisoned
data set D′

i≤M1
, obtained by altering a subset of data sam-

ples (xj
i , y

j
i ) ∈ Di to (x̂j

i , c
∗), where x̂j

i is the tainted sam-
ple with a backdoor trigger inserted, and c∗ ̸= yji , c

∗ ∈ C
is the targeted label. Let U ′ = {D′

1, D
′
2, . . . , D

′
M1
} denote

the compilation of poisoned datasets. The objective func-
tion in the backdoor attack is defined as: minw F ′(w) =
λF (w,U) + (1 − λ)F (w,U ′), where λ ∈ [0, 1] serves to
balance between the main task and the backdoor task.
FL process. The federated learning process works in an
adversarial setting as follows. At each round t out of H FL
rounds, the server randomly selects a subset of clients St and
sends them the most recent global model wt

g . Every benign
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client in St updates the model using their local data via one
or more iterations of stochastic gradient descent and returns
the model update gt to the server. Conversely, an adversary
in St creates a malicious model update g̃t clandestinely and
sends it back. The server then collects the set of model up-
dates {g̃ti∪g̃tj∪gtk}i,j,k∈St,i∈[M1],j∈[M2],k/∈[M1]∪[M2], utiliz-
ing an aggregation rule Aggr to combine them and updates
the global model wt+1

g = wt
g −Aggr(g̃ti ∪ g̃tj ∪ gtk), which

is then sent to clients in round t+ 1. At the final round T ,
the server applies a post-training defense h(·) on the global
model to generate the final global model ŵT

g = h(wT
g ).

Attacker type and behavior. We anticipate multiple types
of attacks occurring simultaneously, emanating from various
categories. For the sake of clarity, we hypothesize a single
mastermind attacker present within the FL system who con-
trols a group of malicious clients employing diverse attack
strategies, which may be either non-adaptive or adaptive.
Non-adaptive attacks involve a fixed attack strategy that
solves a short-sighted optimization problem, disregarding
the defense mechanism implemented by the server (i.e., the
robust aggregation rule and the post-training defense). Such
attacks include explicit boosting (EB) (Bhagoji et al., 2019),
inner product manipulation (IPM) (Xie et al., 2020), and
local model poisoning attack (LMP) (Fang et al., 2020)).
On the other hand, an adaptive attack, such as the RL-based
model poisoning attack (Li et al., 2022a) and RL-based
backdoor attack (Li et al., 2023), designs model updates by
simulating the server’s reactions to optimize a long-term
objective. One significant hurdle in addressing relentless
and covert attacks in adversarial settings is the information
asymmetry (Li et al., 2022d). This is when the server (i.e.,
the defender) lacks knowledge of the behavior and identities
of malicious clients in a realistic black-box scenario. We de-
note the collective attack configuration of malicious clients
as the type of the mastermind attacker, detailing M1,M2,
attack behaviors (adaptive or not), and other required param-
eters of the attack method.

2.2. Bayesian Stackelberg Markov Game Model
In this study, we propose a comprehensive framework for
robust defense against potent unknown or uncertain attacks.
The central principle is to construct RL-based defenses by
simulating unknown attack behavior using RL-based at-
tacks. As demonstrated in prior research (Li et al., 2022a;
2023), RL-based attacks serve as a robust baseline for both
model poisoning and backdoor attacks. Therefore, a de-
fense that is resilient to RL-based attacks could potentially
safeguard the system against other (less potent) attacks. To
manage the high-dimensional state and action spaces, we
integrate a set of lightweight defenses in the training stage
and post-training stage. The groundbreaking element of
our approach is the use of RL to optimize these defenses,
moving away from the conventional fixed and manually-
tuned hyperparameters. This approach requires a Bayesian

Stackelberg Markov game formulation, encapsulated in the
tuple G = (P, Q, S,O,A, T , r, γ), where γ ∈ (0, 1) is the
reward discounting factor:

• The player set P = {D,A} contains D as the leader
(defender), and A as the follower (attacker) who controls
multiple malicious clients.

• Q(·) : Ξ → [0, 1] denotes the probability distribution
over the attacker’s private types. Ξ := {ξi}|Ξ|

i=1 where ξi
denotes i-th type attacks.

• O is the observation space; the observation for the server
(i.e., defender) at round t is wt

g (the server does not have
access to the client’s identities); the observation for the
attacker at round t is st := (wt

g, I
t) since the attacker con-

trols these malicious clients. It ∈ {0, 1}|St| is the iden-
tity vector for the random client subset St ⊆ {1, . . . , n},
where the identities of malicious and benign devices are 1
and 0 respectively. Notice that, the clients’ identities are
independent of players’ actions.

• A = {AD, Aξ} is the joint action set, where AD and
Aξ denote the set of defense actions and type-ξ attack
actions, respectively; in the FL setting, atD = ŵt+1

g :=
h(wt+1

g ), and the attacker’s action is characterized by
the joint actions of malicious clients atAξ

:= {g̃ti}
M1
i=1 ∪

{g̃ti}
M2

i=M1+1. Note that a malicious device not sampled
at round t does not send any information to the server;
hence its action has no effect on the model update. The
subscript ξ is suppressed if it is clear from the context.

• T : S×A→ ∆(S) is the state transition function, which
represents the probability of reaching a state s′ ∈ S from
current state s ∈ S, where the defender and the attacker
chose actions atD and atAξ

respectively.
• r = {rD, rAξ

}, where rD : S×A→ R≤0 and rAξ
: S×

A→ R are the reward functions for the defender and the
attacker, respectively. Define the expected reward at round
t as rtD := −E[F (ŵt+1

g )] and rtAξ
:= ρE[F ′(ŵt+1

g )] −
(1 − ρ)E[F (ŵt+1

g )], ρ = M1/(M1 +M2), if 1 · It > 0,
and rtAξ

:= 0 otherwise.

3. Meta-Stackelberg Equilibrium
Let the defender’s and the attacker’s policies be param-
eterized by neural networks πD(a

t
D|st; θ), πA(a

t
A|st;ϕ)

with model weights θ ∈ Θ and ϕ ∈ Φ, respectively. Given
the two players’ policies θ, ϕ and the private attack type ξ,
the defender’s expected utility is defined as JD(θ, ϕ, ξ) :=
Eat

A∼πA(·;ϕ,ξ),at
D∼πD(·;θ)[

∑H
t=1 γ

trD(s
t, atD, a

t
A)]. Simi-

larly, the attacker’s expected utility is JA(θ, ϕ, ξ) :=

Eat
A∼πA(·;ϕ,ξ),at

D∼πD(·;θ)[
∑H

t=1 γ
trA(s

t, atD, a
t
A)].

Denote by τξ := (sk, akD, a
k
A)

H
k=1 the trajec-

tory of the BSMG under type-ξ attacker, which
is subject to the distribution q(θ, ϕ, ξ) :=∏H

t=1 πD(a
t
D|st; θ)πA(a

t
A|st;ϕ, ξ)T (st+1|st, atD, atA). In

the later development of meta-SG, we consider the gradient
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∇θJD(θ, ϕ, ξ) and its sample estimate ∇̂θJD(τξ) based
on the trajectory τξ. The estimation is due to the policy
gradient theorem (Sutton et al., 2000) reviewed in Appendix
D, and we note that such an estimate takes a batch of τξ
(the batch size is Nb) for variance reduction. For simplicity,
we use the one-trajectory estimate denoted by ∇̂θJD(τξ).
A natural defense strategy to tackle the information asym-
metry is to find a Bayesian Stackelberg equilibrium (BSE):

max
θ∈Θ

Eξ∼Q(·)[JD(θ, ϕ
∗
ξ , ξ)]

s.t. ϕ∗
ξ ∈ argmax JA(θ, ϕ, ξ), ∀ξ ∈ Ξ.

(1)

(1) admits a simple characterization for optimal defense, yet
its limitation is evident. The attacker’s actions (equivalently,
the aggregated models) reveal partial information about its
hidden type (its attack objective), which the defender does
not properly handle, as the strategy is fixed throughout the
BSMG. Consequently, the defender does not adapt to the
specific attacker in the online execution.
To equip the defender with responsive intelligence in the
face of unknown multi-type attacks, we propose a new equi-
librium concept, meta-Stackelberg equilibrium in Defini-
tion 3.1. The intuition of this meta-equilibrium is that
Ψ(θ, τξ) is tailored to each realized ξ when the defender
observes the attacker’s moves included in τξ.
Definition 3.1 (Meta Stackelberg Equilibrium). A triple of
the defender’s meta policy θ, the adaptation mapping Ψ, and
the attacker’s type-dependent policy ϕ is a meta Stackelberg
equilibrium if it satisfies

max
θ∈Θ,Ψ

V (θ) := Eξ∼QEτ∼q[JD(Ψ(θ, τ), ϕ∗
ξ , ξ)],

s.t. ϕ∗
ξ ∈ argmaxEτ∼qJA(Ψ(θ, τ), ϕ, ξ), ∀ξ ∈ Ξ,

(2)

where q = q(θ, ϕ, ξ) is the trajectory distribution.
In practice, Ψ(θ, τ) is simply fixed as a one-step (or multi-
step, see Appendix B) SGD operation, i.e., Ψ(θ, τ) =
θ+η∇̂θJD(τ) to leave θ as the only variable to be optimized.
In comparison with meta-defense and BSE-defense, the pro-
posed meta-SE defense highlights strategic adaptation in
adversarial FL modeled by the BSMG. A detailed discussion
on this meta-equilibrium is deferred to Appendix A.

4. Meta-Stackelberg Learning
Based on the aforementioned meta-Stackelberg equilibrium,
we introduce the meta-learning-based defense approach (Li
& Zheng, 2023) (referred to as the meta-defense in the se-
quel) by considering non-adaptive attack methods. The goal
of meta-defense is to find a meta-policy and an adaptation
rule such that the adapted policy gives satisfying defense per-
formance. The mathematical characterization is presented
in Appendix B.
The meta-defense framework includes three stages: pre-
training, online adaptation, and post-training. The pre-
training stage is implemented in a simulated environment

(as discussed in our technical report), which allows suffi-
cient alternative training with trajectories generated from
random potential attacks, which includes both adaptive (e.g.,
RL-based attacks as discussed in our technical report) and
non-adaptive (e.g., IPM and LMP) attacks. After obtaining
a meta-policy, the defender will interact with the real FL en-
vironment in the online adaptation stage to tune its defense
policy using feedback (i.e., rewards) received in the face of
real attacks. In the post-training stage, the defender will
finally perform a post-training defense on the global model.

4.1. An Alternative Solution Concept
Now we unfold the theoretical analysis for the pre-training
stage, which we refer to as meta-Stackelberg learning (meta-
SL). The main task of meta-SL is solving (2), a bi-level opti-
mization problem. We employ a bi-level approach, applying
gradient ascent to the upper-level problem (the defender’s)
where the gradient estimation involves the optimizer of the
lower-level problem (the attacker’s). The details are deferred
to Appendix B.
In general, the meta-SE (Definition 3.1) may not be
feasible (Nouiehed et al., 2019), we hereby propose a
weaker characterization that only involves the first-order
necessary conditions. To simplify our exposition, we
let LD(θ, ϕ, ξ) := Eτ∼qJD(θ + η∇̂θJD(τ), ϕ, ξ) and
LA(θ, ϕ, ξ) := Eτ∼qJA(θ + ∇̂θJD(τ), ϕ, ξ), for a fixed
type ξ ∈ Ξ.. In the sequel, we will assume LD and LA to
be continuously twice differentiable and Lipschitz-smooth
with respect to both θ and ϕ as in (Li et al., 2022b), and the
Lipschitz assumptions are deferred to Appendix C.
Definition 4.1 (ε-meta First-Order Stackelberg Equilibrium).
For a small ε ∈ (0, 1), a set of parameters (θ∗, {ϕ∗

ξ}ξ∈Ξ) ∈
Θ × Φ|Ξ| is a ε-meta First-Order Stackelbeg Equilibrium
(ε-meta-FOSE) of the meta-SG if it satisfies the following
conditions for ξ ∈ Ξ,

max
θ∈Θ

⋂
B(θ∗)

⟨∇θLD(θ
∗, ϕ∗

ξ , ξ), θ − θ∗⟩ ≤ ε,

max
ϕ∈Φ

⋂
B(ϕ∗

ξ)
⟨∇ϕLA(θ

∗, ϕ∗
ξ , ξ), ϕ− ϕ∗

ξ⟩ ≤ ε,
(3)

where B(θ∗) := {θ ∈ Θ : ∥θ − θ∗∥ ≤ 1}, and B(ϕ∗
ξ) :=

{θ ∈ Θ : ∥ϕ − ϕ∗
ξ∥ ≤ 1}. When ε = 0, the parameter set

(θ∗, {ϕ∗
ξ}ξ∈Ξ) is said to be the meta-FOSE.

the necessary equilibrium condition for Definition 3.1
can be reduced to ∥∇θLD(θ

∗, ϕξ, ξ)∥ ≤ ε and
∥∇ϕLA(θ

∗, ϕξ, ξ)∥ ≤ ε in the unconstraint settings. Since
we utilize stochastic gradient in practice, all inequalities
mentioned above shall be considered in expectation. These
conditions, along with the positive-semi-definiteness of the
Hessians, construct the optimality conditions for a local
solution for the meta-SE, which may not exist even in the
zero-sum cases (Jin et al., 2019). The advantage of con-
sidering meta-FOSE is that its existence is guaranteed by
Theorem 4.2.
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Theorem 4.2. Under the condition that Θ and Φ are com-
pact and convex, the meta-SG admits at least one meta-
FOSE.
For the rest of this section, we assume the attacker is uncon-
strained, i.e., Φ is a finite-dimensional Euclidean space.

4.2. Sufficiency for First-Order Estimation in Strictly
Competitive Games

Finding a meta-FOSE for (2) is challenging due to the
non-convex equilibrium constraint at the lower level. To
see this more clearly, consider differentiating the de-
fender’s value function: ∇θV = Eξ∼Q[∇θLD(θ, ϕξ, ξ) +
(∇θϕξ(θ))

⊤∇ϕLD(θ, ϕξ, ξ)], where ∇θϕξ(·) is locally
characterized by the implicit function theorem, i.e.,
∇θϕξ(θ) = (−∇2

ϕLA(θ, ϕ, ξ))
−1∇2

ϕθLA(θ, ϕ, ξ). There-
fore, the gradient estimation requires iteratively estimating
the second-order information for the attacker (lower level)
objective, which can be costly and prohibitive in many sce-
narios (Song et al., 2019). Hence, we introduce the fol-
lowing assumption to bypass the technicality involved in
calculating∇θϕξ.
Assumption 4.3 (Strict-Competitiveness). The BSMG is
strictly competitive, i.e., there exist constants c < 0, d such
that ∀ξ ∈ Ξ, s ∈ S, aD, aA ∈ AD × Aξ, rD(s, aD, aA) =
crA(s, aD, aA) + d.
The above assumption is a direct extension of the strict-
competitiveness (SC) notion in matrix games (Adler et al.,
2009). One can treat the SC notion as a generalization
of zero-sum games: if one joint action (aD, aA) leads to
payoff increases for one player, it must decrease the other’s
payoff. In adversarial FL, the untargeted attack naturally
makes the game zero-sum (hence, SC), and the backdoor
attack also leads to the SC (see Appendix C). The purpose
of introducing Assumption 4.3 is to establish the Danskin-
type result (Bernhard & Rapaport, 1995) for the Stackelberg
game with nonconvex value functions (see Lemma 4.5),
which spares us from the Hessian inversion.
Another key regularity assumption we impose on the
nonconvex value functions is adapted from the Polyak-
Łojasiewicz (PL) condition (Karimi et al., 2016), which
is customary in nonconvex analysis.
Assumption 4.4 (Stackelberg Polyak-Łojasiewicz condi-
tion). There exists a positive constant µ such that for any
(θ, ϕ) ∈ Θ× Φ and ξ ∈ Ξ, the following inequalities hold:
1
2µ∥∇ϕLD(θ, ϕ, ξ)∥2 ≥ maxϕ LD(θ, ϕ, ξ) − LD(θ, ϕ, ξ),
1
2µ∥∇ϕLA(θ, ϕ, ξ)∥2 ≥ maxϕ LA(θ, ϕ, ξ)− LA(θ, ϕ, ξ).
Under Assumption 4.4, the first-order estimation is suffi-
cient by Lemma 4.5.
Lemma 4.5. Under Assumptions 4.4 and reg-
ularity conditions, there exists {ϕξ : ϕξ ∈
argmaxϕ LA(θ, ϕ, ξ)}ξ∈Ξ, such that ∇θV (θ) =

∇θEξ∼Q,τ∼qJD(θ + η∇̂θJD(τ), ϕξ, ξ). Moreover,
there exists a constant L > 0 such that the defender value

function V (θ) is L-Lipschitz-smooth.

4.3. Non-Asymptotic Iteration Complexity
We now present the main iteration complexity results.
Lemma 4.6 states that one can stabilize the lower-level sim-
ulated RL attacks with the proper choices of batch size and
attacker learning iteration. Moreover, the defender’s gradi-
ent feedback can be approximated by using the last iterate of
the inner loop. Equipped with Lemma 4.6, we can apply the
standard analysis for first-order methods in a non-convex
setting to the outer loop, leading to the main complexity
result in Theorem 4.7.
Lemma 4.6. Under Assumption 4.4 and regularity as-
sumptions. For any given ε ∈ (0, 1), at any iteration
t ∈ 1, . . . , ND, if the attacker learning iteration NA and the
batch size Nb are large enough such that NA ∼ O(log ε−1)
and Nb ∼ O(ε−4), then, for any ξ ∈ Ξ, the attack policy is
stabilized, i.e.,

E
[
max
ϕ
⟨∇ϕLD(θ

t, ϕt
ξ(NA), ξ), ϕ− ϕt

ξ(NA)⟩
]
≤ ε.

Further, the defender’s gradient feedback can be ε-
approximated, i.e.,

E
[
∥∇θV (θt)−∇θEξ∼QLD(θ

t, ϕt
ξ(NA), ξ)∥

]
≤ ε,

where the expectation E[·] is taken over all the randomness
from the algorithm.
Theorem 4.7. Under assumption 4.4 and regularity assump-
tions, for any given ε ∈ (0, 1), let the learning rates κA and
κD be properly chosen (see Appendix D); let NA and Nb

be chosen as required by Lemma 4.6, then, meta-SL finds a
ε-meta-FOSE within ND ∼ O(ε−2) iterations.

5. Experiments
For the detailed setup of the experiment and correspond-
ing results, please refer to our technical report. In our
experiments, we evaluate our meta-SG defense using the
MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky
et al., 2009) datasets. The evaluation is performed under
a range of advanced attacks, including non-adaptive and
adaptive untargeted model poisoning attacks (specifically,
IPM (Xie et al., 2020), LMP (Fang et al., 2020), RL (Li
et al., 2022a)), backdoor attacks (BFL (Bagdasaryan et al.,
2020), BRL (Li et al., 2023)), and a combination thereof.
Various robust defenses are taken into account as baselines,
including training-stage defenses such as Krum (Blanchard
et al., 2017), Clipping Median (Yin et al., 2018; Sun et al.,
2019; Li et al., 2022a), FLTrust (Cao et al., 2021), and post-
training defenses like Neuron Clipping (Wang et al., 2022),
Pruning (Wu et al., 2020).
As shown in Figure 2(a), meta-SG demonstrates excellent
accuracy in federated learning models when facing the RL-
based model poisoning attack. Furthermore, as seen in
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(a) (b)

Figure 2. Advantages of the Meta-SG framework against (a) the
RL-based model poisoning attack (Li et al., 2022a) on MNIST with
20% malicious devices and (b) a mix of the backdoor attack against
FL (BFL) (Bagdasaryan et al., 2020) (5% malicious devices)
and the inner product manipulation (IPM) based model poisoning
attack (Xie et al., 2020) (10% malicious devices) on CIFAR-10.
The baseline defense combines the training-stage FLTrust and the
post-training Neuron Clipping.
Figure 2(b), meta-SG maintains high model accuracy for
unpoisoned data and significantly lowers backdoor accuracy
in scenarios involving both backdoor and model poisoning
attacks. In contrast, the baseline defense that merely com-
bines a training-stage defense with a post-training defense
leads to low model accuracy and fails to shield the FL sys-
tem from a backdoor attack, as discussed in more detail in
[technical report].

6. Conclusion and Future Work
In this work, we have proposed a data-driven approach to
tackle information asymmetry in adversarial federated learn-
ing, which can also be applied to a variety of scenarios in
adversarial machine learning, where information asymmetry
also exists. We have offered a meta-equilibrium solution
concept that is computationally tractable and strategically
adaptable. In addition, theoretical guarantees on sample
complexity and convergence rate have been established un-
der mild assumptions.
Meta Equilibrium and Information Asymmetry. Infor-
mation asymmetry is a prevailing phenomenon arising in a
variety of contexts, including adversarial machine learning
(e.g. FL discussed in this work), cyber security (Manshaei
et al., 2013), and large-scale network systems (Li et al.,
2022c). Our proposed meta-equilibrium (Definition 3.1)
offers a data-driven approach tackling asymmetric informa-
tion structure in dynamic games without Bayesian-posterior
beliefs. Achieving the strategic adaptation through stochas-
tic gradient descent, the meta-equilibrium is computation-
ally superior to perfect Bayesian equilibrium and better
suited for real-world engineering systems involving high-
dimensional continuous parameter spaces. It is expected
that the meta-equilibrium can also be relevant to other ad-
versarial learning contexts, cyber defense, and decentralized
network systems.
First-order Method with Strict Competitiveness. Due to
the hardness of the stochastic bilevel optimization problem,
we have expanded our search scope with an alternative solu-
tion concept that merely involves the first-order necessary

conditions for meta-SE. Our analytical result relies on the
special game structure induced by the strict competitiveness
assumption, which essentially “aligns” the defender/attacker
objectives leveraging the nature of policy gradient, despite
them being general-sum. Relaxing this assumption allows
our framework to deal with a more general class of prob-
lems, yet may potentially disrupt the Danskin-type structure
of gradient estimation. For simplicity of exposition, we
neglected the stochastic analysis for the defender policy
gradient estimation in the outer loop of the algorithm, the
concentration of which depends on the trajectory batch size
and attacker-type sample size. We leave the outer loop
sample-complexity analysis to future work.

Incomplete Universal Defense. Our aim is to establish a
comprehensive framework for universal federated learning
defense. This framework ensures that the server remains
oblivious to any details pertaining to the environment or
potential attackers. Still, it possesses the ability to swiftly
adapt and respond to uncertain or unknown attackers during
the actual federated learning process. Nevertheless, achiev-
ing this universal defense necessitates an extensive attack
set through pre-training, which often results in a protracted
convergence time toward a meta-policy. Moreover, the effec-
tiveness and efficiency of generalizing from a wide range of
diverse attack distributions pose additional challenges. Con-
sidering these, we confine our experiments in this paper to
specifically address a subset of uncertainties and unknowns.
This includes parameters that determine attack types, the
number of malicious devices, the heterogeneity of local data
distributions, backdoor triggers, backdoor targets, and other
relevant aspects. However, we acknowledge that our focus
is not all-encompassing, and there may be other factors that
remain unexplored in our research.

Future research directions include:

• relaxing existing assumptions and refining the stochastic
analysis targeting the proposed bi-level approach, aiming
for a more careful treatment for the potential distribu-
tional shift of attacker-type sampling, and the upper-level
gradient estimation.

• establishing a more comprehensive framework for univer-
sal federated learning defense, in the face of a wider range
of unknown and uncertain attacks.
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A. Further Justification on Meta Equilibrium
This section offers further justification for the meta-equilibrium, and we argue that meta-equilibrium provides a data-driven
approach to address incomplete information in dynamic games. Note that information asymmetry is prevalent in the
adversarial machine learning context, where the attacker enjoys an information advantage (e.g., the attacker’s type). The
proposed meta-equilibrium notion can shed light on these related problems beyond the adversarial FL context.
We begin with the insufficiency of Bayesian Stackelberg equilibrium (1) in handling information asymmetry, a customary
solution concept in security studies (Li et al., 2022d). One can see from (1) that such an equilibrium is of ex-ante type: the
defender’s strategy is determined before the game starts. It targets an “representative” attacker (an average of all types). As
the game unfolds, new information regarding the attacker’s private type is revealed (e.g., through the global model updates).
However, this ex-ante strategy does not enable the defender to handle this emerging information as the game proceeds.
Using game theory language, the defender fails to adapt its strategy in the interim stage.
To create interim adaptability in this dynamic game of incomplete information, one can consider introducing the belief
system to capture the defender’s learning process on the hidden type. Let It be the defender’s observations up to time t,
i.e., It := (sk, akD)

t
k=1s

t+1. Denote by B the belief generation operator bt+1(ξ) = B[It]. With the Bayesian equilibrium
framework, the belief generation can be defined recursively as below

bt+1(ξ) = B[st, atD, bt] :=
bt(ξ)πA(a

t
A|st; ξ)T (st+1|st, atA, atD)∑

ξ′ b
t(ξ′)πA(atA|st; ξ′)T (st+1|st, atA, atD)

. (A1)

Since bt is the defender’s belief on the hidden type at time t, its belief-dependent Markovian strategy is defined as πD(s
t, bt).

Therefore, the interim equilibrium, also called Perfect Bayesian Equilibrium (PBE) (Fudenberg & Tirole, 1991) is given by
a tuple (π∗

D, π
∗
A, {bt}Ht=1) satisfying

π∗
D = argmaxEξ∼QEπD,π∗

A
[
H∑
t=1

rD(s
t, atD, a

t
A)b

t(ξ)]

π∗
A = argmaxEπD,πA [

H∑
t=1

rA(s
t, atD, a

t
A)], ∀ξ,

{bk}Hk=1 satisfies (A1) for realized actions and states.

(PBE)

In contrast with (1), this perfect Bayesian equilibrium notion (PBE) enables the defender to make good use of the
information revealed by the attacker, and subsequently adjust its actions according to the revealed information through the
belief generation. From a game-theoretic viewpoint, both (PBE) and (2) create strategic online adaptation: the defender
can infer and adapt to the attacker’s private type through the revealed information since different types aim at different
objectives, hence, leading to different actions. Compared with PBE, the proposed meta-equilibrium notion is better suited
for large-scale complex systems where players’ decision variables can be high-dimensional and continuous, as argued in the
ensuing paragraph.
To achieve the strategic adaptation, PBE relies on the Bayesian-posterior belief updates, which soon become intractable as
the denominator in (A1) involves integration over high-dimensional space and discretization inevitably leads to the curse of
dimensionality. Despite the limited practicality, PBE is inherently difficult to solve even in finite-dimensional cases. It is
shown in (Bhaskar et al., 2016) that the equilibrium computation in games with incomplete information is NP-hard, and how
to solve for PBE in dynamic games remains an open problem. Even though there have been encouraging attempts at solving
PBE in two-stage games (Li & Zhu, 2023), it is still challenging to address PBE computation in generic Markov games.

B. Algorithms
This section elaborates on meta-learning defense and meta-Stackelberg learning. To begin with, we first review the policy
gradient method (Sutton et al., 2000) in RL and its Monte-Carlo estimation. To simplify our exposition, we fix the attacker’s
policy ϕ, and then BSMG reduces to a single-agent MDP, where the optimal policy to be learned is the defender’s θ.

Policy Gradient The idea of the policy gradient method is to apply gradient ascent to the value function JD. Following
(Sutton et al., 2000), we obtain ∇θJD := Eτ∼q(θ)[g(τ ; θ)], where g(τ ; θ) =

∑H
t=1∇θ log π(a

t
D|st; θ)R(τ) and R(τ) =∑H

t=1 γ
tr(st, atD). Note that for simplicity, we suppress the parameter ϕ, ξ in the trajectory distribution q, and instead

view it as a function of θ. In numerical implementations, the policy gradient∇θJD is replaced by its Monte-Carlo (MC)
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estimation using sample trajectory. Suppose a batch of trajectories {τi}Nb
i=1, and Nb denotes the batch size, then the MC

estimation is
∇̂θJD(θ, τ) := 1/Nb

∑
τi

g(τi; θ) (B1)

The same deduction also holds for the attacker’s problem when fixing the defense θ.

Meta-Learning FL Defense Meta-learning-based defense (meta defense) mainly targets non-adaptive attack methods,
where πA(·;ϕ, ξ) is a pre-fixed attack strategy following some rulebook, such as IPM (Xie et al., 2020) and LMP (Fang
et al., 2020). In this case, the BSMG reduces to single-agent MDP for the defender, where the transition kernel is determined
by the attack method. Mathematically, the meta-defense problem is given by

max
θ,Ψ

Eξ∼Q(·)[JD(Ψ(θ, τ), ϕ, ξ)] (B2)

Since the attack type is hidden from the defender, the adaptation mapping Ψ is usually defined in a data-driven manner. For
example, Ψ(θ, τ) can be defined as a one-step stochastic gradient update with learning rate η: Ψ(θ, τ) = θ + η∇̂JD(τξ)
(Finn et al., 2017) or a recurrent neural network in (Duan et al., 2016). This work mainly focuses on gradient adaptation for
the purpose of deriving theoretical guarantees in Appendix C.
With the one-step gradient adaptation, the meta-defense problem in (B2) can be simplified as

max
θ

Eξ∼Q(·)Eτ∼q(θ)[JD(θ + η∇̂θJD(τ), ϕ, ξ)] (B3)

Recall that the attacker’s strategy is pre-determined, ϕ, ξ can be viewed as fixed parameters, and hence, the distribution q
is a function of θ. To apply the policy gradient method to (B3), one needs an unbiased estimation of the gradient of the
objective function in (B3). Consider the gradient computation using the chain rule:

∇θEτ∼q(θ)[JD(θ + η∇̂θJD(τ), ϕ, ξ)]

= Eτ∼q(θ){∇θJD(θ + η∇̂θJD(τ), ϕ, ξ)(I + η∇̂2
θJD(τ))︸ ︷︷ ︸

①

+ JD(θ + η∇̂θJD(τ))∇θ

H∑
t=1

π(at|st; θ)︸ ︷︷ ︸
②

}.
(B4)

The first term results from differentiating the integrand JD(θ + η∇̂θJD(τ), ϕ, ξ) (the expectation is taken as integration),
while the second term is due to the differentiation of q(θ). One can see from the first term that the above gradient involves a
Hessian ∇̂2JD, and its sample estimate is given by the following. For more details on this Hessian estimation, we refer the
reader to (Fallah et al., 2021).

∇̂2JD(τ) =
1

Nb

Nb∑
i=1

[g(τi; θ)∇θ log q(τi; θ)
T +∇θg(τi; θ)] (B5)

Finally, to complete the sample estimate of ∇θEτ∼q(θ)[JD(θ + η∇̂θJD(τ), ϕ, ξ)], one still needs to estimate ∇θJD(θ +

η∇̂θJD(τ), ϕ, ξ) in the first term. To this end, we need to first collect a batch of sample trajectories τ ′ using the adapted
policy θ′ = θ + η∇̂θJD(τ). Then, the policy gradient estimate of ∇̂θJD(θ

′) proceeds as in (B1). To sum up, constructing
an unbiased estimate of (B4) takes two rounds of sampling. The first round is under the meta policy θ, which is used
to estimate the Hessian (B5) and to adapt the policy to θ′. The second round aims to estimate the policy gradient
∇θJD(θ + η∇̂θJD(τ), ϕ, ξ) in the first term in (B4).
In the experiment, we employ a first-order meta-learning algorithm called Reptile (Nichol et al., 2018) to avoid
the Hessian computation. The gist is to simply ignore the chain rule and update the policy using the gradient
∇θJD(θ

′, ϕ, ξ)|θ′=θ+η∇̂θJD(τ). Naturally, without the Hessian term, the gradient in this update is biased, yet it still
points to the ascent direction as argued in (Nichol et al., 2018), leading to effective meta policy. The advantage of Reptile is
more evident in multi-step gradient adaptation. Consider a l-step gradient adaptation, the chain rule computation inevitably
involves multiple Hessian terms (each gradient step brings a Hessian term) as shown in (Fallah et al., 2021). In contrast,
Reptile only requires first-order information, and the meta-learning algorithm (l-step adaptation) is given by Algorithm 1.
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Algorithm 1 Reptile Meta-Reinforcement Learning with l-step adaptation
1: Input: the type distribution Q(ξ), step size parameters κ, η
2: Output: θT
3: randomly initialize θ0

4: for iteration t = 1 to T do
5: Sample a batch Ξ̂ of K attack types from Q(ξ);
6: for each ξ ∈ Ξ̂ do
7: θtξ(0)← θt

8: for k = 0 to l − 1 do
9: Sample a batch trajectories τ of the horizon length H under θtξ(k);

10: Evaluate ∇̂θJD(θ
t
ξ(k), τ) using MC in (B1);

11: θtξ(k + 1)← θtξ(k) + κ∇̂θJD(θ
t, τ)

12: end for
13: end for
14: Update θt+1 ← θt + 1/K

∑
ξ∈Ξ̂(θ

t
ξ(l)− θt);

15: end for

Meta-Stackelberg Learning Recall that in meta-SE, the attacker’s policy ϕ∗
ξ is not pre-fixed, instead, it is the best

response to the defender’s adapted policy. To obtain this best response, one needs alternative training: fixing the defense
policy, and applying gradient ascent to the attacker’s problem until convergence. It should be noted that the proposed
meta-SL utilizes the unbiased gradient estimation in (B5), which paves the way for theoretical analysis in Appendix C. Yet,
we turn to the Reptile to speed up pre-straining in the experiments. We present both algorithms in Algorithm 2, and only
consider one-step adaptation for simplicity. The multi-step version is a straightforward extension of Algorithm 2.

C. Theoretical Results
C.1. Existence of Meta-SG
Theorem C.1 (Theorem 4.2). Under the conditions that Θ and Φ are compact and convex, the meta-SG admits at least one
meta-FOSE.

Proof. Clearly, Θ× Φ|Ξ| is compact and convex, let ϕ ∈ Φ|Ξ|, ϕξ ∈ Φ be the (type-aggregated) attacker’s strategy, since
the consider twice continuously differentiable utility functions ℓD(θ, ϕ) := Eξ∼QLD(θ, ϕξ, ξ) and ℓξ(θ, ϕ) := LA(θ, ϕξ, ξ)
for all ξ ∈ Ξ. Then, there exists a constant γc > 0, such that the auxiliary utility functions:

ℓ̃D(θ; (θ
′, ϕ′)) ≡ ℓD(θ, ϕ)−

γc
2
∥θ − θ′∥2

ℓ̃ξ(ϕξ; (θ
′, ϕ′) ≡ ℓξ(θ

′, (ϕξ, ϕ
′
−ξ))−

γc
2
∥ϕξ − ϕ′

ξ∥2 ∀ξ ∈ Ξ
(C6)

are γc-strongly concave in spaces θ ∈ Θ, ϕξ ∈ Φ for all ξ ∈ Ξ, respectively for any fixed (θ′, ϕ′) ∈ Θ× Φ|Ξ|.
Define the self-map h : Θ× Φ|Ξ| → Θ× Φ|Ξ| with h(θ′, ϕ′) ≡ (θ̄(θ′, ϕ′), ϕ̄(θ′, ϕ′)), where

θ̄(θ′, ϕ′) = argmax
θ∈Θ

ℓ̃D(θ, ϕ
′), ϕ̄ξ(θ

′, ϕ′) = arg max
ϕξ∈Φ

ℓ̃ξ(θ
′, (ϕξ, ϕ

′
−ξ)).

Due to compactness, h is well-defined. By strong concavity of ℓ̃D(·; (θ′, ϕ′)) and ℓ̃ξ(·; (θ′, ϕ′)), it follows that θ̄, ϕ̄ are
continuous self-mapping from Θ× Φ|Ξ| to itself. By Brouwer’s fixed point theorem, there exists at least one (θ∗, ϕ∗) ∈
Θ × Φ|Ξ| such that h(θ∗, ϕ∗) = (θ∗, ϕ∗). Then, one can verify that (θ∗, ϕ∗) is a meta-FOSE of the meta-SG with utility
function ℓD and ℓξ, ξ ∈ Ξ, in view of the following inequality

⟨∇θ ℓ̃D(θ
∗; (θ∗, ϕ∗)), θ − θ∗⟩ = ⟨∇θℓD(θ

∗, ϕ∗), θ − θ∗⟩
⟨∇ϕξ

ℓ̃ξ(θ
∗; (θ∗, ϕ∗)), ϕξ − ϕ∗

ξ⟩ = ⟨∇ϕξ
ℓξ(θ

∗, ϕ∗), ϕξ − ϕ∗
ξ⟩,

therefore, the equilibrium conditions for meta-SG with utility functions ℓ̃D and {ℓ̃ξ}ξ∈Ξ are the same as with utility functions
ℓD and {ℓξ}ξ∈Ξ, hence the claim follows.
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Algorithm 2 (Reptile) Meta-Stackelberg Learning with one-step adaptation
1: Input: the type distribution Q(ξ), initial defense meta policy θ0, pre-trained attack policies {ϕ0

ξ}ξ∈Ξ, step size
parameters κD, κA, η, and iterations numbers NA, ND;

2: Output: θND

3: for iteration t = 0 to ND − 1 do
4: Sample a batch Ξ̂ of K attack types from Q(ξ);
5: for each ξ ∈ Ξ̂ do
6: Sample a batch of trajectories using ϕt and ϕt

ξ;
7: Evaluate ∇̂θJD(θt, ϕt

ξ, ξ) using (B1);
8: Perform one-step adaptation θtξ ← θt + η∇̂θJD(θtξ(k), ϕ

t
ξ, ξ);

9: ϕt
ξ(0)← ϕt

ξ;
10: for k = 0, . . . , NA − 1 do
11: Sample a batch of trajectories using θtξ and ϕt

ξ(k);
12: ϕt

ξ(k + 1)← ϕt
ξ(k) + κA∇̂ϕJA(θ

t
ξ, ϕ

t
ξ(k), ξ);

13: end for
14: if Reptile then
15: Sample a batch of trajectories using θtξ and ϕt

ξ(NA);
16: Evaluate ∇̂JD(ξ) := ∇̂θJD(θ, ϕ

t
ξ(NA), ξ)|θ=θt

ξ
using (B1);

17: else
18: Sample a batch of trajectories using θt and ϕt

ξ(NA);
19: Evaluate the Hessian using (B5);
20: Sample a batch of trajectories using θtξ and ϕt

ξ(NA);
21: Evaluate ∇̂JD(ξ) := ∇̂θJD(θ

t
ξ, ϕ

t
ξ(NA), ξ) using (B4);

22: end if
23: θ̄tξ ← θt + κD∇̂JD(ξ);
24: end for
25: θt+1 ← θt + 1/K

∑
ξ∼Ξ̂(θ̄

t
ξ − θt), ϕt+1

ξ ← ϕt
ξ(NA);

26: end for
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C.2. Proofs: Non-Asymptotic Analysis
In the sequel, we make the following smoothness assumptions for every attack type ξ ∈ Ξ. In addition, we assume, for
analytical simplicity, that all types of attackers are unconstrained, i.e., Φ is the Euclidean space with proper finite dimension.
Assumption C.2 ((ξ-wise) Lipschitz smoothness). The functions LD and LA are continuously diffrentiable in both θ and ϕ.
Furthermore, there exists constants L11, L12, L21, and L22 such that for all θ, θ1, θ2 ∈ Θ and ϕ, ϕ1, ϕ2 ∈ Φ, we have, for
any ξ ∈ Ξ,

∥∇θLD (θ1, ϕ, ξ)−∇θLD (θ2, ϕ, ξ)∥ ≤ L11 ∥θ1 − θ2∥ (C7)
∥∇ϕLD (θ, ϕ1, ξ)−∇ϕLD (θ, ϕ2, ξ)∥ ≤ L22 ∥ϕ1 − ϕ2∥ (C8)
∥∇θLD (θ, ϕ1, ξ)−∇θLD (θ, ϕ2, ξ)∥ ≤ L12 ∥ϕ1 − ϕ2∥ (C9)
∥∇ϕLD (θ1, ϕ, ξ)−∇ϕLD (θ2, ϕ, ξ)∥ ≤ L12 ∥θ1 − θ2∥ (C10)
∥∇ϕLA(θ, ϕ1, ξ)−∇ϕLA(θ, ϕ2, ξ)∥ ≤ L21∥ϕ1 − ϕ2∥. (C11)

Lemma C.3 (Implicit Function Theorem (IFT) for Meta-SG). Suppose for (θ̄, ϕ̄) ∈ Θ × Φ|Ξ|, ξ ∈ Ξ we have
∇ϕLA(θ̄, ϕ̄, ξ) = 0 the Hessian ∇2

ϕLA(θ̄, ϕ̄, ξ) is non-singular. Then, there exists a neighborhood Bε(θ̄), ε > 0

centered around θ̄ and a C1-function ϕ(·) : Bε(θ̄) → Φ|Ξ| such that near (θ̄, ϕ̄) the solution set {(θ, ϕ) ∈
Θ × Φ|Ξ| : ∇ϕLA(θ, ϕ, ξ) = 0} is a C1-manifold locally near (θ̄, ϕ̄). The gradient ∇θϕ(θ) is given by
−(∇2

ϕLA(θ, ϕ, ξ))
−1∇2

ϕθLA(θ, ϕ, ξ).
Lemma C.4. Under assumptions C.2, 4.4, there exists {ϕξ : ϕξ ∈ argmaxϕ LA(θ, ϕ, ξ)}ξ∈Ξ, such that

∇θV (θ) = ∇θEξ∼Q,τ∼qJD(θ + η∇̂θJD(τ), ϕξ, ξ).

Moreover, the function V (θ) is L-Lipschitz-smooth, where L = L11 +
L12L21

µ

∥∇θV (θ1)−∇θV (θ2)∥ ≤ L∥θ1 − θ2∥.

Proof of Lemma C.4. First, we show that for any θ1, θ2 ∈ Θ, ξ ∈ Ξ, and ϕ1 ∈ argmaxϕ LA(θ1, ϕ, ξ), there exists
ϕ2 ∈ argmaxϕ LA(θ2, ϕ, ξ) such that ∥ϕ1 − ϕ2∥ ≤ L12

µ ∥θ1 − θ2∥. Indeed, based on smoothness assumption (C11) and
(C10),

∥∇ϕLA(θ1, ϕ1, ξ)−∇ϕLA(θ2, ϕ1, ξ)∥ ≤ L21∥θ1 − θ2∥,
∥∇ϕLD(θ1, ϕ1, ξ)−∇ϕLD(θ2, ϕ1, ξ)∥ ≤ L12∥θ1 − θ2∥.

Since ϕ2 ∈ argmaxϕ LA(θ2, ϕ, ξ), ∇ϕLA(θ2, ϕ2, ξ) = 0. Apply PL condition to∇ϕLA(θ, ϕ2, ξ),

max
ϕ
LA(θ1, ϕ, ξ)− LA(θ1, ϕ2, ξ) ≤

1

2µ
∥∇ϕLA(θ1, ϕ2, ξ)∥2

=
1

2µ
∥∇ϕLA(θ1, ϕ2, ξ)−∇ϕLA(θ2, ϕ2, ξ)∥2

≤ L2
21

2µ
∥θ1 − θ2∥2 by (C11).

Since PL condition implies quadratic growth, we also have

LA(θ1, ϕ1, ξ)− LA(θ1, ϕ2, ξ) ≥
µ

2
∥ϕ1 − ϕ2∥2.

Combining the two inequalities above we obtain the Lipschitz stability for ϕ∗
ξ(·), i.e.,

∥ϕ1 − ϕ2∥ ≤
L21

µ
∥θ1 − θ2∥.

Second, show that∇θV (θ) can be directly evaluated at {ϕ∗
ξ}ξ∈Ξ. Inspired by Danskin’s theorem, we first made the following

argument, consider the definition of directional derivative. Let ℓ(θ, ϕ) := ∇θEξ,τJD(θ + η∇̂JD(τ), ξ). For a constant τ
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and an arbitrary direction d,

ℓ(θ + τd, ϕ∗(θ + τd))− ℓ(θ, ϕ∗(θ)))

= ℓ(θ + τd, ϕ∗(θ + τd))− ℓ(θ + τd, ϕ∗(θ)) + ℓ(θ + τd, ϕ∗(θ))− ℓ(θ, ϕ∗(θ))

= ∇ϕℓ(θ + τd, ϕ∗(θ))⊤ [ϕ∗(θ + τd)− ϕ∗(θ))]︸ ︷︷ ︸
∆ϕ

+o(∆ϕ2)

+ τ∇θℓ(θ, ϕ
∗(θ))T d+ o(d2).

Hence, a sufficient condition for the first equation is∇ϕℓ(θ + τd, ϕ∗(θ)) = 0, meaning that ℓD(θ, ϕ) and LA(θ, ϕ, ξ) share
the first-order stationarity at every ϕ when fixing θ. Indeed, by Lemma C.3, we have, the gradient is locally determined by

∇θV = Eξ∼Q[∇θLD(θ, ϕξ, ξ) + (∇θϕξ(θ))
⊤∇ϕLD(θ, ϕξ, ξ)]

= Eξ∼Q

[
∇θLD(θ, ϕξ, ξ)− [(∇2

ϕLA(θ, ϕ, ξ))
−1∇2

ϕθLA(θ, ϕ, ξ)]
⊤∇ϕLD(θ, ϕξ, ξ)

]
.

Given a trajectory τ := (s1, atD, a
t
A, . . . , a

H
D , aHA , sH+1), let RD(τ, ξ) :=

∑H
t=1 γ

t−1rD(st, at, ξ) and RD(τ, ξ) :=∑H
t=1 γ

t−1rD(st, at, ξ). Denote by µ(τ ; θ, ϕ) the trajectory distribution, that the log probability of µ is given by

log µ(τ ; θ, ϕ) =
H∑
t=1

(log πD(a
t
D|st; θ + η∇̂θJD(τ)) + log πA(a

t
A|st;ϕ) + logP (st+1|atD, atA, st)

According to the policy gradient theorem, we have

∇ϕLD(θ, ϕ, ξ) = Eµ[RD(τ, ξ)
H∑
t=1

∇ϕ log(πA(a
t
A|st;ϕ))],

∇ϕLA(θ, ϕ, ξ) = Eµ[RA(τ, ξ)
H∑
t=1

∇ϕ log(πA(a
t
A|st;ϕ))].

By SC Assumption 4.3, when ∇ϕLA(θ, ϕ, ξ) = 0, there exists c < 0, d, such that ∇ϕLD(θ, ϕ, ξ) =

Eµ[cRA(τ, ξ)
∑H

t=1∇ϕ log(πA(a
t
A|st;ϕ))] + Eµ[

∑H
t=1 γ

t−1d
∑H

t=1∇ϕ log(πA(a
t
A|st;ϕ))] = 0. Hence ∇θV =

Eξ∼Q[∇θLD(θ, ϕξ, ξ)].
Third, V (θ) is also Lipschitz smooth. As we notice that, ℓD is Lipschitz smooth since Eξ∼Q is a linear operator, we have,

∥∇θV (θ1)−∇θV (θ2)∥
≤ ∥∇θEξ∼QLD(θ1, ϕ1, ξ)−∇θEξ∼QLD(θ2, ϕ2, ξ)∥
= ∥∇θℓD(θ1, ϕ1)−∇θℓD(θ2, ϕ1) +∇θℓD(θ2, ϕ1)−∇θℓD(θ2, ϕ2)∥
≤ ∥∇θℓD(θ1, ϕ1)−∇θℓD(θ2, ϕ1)∥+ ∥∇θℓD(θ2, ϕ1)−∇θℓD(θ2, ϕ2)∥
≤ L11∥θ1 − θ2∥+ L12∥ϕ1 − ϕ2∥

≤ (L11 +
L12L21

µ
)∥θ1 − θ2∥,

which implies the Lipschitz constant L = L11 +
L12L21

µ .

It is impossible to present the convergence theory without the assistance of some standard assumptions in batch reinforcement
learning, of which the justification can be found in (Fallah et al., 2021). We also require some additional information about
the parameter space and function structure. These assumptions are all stated in Assumption C.5.
Assumption C.5.
(a) The following policy gradients are bounded, ∥∇ϕLD(θ, ϕ, ξ)∥ ≤ G2, ∥LA(θ, ϕ, ξ)∥ ≤ G2 for all θ, ϕ ∈ Θ× Φ and

ξ ∈ Ξ.
(b) The policy gradient estimations are unbiased.
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(c) The variances for the stochastic gradients are bounded, i.e., for all thetatξ, ϕ
t
ξ, ξ,

E[∥∇̂ϕJ(θ
t
ξ, ϕ

t
ξ, ξ)−∇ϕJ(θ

t
ξ, ϕ

t
ξ, ξ)∥2] ≤

σ2

Nb
.

(d) The parameter space Θ has diameter DΘ := supθ1,θ2∈Θ ∥θ1 − θ2∥; the initialization θ0 admits at most DV function
gap, i.e., DV := maxθ∈Θ V (θ)− V (θ0).

(e) It holds that the parameters satisfy 0 < µ < −cL22.
Equipped with Assumption C.5 we are able to unfold our main result Theorem 4.7, before which we show in Lemma C.6
that ϕ∗

ξ can be efficiently approximated by the inner loop in the sense that∇θEξ∼QLD(θ
t, ϕt

ξ(NA), ξ) ≈ ∇θV (θt), where
ϕt
ξ(NA) is the last iterate output of the attacker policy.

Lemma C.6. Under Assumption C.5, 4.4, 4.3, and C.2, let ρ := 1 + µ
cL22

∈ (0, 1), L̄ = max{L11, L12, L22, L21, V∞}
where V∞ := max{max ∥∇V (θ)∥, 1}. For all ε > 0, if the attacker learning iteration NA and batch size Nb are large
enough such that

NA ≥
1

log ρ−1
log

32D2
V (2V∞ + LDΘ)

4L̄|c|G2

L2µ2ε4

Nb ≥
32µL2

21D
2
V (2V∞ + LDΘ)

4

|c|L2
22σ

2L̄Lε4
,

then, for zt := ∇θEξ∼QLD(θ
t, ϕt

ξ(NA), ξ)−∇θV (θt),

E[∥zt∥] ≤
Lε2

4DV (2V∞ + LDΘ)2
,

and
E[∥∇ϕLA(θ

t, ϕt
ξ(N), ξ)∥] ≤ ε.

Proof of Lemma C.6. Fixing a ξ ∈ Ξ, due to Lipschitz smoothness,

LD(θ
t, ϕt

ξ(N), ξ)− LD(θ
t, ϕt

ξ(N − 1), ξ)

≤ ⟨∇ϕLD(θ
t, ϕt

ξ(N − 1), ξ), ϕt
ξ(N)− ϕt

ξ(N − 1)⟩+ L22

2
∥ϕt

ξ(N)− ϕt
ξ(N − 1)∥2.

The inner loop updating rule ensures that when κA = 1
L21

, ϕt
ξ(N)− ϕt

ξ(N − 1) = 1
L21
∇̂ϕJA(θ

t
ξ, ϕ

t
ξ(N − 1), ξ). Plugging

it into the inequality, we arrive at

LD(θ
t, ϕt

ξ(N), ξ)− LD(θ
t, ϕt

ξ(N − 1), ξ)

≤ 1

L21
⟨∇ϕLD(θ

t, ϕt
ξ(N − 1), ξ), ∇̂ϕJA(θ

t
ξ, ϕ

t
ξ(N − 1), ξ)⟩+ L22

2L2
21

∥∇̂ϕJA(θ
t
ξ, ϕ

t
ξ(N − 1), ξ)∥2.

Therefore, we let (F t
n)0≤n≤N be the filtration generated by σ({ϕt

ξ(τ)}ξ∈Ξ|τ ≤ n) and take conditional expectations on F t
n:

E[V (θt)− ℓD(θ
t, ϕt(N))|F t

N−1] ≤ V (θt)− ℓD(θ
t, ϕt(N − 1))

Eξ

[
1

L21
⟨∇ϕLD,∇ϕJA(θ

t
ξ, ϕ

t
ξ(N − 1), ξ)⟩+ L22

2L2
21

∥∇̂ϕJA(θ
t
ξ, ϕ

t
ξ(N − 1), ξ)∥2

]
.

By variance-bias decomposition, and Assumption C.5 (b) and (c),

E[∥∇̂ϕJA(θ
t
ξ, ϕ

t
ξ(N − 1), ξ)∥2|F t

N−1]

= E[∥∇̂ϕJA(θ
t
ξ, ϕ

t
ξ(N − 1), ξ)−∇ϕJA(θ

t
ξ, ϕ

t
ξ(N − 1), ξ) +∇ϕJA(θ

t
ξ, ϕ

t
ξ(N − 1), ξ)∥2|F t

N−1]

= E[∥(∇̂ϕ −∇ϕ)JA(θ
t
ξ, ϕ

t
ξ(N − 1), ξ)∥2|F t

N−1] + E[∥∇ϕJA(θ
t
ξ, ϕ

t
ξ(N − 1), ξ)∥2|F t

N−1]

+ E[2⟨(∇̂ϕ −∇ϕ)JA(θ
t
ξ, ϕ

t
ξ(N − 1), ξ),∇ϕJA(θ

t
ξ, ϕ

t
ξ(N − 1), ξ)⟩|F t

N−1]

≤ σ2

Nb
+ ∥∇ϕJA(θ

t
ξ, ϕ

t
ξ(N − 1), ξ)∥2.
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Applying the PL condition (Assumption 4.4), and Assumption C.5 (a) we obtain

E[V (θt)− ℓD(θ, ϕ
t(N))|ϕN−1]− V (θt)− ℓD(θ, ϕ

t(N − 1))

≤ Eξ

[
1

L21
⟨∇ϕLD,∇ϕLA(θ

t, ϕt
ξ(N − 1), ξ)⟩+ L22

2L2
21

(
σ2

Nb
+ ∥∇ϕLA(θ

t, ϕt
ξ(N − 1), ξ)∥2)

]
= Eξ

[
− 1

2L22
∥∇ϕLD∥2 +

1

2L22
∥∇ϕ(LD +

L22

L21
LA)(θ

t, ϕt
ξ(N − 1), ξ)∥2 + L22σ

2

2L2
21Nb

]
≤ µ

cL21
(max

ϕ
ℓD(θ

t, ϕ)− ℓD(θ
t, ϕt(N − 1))) +

L22σ
2

2L2
21Nb

,

rearranging the terms yields

E[V (θt)− ℓD(θ
t, ϕt(N))|F t

n] ≤ ρ(V (θt)− ℓD(θ
t, ϕt(N − 1))) +

L22σ
2

2L2
21Nb

,

where we use the fact that −maxϕ ℓD(θ
t, ϕ) ≤ −V (θt). Telescoping the inequalities from τ = 0 to τ = N , we arrive at

E[V (θt)− ℓD(θ
t, ϕt(N))] ≤ ρN (V (θt)− ℓD(θ

t, ϕt(0))) +
1− ρN

1− ρ

(
L22σ

2

2L2
21Nb

)
.

PL-condition implies quadratic growth, we also know that V (θt) − ℓD(θ
t, ϕt(N)) ≤ Eξ

1
2µ∥∇ϕLD(θ

t, ϕt
ξ(N), ξ)∥2 ≤

1
2µG

2, by Assumption 4.3,

∥ϕ∗
ξ(θ

t)− ϕt
ξ(N)∥2 ≤ 2

µ
(LA(θ

t, ϕ∗
ξ , ξ)− LA(θ

t, ϕt
ξ(N), ξ))

≤ 2|c|
µ

∣∣LD(θ
t, ϕ∗

ξ , ξ)− LD(θ
t, ϕt

ξ(N), ξ)
∣∣

Hence, with Jensen inequality and choice of NA and Nb,

E[∥zt∥] = E[∥∇θV (θt)− Eξ∇θLD(θ
t, ϕt

ξ(NA), ξ)∥]
≤ L12E[∥ϕt

ξ(NA)− ϕ∗
ξ∥]

≤ L12

√
2|c|
µ

E[V (θt)− ℓD(θt, ϕt(NA))]

≤ L12

√
|c|
µ2

ρNAG2 + (1− ρNA)
|c|L2

22σ
2

µL2
21Nb

.

Now we adjust the size of NA and Nb to make E[∥zt∥] small enough, to this end, we set

ρNA
|c|G2

µ2
≤ ε4L2

32D2
V (2V∞ + LDΘ)4L̄

|c|L2
22σ

2

L2
21Nb

≤ ε4L2µ2

32D2
V (2V∞ + LDΘ)4L̄

,

which further indicates that

NA ≥
1

log ρ−1
log

32D2
V (2V∞ + LDΘ)

4L̄|c|G2

L2µ2ε4

Nb ≥
32µL2

21D
2
V (2V∞ + LDΘ)

4

|c|L2
22σ

2L̄Lε4
.

In the setting above, it is not hard to verify that

E[∥zt∥] ≤
Lε2

4DV (2V∞ + LDΘ)2
≤ ε.
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Also note that ∥∇ϕLA(θ
t, ϕt

ξ(NA), ξ)∥ = ∥∇ϕLA(θ
t, ϕt

ξ(NA), ξ) − ∇ϕLA(θ
t, ϕ∗

ξ , ξ)∥, given the proper choice of NA
and Nb, one has

E∥∇ϕLA(θ
t, ϕt

ξ(NA), ξ)−∇ϕLA(θ
t, ϕ∗

ξ , ξ)∥

≤ L21E[∥ϕt
ξ(NA)− ϕ∗

ξ∥] ≤
Lε2

4DV (2V∞ + LDΘ)2
≤ ε,

which indicates the ξ-wise inner loop stability.

Now we are ready to provide the convergence guarantee of the first-order outer loop.
Theorem C.7. Under Assumption C.5, Assumption 4.3, and Assumption C.2, let the stepsizes be, κA = 1

L22
, κD = 1

L , if
ND, NA, and Nb are large enough,

ND ≥ ND(ε) ∼ O(ε−2) NA ≥ NA(ε) ∼ O(log ε−1), Nb ≥ Nb(ε) ∼ O(ε−4)

then there exists t ∈ N such that (θt, {ϕt
ξ(NA)}ξ∈Ξ) is ε-meta-FOSE.

Proof. According to the update rule of the outer loop, (here we omit the projection analysis for simplicity)

θt+1 − θt =
1

L
∇̂θℓD(θ

t, ϕt(NA)),

one has, due to unbiasedness assumption, let (Ft)0≤t≤ND be the filtration generated by σ(θt|k ≤ t)

E[⟨∇θℓD(θ
t, ϕt(NA)), θ

t+1 − θt⟩|Ft] =
1

L
E[∥∇θℓD(θ

t, ϕt(NA))∥2|Ft]

= LE∥θt+1 − θt∥2|Ft],

which leads to

E[⟨∇θℓD(θ
t, ϕ∗), θt+1 − θt⟩|Ft] = E[⟨zt, θt − θt+1⟩|Ft] + LE[∥θt+1 − θt∥2∥].

Since V (·) is L-Lipschitz smooth,

E[V (θt)− V (θt+1)] ≤ E[⟨∇θV (θt), θt − θt+1⟩] + L

2
E[∥θt+1 − θt∥2]

≤ E[⟨zt, θt+1 − θt⟩]− E[⟨∇θℓD(θ
t, ϕt(NA)), θ

t+1 − θt⟩] + L

2
E[∥θt+1 − θt∥2]

≤ E[⟨zt, θt+1 − θt⟩]− L

2
E[∥θt+1 − θt∥2].

(C12)

Fixing a θ ∈ Θ, let et := ⟨∇θℓD(θ
t, ϕt(NA)), θ − θt⟩, we have

E[et|Ft] = LE[⟨θt+1 − θt, θ − θt⟩|Ft]

= E[⟨∇θℓD(θ
t, ϕt(NA))−∇θV (θt), θt+1 − θt⟩+ ⟨∇θV (θt), θt+1 − θt⟩]

+ LE[⟨θt+1 − θt, θ − θt+1⟩]
≤ E[(∥zt∥+ V∞ + LDΘ)∥θt+1 − θt∥]

(C13)

By the choice of Nb, we have, since V∞ = max{maxθ ∥∇V (θ)∥, 1},

E[∥zt∥] ≤ L12E[∥ϕN − ϕ∗∥] ≤ Lε2

4DV (2V∞ + LDΘ)
≤ V∞.

Thus, the relation (C13) can be reduced to

E[et] ≤ (2V∞ + LDΘ)E[∥θt+1 − θt∥].
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Telescoping (C12) yields

−DV ≤ E[V (θ0)− V (θND )] ≤ DΘ

T−1∑
t=0

E[∥zt∥]−
L

2(2V∞ + LDΘ)2
E[

T−1∑
t=0

E[e2t |Ft].

Thus, setting ND ≥ 4DV (2V∞+LDΘ)2

Lε2 , and then by Lemma 4.6, we obtain that,

1

ND

ND−1∑
t=0

E[e2t ] ≤
ε2

2
+

2DV (2V∞ + LDΘ)
2

LND
≤ ε2

which implies there exists t ∈ {0, . . . , ND − 1} such that E[e2t ] ≤ ε2.

D. Related Works
Poisoning/backdoor attacks and defenses in FL. Various methods for compromising the integrity of a federated learning
target model have been introduced, including targeted poisoning attacks which strive to misclassify a particular group of
inputs, as explored in the studies by (Bhagoji et al., 2019; Baruch et al., 2019). Other techniques, such as those studied
by (Fang et al., 2020; Xie et al., 2020; Shejwalkar & Houmansadr, 2021), focus on untargeted attacks with the aim of
diminishing the overall model accuracy. The majority of existing strategies often utilize heuristics-based methods (e.g., (Xie
et al., 2020)), or they focus on achieving a short-sighted goal ( (Fang et al., 2020; Shejwalkar & Houmansadr, 2021)). On
the other hand, malicious participants can easily embed backdoors into the aggregated model while maintaining the model’s
performance on the main task with model replacement (Bagdasaryan et al., 2020). To enhance the surreptitious nature of
these poisoned updates, triggers can be distributed across multiple cooperative malicious devices, as discussed by Xie et
al. (2019)(Xie et al., 2019), and edge-case backdoors can be employed, as demonstrated by Wang et al. (2020) (Wang
et al., 2020). However, these methods can be sub-optimal, especially when there’s a need to adopt a robust aggregation rule.
Additionally, these traditional methods typically demand access to the local updates of benign agents or precise parameters
of the global model for the upcoming round (Xie et al., 2020; Fang et al., 2020) in order to enact a significant attack. In
contrast to these methods, RL-based approach (Li et al., 2022a; Shen et al., 2021; Li et al., 2023) employs reinforcement
learning for the attack, reducing the need for extensive global knowledge while focusing on a long-term attack goal.
Several defensive strategies have been suggested to counter model poisoning attacks, which broadly fall into two categories:
those based on robust aggregation and those centered around detection. Robust-aggregation-based defenses encompass
techniques such as dimension-wise filtering. These methods treat each dimension of local updates individually, as explored
in studies by (Bernstein et al., 2018; Yin et al., 2018). Another strategy is client-wise filtering, the goal of which is to limit
or entirely eliminate the influence of clients who might harbor malicious intent. This approach has been examined in the
works of (Blanchard et al., 2017; Pillutla et al., 2022; Sun et al., 2019). Some defensive methods necessitate the server
having access to a minimal amount of root data, as detailed in the study by (Cao et al., 2021). Naive backdoor attacks are
limited by even simple defenses like norm-bounding (Sun et al., 2019) and weak differential private (Geyer et al., 2017)
defenses. Despite to the sophisticated design of state-of-the-art non-addaptive backdoor attacks against federated learning,
post-training stage defenses (Wu et al., 2020; Nguyen et al., 2021; Rieger et al., 2022) can still effectively erase suspicious
neurons/parameters in the backdoored model.

Multi-agent meta learning. Meta-learning, and in particular meta-reinforcement-learning aim to create a generalizable
policy that can fast adapt to new tasks by exploiting knowledge obtained from past tasks (Duan et al., 2016; Finn et al., 2017).
The early use cases of meta-learning have been primarily single-agent tasks, such as few-shot classification and single-agent
RL (Finn et al., 2017). A recent research thrust is to extend the meta-learning idea to multi-agent systems (MAS), which can
be further categorized into two main directions: 1) distributed meta-learning in MAS (Kayaalp et al., 2022; Zhang et al.,
2022); 2) meta-learning for generalizable equilibrium-seeking (Gupta et al., 2021; Harris et al., 2022; Zhao & Zhu, 2022; Ge
et al., 2023). The former focuses on a decentralized operation of meta-learning over networked computation units to reduce
computation/storage expenses. The latter is better aligned with the original motivation of meta-learning, which considers
how to solve a new game (or multi-agent decision-making) efficiently by reusing past experiences from similar occasions.
In stark contrast to the existing research efforts, our work leverages the adaptability of meta-learning to address information
asymmetry in dynamic games of incomplete information, leading to a new equilibrium concept: meta-equilibrium (see
Definition 3.1). What distinguishes our work from the aforementioned ones is that 1) every entity in our meta-SG is a
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self-interest player acting rationally without any coordination protocol; 2) meta-learning in our work is beyond a mere solver
for computing long-established equilibria (e.g., Stackelberg equilibrium); it brings up a non-Bayesian approach to processing
information in dynamic games (see Appendix A), which is computationally more tractable. This meta-equilibrium notion
has been proven effective in combating information asymmetry in adversarial FL. Since asymmetric information is prevalent
in security studies, our work can shed light on other related problems.

First-order methods in bilevel optimization. The meta-SG problem in (2) amounts to a stochastic bilevel optimization.
The meta-SL in Algorithm 2 admits a much simpler gradient estimation than what one would often observe in the bilevel
optimization literature (Chen et al., 2023; Kwon et al., 2023), where the gradient estimate for the upper-level problem
involves a Hessian inverse (Chen et al., 2023) or some first-order correction terms (Kwon et al., 2023). The key intuition
behind this simplicity lies in the strict competitiveness (see Assumption 4.3). Informally speaking, (2) is more akin to
minimax programming (Nouiehed et al., 2019; Li et al., 2022b), even though it is a general-sum game. However, the
data-driven meta-adaptation within the value function in Equation (2) leads to a more involved gradient estimation. since
the data induces extra randomness in addition to policy gradient estimates (Fallah et al., 2021). Perhaps, the closest to our
work is (Li et al., 2022b) where the authors investigate adversarial meta-RL and arrive at a similar Stackelberg formulation.
However, (Li et al., 2022b) considers a minimax relaxation to the original Stackelberg formulation, leading to simpler
nonconvex programming. Our work is among the first endeavors to investigate fully first-order algorithms for solving
general-sum Stackelberg games.


