
DAMPED PROXIMAL AUGMENTED LAGRANGIAN METHOD FOR
WEAKLY-CONVEX PROBLEMS WITH CONVEX CONSTRAINTS

HARI DAHAL, WEI LIU, YANGYANG XU∗

Abstract. We give a damped proximal augmented Lagrangian method (DPALM) for solving problems with a weakly-
convex objective and convex linear/nonlinear constraints. Instead of taking a full stepsize, DPALM adopts a damped dual
stepsize to ensure the boundedness of dual iterates. We show that DPALM can produce a (near) ε-KKT point within O(ε−2)
outer iterations if each DPALM subproblem is solved to a proper accuracy. In addition, we establish overall iteration complexity
of DPALM when the objective is either a regularized smooth function or in a regularized compositional form. For the former
case, DPALM achieves the complexity of Õ

(
ε−2.5

)
to produce an ε-KKT point by applying an accelerated proximal gradient

(APG) method to each DPALM subproblem. For the latter case, the complexity of DPALM is Õ
(
ε−3

)
to produce a near ε-

KKT point by using an APG to solve a Moreau-envelope smoothed version of each subproblem. Our outer iteration complexity
and the overall complexity either generalize existing best ones from unconstrained or linear-constrained problems to convex-
constrained ones, or improve over the best-known results on solving the same-structured problems. Furthermore, numerical
experiments on linearly/quadratically constrained non-convex quadratic programs and linear-constrained robust nonlinear least
squares are conducted to demonstrate the empirical efficiency of the proposed DPALM over several state-of-the art methods.
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1. Introduction. Given the rapid increase of data volume in modern applications, there has been a
substantial surge in interest of designing first-order methods (FOMs). Traditionally, a significant portion of
research in optimization has been concentrated in the realm of convex problems. However, there has been
a noticeable and accelerating shift towards the investigation of non-convex optimization during the past
decade. This trend is primarily attributable to the applications and the recognition that most contemporary
optimization challenges indeed fall within the category of non-convex problems.

In this paper, we consider to design new FOMs for non-convex constrained optimization in the form of

min
x∈Rd

F (x) := f(x) + h(x), s.t. Ax = b, g(x) := [g1(x), g2(x), . . . , gm(x)] ≤ 0, (P)

where A ∈ Rn×d,b ∈ Rn, F is continuous on its domain X := dom(F ), h is closed convex, and gi : Rd → R is
closed convex for each i = 1, 2, . . . ,m. We will assume that h is simple and admits an easy proximal mapping,
each gi is smooth on an open set containing X , and f is ρ-weakly convex and may be nondifferentiable; see
Definition 1.1 below.

The problem (P) is rather general and has many interesting applications, such as non-convex quadratic
programs with linear and/or nonlinear constraints, reformulation of the nonnegative matrix completion
by variable splitting [47], hyperspectral image denoising [4], classification problem with ROC-based con-
straints [17], and the Neyman-Pearson classification [38].

In the realm of non-convex optimization, locating a global optimizer is usually a computationally in-
tractable task [7]. As a practical alternative, the goal is often directed towards identifying a stationary point.
On solving (P), we aim at finding a (near) ε-KKT point for a given ε > 0; see Definition 1.3.
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1.1. Algorithmic Framework. The FOM that we will design is based on the framework of a damped
proximal augmented Lagrangian method (DPALM). The augmented Lagrangian (AL) function of (P) is

Lβ(x;y, z) = F (x) + y⊤(Ax− b) + β
2 ∥Ax− b∥2+β

2

∥∥∥∥[g(x) + z
β

]
+

∥∥∥∥2 − ∥z∥2

2β , (1.1)

where β > 0 is a penalty parameter, [a]+ takes the component-wise positive part of a vector a, and y ∈ Rn

and z ∈ Rm are Lagrangian multipliers. Define a proximal AL function as

L̃β(x;y, z) = Lβ(x;y, z) + ρ∥x− xk∥2, (1.2)

which is ρ-strongly convex due to the ρ-weak convexity of F . Notice that we use ρ in (1.2) for convenience. It

can be any number that is strictly larger than ρ
2 . With L̃β , we present the DPALM framework in Algorithm 1,

where we adopt the convention of v
0 = +∞ for any v > 0.

Algorithm 1: A Damped Proximal Augmented Lagrangian Method (DPALM) for (P)

1 Initialize x0 ∈ X = dom(F ), y0, and z0 ≥ 0.
2 Choose a positive sequence {βk}k≥0 and positive summable sequences {vk}k≥0, {wk}k≥0.
3 while a stopping criterion is not met, do

4 Step 1: Obtain an approximate solution xk+1 of problem minx L̃βk
(x;yk, zk).

5 Step 2: Set yk+1 = yk + αk(Axk+1 − b) with αk := min{βk, vk/∥Axk+1 − b∥}.
6 Step 3: Set zk+1 = zk + γk max{−zk/βk,g

(
xk+1

)
} with γk := min{βk, wk/∥[g(xk+1)]+∥}.

7 Output: xk+1.

In Algorithm 1, we use damped stepsizes αk and γk instead of a full stepsize βk for the y- and z-updates
in Steps 2 and 3, in order to ensure the boundedness of the y- and z-iterates. The main cost of Algorithm 1
is in computing xk+1 in Step 1. By “an approximate solution”, we mean that xk+1 is either a near-stationary
point of problem minx L̃βk

(x;yk, zk) or close to a near-stationary point. Our analysis given later indicates
that our DPALM framework would work if f is weakly convex and the subgradient of f or its smoothed
version is uniformly bounded on X . However, we will assume a certain structure on f such that some FOM
can be applied to efficiently compute xk+1. More precisely, we consider three cases of f : (i) f is smooth;
(ii) f is a composition of a convex function l with a smooth mapping c, i.e., f = l ◦ c; (iii) f is a general
weakly-convex function. Details will be specified in Sect. 3.

Throughout this paper, we use the following setting for βk. Choose some β0 > 0 and let

βk = β0
√
k + 1,∀ k ≥ 0. (1.3)

This setting is inspired from [27]. However, Algorithm 1 will work for any other increasing sequence {βk}.

1.2. Related Work. Significant efforts on FOMs for non-convex optimization have been dedicated to
unconstrained or simple-constrained settings, as evidenced by a notable body of research [1, 8–13, 23, 37,
52]. For problem (P), these methods are inapplicable or inefficient as projecting onto the constraint set
of (P) can be prohibitively expensive. Also, many existing FOMs for affine and/or nonlinear functional
constrained optimization deal with the convex case; see, for example, [2, 3, 21, 22, 28–30, 33, 36, 40, 42, 44, 45]
for a deterministic case and [24,41, 43, 48] for a stochastic case. Below we review existing FOMs for solving
non-convex optimization in the form of (P).
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FOMs for solving affinely constrained non-convex optimization, i.e., problem (P) with g ≡ 0, have
been studied extensively such as in [14–16,18,31,32,50,51]. Hajinezhad and Hong [15] introduce a perturbed

proximal primal-dual algorithm (PProx-PDA) with a complexity result of Õ(ε−4)1. The FOM in [32] is based
on the inexact proximal accelerated augmented Lagrangian (IPAAL) method. It can produce an ε-KKT point

within Õ
(
ε−3
)
iterations. Kong et al. [19] give an FOM based on a quadratic penalty accelerated inexact

proximal point method and show a complexity result of O
(
ε−3
)
. On a special class of affine-constrained

non-convex optimization, where the regularizer in the objective is the indicator function of a polyhedral set,
Zhang and Luo [50, 51] introduce an FOM based on a proximal alternating direction method of multipliers
(ADMM) and show that their method can generate an ε-KKT solution within O

(
ε−2
)
iterations. The

methods in [14, 16, 18, 31] are all variants of ADMM and can produce an ε-KKT solution within O(ε−2)
iterations under a certain assumption about the matrices in the affine constraint.

For regularized non-convex smooth optimization with convex nonlinear constraints, Li et al. [26] design
an FOM, called HiAPeM, by applying a hybrid of ALM and a quadratic penalty method to a sequence of
proximal point subproblems. Under Slater’s condition, HiAPeM is able to produce an ε-KKT point with
complexity of Õ(ε−2.5). It is demonstrated in [26] that more frequent use of ALM can yield better empirical

performance. However, obtaining the Õ(ε−2.5) complexity result requires to use the quadratic penalty
method more frequently. This is different from our proposed DPALM, which is solely ALM based and can
yield better practical performance. Kong et al. [20] consider a convex cone-constrained regularized non-
convex smooth optimization problem. With an appropriate convex cone, the problem considered in [20] can
have the same constraints as those in our considered problem (P). However, the objective function in [20] is
a special case of what we consider. Similar to our method, the FOM in [20], called NL-IAPIAL, is also based
on the proximal ALM framework. Compared to our method, NL-IAPIAL increases the penalty parameter
much faster, which is doubled once a condition holds; see Eqn. (35) in [20]. Another key difference from our
method is that NL-IAPIAL always uses βk as the dual stepsize. Due to these differences, NL-IAPIAL has a
higher complexity than ours. It requires Õ(ε−3) first-order oracles to produce an ε-KKT point.

For non-convex optimization with non-convex constraints, Sahin et al. [39] design an ALM-based FOM.
Under a regularity condition that ensures near primal feasibility at a near stationary point of an ALM
subproblem, their FOM can produce an ε-KKT point by Õ(ε−4) calls to the first-order oracle. The two
works [27] and [25] assume the same regularity condition as that in [39], but differently their FOMs achieve

an Õ(ε−3) complexity result, by adopting the framework of a proximal point penalty method and ALM
respectively. The FOM in [25] is also analyzed for problems with convex constraints, in which case its

complexity becomes Õ(ε−
5
2 ). Without a regularity condition but instead assuming a feasible initial point, the

method in [27] achieves a complexity result of Õ(ε−4). For solving non-smooth weakly convex problems with
convex or weakly convex nonlinear constraint, Huang and Lin propose a single-loop switching subgradient
method in [17]. They introduce a switching stepsize rule to accompany the switching subgradient and show
that their method can find a near ε-KKT point in O(ε−4) iterations, by assuming a (uniform) Slater’s
condition. Curtis and Overton [6] give a method based on the sequential quadratic programming (SQP) for
solving problems where the objective and constraints are locally Lipschitz and continuously differentiable.
Global convergence to stationarity is shown.

The two works [11] and [49] are most closely related to ours, though their considered problems are
special cases of (P). In [11], Drusvyatskiy and Paquette consider the regularized compositional optimization
in the form of minx F (x) := l(c(x)) + r(x), where l and r are closed convex functions, and c is a smooth

1Throughout this paper, Õ hides a logarithmic term.
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mapping. A Moreau-envelope based smoothing prox-linear method is analyzed in [11], and it reaches a
complexity result of Õ(ε−3) to produce a near ε-stationary point. We notice that the constraint in (P)
can be encoded into the objective by adding an indicator composed function ι{0}(Ax − b) + ιRm

−
(g(x)).

By Moreau-envelope smoothing, i.e., replacing the indicator functions ι{0}(·) and ιRm
−
(·) by their Moreau

envelope (see Definition 1.1), the composed function can be smoothed to 1
2ν ∥Ax−b∥2+ 1

2ν ∥[g(x)]+∥
2, where

ν > 0 is a smoothing parameter. Hence, the smoothing prox-linear method in [11] can be applied to (P) with
a regularized compositional objective as we consider in Sect. 3.2, but it is based on the quadratic penalty
of the constraints. In contrast, our method is based on the proximal ALM framework and can perform
significantly better; see the experimental results in Sect. 4.3. Zeng et al. [49] introduce a Moreau Envelope
Augmented Lagrangian Method (MEAL) for problems with a weakly-convex objective and linear constraints.
MEAL can be viewed as a gradient update method on the Moreau envelope of the AL function. Assuming
an exact solution of each proximal ALM subproblem, MEAL can produce an ε-KKT point within O(ε−2)
outer iterations, when either an implicit Lipschitz subgradient property or an implicit bounded subgradient
property on the objective function holds. An inexact version, named iMEAL, is also given in [49], and it only
requires an εk-stationary solution for the k-th proximal ALM subproblem. The same-order outer iteration
complexity results are shown for iMEAL, provided that

∑∞
k=0 ε

2
k < ∞. When the objective function is

composite, i.e., a smooth term plus a convex regularizer, [49] also presents a linearized variant of MEAL,
which has the same-order outer iteration complexity as MEAL and iMEAL. The (inexact) MEAL becomes
an (inexact) proximal ALM when its stepsize η = 1; see the updates in Eqn. (5) and Eqn. (7) of [49]. On
the special linear-constrained case, iMEAL can achieve the same-order outer iteration complexity result as
our proposed DPALM. However, it needs to set the penalty parameter to βk = Θ(ε−2),∀ k ≥ 0 when the
objective function satisfies an implicit bounded subgradient property. In contrast, our proposed DPALM
only needs to set βk = Θ(

√
k + 1),∀ k ≥ 0, which increases to Θ(ε−1) eventually to produce a (near) ε-KKT

point. Though an overall first-order oracle complexity result is not explicitly shown in [49] for iMEAL, due

to the higher-order penalty parameters, it will be higher than our complexity by at least an order of ε−
1
2 if

iMEAL applies the same first-order subroutine as our method.

1.3. Contributions. Our contributions lie in both algorithm design and complexity analysis. They
are summarized as follows.

(i) We propose a damped proximal augmented Lagrangian method (DPALM) to solve problems in the
form of (P), which has a weakly-convex objective and linear and/or nonlinear convex constraints.
At each iteration of DPALM, a strongly convex subproblem is formed by adding a proximal term
with an appropriate proximal parameter to the AL function. The primal variable is updated to a
desired-accurate solution of the subproblem, and the dual variables (or Lagrangian multipliers) are
then updated by performing a dual gradient ascent step but with damped stepsizes instead of using
the penalty parameter as a full stepsize. The damped dual stepsizes are important to ensure the
boundedness of the dual iterates and further enable us to have guaranteed convergence, even when the
objective is non-smooth non-convex.

(ii) We show that under Slater’s condition, for any given ε > 0, DPALM can produce a near ε-KKT point
of problem (P) (see Definition 1.3) within O(ε−2) outer iterations, when f in (P) is weakly convex
and has uniform boundedness on its subgradients, and if for each DPALM subproblem, a near-optimal
solution is found with a desired accuracy. This result generalizes that in [49] from an affine-constrained
problem to an affine and/or convex functional constrained one. In addition, the value of the penalty
parameter that we require is in a lower order than that in [49] to ensure a (near) ε-KKT point, under
the non-smooth case. This leads our method to have a lower overall complexity.
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(iii) For the case where f in (P) is smooth but may be non-convex, we apply Nesterov’s APG method to find

a near stationary solution of each DPALM subproblem and establish an Õ(ε−
5
2 ) complexity result to

produce an ε-KKT point. This result improves the Õ(ε−3) complexity obtained in [20] for a proximal
ALM based FOM. It matches the complexity results in [26] and [27] for either an ALM-penalty-hybrid
method or a quadratic penalty based FOM, which often yields worse empirical performance than our
proximal ALM based method as demonstrated in Sect. 4.

(iv) For the case where f is in a compositional form, we apply Nesterov’s APG method to a Morean-envelope

smoothed version of each DPALM subproblem and establish an Õ(ε−3) complexity result to produce
a near ε-KKT point. This result generalizes that in [11] for solving an unconstrained compositional
problem. Though with an appropriate outer convex function and an appropriate inner vector function,
the compositional term can encode the constraints of (P), the smoothing method in [11] will become
a quadratic penalty based method and performs significantly worse than our proposed proximal ALM
based method, as demonstrated in Sect. 4.3.

1.4. Notations and Definitions. The relative interior and boundary of a set X are denoted by
relint(X ) and bd(X ), respectively. We use NX (x) to denote the normal cone of X at x and define Br ={
x ∈ Rd : ∥x∥≤ r

}
for some r > 0, where ∥·∥ denotes the Euclidean norm.

Definition 1.1 (Weakly convex function and Moreau envelope [11]). A function f is called ρ-weakly
convex for some ρ ≥ 0 if f(·) + ρ

2∥·∥
2 is convex. For a ρ-weakly convex function f , its Moreau envelope

and the proximal mapping for any ν ∈ (0, 1/ρ) are defined by fν(x) := minz
{
f(z) + 1

2ν ∥z− x∥2
}

and
proxνf (x) := argminz{f(z) + 1

2ν ∥z− x∥2}, respectively.
Definition 1.2 (Subdifferential [5]). For a locally Lipschitz continuous function f : Rd → R, its

subdifferential at x is ∂f(x) := {limx′→x ∇f(x′) : f is differentiable at x′}.
Definition 1.3 ((near) ε-KKT point). Given ε > 0, a point x is an ε-KKT point of (P) if there are

y ∈ Rn and z ∈ Rm
+ such that

max
{
dist(0, ∂F (x) + Jg(x)

⊤z+A⊤y),
√
∥Ax− b∥2+∥[g(x)]+∥2,

∑m
i=1|zigi(x)|

}
≤ ε, (1.4)

where Jg(x) denotes the Jacobi matrix of g at x. We say that x̄ is a near ε-KKT point of (P) if it is ε-close
to an ε-KKT point x, i.e., ∥x̄− x∥≤ ε.

1.5. Organization. The rest of this paper is organized as follows. Some preliminary results are shown
in Sect. 2. Iteration complexity results are established in Sect. 3 for three cases of f , and Sect. 4 gives
experimental results. Finally, the paper is concluded in Sect. 5.

2. Preliminary Analysis. In this section, we show some results that will be used in Sect. 3 to establish
iteration complexity results of our FOMs. We first show the boundedness of the generated Lagrangian
multipliers; see Lemma 2.1. Then we give a result that will be used to bound complementary slackness error;
see Lemma 2.2. Finally, a bound on the cumulative change of the AL function along the iterates is shown;
see Lemma 2.4. This result will be used to bound dual infeasibility.

Throughout the paper, we make the following assumptions.
Assumption 1. In (P), the domain of F , denoted by X := dom(F ), is compact, and its diameter is

denoted by D = maxx1,x2∈X ∥x1 − x2∥< ∞. Also, f is ρ-weakly convex on X for some ρ > 0, h is closed
convex, and F is bounded on X , i.e., maxx∈X |F (x)|<∞.

Assumption 2. For each i = 1, . . . ,m, gi in (P) is Lg-smooth on an open set U containing X , i.e.,
∥∇gi(x)−∇gi(y)∥ ≤ Lg∥x− y∥ for all x,y ∈ U .
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Assumption 3. There is xfeas ∈ relint (X ) such that Axfeas = b and gi(xfeas) < 0,∀ i = 1, . . . ,m.
Under Assumptions 1 and 2, there must exist a positive constant Bg such that

max {|gi(x)| , ∥∇gi(x)∥} ≤ Bg,∀x ∈ X ,∀ i = 1, . . . ,m, (2.1)

|gi(x̂)− gi(x̃)|≤ Bg∥x̂− x̃∥,∀ x̂, x̃ ∈ X ,∀ i = 1, . . . ,m. (2.2)

The next lemma shows the boundedness of {yk} and {zk}.
Lemma 2.1. Under Assumptions 1–3, let {xk}, {yk}, {zk}, {αk}, {γk}, {wk}, and {vk} be from Al-

gorithm 1. Define Cy := ∥y0∥+
∑∞

k=0 vk and Cz :=
∥∥z0∥∥ +

∑∞
k=0 wk. It then holds that ∥yk∥≤ Cy and

∥zk∥≤ Cz for all k ≥ 0. In addition, the sequence {zk} is nonnegative.
Proof. From the updating rule of yk+1 and the definition of αk given in Step 2 of Algorithm 1, we have∥∥yk+1

∥∥ =
∥∥yk + αk(Axk+1 − b)

∥∥ ≤
∥∥yk

∥∥ + vk for all k ≥ 0. Summing up this inequality gives
∥∥yk

∥∥ ≤
∥y0∥+

∑k
i=0 vi ≤ Cy for all k ≥ 0.

By the updating rule of zk+1, it holds zk+1 ≥ (1 − γk

βk
)zk for all k ≥ 0. Using this relation recursively,

we have that the sequence {zk} is nonnegative from z0 ≥ 0 and γk ≤ βk,∀ k ≥ 0. To show the boundedness
of {zk}, we denote

Jk
1 :=

{
i : −zki /βk ≥ gi

(
xk+1

)}
, Jk

2 :=
{
i : −zki /βk < gi

(
xk+1

)}
. (2.3)

Then it follows that

∥∥zk+1
∥∥2 =

∑
i∈Jk

1

(
1− γk

βk

)2 (
zki
)2

+
∑
i∈Jk

2

(
zki + γkgi

(
xk+1

))2 ≤
∑
i∈Jk

1

(
zki
)2

+
∑
i∈Jk

2

(
zki + γk

[
gi
(
xk+1

)]
+

)2
≤
∥∥zk∥∥2 + γ2k

∥∥∥[g (xk+1
)]

+

∥∥∥2 + 2γk
∥∥zk∥∥ · ∥∥∥[g (xk+1

)]
+

∥∥∥ ,
where the first inequality is from γk ≤ βk and gi

(
xk+1

)
≤
[
gi
(
xk+1

)]
+
, and the last inequality holds by

expanding the square term and combining the like terms. Hence,
∥∥zk+1

∥∥ ≤
∥∥zk∥∥+ γk∥[g(xk+1)]+∥≤

∥∥zk∥∥+
wk by the definition of γk in Algorithm 1. Summing up this inequality gives

∥∥zk∥∥ ≤ ∥z0∥+
∑k

i=0 wi ≤ Cz

for all k ≥ 0. This completes the proof. □

In the rest of this section, we assume the following condition for some constant CP :∥∥Axk+1 − b
∥∥2 + ∥∥∥[g (xk+1

)]
+

∥∥∥2 ≤ C2
P /β

2
k, ∀ k ≥ 0, (2.4)

which will be proved for the three cases considered in Sect. 3 with a detailed formula of CP .
Lemma 2.2. Under Assumptions 1–3, let {xk} and {zk} be generated from Algorithm 1 such that (2.4)

holds. Then for any k ≥ 0 and any x ∈ X , it holds∑m
i=1

∣∣[zki + βkgi (x)]+gi (x)
∣∣ ≤ C2

z/βk + 5βk

4

∑m
i=1[gi(x)]

2
+, (2.5)

where Cz is defined in Lemma 2.1. In addition, it holds∑m
i=1

∣∣[zki + βkgi
(
xk+1

)
]+gi

(
xk+1

)∣∣ ≤ (C2
z + 5C2

P /4)/βk. (2.6)
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Proof. For a given x, let J+ := {i : gi (x) ≥ 0} , J− := {i : gi (x) < 0} , Jk
3 := {i : −zki /βk ≥ gi (x)}, and

Jk
4 := {i : −zki /βk < gi (x)}. We then have

m∑
i=1

∣∣[zki + βkgi (x)]+gi (x)
∣∣ = ∑

i∈Jk
4 ∩J+

(
zki + βkgi (x)

)
gi (x)−

∑
i∈Jk

4 ∩J−

(
zki + βkgi (x)

)
gi (x)

≤
∑

i∈Jk
4 ∩J+

(
zki gi (x) + βkg

2
i (x)

)
+

∑
i∈Jk

4 ∩J−

(
zki
)2
/βk

≤
∑

i∈Jk
4 ∩J+

(
zki
)2

βk
+
βk
4

∑
i∈Jk

4 ∩J+

g2i (x) + βk
∑

i∈Jk
4 ∩J+

g2i (x) +
∑

i∈Jk
4 ∩J−

(
zki
)2

βk

≤ 1

βk

∑
i∈Jk

4

(
zki
)2

+
5βk
4

∑
i∈Jk

4 ∩J+

g2i (x) ≤
1

βk

m∑
i=1

(
zki
)2

+
5βk
4

m∑
i=1

[gi(x)]
2
+, (2.7)

where the first inequality holds because −(zki +βkgi(x))gi(x) ≤ −zki gi(x) ≤ (zki )
2/βk for all i ∈ Jk

4 ∩J−, the
second inequality is from Young’s inequality, the third inequality is obtained by combining J+ and J−, and
the last inequality holds by Lemma 2.1.

When x = xk+1, we use (2.4) to further bound
∑m

i=1[gi(x)]
2
+ and complete the proof. □

The next lemma is proved in Appendix A. It will be used to show the cumulative change of the AL
functions in Lemma 2.4.

Lemma 2.3. Under Assumption 1-3, let {xk}, {yk}, {zk}, {wk}, and {γk} be from Algorithm 1 such
that (2.4) holds. Then for any integer K > 0, it holds that

K−1∑
k=0

βk+1

2

∥∥∥∥∥
[
g
(
xk+1

)
+

zk+1

βk+1

]
+

∥∥∥∥∥
2

− βk
2

∥∥∥∥∥
[
g
(
xk+1

)
+

zk

βk

]
+

∥∥∥∥∥
2
 ≤ 1

4β0
(3C2

P + 6CzCP + 7C2
z ), (2.8)

and

K−1∑
k=0

〈
yk+1 − yk,Axk+1 − b

〉
≤ CyCP

β0
,

K−1∑
k=0

βk+1 − βk
2

∥∥Axk+1 − b
∥∥2 ≤ 3C2

P

4β0
, (2.9)

where Cz is given in Lemma 2.1, and CP is the constant in (2.4).

Lemma 2.4. Under the same assumptions of Lemma 2.3, it holds for all integers K > K̃ ≥ 0 that∑K−1

k=K̃

(
Lβk

(xk;yk, zk)− Lβk
(xk+1;yk, zk)

)
≤ Cx, (2.10)

where

Cx := 2maxx∈X |F (x)|+ 1
4β0

(14C2
P + 6CzCP + 12CyCP + 11C2

z )

+ β0

2

(
∥Ax0 − b∥2+

∥∥∥∥[g(x0) + z0

β0

]
+

∥∥∥∥2
)

+
∣∣⟨y0,Ax0 − b⟩

∣∣
with Cz and Cy given in Lemma 2.1 and CP given in (2.4).
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Proof. From the definition of Lβk
(xk;yk, zk), it follows that

∑K−1

k=K̃

(
Lβk

(xk;yk, zk)− Lβk
(xk+1;yk, zk)

)
= F (xK̃)− F

(
xK
)
+
〈
yK̃ ,AxK̃ − b

〉
−
〈
yK−1,AxK − b

〉
+

K−2∑
k=K̃

〈
yk+1 − yk,Axk+1 − b

〉
︸ ︷︷ ︸

term 1

+

K−2∑
k=K̃

βk+1 − βk
2

∥∥Axk+1 − b
∥∥2

︸ ︷︷ ︸
term 2

+

K−2∑
k=K̃

βk+1

2

∥∥∥∥∥
[
g
(
xk+1

)
+

zk+1

βk+1

]
+

∥∥∥∥∥
2

− βk
2

∥∥∥∥∥
[
g
(
xk+1

)
+

zk

βk

]
+

∥∥∥∥∥
2


︸ ︷︷ ︸
term 3

+
βK̃
2

∥AxK̃ − b∥2+
βK̃
2

∥∥∥∥∥
[
g(xK̃) +

zK̃

βK̃

]
+

∥∥∥∥∥
2

︸ ︷︷ ︸
term 4

−βK−1

2

∥∥∥∥∥
[
g
(
xK
)
+

zK−1

βK−1

]
+

∥∥∥∥∥
2

− βK−1

2
∥AxK − b∥2

≤ 2max
x∈X

|F (x)|+
∣∣⟨y0,Ax0 − b⟩

∣∣+ CyCP

β0
+
CyCP

β0
+
CyCP

β0
+

3C2
P

4β0
+

1

4β0
(3C2

P + 6CzCP + 7C2
z )

+
β0
2
∥Ax0 − b∥2+β0

2

∥∥∥∥∥
[
g(x0) +

z0

β0

]
+

∥∥∥∥∥
2

+
2C2

P

β0
+
C2

z

β0
.

Below we explain how the second inequality is obtained. By Lemma 2.1 and (2.4), we have ⟨−yK−1,AxK −
b⟩ ≤ ∥yK−1∥∥AxK−b∥≤ CyCP /β0. Similarly,

〈
yK̃ ,AxK̃ − b

〉
≤
∣∣⟨y0,Ax0 − b⟩

∣∣+CyCP /β0 by discussing

the cases of K̃ = 0 or K̃ > 0. term 1 and term 2 are bounded by using (2.9); term 3 is bounded by

using (2.8); term 4 is upper bounded by 2C2
P /β0 + C2

z/(β0) for K̃ > 0 from the definition of βk in (1.3),
the bound in (2.4), and ∥[a+ b]+∥2≤ ∥a+ b∥2≤ 2∥a∥2+2∥b∥2. Adding all the obtained upper bounds and
simplifying the summation gives the desired result. □

3. Iteration Complexity Results for Three Cases. In this section, we assume a certain structure
on f in (P) and specify how to compute xk+1 in Algorithm 1 so that the condition in (2.4) is satisfied. More
specifically, with the assumed structure, we are able to apply Nesterov’s APG method [35] to either directly

solve minx L̃βk
(x;yk, zk) or its Moreau-envelope based smoothed version, or we can apply a subgradient

method to solve minx L̃βk
(x;yk, zk). Following this, we will present a result of dual infeasibility and thus

obtain the iteration complexity to produce a (near) ε-KKT point, by also using (2.4) and Lemma 2.2. We
will consider three cases of f : smooth, or compositional, or general weakly convex, and h is always assumed
to satisfy the following conditions.

Assumption 4. There exists rh > 0 such that ∂h(x) ̸= ϕ, and ∂h(x) ⊆ NX (x) + Brh ,∀x ∈ X .

3.1. Regularized Smooth Objective. We first consider the case where f is smooth.

Assumption 5. In (P), f is Lf -smooth in an open set that contains X .

Under Assumptions 1 and 5, there must exist a positive constant Bf such that ∥∇f(x)∥≤ Bf ,∀x ∈ X . At
the k-th iteration of Algorithm 1, we directly apply Nesterov’s APG method, i.e., Algorithm 2 in Appendix B,
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to the following subproblem

min
x∈X

L̃βk
(x;yk, zk) = f̃k(x) + h̃k(x), (3.1)

where L̃βk
is defined in (1.2), and we set

f̃k(x) = f(x) +
ρ

2

∥∥x− xk
∥∥2 + (yk)⊤(Ax− b) +

βk
2
∥Ax− b∥2+βk

2

∥∥∥∥∥
[
g(x) +

zk

βk

]
+

∥∥∥∥∥
2

− ∥zk∥2

2βk
, (3.2)

h̃k(x) = h(x) +
ρ

2
∥x− xk∥2. (3.3)

Given ε > 0, we compute xk+1 by Algorithm 2 as an εk-stationary point of subproblem (3.1), i.e.,

dist
(
0, ∂xL̃βk

(xk+1;yk, zk)
)
≤ εk := min

{
ε

8
,

√
ρ

2βk

}
,∀ k ≥ 0. (3.4)

Then we have the following lemma that shows (2.4) with a specified CP .
Lemma 3.1. Under Assumptions 1–5, let xk+1 satisfy (3.4). Then the condition in (2.4) holds with

CP := 2

(√
C2

y + C2
z +

√
Q2/min

i
|g2i (xfeas)|+Q2∥(AA⊤)†A∥2C2

1

)
+ 1, (3.5)

Q := D(Bf + 2ρD + rh), C1 := 1/D + 1/dist(xfeas,bd(X )) +Bg/min
i
|gi(xfeas)|. (3.6)

Here, Cy, Cz are given in Lemma 2.1, and (AA⊤)† denotes the pseudo inverse of AA⊤.
Proof. Consider the following problem

min
x

F (x) + ρ
∥∥x− xk

∥∥2 , s.t. Ax = b, g(x) ≤ 0. (3.7)

Since F is ρ-weakly convex, the objective function in (3.7) is ρ-strongly convex. In addition, the constraints
are convex. Thus (3.7) has a unique solution x̄k

∗, and under Assumption 2, there must exist a multiplier
p̄k
∗ = (ȳk

∗ , z̄
k
∗) corresponding to x̄k

∗. Define ȳk+1 := yk + βk
(
Axk+1 − b

)
, z̄k+1 :=

[
zk + βkg

(
xk+1

)]
+
,

p̄k+1 :=
(
ȳk+1, z̄k+1

)
, and pk =

(
yk, zk

)
. We have

∥∥Axk+1 − b
∥∥2 + ∥∥∥[g (xk+1

)]
+

∥∥∥2 ≤ 1

β2
k

∥∥p̄k+1 − pk
∥∥2 ≤ 1

β2
k

(∥∥p̄k+1 − p̄k
∗
∥∥+ ∥∥p̄k

∗ − pk
∥∥)2 . (3.8)

By the ρ-strong convexity of L̃βk
(x;yk, zk) and (3.4), it holds from [26, Remark 1] that

L̃βk
(xk+1;yk, zk) ≤ min

x
L̃βk

(x;yk, zk) +
ε2k
ρ
. (3.9)

Hence, from Lemma A.1, it follows that

∥∥p̄k+1 − p̄k
∗
∥∥2 ≤

∥∥pk − p̄k
∗
∥∥2 + 2βkε

2
k

ρ
. (3.10)
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Moreover, using [27, Lemma 3] to our case gives
∥∥z̄k∗∥∥ ≤ Q

mini|gi(xfeas)|
,
∥∥ȳk

∗
∥∥ ≤ Q

∥∥(AA⊤)†A
∥∥C1, where

Q and C1 are defined in (3.6).

Noticing
∥∥pk

∥∥ =

√
∥yk∥2 + ∥zk∥2 ≤

√
C2

y + C2
z , we obtain that

∥∥p̄k
∗ − pk

∥∥ ≤
√
C2

y + C2
z +

√
Q2

(mini |gi(xfeas)|)2
+Q2 ∥(AA⊤)†A∥2 C2

1 ,

which together with (3.8) and (3.10) implies√
∥Axk+1 − b∥2 +

∥∥[g (xk+1)]+
∥∥2 ≤ 1

βk

(
2
∥∥p̄k

∗ − pk
∥∥+ εk

√
2βk
ρ

)
(3.4)
≤ 1

βk

(
2
∥∥p̄k

∗ − pk
∥∥+ 1

) (3.5)
≤ CP

βk
.

This completes the proof. □

The following lemma shows how to achieve a desired bound on dual infeasibility.
Lemma 3.2. Given ε > 0, under Assumptions 1-5, let {xk}, {yk}, {zk} be generated by Algorithm 1

such that the condition in (3.4) is satisfied. Then for K2 :=
⌈
5Cxρε

−2
⌉
and any integer K̃1 ≥ 0, where Cx

is defined in Lemma 2.4, it must hold that min
K̃1≤k≤K̃1+K2−1

dist(0, ∂xLβk
(xk+1;yk, zk)) ≤ ε.

Proof. Denote xk+1
∗ = argminx L̃βk

(
x;yk, zk

)
. By (3.4), there is ξ ∈ ∂xL̃βk

(xk+1;yk, zk) such that ∥ξ∥≤ εk.
Then we have

Lβk
(xk+1;yk, zk) + ρ∥xk+1 − xk∥2= L̃βk

(xk+1;yk, zk) ≤ L̃βk
(xk+1

∗ ;yk, zk) +
ε2k
ρ

≤L̃βk
(xk;yk, zk)− ρ

2

∥∥xk+1
∗ − xk

∥∥2 + ε2k
ρ

(3.11)

=Lβk
(xk;yk, zk)− ρ

2

∥∥xk+1
∗ − xk

∥∥2 + ε2k
ρ

≤ Lβk
(xk;yk, zk)− ρ

4

∥∥xk − xk+1
∥∥2 + ρ

2

∥∥xk+1 − xk+1
∗
∥∥2 + ε2k

ρ

≤Lβk
(xk;yk, zk)− ρ

4

∥∥xk − xk+1
∥∥2 + ρ

2

∥ξ∥2

ρ2
+
ε2k
ρ

≤ Lβk
(xk;yk, zk)− ρ

4

∥∥xk − xk+1
∥∥2 + 3ε2k

2ρ
,

where the first, second and fourth inequalities follow from the ρ-strong convexity of L̃βk
, and the third

inequality is by the triangle inequality, and the last inequality holds since ∥ξ∥≤ εk.

Summing up the above inequality over k = K̃1, . . . , K̃1 +K2 − 1 gives

5ρ

4

K̃1+K2−1∑
k=K̃1

∥xk+1 − xk∥2≤
K̃1+K2−1∑

k=K̃1

(
Lβk

(xk;yk, zk)− Lβk
(xk+1;yk, zk) +

3ε2k
2ρ

)
. (3.12)

Since εk ≤ ε/8,∀ k ≥ 0, it holds that 4
5ρK2

∑K̃1+K2−1

k=K̃1

3ε2k
2ρ ≤ ε2/(32ρ2) for all K̃1 ≥ 0. Hence, we have

from Lemma 2.4 and (3.12) that min
K̃1≤k≤K̃1+K2−1

∥∥xk+1 − xk
∥∥ ≤

√
4Cx/(5ρK2) + ε2/(32ρ2). Now notice

∂xLβk
(xk+1;yk, zk) = ∂xL̃βk

(xk+1;yk, zk)− 2ρ
(
xk+1 − xk

)
. We have

min
K̃1≤k≤K̃1+K2−1

dist
(
0, ∂xLβk

(xk+1;yk, zk)
)
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= min
K̃1≤k≤K̃1+K2−1

dist
(
0, ∂xL̃βk

(xk+1;yk, zk)− 2ρ
(
xk+1 − xk

))
(3.4)
≤ min

K̃1≤k≤K̃1+K2−1

(
εk + 2ρ

∥∥xk+1 − xk
∥∥) ≤ ε/8 + 2ρ

√
4Cx/(5ρK2) + ε2/(32ρ2) ≤ ε,

where the last inequality holds because K2 ≥ 5Cxρε
−2. This completes the proof. □

Now we are ready to show the outer iteration complexity of Algorithm 1 when f satisfies Assumption 5.
The result is given in the theorem below.

Theorem 3.3 (Outer iteration complexity result I). Given ε > 0, under Assumptions 1-5, let {xk},
{yk}, and {zk} be generated by Algorithm 1 such that (3.4) holds. Then for some k < K = K1 +K2, x

k+1

is an ε-KKT point of problem (P), where K1 :=
⌈
max

{
C2

P

β2
0ε

2 ,
(4Cz+5C2

P )2

16β2
0ε

2

}⌉
, K2 :=

⌈
5Cxρε

−2
⌉
, CP is given

in (3.5), Cz is given in Lemma 2.1, and Cx is defined in Lemma 2.4.
Proof. From Lemma 3.1, we have (2.4) and thus by (1.3), it holds√

∥Axk+1 − b∥2 +
∥∥[g (xk+1)]+

∥∥2 ≤ CP

βK1

=
CP

β0
√
K1 + 1

≤ ε,∀ k ≥ K1, (3.13)

where the second inequality holds because K1 ≥ C2
P

β2
0ε

2 . Denote ȳk := yk + βk(Axk+1 − b), and z̄k :=

[zk + βkg(x
k+1)]+. Then by (1.3) and (2.6), it holds

m∑
i=i

|z̄ki gi(xk+1)|≤ 1

βK1

(
C2

z +
5C2

P

4

)
=

1

β0
√
K1 + 1

(
C2

z +
5C2

P

4

)
≤ ε,∀ k ≥ K1, (3.14)

where we have used K1 ≥ (4Cz+5C2
P )2

16β2
0ε

2 to obtain the second inequality.

Moreover, notice ∂xLβk
(xk+1;yk, zk) = ∂xL0(x

k+1; ȳk, z̄k). Thus letting K̃1 = K1 in Lemma 3.2 yields

min
K1≤k≤K1+K2−1

dist
(
0, ∂xL0(x

k+1; ȳk, z̄k)
)
≤ ε. (3.15)

Now let k′ = arg min
K1≤k≤K1+K2−1

dist
(
0, ∂xL0(x

k+1; ȳk, z̄k)
)
. We conclude from (3.13), (3.14), and (3.15) that

xk′+1 is an ε-KKT point of problem P with multipliers ȳk′
and z̄k

′
by Definition 1.3. □

To obtain the total complexity of Algorithm 1 for solving problem (P), we still need to evaluate the
number of inner iterations for solving subproblem (3.1), by using Algorithm 2 as the subroutine, such

that (3.4) is met. From [26, Eqn. (3.10)], it follows that f̃k in (3.2) is Lf̃k -smooth with Lf̃k = Lf + ρ +
√
mLgCz +

√
k + 1β0(∥A⊤A∥+mBg(Bg + Lg)). In addition, because f is ρ-weakly convex, f̃k is convex.

Also, h̃k is ρ-strongly convex. Hence, we have the following lemma directly from Theorem B.1.
Lemma 3.4. Under Assumptions 1-5 and for a given εk > 0, Algorithm 2 with γu = 2 applied to

subproblem (3.1) can find a solution xk+1 that satisfies the criteria in (3.4) within

T k
1 =

max

 1

log 2
, 2

√
Lf̃k

ρ

 log
9DLf̃k

√
Lf̃k/ρ

εk

+ 1 (3.16)
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iterations, where Lf̃k := C3 +
√
k + 1β0C2 is the Lipschitz constant of ∇f̃k with C2 := ∥A⊤A∥+mBg(Bg +

Lg) and C3 = Lf + ρ+
√
mLgCz.

Combining Theorem 3.3 and Lemma 3.4, we are ready to show the total complexity of Algorithm 1.
Theorem 3.5 (Total complexity result I). For a given ε > 0, under Assumptions 1-5, Algorithm 1,

with Algorithm 2 as a subroutine to compute xk+1, can produce an ε-KKT point of problem (P) by T total
1

proximal gradient steps. Here, T total
1 satisfies

T total
1 ≤ 2K +K

(
2
√
C3/ρ+ 2

√√
Kβ0C2/ρ+

1

log 2

)
log

(
9εK

−1D

√
1

ρ
(C3 +

√
Kβ0C2)

3
2

)
,

where K is given in Theorem 3.3, εk is defined in (3.4), and C2 and C3 are given in Lemma 3.4.
Proof. By Theorem 3.3, Algorithm 1 can find an ε-KKT point of problem (P) within K outer iterations.
Hence, by Lemma 3.4, the total number T total

1 of inner iterations satisfies

T total
1 ≤

K−1∑
k=0

T k
1 ≤

K−1∑
k=0

1 +
2

√
Lf̃k

ρ
+

1

log 2

 log
9Lf̃kD

√
L

f̃k

ρ

εk


≤2K +K

2

√
Lf̃K−1

ρ
+

1

log 2

 log
9Lf̃K−1D

√
L

f̃K−1

ρ

εK

≤2K +K

(
2
√
C3/ρ+ 2

√√
Kβ0C2/ρ+

1

log 2

)
log

(
9εK

−1D

√
1

ρ
(C3 +

√
Kβ0C2)

3
2

)
,

where the second inequality comes from Lf̃k ≤ Lf̃K−1 ,∀ k ≤ K − 1 by the definition of Lf̃k in Lemma 3.4,

and εK ≤ εk,∀ k ≤ K from (3.4) and (1.3), the third inequality holds by
√
a+ b ≤

√
a+

√
b,∀ a, b ≥ 0. This

completes the proof.
Remark 3.1. From Theorem 3.5 and because K = O(ε−2), we have T total

1 = Õ(K5/4) = Õ(ε−2.5). □

3.2. Regularized Compositional Objective. In this subsection, we make the following structural
assumption on the function f in (P).

Assumption 6. In (P), f is in a compositional form of f = l ◦ c, where c : Rd → Rp is one Lc-smooth
mapping, i.e., ∥Jc(x1) − Jc(x2)∥F≤ Lc∥x1 − x2∥,∀x1,x2 ∈ Rd, and l : Rp → R is a convex, potentially
non-smooth, Ml-Lipschitz continuous function.

Under Assumption 6, we have that the weak convexity constant of f satisfies ρ ≤MlLc by [11, Lemma
4.2]. Without the smoothness of f , an FOM will not produce a near-stationary point of problem (3.1) as
claimed in [11]. Hence, we aim at finding a point that is close to a near-KKT point of (P), and we utilize
the smoothing strategy adopted in [11]. Details are described below.

Given a point x̄ ∈ Rd, we define the prox-linear function f0 : Rd 7→ R and a smoothing function
fν : Rd 7→ R of f by

f0(x; x̄) := l(c(x̄) + Jc(x̄)(x− x̄)), fν(x; x̄) := lν(c(x̄) + Jc(x̄)(x− x̄)), (3.17)

where lν is the Moreau envelope of l with 0 < ν ≤ 1. Then, fν is a smooth function and f0(x;x) = f(x).
Since X = dom(F ) is bounded, we have from Assumptions 1, 3 and 6 that

∥Jc(x)∥F≤ ∥∇c∥:= ∥Jc(xfeas)∥F+LcD,∀x ∈ X . (3.18)
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The following properties hold directly from Lemmas 2.1 and 3.2 of [11].
Lemma 3.6. Let f0 and fν be defined in (3.17). It holds that
(a) fν is Ml∥∇c∥ Lipschitz continuous;
(b) ∇fν is ∥∇c∥/ν Lipschitz continuous;

(c) 0 ≤ f0(x; x̄)− fν(x; x̄) ≤ M2
l ν
2 , −ρ

2∥x− x̄∥2≤ f(x)− f0(x; x̄) ≤ ρ
2∥x− x̄∥2.

With the setting in (3.17) and the properties in Lemma 3.6, we compute xk+1 in Algorithm 1 by applying
Algorithm 2 to solve the following subproblem:

min
x

L̃νk

βk
(x;yk, zk) := f̂k(x) + ĥk(x), (3.19)

such that xk+1 is an εk-stationary point of problem (3.19), i.e.,

dist(0, ∂xL̃νk

βk
(xk+1;yk, zk)) ≤ εk, (3.20)

where

f̂k(x) = fνk(x;xk) + (yk)⊤(Ax− b) +
βk
2
∥Ax− b∥2+βk

2

∥∥∥∥[g(x) + zk

βk
]+

∥∥∥∥2 − ∥zk∥2

2βk
, (3.21)

ĥk(x) = h(x) +
ρ

2
∥x− xk∥2. (3.22)

Notice that ĥk(x) is ρ-strongly convex and by [26, equation (3.10)], f̂k(x) is convex and (∥∇c∥/νk + ρ +√
mLgCz +

√
k + 1β0C2)-smooth with C2 given in Lemma 3.4. In addition, by Lemma 3.6(c), it holds that

∥∇fνk(x;xk)∥≤ B̃f :=Ml∥∇c∥,∀x ∈ X .

We then have the following result that shows (2.4) with a specified CP .
Lemma 3.7. Under Assumptions 1–4 and 6, suppose that (3.20) is satisfied with 0 ≤ εk ≤

√
ρ/(2βk)

and 0 < νk ≤ 1 for all k ≥ 0. Then the condition in (2.4) holds with

CP :=
1

2
(
√
C2

y + C2
z +

√
Q̃2/min

i
|g2i (xfeas)|+ Q̃2∥(AA⊤)†A∥2C2

1 ) + 1, (3.23)

where Q̃ := D(B̃f + 2ρD + rh), C1 is defined in (3.6), and Cy and Cz are given in Lemma 2.1.

Proof. Consider the strongly convex problem minx{fνk(x;xk)+h(x)+ρ
2

∥∥x− xk
∥∥2 , s.t. Ax = b, g(x) ≤ 0}.

Then the claim can be obtained by essentially the same arguments as those in the proof of Lemma 3.1. The
only difference is that we shall replace Bf by B̃f . □

With Lemma 3.7, we are able to show the outer iteration complexity of Algorithm 1. Define

C4 := max

{
3

2
, 3
√
∥A∥2+mB2

g/(2ρ), 4Bg

√
mβ0

√
C5/ρ, 64mB

2
gβ0
√
ρCx/ρ

2, 8Bg

√
mβ0/ρ, 3/(4ρ)

}
, (3.24)

C5 := max
{
4C2

Pβ
−2
0 , 4(C2

z + 5C2
P /2)

2β−2
0

}
, (3.25)

where CP is given in (3.23) and Cx in Lemma 2.4. Then we set εk as follows:

εk := min

{
ε

16C4
,

√
ρ

2βk

}
, (3.26)
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where βk is given in (1.3). In addition, we define

xk
+ = argminx L̃0

βk
(x;yk, zk), x̂k = argminx L̃

νk

βk
(x;yk, zk)

G1/ρ

(
xk
)
= ρ

(
xk
+ − xk

)
, Gνk

1/ρ

(
xk
)
= ρ(x̂k − xk).

(3.27)

By using the same technique as that in [11, Eqn. (4.10)], it holds that with x̃k = proxLβk
(·;yk,zk)/(2ρ)

(
xk
)
,

∥x̃k − xk∥ ≤ 2
ρ

∥∥G1/ρ

(
xk
)∥∥ ,

Lβk
(x̃k;yk, zk) ≤ Lβk

(xk;yk, zk),

dist(0, ∂Lβk
(x̃k;yk, zk)) ≤ 4

∥∥G1/ρ

(
xk
)∥∥ . (3.28)

Thus if
∥∥G1/ρ

(
xk
)∥∥ is small, x̃k is nearly stationary for problem minx Lβk

(x;yk, zk), and xk is close to x̃k.

Though x̃k may be difficult to obtain, we do not compute it, and the sole purpose of introducing x̃k is to
certify the quality of xk.

Theorem 3.8 (Outer iteration complexity result II). Given ε > 0, under Assumptions 1-4 and 6,
let {xk}, {yk}, and {zk} be generated by Algorithm 1 such that the condition in (3.20) is satisfied, with
εk given in (3.26) and νk = ν := min{1, ε2/(64C2

4ρM
2
l )}, where C4 is defined in (3.24). Then for some

k ≤ K := K̄1 + K̄2, x
k is a near ε-KKT point of problem (P), where K̄1 := ⌈C5ε

−2⌉, K̄2 :=
⌈
64ρCxC

2
4ε

−2
⌉

with Cx and C5 given in Lemma 2.4 and (3.25), respectively.

Proof. From fν(xk;xk) ≤ f0(xk;xk) = f(xk), it holds Lβk
(xk;yk, zk) ≥ L̃ν

βk
(xk;yk, zk). Hence, by the

ρ-strong convexity of L̃ν
βk
(·;yk, zk), the definition of x̂k in (3.27), and the condition in (3.20), we have

Lβk
(xk;yk, zk) ≥ L̃ν

βk
(x̂k;yk, zk) +

ρ

2

∥∥xk − x̂k
∥∥2 ≥ L̃ν

βk
(xk+1;yk, zk) +

ρ

2

∥∥xk − x̂k
∥∥2 − ε2k

ρ
. (3.29)

In addition, by Lemma 3.6(c), it holds fν(xk+1;xk)+ ρ
2∥x

k+1−xk∥2≥ f0(xk+1;xk)−M2
l ν/2+

ρ
2∥x

k+1−xk∥2≥
f(xk+1)−M2

l ν/2. Hence, (3.29) indicates Lβk
(xk;yk, zk) ≥ Lβk

(xk+1;yk, zk)− M2
l ν
2 + 1

2ρ∥G
ν
1/ρ(x

k)∥2− ε2k
ρ .

Summing up this inequality over k from K̄1 to K − 1 and using Lemma 2.4 yields∑K−1
k=K̄1

∥Gν
1/ρ(x

k)∥2≤2ρ
∑K−1

k=K̄1

(
Lβk

(xk;yk, zk)− Lβk
(xk+1;yk, zk) +M2

l ν/2 + ε2k/ρ
)

≤2ρCx + 2ρ
∑K−1

k=K̄1

(
M2

l ν/2 + ε2k/ρ
)
,∀K > K̄1.

The above inequality together with ν ≤ ε2

64C2
4ρM

2
l
and εk ≤ ε/(16C4),∀ k ≥ 0 implies that

min
K̄1≤k≤K−1

∥Gν
1/ρ(x

k)∥≤
√
2ρCx/(K − K̄1) + ε2/(32C2

4 ). (3.30)

Moreover, it follows from [11, Theorem 6.5] and ν ≤ ε2

64ρC2
4M

2
l
that

∥∥G1/ρ

(
xk
)∥∥ ≤

∥∥∥Gν
1/ρ

(
xk
)∥∥∥+√M2

l νρ/2 ≤
∥∥∥Gν

1/ρ

(
xk
)∥∥∥+ ε/(8C4). (3.31)

Combining (3.30) and (3.31), we have minK̄1≤k≤K−1∥G1/ρ(x
k)∥≤ ε

8C4
+
√
2ρCx/(K − K̄1) + ε2/(32C2

4 ).

Noting K = K̄1 + K̄2 ≥ K̄1 + 64ρCxC
2
4ε

−2, we obtain minK̄1≤k≤K−1∥G1/ρ(x
k)∥≤ 3ε/(8C4). Let k′ =
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argminK̄1≤k≤K−1∥G1/ρ(x
k)∥. Then from (3.28) and C4 ≥ 3

2 , it holds dist(0, ∂xLβk′ (x̃
k′
;yk′

, zk
′
)) ≤ ε and

∥x̃k′ − xk′∥≤ 3ε
4ρC4

. Denote ȳk′
= yk′−1 + βk′(Ax̃k′ − b), and z̄k

′
= [zk

′−1 + βk′−1g(x̃
k′
)]+. Then noticing

∂xLβk′ (x̃
k′
;yk′

, zk
′
) = ∂xL0(x̃

k′
; ȳk′

, z̄k
′
), we have

∂xL0(x̃
k′
; ȳk′

, z̄k
′
) ≤ ε. (3.32)

Furthermore, since k′ ≥ K̄1, it follows from Young’s inequality, (2.4), and (1.3) that∥∥∥Ax̃k′
− b

∥∥∥2 + ∥∥∥[g(x̃k′
)]+

∥∥∥2
≤2
∥∥∥Axk′

− b
∥∥∥2 + 2

∥∥∥[g(xk′
)]+

∥∥∥2 + 2
∥∥∥A(x̃k′

− xk′
)
∥∥∥2 + 2

∥∥∥[g(x̃k′
)]+ − [g(xk′

)]+

∥∥∥2
≤2C2

P

β2
K̄1

+ 2(∥A∥2+mB2
g)

9ε2

16ρ2C2
4

≤ ε2, (3.33)

where the last inequality follows from K̄1 ≥ 4C2
Pβ

−2
0 ε−2 and C4 ≥ 3

√
∥A∥2+mB2

g/(2ρ). Finally, notice

m∑
i=1

|z̄k
′

i gi(x̃
k′
)| =

m∑
i=1

∣∣∣[zk′−1
i + βk′−1gi(x̃

k′
)]+gi(x̃

k′
)
∣∣∣ ≤ 1

βk′−1

m∑
i=1

(zk
′−1

i )2 +
5βk′−1

4

m∑
i=1

[gi(x̃
k′
)]2+

≤ 1

βk′−1

m∑
i=1

(zk
′−1

i )2 +
5βk′−1

2

m∑
i=1

[gi(x
k′
)]2+ +

5βk′−1

2

∥∥∥[g(x̃k′
)]+ − [g(xk′

)]+

∥∥∥2
≤ 1

βk′−1

(
C2

z +
5C2

P

2

)
+

45
√
KmB2

gβ0ε
2

2(4ρC4)2
≤ ε

2
+

45mB2
gβ0ε

64ρ2C2
4

(√
C5 + 8

√
ρCxC4 + 2

)
≤ ε. (3.34)

Here, the first inequality holds by the same arguments to show (2.7); the third inequality follows from
Lemma 2.1, the inequality in (2.4), βk′ ≤

√
K + 1β0, the Lipschitz continuity of [g]+, and ∥x̃k′ −xk′∥≤ 3ε

4ρC4
;

the fourth inequality results from k′ ≥ K̄1 ≥ 4(C2
z + 5C2

P /2)
2β−2

0 ε−2, βk′−1 = β0
√
k′ ≥ β0

√
K̄1, and the

definition of K; the last inequality holds because of the choice of C4 in (3.24).
We obtain from (3.32)–(3.34) that x̃k′

is an ε-KKT point of problem (P). Since ∥x̃k′ − xk′∥≤ 3ε
4ρC4

≤ ε,

then xk′
is a near ε-KKT point of problem (P) by Definition 1.3. This completes the proof. □

Below we give the number of iterations for solving (3.19) by Algorithm 2 such that (3.20) is met. From [26,

Eqn. (3.10)], it follows that f̂k in (3.21) is Lf̂k -smooth with Lf̂k = ∥∇c∥/νk+
√
mLgCz+

√
k + 1β0C2, where

C2 given in Lemma 3.4. Hence, we have the following lemma directly from Theorem B.1.
Lemma 3.9. Given εk > 0 and νk > 0, under Assumptions 1–4 and 6, Algorithm 2 with γu = 2 applied

to (3.19) can find a solution xk+1 that satisfies the criteria in (3.20) within

T k
2 =

max

 1

log 2
, 2

√
Lf̂k

ρ

 log
9DLf̂k

√
Lf̂k/ρ

εk

+ 1 (3.35)

iterations, where Lf̂k = C6 +
√
k + 1β0C2, with C6 := ∥∇c∥/νk +

√
mLgCz, C2 given in Lemma 3.4 and

∥∇c∥ given in (3.18).
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Combining Theorem 3.8 and Lemma 3.9, we are ready to show the total complexity of Algorithm 1.
Theorem 3.10 (Total complexity result II). For a given ε > 0, under Assumptions 1–4 and 6, Algo-

rithm 1, with Algorithm 2 as a subroutine to compute xk+1 by solving (3.19), can find a near ε-KKT point
of problem (P) by T total

2 proximal gradient steps. Here, T total
2 satisfies

T total
2 ≤ 2K +K

(
2
√
C6/ρ+ 2

√√
Kβ0C2/ρ+

1

log 2

)
log

(
9εK

−1D

√
1

ρ
(C6 +

√
Kβ0C2)

3
2

)
,

where C2 and C6 are defined in Lemmas 3.4 and 3.9, K is given in Theorem 3.8, and εk is defined in (3.26).

Proof. Set νk = ν := min{1, ε2/(64C2
4ρM

2
l )} as in Theorem 3.8 and notice T total

2 ≤
∑K−1

k=0 T k
2 , where T

k
2 is

given in (3.35). We obtain the desired result by the same arguments in the proof of Theorem 3.5. □

Remark 3.2. By K = O(ε−2), νk = ν = O(ε2), we have T total
2 = Õ(K

√
∥∇c∥/ν +K5/4) = Õ(ε−3).

3.3. General Weakly-Convex Objective. In this subsection, we consider a general case with a
weakly-convex objective. We make the following assumption.

Assumption 7. In (P), f satisfies ∥ξ∥≤ Bf ,∀ ξ ∈ ∂f(x),∀x ∈ X .
Without a smoothness structure, we do not expect an FOM to produce an εk-stationary point of the

problem minx L̃βk
(x;yk, zk) as in (3.4). Instead, we compute a near-optimal solution xk+1 satisfying (3.9).

Let xk+1
∗ = argminx L̃βk

(
x;yk, zk

)
. Then by the ρ-strong convexity of L̃βk

(x;yk, zk), it holds

∥xk+1
∗ − xk+1∥2≤ 2

ρ

(
L̃βk

(xk+1;yk, zk)− L̃βk
(xk+1

∗ ;yk, zk)
) (3.9)

≤ 2ε2k
ρ2

,∀ k ≥ 0. (3.36)

The next theorem gives the outer iteration complexity of Algorithm 1 for the general weakly-convex case.
Theorem 3.11 (Outer iteration complexity result III). Given ε > 0, under Assumptions 1-4 and 7,

let {xk}, {yk}, and {zk} be generated by Algorithm 1 such that (3.9) holds with εk := min{ ε
4 ,

ρε√
2
,
√

ρ
2βk

}

for all k ≥ 0. Then for some k < K := K̃1 + K̃2, xk+1 is a near ε-KKT point of problem (P), where

K̃1 :=
⌈
max{C2

Pβ
−2
0 , (C2

z + 5C2
P /4)

2β−2
0 }ε−2

⌉
and K̃2 :=

⌈
16Cxρε

−2
⌉
, with Cy, Cz, Cx, and CP given in

Lemma 2.1, Lemma 2.4, and (3.6).
Proof. Notice that the claim in Lemma 3.1 follows from the near-stationarity condition of xk+1 in (3.4),
Assumptions 1-4, and the boundedness of ∇f . Hence, by the same arguments and using the definition of
xk+1
∗ , we have ∥∥Axk+1

∗ − b
∥∥2 + ∥∥∥[g (xk+1

∗
)]

+

∥∥∥2 ≤ C2
P /β

2
k, ∀ k ≥ 0. (3.37)

Then by (2.5) in Lemma 2.2 and (3.37), it holds that

m∑
i=1

|[zki + βkgi(x
k+1
∗ )]+gi(x

k+1
∗ )| ≤

(
C2

z + 5C2
P /4

)
/βk, ∀ k ≥ 0. (3.38)

In addition, by (3.11), we have L̃βk
(xk+1

∗ ;yk, zk) ≤ Lβk
(xk;yk, zk) − ρ

2

∥∥xk − xk+1
∗
∥∥2, which together with

(3.9), gives

Lβk
(xk+1;yk, zk) + ρ∥xk+1 − xk∥2+ρ

2
∥xk+1

∗ − xk∥2≤ Lβk
(xk;yk, zk) +

ε2k
ρ
. (3.39)
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On the other hand, starting from (3.9) and by the same arguments in the proof of Lemma 3.1, we have
the claim in Lemma 3.1. Thus the results in Lemmas 2.3 and 2.4 still hold. In particular, we have (2.10).

Hence, sum up (3.39) over k from K̃1 toK−1 and use (2.10) to have ρ
2

∑K−1

k=K̃1
∥xk+1

∗ −xk∥2≤
∑K−1

k=K̃1

ε2k
ρ +Cx.

Since εk ≤ ε
4 , it holds

∑K−1

k=K̃1

ε2k
ρ ≤ K̃2ε

2

16ρ . Let k′ = argminK̃1≤k≤K−1∥x
k+1
∗ − xk∥2. Then ∥xk′+1

∗ − xk′∥≤√
ε2

8ρ2 + 2Cx

ρK̃2
≤ ε

2ρ by K̃2 ≥ 16Cxρε
−2. Now notice 0 ∈ ∂xL̃βk

(xk+1
∗ ;yk, zk) = ∂xLβk

(xk+1
∗ ;yk, zk) +

2ρ(xk+1
∗ − xk) and ∂xLβk

(xk+1
∗ ;yk, zk) = ∂xL0(x

k+1
∗ ; ȳk, z̄k) with ȳk := yk + βk(Axk+1

∗ − b), and z̄k :=

[zk + βkg(x
k+1
∗ )]+. We obtain dist(0, ∂xL0(x

k′+1
∗ ; ȳk′

, z̄k
′
)) ≤ ε. This claim, together with (3.37), (3.38),

and the choice of K̃1, indicates that xk′+1
∗ is an ε-KKT point of problem (P). Moreover, from (3.36) and

εk ≤ ρε/
√
2, it follows that ∥xk′+1

∗ − xk′+1∥≤ ε. Therefore, xk′+1 is a near ε-KKT point of problem (P) by
Definition 1.3, and we complete the proof. □

Remark 3.3. We make a few remarks about Theorem 3.11 and its implications. First, in a general case,
one can apply a subgradient method [34] to find xk+1 such that (3.9) holds, due to the strong convexity of

L̃βk
( · ;yk, zk). Our O(ε−2) outer iteration complexity result matches with that in [49], but we allow a smaller

penalty parameter for nondifferentiable problems and thus can potentially achieve a lower overall complexity
result. Second, when there are certain special structures on f such as those in Sect. 3.1 and Sect. 3.2, one can
apply a more efficient way to obtain xk+1 and achieve a lower complexity. The best way to compute xk+1 will
depend on the structure on f . For example, when f = max{f1, f2} where f1 and f2 are both ρ-weakly convex
and smooth, one can apply the Moreau-envelope based smoothing approach in Sect. 3.2 and achieve an overall
complexity of Õ(ε−3) to produce a near ε-KKT point. However, a potentially better way is to have a more

efficient subroutine to solve each strongly convex subproblem minx L̃βk
(x;yk, zk) by exploiting the special

structure of f . Notice f(x) + ρ
2∥x− xk∥2= maxλ∈[0,1] λ(f1(x) +

ρ
2∥x− xk∥2) + (1− λ)(f1(x) +

ρ
2∥x− xk∥2).

With Hk(x) := h(x) + ρ
2∥x− xk∥2+(yk)⊤(Ax− b) + βk

2 ∥Ax− b∥2+βk

2 ∥[g(x) + zk

βk
]+∥2−∥zk∥2

2βk
, it holds

min
x

L̃βk
(x;yk, zk) = max

λ∈[0,1]
min
x
λ(f1(x) +

ρ
2∥x− xk∥2) + (1− λ)(f1(x) +

ρ
2∥x− xk∥2) +Hk(x).

By exploiting the 1-dimension of λ, we can follow [46] and apply a bisection method to search for the optimal

λ, by which we can then find the desired xk+1 in Õ(
√
βk) iterations. Hence, by Theorem 3.11, the total

iteration complexity is Õ(ε−2.5) to produce a near ε-KKT point. We leave details to interested readers.

4. Numerical Experiments. In this section, we conduct numerical experiments to demonstrate the
effectiveness of our algorithm, named DPALM. We apply it to the non-convex linearly constrained quadratic
problem (LCQP), non-convex quadratically constrained quadratic problem (QCQP), and linearly constrained
robust nonlinear least square. All of these tests are performed in MATLAB 2022a on an iMAC with 40GB
memory. We report primal infeasibility and dual infeasibility for problems with only linear constraints. We
also report complementary slackness error for problems with nonlinear constraints.

4.1. Non-convex Linearly-Constrained Quadratic Program (LCQP). In this subsection, we
compare DPALM to HiAPeM [26], LiMEAL [49] and NL-IAPIAL [20] on LCQP in the form of

min
x∈Rd

1

2
x⊤Q0x+ c⊤0 x, s.t. Ax = b, xi ∈ [li, ui], ∀ i = 1, . . . , d, (4.1)

where A ∈ Rn×d, c0 ∈ Rd, and Q0 ∈ Rd×d is a symmetric and indefinite matrix with the smallest eigenvalue
−ρ < 0. Thus the objective of (4.1) is ρ-weakly convex.
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In our experiments, we set n = 10, d = 1000, and li = −5, ui = 5,∀ i. We vary ρ ∈ {0.1, 1, 10}.
Each algorithm is terminated if an ε-KKT solution is found or after 104 outer iterations, where we set
ε = 10−3. For DPALM and NL-IAPIAL, we tune the initial penalty parameter β0 by picking the best
one from {0.01, 0.1, 1, 10} for each value of ρ. This way, we have β0 = 0.01, 0.1, 10 and β0 = 0.01, 0.1, 1
corresponding to ρ = 0.1, 1, 10 respectively for DPALM and NL-IAPIAL. LiMEAL uses a fixed penalty
parameter β. We pick the best β from {0.1, 1, 10, 100} and set its parameter η = 1.5, which appears to work
the best for LiMEAL. This way, we have β = 0.1, 1, 100 corresponding to ρ = 0.1, 1, 10 for LiMEAL. For
HiAPeM, we use its default value β0 = 0.01 but set its parameter N0 to 104. Here, N0 is the number of calls
to ALM as subroutine in the initial stage of HiAPeM. Since we set the maximum number of outer iterations to
104, usingN0 = 104 means that we run HiAPeM by solely using ALM to solve its proximal point subproblems.
This yields the best performance for HiAPeM, as demonstrated in [26]. All algorithms use Nesterov’s APG
in Algorithm 2 to solve their core strongly convex subproblems. Notice that our implementation of LiMEAL
is different from that in the numerical experiment of [49] but instead we follow its update given in Eqn. (9).

For each value of ρ, we generate 10 independent random LCQP instances. In Table 1, we present the
primal and dual infeasibility, running time (in seconds), and the number of gradient evaluations (shortened
by pres, dres, time, #Grad, respectively), averaged over 10 instances, for each method. In Figure 1, we
plot primal and dual infeasibility versus the number of gradient evaluations in one random instance for
all compared methods. From our results in the table and the figure, we see that our method takes fewer
gradient evaluations (and less running time) than all other methods to produce the same-accurate KKT
point. A larger value of ρ means more non-convexity and thus a harder instance. However, we notice that
all compared methods take fewer gradient evaluations for ρ = 10 than ρ = 0.1, 1. This is possibly because
we tune the algorithm parameter for each ρ, or because we aim at producing a near-KKT point instead of
a global optimal solution.

Table 1
Average results and variance by the proposed algorithm DPALM, HiAPeM in [26] with N0 = 104, LiMEAL in [49],

and NL-IAPIAL in [20] on solving 10 instances of ρ-weakly convex LCQP in (4.1) of size n = 10 and d = 1000, where
ρ ∈ {0.1, 1.0, 10}.

pres dres time #Grad pres dres time #Grad pres dres time #Grad pres dres time #Grad

HiAPeM with N0 = 1000 NL-IAPIAL LiMEAL DPALM
weak convexity constant: ρ = 0.1

avg. 4.15e-4 9.87e-4 203.63 124840 6.92e-7 9.99e-4 25.47 90366 9.48e-4 0.06 93.23 144666 5.82e-3 9.82e-4 10.35 40168
var. 4.97e-8 1.08e-9 7.40e3 2.41e10 1.48e-8 4.23e-8 658.73 1.71e9 4.89e-9 0.15 6.46e3 5.72e6 5.71e6 4.42e-8 1.89e-8 223.90 8.54e8

weak convexity constant: ρ = 1.0
avg. 7.40e-5 9.95e-4 749.48 509020 9.44e-7 9.90e-4 151.15 713015 7.94e-6 0.01 140.21 381753 3.90e-6 9.94e-4 42.23 176762
var. 1.16e-7 1.44e-10 1.76e4 1.91e10 8.24e-10 6.72e-9 517.62 1.22e9 1.76e-6 6.17 5.18e3 3.74e7 4.01e-9 8.09e-9 256.90 3.13e8

weak convexity constant: ρ = 10
avg. 1.47e-4 8.41e-4 46.04 62192 9.03e-5 3.42e-4 17.91 83705 3.90e-5 4.10e-4 12.18 47423 1.31e-4 7.28e-4 7.13 31838
var. 5.10e-8 6.48e-11 4.36e4 4.89e10 1.16e-10 1.92e-9 361.01 1.36e8 2.97e-7 16.95 589.99 3.74e7 2.11e-10 4.45e-10 275.27 1.23e8

4.2. Non-convex Quadratically-Constrained Quadratic Program (QCQP). In this subsection,
we compare the proposed DPALM method in Algorithm 1 to HiAPeM in [26] and NL-IAPIAL in [20] on
solving non-convex instances of QCQP in the form of

min
x∈Rd

1

2
x⊤Q0x+ c⊤0 x, s.t.

1

2
x⊤Qjx+ c⊤j x+ dj ≤ 0,∀ j ∈ [m];xi ∈ [li, ui],∀ i ∈ [d]. (4.2)

Here, Qj is positive semidefinite for each j ≥ 1, but Q0 is indefinite and has the smallest eigenvalue −ρ < 0.
Thus the objective of (4.2) is ρ-weakly convex but the constraints are convex. In the experiment, we set
m = 10, d = 1000, li = −5 and ui = 5,∀ i and generate the data of vectors and matrices randomly.
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Fig. 1. Primal and dual infeasibility vs. Number of gradient evaluations by the proposed DPALM, the HiAPeM method

in [26], the LiMEAL in [49], and the NL-IAPIAL method in [20] on solving instances of (4.1) with different weak convexity
constant ρ ∈ {0.1, 1, 10}.

Table 2
Results by the proposed algorithm DPALM, the HiAPeM method in [26] with N0 = 104, and NL-IAPIAL method in [20]

on solving instances of ρ-weakly convex QCQP (4.2) of size m = 10 and d = 1000, where ρ ∈ {0.1, 1.0, 10}.

pres dres compslack time #Grad pres dres compslack time #Grad pres dres compslack time #Grad

HiAPeM with N0 = 1000 NL-IAPIAL DPALM
weak convexity constant: ρ = 0.1

avg. 8.27e-5 5.05e-4 9.04e-5 55.79 9642 1.14e-4 5.78e-5 5.79e-7 17.37 4475 1.97e-4 1.92e-4 2.33e-4 11.42 2947
var. 1.78e-10 9.94e-10 8.95e-12 27.13 1579 4.60e-8 1.63e-10 9.38e-9 9.99 5.65e5 3.62e-8 1.00e-8 6.75e-8 2.67 1.57e5

weak convexity constant: ρ = 1.0
avg. 3.34e-4 8.00e-4 9.04e-5 86.44 16225 2.45e-6 7.42e-4 5.79e-7 14.88 4240 1.22e-4 6.25e-4 3.08e-5 7.02 1931
var. 4.06e-9 1.19e-8 3.92e-10 9.22 1.51e5 6.81e-13 1.51e-08 3.54e-14 2.88 2.24e5 8.40e-9 1.69e-8 4.74e-10 0.14 740

weak convexity constant: ρ = 10
avg. 3.82e-4 9.05e-4 6.61e-4 184.71 30462 3.13e-11 8.98e-4 4.88e-11 638.49 172490 1.14e-4 4.97e-4 2.59e-4 15.69 3874
var. 1.75e-9 2.17e-9 5.71e-9 286.11 5.09e5 9.79e-23 2.14e-9 2.86e-22 2759.60 7.44e10 5.27e-10 2.74e-9 2.94e-9 11.12 1.51e4

We vary ρ ∈ {0.1, 1, 10} and for each value of ρ, we generate 10 instances independently at random.
Each algorithm is terminated if an ε-KKT solution is found or after 104 outer iterations, where we set
ε = 10−3. For DPALM and NL-IAPIAL, we pick the best β0 from {10−4, 10−3, 10−2, 10−1, 1, 10}, resulting
in β0 = 10−4 for the former and β0 = 0.1 for the latter. The setting of HiAPeM is the same as that in
the previous test with β0 = 0.01 and N0 = 104. In addition to pres, dres, time, and #grad, we also report
complementarity violation, shortened as compslack. Average results with variance are shown in Table 2 and
also, we plot the results in Figure 2 for one instance. From the results, we see that to produce a near-KKT
point at the same accuracy, our algorithm takes fewer gradient evaluations and less time than HiAPeM and
NL-IAPIAL. This advantage becomes more significant as ρ increases.

19



ρ = 0.1 ρ = 1 ρ = 10

0 5000 10000
Number of gradient

10-5

100

Pr
im

al
 in

fe
as

ib
ili

ty

0 0.5 1 1.5 2
Number of gradient 104

10-5

100

Pr
im

al
 in

fe
as

ib
ili

ty

102 104 106

Number of gradient

10-10

10-5

100

105

Pr
im

al
 in

fe
as

ib
ili

ty

0 5000 10000
Number of gradient

10-4

10-2

100

D
ua

l i
nf

ea
si

bi
lit

y

0 0.5 1 1.5 2
Number of gradient 104

10-4

10-2

100

102

D
ua

l i
nf

ea
si

bi
lit

y

102 104 106

Number of gradient

10-4

10-2

100

102

D
ua

l i
nf

ea
si

bi
lit

y

0 5000 10000
Number of gradient

10-6

10-4

10-2

100

102

C
om

pl
em

en
ta

ry
 S

la
ck

ne
ss

0 0.5 1 1.5 2
Number of gradient 104

10-5

100

C
om

pl
em

en
ta

ry
 S

la
ck

ne
ss

102 104 106

Number of gradient

10-10

10-5

100

105

C
om

pl
em

en
ta

ry
 S

la
ck

ne
ss

Fig. 2. Primal infeasibility, dual infeasibility, and complementary slackness error vs. Number of gradient evaluations by
the proposed DPALM, the HiAPeM method in [26], and NLIAPIAL method in [20] on solving instances of (4.2) with different
weak convexity constant ρ ∈ {0.1, 1, 10}.

4.3. Linear Constrained Robust Nonlinear Least Square. In this subsection, we test the pro-
posed DPALM method and compare it to the inexact Prox-Linear method [11, Alg. 2] on solving a linearly
constrained robust nonlinear least square:

min
x∈Rd

∥f(x)∥1, s.t. Ax = b, xi ∈ [li, ui],∀i = 1, 2, . . . , d (4.3)

where f : Rd → Rm is a smooth mapping, and A ∈ Rn×d. To apply the method in [11], we reformulate the

problem in (4.3) to minx∈[l,u] ĥ(f̂(x)), where l = [l1, l2, . . . , ld],u = [u1, u2, . . . , ud], f̂(x) =

(
f(x)

Ax− b

)
, and

ĥ : Rm+n → R is defined as ĥ

(
y1

y2

)
= ∥y1∥1+δ{0}(y2) for any y1 ∈ Rm,y2 ∈ Rn. Then we smooth ĥ by its

Moreau envelope ĥν for a small ν > 0.
In our experiment, we set f(x) = (f1, f2, . . . , fm) with fi = 1

2x
⊤Qix + c⊤i x in (4.3). Here, each Qi

is a positive-definite matrix but notice that the composed function ∥f(x)∥1 is nonconvex nonsmooth. The
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weak convexity constant ρ = MlLf , where Ml =
√
m is the Lipschitz constant of l(x) = ∥x∥1 and Lf is

the smoothness constant of f(x). We set li = −5, ui = 5,∀ i, m = n = 10 and d = 1000 and generate a
random instance. From (3.27), (3.28), (3.31), and the ρ-strong convexity of each subproblem, one can show
dist(0, ∂Lβk

(x̃k;yk, zk)) ≤ 4ρ∥xk−xk−1∥+4
√
νkρ/2+

√
2εk/ρ, where εk is the error tolerance for solving the

k-th subproblem. Hence, when 4
√
νkρ/2 +

√
2εk/ρ is small, we can use ρ∥xk − xk−1∥ as a measure of dual

infeasibility. For both methods, we use a small constant smoothing parameter ν = 10−3. For DPALM, we
simply set β0 = 1. They are terminated once max{∥Axk−b∥, ρ∥xk−xk−1∥} ≤ ε for some k, where ε = 10−2

is set. In Figure 3, we plot the primal infeasibility and dual infeasibilty measured by ρ∥xk − xk−1∥ versus
the number of gradient evaluations. It clearly shows that our method takes far fewer gradient evaluations
than the prox-linear method to reach the same ε accuracy, though both methods have the same order of
oracle complexity in theory.
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Fig. 3. Primal and Dual infeasibility vs. Number of gradient evaluations by the proposed DPALM and the Prox-Linear
method in [11] on solving an instance of (4.3).

5. Conclusions. We have presented a damped proximal augmented Lagrangian method (DPALM) for
solving problems, which have a weakly-convex objective and convex affine/nonlinear constraints. We show
that DPALM can produce a near ε-KKT point under Slater’s condition by solving O(ε−2) strongly-convex
subproblems, each to a desired accuracy. In addition, we have established the overall iteration complexity of
DPALM for two cases where f is smooth or a convex function composed with a smooth mapping. For the
smooth case, with an APG method applied to each subproblem, DPALM achieves an Õ(ε−2.5) complexity
result to produce an ε-KKT point, which improves an existing Õ(ε−3) result for proximal ALM based method
and matches with the best-known result by quadratic penalty based methods. For the compositional case,
with an APG applied to a Moreau-envelope smoothed subproblem, DPALM achieves a complexity result
of Õ(ε−3) to produce a near ε-KKT point, which is new for solving functional constrained compositional
problems.

Appendix A. A Key Lemma and Proof of Lemma 2.3. The next lemma is used to bound primal
infeasibility of Algorithm 1 and follows directly from the proof of [45, Lemma 7].

Lemma A.1. Let x∗ = argminx

{
f̂(x), s.t. Ax = b,g(x) ≤ 0

}
, where f̂ is strongly convex, and each

component function in g is convex. Let Lβ(x;p) be the AL function with a multiplier p = (y, z) and
a penalty parameter β > 0. Suppose x∗ is a KKT point of the problem with a corresponding multiplier
p∗ = (y∗, z∗). Start from any p with z ≥ 0; let x̂ satisfy Lβ (x̂;p) ≤ minx Lβ (x;p) + δ for some δ ≥ 0; set

y+ = y + β (Ax̂− b) , z+ = [z+ βg(x̂)]+. Then ∥p+ − p∗∥2 ≤ ∥p− p∗∥2 + 2βδ.
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Proof of Lemma 2.3. Recall the definitions of Jk
1 and Jk

2 given in (2.3) and further define

Jk
+ :=

{
i : gi

(
xk+1

)
≥ 0
}
, Jk

− :=
{
i : gi

(
xk+1

)
< 0
}
. (A.1)

From the update of zk+1, we arrive at
zk+1
i =

(
1− γk

βk

)
zki and gi

(
xk+1

)
< 0, if i ∈ Jk

1 ,

zk+1
i = zki + γkgi

(
xk+1

)
and gi

(
xk+1

)
< 0, if i ∈ Jk

2 ∩ Jk
−,

zk+1
i = zki + γkgi

(
xk+1

)
and gi

(
xk+1

)
≥ 0, if i ∈ Jk

2 ∩ Jk
+.

(A.2)

Below we look at the term βk+1

2 ∥[g(xk+1) + zk+1

βk+1
]+∥2 − βk

2 ∥[g(xk+1) + zk

βk
]+∥2 for these three cases.

Case I: i ∈ Jk
1 : We have gi

(
xk+1

)
+ 1

βk+1

(
1− γk

βk

)
zki ≤ gi

(
xk+1

)
+ 1

βk
zki ≤ 0, since 0 < βk ≤ βk+1,

0 ≤ γk ≤ βk, and zk ≥ 0 by Lemma 2.1. Hence, βk+1

2 [gi(x
k+1) +

zk+1
i

βk+1
]2+ − βk

2 [gi(x
k+1) +

zk
i

βk
]2+ ≤ 0.

Case II: i ∈ Jk
2 ∩ Jk

−: We have βkgi
(
xk+1

)
+ zki > 0 and gi

(
xk+1

)
< 0. Thus gi(x

k+1) +
zk
i

βk
≥ 0. Below

we discuss two subcases based on the sign of (βk+1 + γk)gi
(
xk+1

)
+ zki .

When (βk+1 + γk)gi
(
xk+1

)
+ zki ≥ 0, we have

βk+1

2

[
gi
(
xk+1

)
+ 1

βk+1

(
zki + γkgi

(
xk+1

))]2
+
− βk

2

[
gi
(
xk+1

)
+

zk
i

βk

]2
+

= 1
2βk+1

[
(βk+1 + γk)

2g2i (x
k+1) + 2(βk+1 + γk)z

k
i gi
(
xk+1

)
+
(
zki
)2]− βk

2

(
gi
(
xk+1

)
+

zk
i

βk

)2
= γk

βk+1
gi
(
xk+1

) (
zki + (βk+1 +

γk

2 )gi
(
xk+1

))
+ βk+1−βk

2 (gi(x
k+1))2 +

(
1

2βk+1
− 1

2βk

) (
zki
)2

(A.3)

≤ βk+1−βk

2 g2i (x
k+1) +

(
1

2βk+1
− 1

2βk

) (
zki
)2

≤ βk+1−βk

2

(zk
i )

2

β2
k

+
(

1
2βk+1

− 1
2βk

) (
zki
)2

= (βk−βk+1)
2

2β2
kβk+1

(
zki
)2
,

where the first inequality holds because the first term in (A.3) is negative, and the last inequality follows

from g2i (x
k+1) ≤

(
zki
)2
/β2

k. When (βk+1 + γk)gi
(
xk+1

)
+ zki < 0, the above inequality holds trivially as the

LHS is non-positive.

Case III: i ∈ Jk
2 ∩ Jk

+: In this case, (A.3) still holds as gi(x
k+1) +

zk
i

βk
≥ 0 and together with βk ≤ βk+1

gives

βk+1

2

[
gi
(
xk+1

)
+

1

βk+1

(
zki + γkgi

(
xk+1

))]2
+

− βk
2

[
gi
(
xk+1

)
+
zki
βk

]2
+

≤
(
βk+1 − βk

2
+ γk +

γ2k
2βk+1

)[
gi(x

k+1)
]2
+
+

γk
βk+1

zki gi
(
xk+1

)
.

Combining the above three cases, we get

βk+1

2

∥∥∥∥∥
[
g
(
xk+1

)
+

zk+1

βk+1

]
+

∥∥∥∥∥
2

− βk
2

∥∥∥∥∥
[
g
(
xk+1

)
+

zk

βk

]
+

∥∥∥∥∥
2

≤
(
βk+1 − βk

2
+ γk +

γ2k
2βk+1

)∥∥∥[g (xk+1
)]

+

∥∥∥2 + γk
βk+1

∥∥zk∥∥∥∥∥[g (xk+1
)]

+

∥∥∥+ (βk − βk+1)
2

2β2
kβk+1

∥∥zk∥∥2 (A.4)
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Summing up the inequality in (A.4) from k = 0 to K − 1 yields

K−1∑
k=0

βk+1

2

∥∥∥∥∥
[
g
(
xk+1

)
+

zk+1

βk+1

]
+

∥∥∥∥∥
2

− βk
2

∥∥∥∥∥
[
g
(
xk+1

)
+

zk

βk

]
+

∥∥∥∥∥
2


≤
K−1∑
k=0

((
βk+1 − βk

2
+ γk +

γ2k
2βk+1

)∥∥∥[g (xk+1
)]

+

∥∥∥2 + γk
βk+1

∥zk∥
∥∥∥[g (xk+1

)]
+

∥∥∥+ (βk − βk+1)
2

2β2
kβk+1

∥∥zk∥∥2)

=

K−1∑
k=0

(
βk+1 − βk

2

∥∥∥[g (xk+1
)]

+

∥∥∥2 + γk

∥∥∥[g (xk+1
)]

+

∥∥∥2 + γk
2βk+1

γk

∥∥∥[g (xk+1
)]

+

∥∥∥2)

+

K−1∑
k=0

(
∥zk∥
βk+1

γk

∥∥∥[g (xk+1
)]

+

∥∥∥)+

K−1∑
k=0

(βk − βk+1)
2

2β2
kβk+1

∥∥zk∥∥2
≤

K−1∑
k=0

βk+1 − βk
2

∥∥∥[g (xk+1
)]

+

∥∥∥2 + K−1∑
k=0

(
wk

∥∥∥[g (xk+1
)]

+

∥∥∥+ βkwk∥[g
(
xk+1

)
]+∥

2βk+1

)
+

K−1∑
k=0

∥zk∥
βk+1

wk

+

K−1∑
k=0

(βk − βk+1)
2

2β2
kβk+1

∥∥zk∥∥2
≤

K−1∑
k=0

βk+1 − βk
2

∥∥∥[g (xk+1
)]

+

∥∥∥2 + K−1∑
k=0

3

2
wk

∥∥∥[g (xk+1
)]

+

∥∥∥+ K−1∑
k=0

wk

βk+1
∥zk∥+

K−1∑
k=0

(βk − βk+1)
2

2β2
kβk+1

∥∥zk∥∥2
≤

K−1∑
k=0

C2
P (βk+1 − βk)

2β2
k

+
3

2

K−1∑
k=0

wk
CP

βk
+

K−1∑
k=0

wk

βk+1
∥zk∥+

K−1∑
k=0

βk+1 − βk
2β2

k

∥∥zk∥∥2
≤ 3C2

P

4β0
+

3CzCP

2β0
+
Cz

β0
Cz +

3C2
z

4β0
=

1

4β0
(3C2

P + 6CzCP + 7C2
z ),

where the second inequality holds from γk∥[g(xk+1)]+∥≤ wk and γk ≤ βk, the third one is due to βk ≤ βk+1,
the fourth one uses Lemma 2.1, and the last inequality follows from Lemma 2.1, the bound

K−1∑
k=0

βk+1 − βk
β2
k

=

K−1∑
k=0

1

β0(k + 1)(
√
k + 2 +

√
k + 1)

≤ 1

2β0
+

∫ K

1

1

2β0x
3
2

dx ≤ 3

2β0
, (A.5)

β0 ≤ βk for all k ≥ 0, and
∑∞

k=0 wk ≤ Cz. The proof of (2.8) is then completed.

To prove (2.9), we start by noticing
〈
yk+1 − yk,Axk+1 − b

〉
= αk∥Axk+1 −b∥2≤ vk∥Axk+1 −b∥ from

the update of yk and definition of αk. Hence, by Lemma 2.1, the definitions of vk, βk, and (2.4), it follows

that
∑K−1

k=0 ⟨yk+1 − yk,Axk+1 − b⟩ ≤
∑K−1

k=0 CP vk/βk ≤ CyCP /β0, where we have used
∑K−1

k=0 vk ≤ Cy,
and βk ≥ β0 for all k ≥ 0. In addition, we have

∑K−1
k=0

βk+1−βk

2 ∥Axk+1 − b∥2
(2.4)
≤

∑K−1
k=0

βk+1−βk

2β2
k

C2
P ≤ 3C2

P

4β0
,

where the second inequality is obtained from (A.5). Therefore, we complete the proof.
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Appendix B. Nesterov’s Accelerated Proximal Gradient (APG) Method. In this section, we
review Nesterov’s APG method in [35] for solving composite convex problems in the form of

min
x∈Rd

ϕ(x) := f̃(x) + h̃(x), (B.1)

where f̃ is convex and Lf̃ -smooth, and h̃ is closed and µ-strongly convex with µ > 0.

The algorithm is shown in Algorithm 2, where ϕ′(ML(y)) := L(y −ML(y)) +∇f̃(ML(y)) − ∇f̃(y),
ML(y) := proxh̃/L(y −∇f̃(y)/L) for some L > 0, and ψt+1(x) := ψt(x) + at+1[f̃(x

t+1) + ⟨∇f̃(xt+1),x −
xt+1⟩+ h̃(x)] with a positive sequence {at} and ψ0(x) =

1
2∥x− x0∥2.

Algorithm 2: Nesterov’s Accelerated Proximal Gradient (APG) Method for (B.1)

1 Initialization: choose x0, L := L0, γd ≥ γu > 1,∆ > 0 and set A0 = 0,v0 = y0 = y = x0.
2 for t = 0, 1, . . . do
3 while ⟨ϕ′(ML(y)),y −ML(y)⟩ < 1

L
∥ϕ′(ML(y))∥2 do

4 L← Lγu; let a > 0 and satisfy a2

At+a
= 2 1+µAt

L
; y = Atx

t+avt

At+a
.

5 Set Lt+1 ← L, yt ← y, at+1 = a, L← Lt+1/γd, x
t+1 ←MLt+1(y

t), At+1 = At + at+1. Let

vt+1 := argminx ψt+1(x) = proxAt+1h̃(·)(x
0 −

∑t+1
i=1 ai∇f̃(x

i)).

6 if dist(0, ∂ϕ(xt+1)) ≤ ∆ then output xt+1 and stop.

The next theorem gives the number of iterations for Algorithm 2 to output the desired solution.
Theorem B.1. Suppose that {xt} is the sequence generated by Algorithm 2 and dom(h̃) is bounded with

a diameter D = maxx,x′∈dom(h̃)∥x− x′∥<∞. Then dist(0, ∂ϕ(xt+1)) ≤ ∆,∀ t ≥ T , where

T =

⌈
max

{
1/log 2, 2

√
(γuLf̃ )/(2µ)

}
log

3(1+γu)DL
f̃

√
2γuLf̃

/µ

2∆

⌉
+ 1.

Proof. Let x∗ be the minimizer of problem (B.1). Then from [35, Theorem 6], it holds

ϕ(xt+1)− ϕ(x∗) ≤
γuLf̃

4
∥x∗ − x0∥2

[
1 +

√
µ/(2γuLf̃ )

]−2t

. (B.2)

By the optimality condition in the definition of MLt+1
(yt), we have ∇f̃(xt+1)−∇f̃(yt)−Lt+1

(
xt+1 − yt

)
∈

∂ϕ(xt+1). Also, from [35, Eqn. (4.11)], it holds Lt+1 ≤ γuLf̃ . Using these, we obtain

dist
(
0, ∂ϕ

(
xt+1

))
≤
∥∥∥∇f̃(xt+1)−∇f̃(yt)− Lt+1

(
xt+1 − yt

)∥∥∥ ≤ Lf̃

∥∥xt+1 − yt
∥∥+ Lt+1

∥∥xt+1 − yt
∥∥

≤ Lf̃ (1 + γu)
∥∥xt+1 − yt

∥∥ ≤ Lf̃ (1 + γu)
(∥∥xt+1 − xt

∥∥+ ∥∥xt − yt
∥∥) . (B.3)

Notice that ψt is a (µAt + 1)-strongly convex function. Hence,∥∥xt − vt
∥∥2 ≤ 2

µAt + 1

(
ψt(x

t)− ψ∗
t

)
≤ 2

µAt + 1

(
Atϕ(x

t)− ψ∗
t +

1

2

∥∥xt − x0
∥∥2)

≤ 1

µAt + 1

∥∥xt − x0
∥∥2 ≤ D2

µAt + 1
, (B.4)
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where ψ∗
t := minx ψt(x), and the second/third inequality is from [35, Eqn. (4.4)].

Combining the µ-strong convexity of ϕ(x) and (B.2) gives

µ

2
∥xt+1 − x∗∥2≤ ϕ(xt+1)− ϕ(x∗) ≤

γuLf̃

4
∥x∗ − x0∥2

[
1 +

√
µ/(2γuLf̃ )

]−2t

, (B.5)

which implies∥∥xt+1 − x∗∥∥ ≤√
γuLf̃/(2µ)

∥∥x∗ − x0
∥∥ [1 +√

µ/(2γuLf̃ )
]−t

≤ D
√
γuLf̃/(2µ)

[
1 +

√
µ/(2γuLf̃ )

]−t

. (B.6)

Since yt = Atx
t+at+1v

t

At+at+1
and at+1 > 0, it must hold ∥yt − xt∥≤ ∥vt − xt∥. Using this in (B.3) and combining

it with (B.4), we get

dist
(
0, ∂ϕ

(
xt+1

))
≤ (1 + γu)Lf̃

(∥∥xt+1 − xt
∥∥+D/

√
µAt + 1

)
. (B.7)

By the triangle inequality, we have
∥∥xt+1 − xt

∥∥ ≤
∥∥xt+1 − x∗

∥∥+ ∥xt − x∗∥, which together with (B.6) gives

∥∥xt+1 − xt
∥∥ ≤ D

√
2γuLf̃/µ

[
1 +

√
µ/(2γuLf̃ )

]−t+1

. (B.8)

Now by (B.7), (B.8), and the fact that At ≥ 2/(γuLf̃ )
[
1 +

√
µ/(2γuLf̃ )

]2(t−1)

from [35, Lemma 8], we have

dist
(
0, ∂ϕ

(
xt+1

))
≤ 3

2
(1 + γu)DLf̃

(√
2γuLf̃/µ

) [
1 +

√
µ/(2γuLf̃ )

]−t+1

, (B.9)

which indicates dist(0, ∂ϕ(xt+1)) ≤ ∆,∀ t ≥ T from the definition of T and 1
log(1+x) ≤

2
x ,∀x ∈ (0, 1). □
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