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Abstract

Multi-objective learning (MOL) often arises in machine learning problems when there
are multiple data modalities or tasks. One critical challenge in MOL is the potential
conflict among different objectives during the optimization process. Recent works have
developed various dynamic weighting algorithms for MOL, where the central idea is to find
an update direction that avoids conflicts among objectives. Albeit its appealing intuition,
empirical studies show that dynamic weighting methods may not outperform static ones. To
understand this theory-practice gap, we focus on a stochastic variant of MGDA - the Multi-
objective gradient with Double sampling (MoDo), and study the generalization performance
and its interplay with optimization through the lens of algorithmic stability in the framework
of statistical learning theory. We find that the key rationale behind MGDA – updating along
conflict-avoidant direction - may hinder dynamic weighting algorithms from achieving the
optimal O(1/

p
n) population risk, where n is the number of training samples. We further

demonstrate the impact of dynamic weights on the three-way trade-off among optimization,
generalization, and conflict avoidance unique in MOL. We showcase the generality of our
theoretical framework by analyzing other algorithms under the framework. Experiments
on various multi-task learning benchmarks are performed to demonstrate the practical
applicability. Code is available at https://github.com/heshandevaka/Trade-Off-MOL.
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1 Introduction

Multi-objective learning (MOL) emerges frequently as a new unified learning paradigm from
recent machine learning problems such as learning under fairness and safety constraints
(Zafar et al., 2017); learning across multiple tasks (Sener and Koltun, 2018); and, learning
across multiple agents that may not share a global utility (Moffaert and Nowé, 2014).

This work considers solving the empirical version of MOL defined on the training dataset
as S = {z1, . . . , zn}. The performance of a model x 2 Rd on a datum z for the m-th objective
is denoted as fz,m : Rd

7! R, and its performance on the entire training dataset S is measured
by the m-th empirical objective fS,m(x) for m 2 [M ]. MOL optimizes the vector-valued
objective, given by

min
x2Rd

FS(x) := [fS,1(x), . . . , fS,M (x)]. (1.1)

One natural method for solving (1.1) is to optimize the (weighted) average of the multiple
objectives, also known as static or unitary weighting (Kurin et al., 2022; Xin et al., 2022).
However, this method may face challenges due to potential conflicts among multiple objectives
during the optimization process; e.g., conflicting gradient directions hrfS,m(x),rfS,m0(x)i <
0, if choosing the gradient-based optimizer. A popular alternative is thus to dynamically
weight gradients from different objectives to avoid conflicts and obtain a direction d(x) that
optimizes all objective functions jointly that we call a conflict-avoidant (CA) direction.
Algorithms in this category include the multi-gradient descent algorithm (MGDA) (Désidéri,
2012), its stochastic variants (Liu and Vicente, 2021; Fernando et al., 2023; Zhou et al.,
2022). While the idea of finding CA direction in dynamic weighting-based approaches
is very appealing, recent empirical studies reveal that dynamic weighting methods may
not outperform static weighting in some MOL benchmarks (Kurin et al., 2022; Xin et al.,
2022), especially when it involves stochastic updates and deep models. Specifically, observed
by (Kurin et al., 2022), the vanilla stochastic MGDA can be under-optimized, leading to larger
optimization error than static weighting. The reason behind this optimization performance
degradation has been studied in (Zhou et al., 2022; Fernando et al., 2023), which suggest
the vanilla stochastic MGDA has biased update, and propose momentum-based methods
to address this issue. Nevertheless, in (Xin et al., 2022), it has been demonstrated that the
training errors of MGDA and static weighting are similar, while their main difference lies in
the generalization performance. Unfortunately, the reason behind this testing performance
degradation is not fully understood and remains an open question.

To gain a deeper understanding of the dynamic weighting methods, a natural question is

Q1: What are the major sources of errors in dynamic weighting-based MOL methods?

To answer this question theoretically, we first introduce a proper measure of testing
performance in MOL – the Pareto stationary measure in terms of the population objectives,
which will immediately imply stronger measures such as Pareto optimality under strongly
convex objectives. We then decompose this measure into generalization error and optimization
error and further introduce a new metric termed CA distance that reflects the algorithm’s
ability to update along CA direction and is unique to MOL; see Sections 2.1 and 2.2.
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(a) Objective 1 (b) Objective 2 (c) MGDA (d) Static (e) MoDo (dynamic)

Figure 1: An example from (Liu et al., 2021a) with two objectives (1a and 1b) to show the
three-way trade-off in MOL. Figures 1c-1e show the optimization trajectories, where the black
• marks initializations of the trajectories, colored from red (start) to yellow (end). The
background solid/dotted contours display the landscape of the average empirical/population
objectives. The gray/green bar marks empirical/population Pareto front, and the black
?/green ? marks solution to the average objectives.

To characterize the performance of MOL methods in a unified manner, we introduce
a generic dynamic weighting-based MOL method that we term stochastic Multi-Objective
gradient with DOuble sampling algorithm (MoDo), which uses a step size � to control the
change of dynamic weights. Roughly speaking, by controlling �, MoDo includes MGDA
(large �) and static weighting algorithm (� = 0) as two special cases; see Section 2.3. We
first analyze the generalization error of the model learned by MoDo through the lens of
algorithmic stability (Bousquet and Elisseeff, 2002; Hardt et al., 2016; Lei and Ying, 2020)
in the framework of statistical learning theory. To our best knowledge, this is the first-ever-
known stability analysis for MOL algorithms. Here the key contributions lie in defining a
new notion of stability - MOL uniform stability and then establishing a tight upper bound
(matching lower bound) on the MOL uniform stability for the MoDo algorithm that involves
two coupled sequences; see Section 3.1. Note that the only other existing stability analysis
for two coupled sequences is for minmax problems, where the two sequences are optimizing
the opposite objective functions w.r.t. two variables, and the variables are stacked into one
to derive similar properties as single objective learning. In contrast, our analysis for two
sequences with different objectives is of self-interest and generalizes to other settings such as
bilevel and compositional optimization. We then analyze the optimization error of MoDo
and its distance to CA directions, where the key contributions lie in relaxing the bounded
function value/gradient assumptions and significantly improving the convergence rate of
state-of-the-art dynamic weighting-based method (Fernando et al., 2023); see Section 3.2.

Different from the stability analysis for single-objective learning (Hardt et al., 2016), the
techniques used in our generalization and optimization analysis allow to remove conflicting
assumptions such as bounded gradient and bounded function value assumptions in the
strongly convex and unconstrained setting, as well as use step sizes larger than O(1/t) in
(Hardt et al., 2016) to ensure both small generalization and optimization errors, which are of
independent interest.

Given the test performance degradation of dynamic weighting methods in MOL and the
holistic analysis of dynamic weighting methods provided in Q1, a follow-up question is

Q2: What may cause the empirical performance degradation of dynamic weighting methods?
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Visualizing MOL solution concepts. To reason the root cause for this, we first compare
different MOL algorithms in a toy example shown in Figure 1. We find MGDA can navigate
along CA directions and converge to the empirical Pareto front under all initializations,
while static weighting gets stuck in some initializations; at the same time, the empirical
Pareto solution obtained by MGDA may incur a larger population risk than the suboptimal
empirical solution obtained by the static weighting method; finally, if the step size � of
dynamic weights is carefully tuned, MoDo can converge along CA directions to the empirical
Pareto optimal solution that also generalizes well.

Aligned with this toy example, our theoretical results suggest a novel three-way trade-off
in the performance of dynamic weighting-based MOL algorithm; see Section 3.3. Specifically,
it suggests that the step size for dynamic weighting � plays a central role in the trade-
off among convergence to the CA direction, convergence to empirical Pareto stationarity,
and generalization error; see Figure 2. In this sense, MGDA has a relative advantage in
convergence to the CA direction to escape suboptimal solutions compared to the static
weighting method but it could sacrifice generalization; the static weighting method cannot
converge to the CA direction but guarantees convergence to empirical Pareto solutions and
their generalization. Our analysis also suggests that MoDo achieves a small population risk
under a proper combination of step sizes and the number of iterations.

The major technical challenges and how we address them are summarized below.

C1) The definition of testing risk (2.1) is unique in MOL, and the introduction of sampling-
determined algorithms overcomes a key challenge brought by the classical function
value-based risk measures – the unnecessarily small step size choice. Specifically, prior
stability analysis in function values for single objective learning (Hardt et al., 2016)
requires 1/t step size decay in the nonconvex case, otherwise, the generalization error
bound will depend exponentially on the number of iterations. However, such step size
choice leads to a very slow convergence of the optimization error. This is addressed by
the definitions of gradient-based measures and sampling-determined MOL algorithms,
which yield stability bound in O(T/n); see more discussions below Theorem 3.1.

C2) The stability of the dynamic weighting algorithm in the strongly convex (SC) case
is non-trivial compared to single objective learning (Hardt et al., 2016) because it
involves two coupled sequences during the update. As a result, the classical contraction
property for the update of model parameters that is often used to derive stability does
not hold. This is addressed by controlling the change of �t by the step size �, and
using mathematical induction to derive a tighter bound; see Appendix A.5.

C3) In the SC case with an unbounded domain, the function is not Lipschitz or the
gradients are not uniformly bounded, which violates the commonly used bounded
gradient assumption for proving the stability bound and optimization convergence.
Different from existing approaches in single-objective learning (Nguyen et al., 2018; Lei
and Ying, 2020), which cannot be directly applied to our MOL setting with dynamic
weighting, we relax this assumption by proving that the iterates generated by dynamic
weighting algorithms in the SC case are bounded on the trajectory in Lemma 3.1.
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Region Opt. Gen. Conflict
Step sizes
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Figure 2: An illustration of three-way trade-off among optimization, generalization, and
conflict avoidance in the strongly convex case; ↵ is the step size for x, � is the step size for
weights �, where o(·) denotes a strictly slower growth rate, !(·) denotes a strictly faster
growth rate, and ⇥(·) denotes the same growth rate. Arrows # and " respectively represent
diminishing in an optimal rate and growing in a fast rate w.r.t. n, while & represents
diminishing w.r.t. n, but not in an optimal rate.

2 Problem Formulation and Target of Analysis

In this section, we first introduce the problem formulation of MOL, the target of analysis,
and then present the MGDA algorithm and its stochastic variant.

2.1 Preliminaries of MOL

Denote the vector-valued objective function on datum z as Fz(x) = [fz,1(x), . . . , fz,M (x)]. The
training and testing performance of x can then be measured by the empirical objective FS(x)
and the population objective F (x) which are, respectively, defined as FS(x) :=

1
n

Pn
i=1 Fzi(x)

and F (x) := Ez⇠D[Fz(x)]. Their gradients are denoted as rFS(x) and rF (x) 2 Rd⇥M .
Analogous to the stationary and optimal solutions in single-objective learning, we define

Pareto stationary and Pareto optimal solutions for MOL problem minx2Rd F (x) as follows.

Definition 2.1 (Pareto stationary and Pareto optimal solutions). If there exists a
convex combination of the gradient vectors that equals to zero, i.e., there exists � 2 �M :=
{� 2 RM

| 1>� = 1, � � 0} such that rF (x)� = 0, then x 2 Rd is Pareto stationary. If there
is no x 2 Rd and x 6= x⇤ such that, for all m 2 [M ] fm(x)  fm(x⇤), with fm0(x) < fm0(x⇤)
for at least one m0

2 [M ], then x⇤ is Pareto optimal. If there is no x 2 Rd such that for all
m 2 [M ], fm(x) < fm(x⇤), then x⇤ is weakly Pareto optimal.

By definition, at a Pareto stationary solution, there is no common descent direction
for all objectives. A necessary and sufficient condition for x being Pareto stationary
for smooth objectives is that min�2�M krF (x)�k = 0 (Tanabe et al., 2019). Therefore,
min�2�M krF (x)�k can be used as a measure of Pareto stationarity (PS) (Désidéri, 2012;
Fliege et al., 2019; Tanabe et al., 2019; Liu and Vicente, 2021; Fernando et al., 2023).
We will denote Rpop(x) := min�2�M krF (x)�k and refer to it as the PS population risk
henceforth and its empirical version Ropt(x) := min�2�M krFS(x)�k as PS empirical risk
or PS optimization error . We next introduce the target of our analysis based on the above
definitions.
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2.2 Target of analysis and error decomposition

In the existing generalization analysis for MOL, measures based on function values have been
used to derive generalization guarantees in terms of Pareto optimality (Cortes et al., 2020;
Súkeník and Lampert, 2022). However, for general nonconvex smooth MOL problems, it
can only be guaranteed for an algorithm to converge to Pareto stationarity of the empirical
objective, i.e., a small min�2�M krFS(x)�k (Désidéri, 2012; Fliege et al., 2019). Thus,
it is not reasonable to measure population risk in terms of Pareto optimality in this case.
Furthermore, when all the objectives are convex or strongly convex, Pareto stationarity is a
sufficient condition for weak Pareto optimality or Pareto optimality, respectively, as stated
in Proposition 2.1.

Proposition 2.1. (Tanabe et al., 2019, Lemma 2.2) If fm(x) are convex or strongly-convex
for all m 2 [M ], and x 2 Rd is a Pareto stationary point of F (x), then x is weakly Pareto
optimal or Pareto optimal.

Next we proceed to decompose the PS population risk in (2.1).
Error Decomposition. Given a model x, the PS population risk can be decomposed into

min
�2�M

krF (x)�k
| {z }

PS population risk Rpop(x)

= min
�2�M

krF (x)�k � min
�2�M

krFS(x)�k
| {z }

PS generalization errorRgen(x)

+ min
�2�M

krFS(x)�k
| {z }

PS optimization error Ropt(x)

(2.1)

where the optimization error quantifies the training performance, i.e., how well does model
x perform on the training data; and the generalization error (gap) quantifies the difference
between the testing performance on new data sampled from D and the training performance,
i.e., how well the model x performs on unseen testing data compared to the training data.

Let A : Zn
7! Rd denote a randomized MOL algorithm. Given training data S, we are

interested in the expected performance of the output model x = A(S), which is measured by
EA,S [Rpop(A(S))]. From (2.1) and linearity of expectation, it holds that

EA,S [Rpop(A(S))] = EA,S [Rgen(A(S))] + EA,S [Ropt(A(S))]. (2.2)

Distance to CA direction. As demonstrated in Figure 1, the key merit of dynamic
weighting over static weighting algorithms lies in its ability to navigate through conflicting
gradients. Consider an update direction d = �rFS(x)�. To obtain such a steepest CA
direction in unconstrained learning, we can reformulate the problem at each iteration (Fliege
et al., 2019), with the goal of maximizing the minimum descent (among all objectives) along
the update direction d, where the minimum descent given direction d and step size ↵ can be
computed by

1

↵
min

m2[M ]
fS,m(x)� fS,m(x+ ↵d) ⇡ min

m2[M ]
�hrfS,m(x), di = min

�2�M
�hrFS(x)�, di.

Since the solutions to � and d may not necessarily be singletons, we further explicitly
regularize the `2-norm of � and d so as to put more emphasis on all the objectives instead
of focusing on the worst one, and to ensure d does not go to infinity. With the above
measurement, the algorithm aims to find an update direction d that maximizes the following

max
d2Rd

min
�2�M

�hrFS(x)�, di+
⇢

2
k�k2 �

1

2
kdk2 (2.3)
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Algorithm 1 Regularized MGDA
1: input Training data S, initial model x0,

and the learning rates {↵t}
T
t=0.

2: for t = 0, . . . , T � 1 do
3: Compute gradients rFS(xt)
4: Compute CA direction d(xt) by (2.5)
5: Update xt+1 via xt+1 = xt + ↵td(xt)
6: end for
7: output xT

Algorithm 2 MoDo - Stochastic MGDA
1: input Training data S, initial model x0, initial

weight �0, and learning rates {↵t}
T
t=0, {�t}Tt=0.

2: for t = 0, . . . , T � 1 do
3: Compute rFzt+1,1(xt) and rFzt+1,2(xt)
4: Update �t+1 by (2.9a)
5: Update xt+1 by (2.9b)
6: end for
7: output xT

where ⇢ � 0 is a regularization constant. We introduce the regularization term with parameter
⇢ to ensure the optimal dynamic weight does not deviate too much from the uniform weight,
with a similar idea as the CAGrad method (Liu et al., 2021a), which could improve the
average of the training objectives. By the min-max theorem, this problem can then be
reformulated as

max
�2�M

min
d2Rd

hrFS(x)�, di �
⇢

2
k�k2 +

1

2
kdk2 (2.4)

where the optimal solution is d = �rFS(x)�⇤
⇢(x), with �⇤

⇢(x) 2 argmin�2�M
1
2krFS(x)�k2+

⇢
2k�k

2. Then the CA direction is calculated as

CA direction d(x) = �rFS(x)�
⇤

⇢(x) s.t. �⇤

⇢(x) 2 argmin
�2�M

krFS(x)�k
2 + ⇢k�k2. (2.5)

The regularized MGDA adopts d(x) as the update direction at each iteration, as summarized
in Algorithm 1. Let d�(x) = �rFZ(x)� denote the stochastic update direction with random
mini-batch data Z, and x 2 Rd, � 2 �M generated by the stochastic algorithm A. We
measure the so-termed CA distance via

CA direction distance Eca(x,�) :=kEA[d�(x)� d(x)]k2, (2.6)
CA weight distance Ecaw(x,�) :=kEA[�� �⇤

⇢(x)]k
2. (2.7)

With the above definitions of measures that quantify the performance in different aspects,
we then introduce a stochastic gradient algorithm for MOL studied in this work.

2.3 A stochastic algorithm for MOL

MGDA finds �⇤(x) in (2.5) using the full-batch gradient rFS(x), and then constructs
d(x) = �rFS(x)�⇤(x), a CA direction for all empirical objectives fS,m(x); see details in
Algorithm 1. However, in practical statistical learning settings, the full-batch gradient rFS(x)
may be costly to obtain, and thus one may resort to a stochastic estimate of rFS(x) instead.
The direct stochastic counterpart of MGDA, referred to as the stochastic multi-gradient
algorithm in (Liu and Vicente, 2021), replaces the full-batch gradients rfS,m(x) in (2.5) with
their stochastic approximations rfz,m(x) for z 2 S, which, however, introduces a biased
stochastic estimate of �⇤

t+1, thus a biased CA direction; see Liu and Vicente (2022, Section 4)
and Fernando et al. (2023, Section 2.3).
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To provide a tight analysis, we introduce a simple yet theoretically grounded stochastic
variant of MGDA - stochastic Multi-Objective gradient with DOuble sampling algorithm
(MoDo). MoDo obtains an unbiased stochastic estimate of the gradient of problem (2.5)
through double (independent) sampling because

Ezt,1,zt,2 [rFzt,1(xt)
>
rFzt,2(xt)�t] =rFS(xt)

>
rFS(xt)�t. (2.8)

At each iteration t, denote zt,s as an independent sample from S with s 2 [2], and rFzt,s(xt)
as a stochastic estimate of rFS(xt). MoDo updates xt and �t by

�t+1 = ⇧�M

⇣
�t � �t

�
rFzt,1(xt)

>
rFzt,2(xt) + ⇢I

�
�t

⌘
(2.9a)

xt+1 = xt � ↵trFZt+1(xt)�t+1 (2.9b)

where ↵t, �t are step sizes, ⇧�M (·) denotes Euclidean projection to the simplex �M ,
Zt+1 = {zt+1,1, zt+1,2}, and rFZt+1(xt) =

1
|Zt+1|

P
z2Zt+1

rFz(xt). We summarize the MoDo
algorithm in Algorithm 2 and will focus on its theoretical analysis subsequently.

3 Optimization, Generalization and Three-Way Trade-Off

This section presents the theoretical analysis of the PS population risk associated with the
MoDo algorithm, where the analysis of generalization error is in Section 3.1 and that of
optimization error is in Section 3.2. A summary of our main results is given in Table 1.

3.1 Multi-objective generalization and uniform stability

We first bound the expected PS generalization error by the generalization in gradients in
Proposition 3.1, then introduce the MOL uniform stability and establish its connection to
the generalization in gradients. Finally, we bound the MOL uniform stability.

Proposition 3.1. With k · kF denoting the Frobenious norm, the PS generalization error
Rgen(A(S)) in (2.2) is bounded by

EA,S [Rgen(A(S))]  EA,S [krF (A(S))�rFS(A(S))kF]. (3.1)

With Proposition 3.1, next, we introduce the concept of MOL uniform stability tailored to
MOL problems and show that PS generalization error can be bounded by the MOL uniform
stability. Then we analyze their bound in general NC case and SC case, respectively. Note
that, the stability in the general NC case cover the convex case. However, it is worse than the
stability in single-objective learning in the convex case as shown by (Hardt et al., 2016). This
is primarily due to the fact that the non-expansiveness property of the xt update, commonly
observed in single-objective learning with convex objectives, is no longer valid for MOL when
employing dynamic weighting algorithms.

Definition 3.1 (MOL uniform stability). A randomized algorithm A : Zn
7! Rd, is

MOL-uniformly stable with ✏F if for all neighboring datasets S, S0 that differ in at most one
sample, we have

sup
z

EA
⇥
krFz(A(S))�rFz(A(S0))k2F

⇤
= ✏2F. (3.2)
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Table 1: Comparison of optimization error, generalization error, and population risk under
different assumptions for static and dynamic weighting. “NC”, “SC” represent nonconvex and
strongly convex, and “Lip-C”, “S” represent Lipschitz continuous and smooth, respectively.
Non-dominant terms are omitted. The results are given in O(·) if not otherwise specified.

Assmp Method Optimization Generalization Risk CA weight distance

NC,
Lip-C,S

Static (↵T )�
1
2 + ↵

1
2 T

1
2 n� 1

2 n� 1
6 ⇥(1)

Dynamic (↵T )�
1
2 + ↵

1
2 + �

1
2 T

1
2 n� 1

2 n� 1
6 �⇢�1 + ↵��1⇢�2

SC, S
Static (1� ↵)

T
2 + ↵

1
2 n� 1

2 n� 1
2 ⇥(1)

Dynamic ↵
1
2 +

(
(1� ↵)

T
2 + �T, � = O(T�2),

(↵T )�
1
2 + �

1
2 + ⇢

1
2 , o.w.

(
n� 1

2 , � = O(T�1)

T
1
2 n� 1

2 , o.w.

(
n� 1

2

n� 1
6

�⇢�1 + ↵��1⇢�2

It is worth noting that the MOL uniform stability (3.2) holds true uniformly for all neighboring
datasets S and S0, meaning that ✏F is independent of the choice of S and S0. Next, we show
the relation between the upper bound of PS generalization error in (3.1) and MOL uniform
stability in (3.2).

Proposition 3.2 (MOL uniform stability and generalization). Assume for any z,
the function Fz(x) is differentiable. If a randomized MOL algorithm A : Z

n
7! Rd is

MOL-uniformly stable with ✏F, then

EA,S [krF (A(S))�rFS(A(S))kF]  4✏F +
p

n�1E [Vz⇠D(rFz(A(S)))] (3.3)

where the variance is defined as Vz⇠D(rFz(A(S))) = Ez⇠D
⇥
krFz(A(S))� Ez⇠D[rFz(A(S))]k2F

⇤
.

Proposition 3.2 establishes the connection between the upper bound of the PS generaliza-
tion error and the MOL uniform stability, where the former can be bounded above by the
latter plus the variance of the stochastic gradient over the population data distribution. It is
worth noting that the standard arguments of bounding the generalization error measured in
function values by the uniform stability measured in function values (Hardt et al., 2016, The-
orem 2.2) is not applicable here as the summation and norm operators are not exchangeable.
More explanations are provided in the proof in Appendix A.1.

Theorem 3.1 (PS generalization error of MoDo in the NC case). Let A be the
MoDo algorithm. If supz EA

⇥
krFz(A(S))k2F

⇤
 G2 for any S, then the MOL uniform

stability ✏2F in Definition 3.1 for MoDo algorithm with step sizes ↵ = O(1), � = O(1)
satisfies

a) the MOL uniform stability ✏2F for At(S) with t 2 [T ] is upper bounded by ✏2F = O(Tn�1);
b) there exist functions Fz(x), neighboring datasets S, S0, and t 2 [T ] such that the MOL

uniform stability ✏F for At(S) is lower bounded by ✏2F = ⌦(Tn�1).

And the PS generalization error at iteration t 2 [T ] is EA,S [Rgen(At(S))] = O(T
1
2n�

1
2 ).

Proof of Theorem 3.1 is provided in Appendix A.2. Compared to the function value
uniform stability upper bound in (Hardt et al., 2016, Theorem 3.12) for nonconvex single-
objective learning, Theorem 3.1 does not require a step size decay ↵t = O(1/t), thus can
enjoy at least a polynomial convergence rate of optimization errors w.r.t. T . The tightness

9
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of the stability upper bound is verified by providing a matching lower bound of the stability.
Combining Theorem 3.1 with Proposition 3.2, to ensure the generalization error is diminishing
with n, one needs to choose T = o(n), which lies in the “early stopping” regime and results
in potentially large optimization error. While the “early stopping” phenomenon has been
indeed observed in practice for general nonconvex settings, we next provide a tighter bound
in the strongly convex (SC) case that allows a larger choice of T . Below we list the standard
assumptions used to derive the MOL uniform stability in the SC case.

Assumption 1 (Smoothness). For all m 2 [M ], z 2 Z, rfz,m(x) is `f,1-Lipschitz
continuous, i.e., krfz,m(x) � rfz,m(x0)k  `f,1kx � x0k. Then rFz(x) is `F,1-Lipschitz
continuous in Frobenius norm with `F,1 =

p
M`f,1, i.e., krFz(x)�rFz(x0)kF  `F,1kx�x0k.

Assumption 2 (Strong convexity). For all m 2 [M ], z 2 Z, fz,m(x) is µ-strongly
convex w.r.t. x, i.e., fz,m(x0)� fz,m(x) � rfz,m(x)>(x0 � x) + µ

2kx
0
� xk2, where µ > 0.

Note that Assumptions 1 and 2 are only used to derive the MOL uniform stability in the
SC case but not in the general NC case. In the SC case, the gradient norm krFz(x)kF is
generally unbounded in Rd. Therefore, one cannot assume Lipschitz continuity of fz,m(x). We
address this challenge by showing that {xt}Tt=1 generated by the MoDo algorithm are bounded
as stated in Lemma 3.1. Combining with Assumption 1, the gradient norm krFz(xt)kF is
also bounded, which serves as a stepping stone to derive the MOL stability bound.

Lemma 3.1 (xt bounded for SC and smooth objectives). Suppose Assumptions 1 and
2 hold. For {xt}, t 2 [T ] generated by the dynamic weighting algorithms such as MoDo and
SMG with weight � 2 �M , step size ↵t = ↵, and 0  ↵  `�1

f,1, then
a) there exists a finite positive constant cx independent of T such that kxtk  cx;
b) there exist finite positive constants `f , `F =

p
M`f as functions of cx, such that for

all � 2 �M , we have krF (xt)�k  `f , and krF (xt)kF  `F .

Proof of Lemma 3.1 is deferred to Appendix A.4. With Lemma 3.1, the MOL uniform
stability and the PS generalization error of MoDo are provided below.

Theorem 3.2 (PS generalization error of MoDo in SC case). Suppose Assump-
tions 1 and 2 hold. The MOL uniform stability ✏F in Definition 3.1 for MoDo algorithm
with 0  ↵t = ↵  `�1

f,1, �t = � = O(T�1) satisfies
a) ✏2F for At(S) with t 2 [T ] is upper bounded by

✏2F = O
�
Mn�1(↵+M� +Mn�1)

�
; (3.4)

b) there exist functions Fz(x) that satisfy Assumptions 1 and 2, neighboring datasets S,
S0, and t 2 [T ], n 2 N such that ✏2F for At(S) is lower bounded by ✏2F = ⌦(Mn�2).

The PS generalization error at iteration t 2 [T ] is EA,S [Rgen(At(S))] = O(n�
1
2 ).

See the proof of Theorem 3.2 in Appendix A.5. The idea of the proof is summarized
as follows. 1) To bound the MOL uniform stability is to bound the expected gradient
difference evaluated on the output model parameters generated by the algorithm given two
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neighboring training datasets S and S0. By the smoothness assumption of the objectives, this
can be bounded by the difference of the model parameters generated by the algorithm given
the neighboring datasets, i.e., the argument stability. 2) Let {xt}, {x0t} be the sequences
generated by the MoDo algorithm using S and S0, respectively. By the properties of the
MoDo update in Section A.5.1, both xt and �t, xt+1 � x0t+1 can be bounded in terms of
xt � x0t and �t � �0

t based on the growth recursion in Lemma A.7. 3) Applying the growth
recursion from t = 0, . . . , T , the argument stability EA[kA(S) � A(S0)k] = EA[kxT � x0T k]
can be bounded through mathematical induction as detailed in Section A.5.2.

Theorem 3.2 provides both the upper and lower bounds for the MOL uniform stability of
MoDo in the step sizes ↵, �, and training data size n. Below we provide a remark on how
these parameters affect the stability.

Remark 1. If we choose ↵ = ⇥(T�
1
2 ), � = O(T�1), and T = ⇥(n2), the upper bound of

the MOL uniform stability matches its the lower bound in an order of n�2, suggesting that
our bound is tight. From Propositions 3.1 and 3.2, we know that the generalization error
bound is a direct implication from the MOL uniform stability bound in (3.4). It states that
the PS generalization error of MoDo is O(n�

1
2 ), which matches the generalization error of

static weighting up to a constant (Lei, 2023). Our result also indicates that when all the
objectives are strongly convex, choosing small step sizes ↵ and � leads to a smaller MOL
uniform stability and thus can benefit the generalization error.

3.2 Multi-objective CA distance and optimization error

In this section, we bound the multi-objective PS optimization error, i.e., min�2�M krFS(x)�k,
which has been the main metric in the recent MOL optimization literature such as (Fliege
et al., 2019; Désidéri, 2012). As discussed in Section 2.2, this measure being zero implies the
model x achieves a Pareto stationarity for the empirical problem.

Below we list an additional standard assumption used to derive the theoretical results.

Assumption 3 (Lipschitz Fz(x)). For all m 2 [M ], fz,m(x) are `f -Lipschitz continuous
for all z, then Fz(x) are `F -Lipschitz continuous in Frobenius norm with `F =

p
M`f .

Note that the constants `f , `F used in Lemma 3.1 are derived from Assumptions 1 and 2,
depending on µ, `f,1, and are different from those in Assumption 3.

We first introduce the theoretical results on the CA direction and CA weight distances,
given in Theorems 3.3 and 3.4.

Theorem 3.3 (CA direction distance of MoDo). Suppose either: 1) Assumptions 1
and 3 hold; or, 2) Assumptions 1 and 2 hold, with `f and `F defined in Lemma 3.1. For
{xt}, {�t} generated by MoDo with step sizes ↵t = ↵ > 0, �t = � > 0, and regularization
⇢ � 0, given training data S, it holds that

1

T

T�1X

t=0

Eca(xt,�t+1) = O
�
��1T�1 +M

1
2↵

1
2 ��

1
2 + �M + ⇢��1 + ⇢

�
. (3.5)
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Theorem 3.3 establishes the convergence to the CA direction using the measure introduced
in Section 2.2, with proof provided in Appendix B.2. For example, one can choose ↵ =
⇥(T�

3
4 ), � = ⇥(T�

1
4 ), and ⇢ = O(T�

1
2 ), then the right hand side of (3.5) is O(T�

1
4 ).

Below we provide a guarantee on the distance to the CA weight when the regularization
is strictly enforced, i.e., ⇢ > 0. Note that the weight for static weighting method is predefined
and does not involve regularization. Here we derive a lower bound of the CA weight distance
in static weighting, which is larger than the CA weight distance of MoDo.

Proposition 3.3 (CA weight distance of static weighting). Suppose Assumption 1 holds.
Then there exists � 2 �M for static weighting such that

Ecaw(xT ,�) = ⇥(1). (3.6)

Proof. First, for the upper bound, since both �,�⇤
⇢(xT ) 2 �M , it holds that

Ecaw(xT ,�)  EA[k�� �⇤

⇢(xT )k
2]  4. (3.7)

Second, for the lower bound, for a given �⇤
⇢(xT ) 2 �M with M � 2, let �⇤

⇢,m(xT ) denote
the m-th element of �⇤

⇢(xT ) with m 2 [M ]. Define m⇤ := argminm2[M ] EA[�⇤
⇢,m(xT )]. Then

EA[�⇤
⇢,m⇤(xT )] 

1
M 

1
2 . Then there exists � 2 �M with �m⇤ = 1 such that

Ecaw(xT ,�) = k�� EA[�
⇤

⇢(xT )]k
2
�

⇣
1�

1

M

⌘2
�

1

4
. (3.8)

Combining the upper and lower bounds yields the result.

Theorem 3.4 (CA weight distance of MoDo). Suppose either: 1) Assumptions 1
and 3 hold; or, 2) Assumptions 1 and 2 hold, with `f and `F defined in Lemma 3.1.
For {xt}, {�t} generated by MoDo with step sizes ↵t = ↵ > 0, �t = � > 0, and regularization
⇢ > 0, given training data S, it holds that

Ecaw(xT ,�T+1) = O
�
(1� ⇢�)T + ⇢�1�(M

1
2 + ⇢)2 + ⇢�2��1↵M

�
. (3.9)

Proof of Theorem 3.4 is provided in Appendix B.3. Below we provide a remark on the
difference between the two measures: CA direction distance, and CA weight distance.

Remark 2. Compared to the convergence to CA direction, the convergence to CA weight is
stronger because it involves last-iterate point convergence instead of average-iterate function
value convergence, and can only be guaranteed with ⇢ = !(max{�,↵

1
2 ��

1
2 , ��1T�1

}), resulting
in a trade-off in convergence to PS stationarity and convergence to the CA weight. Using
the distance to the CA weight as a measure, the lower bound of the static weighting method
in this measure can be derived, which is a constant, strictly greater than the upper bound of
MoDo, further justifying the benefit of MoDo over static weighting in the CA weight distance.

Below, we state the estimation for the PS optimization error of MoDo in the following
theorem.
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Theorem 3.5 (PS optimization error of MoDo). Given training data S, define cF
such that EA[FS(x0)�0]�minx2Rd EA[FS(x)�0]  cF . Considering {xt} generated by MoDo
(Algorithm 2), with 0 < ↵t = ↵  1/(2`f,1), �t = � � 0. Suppose

1) Assumptions 1 and 3 hold (NC case), then

EA

h
min
t2[T ]

Ropt(xt)
i
= O

�
↵�

1
2T�

1
2 + �

1
2M

1
2 + ↵

1
2 + ⇢

1
2
�
; (3.10)

2) Assumptions 1, 2 hold (SC case), with `f defined in Lemma 3.1, then

EA

h
min
t2[T ]

Ropt(xt)
i
= O

�
min{↵�

1
2T�

1
2+�

1
2M

1
2+↵

1
2+⇢

1
2 , (1�↵)

T
2 +↵

1
2+M

1
2 �T}

�
. (3.11)

Proof of Theorem 3.5 is provided in Appendix C.1. The idea of the proof is summarized as
follows. 1) At every step t of the algorithm, the weighted descent amount of the loss function
F (xt+1)�� F (xt)� given any weight � 2 �M depends on the drift of the dynamic weight
h�t � �, (rFS(xt)>rFS(xt) + ⇢I)�ti. 2) This drift can be bounded through Lemma B.5,
(B.7) according to the update rule of the dynamic weight, given by (2.9a). 3) Combining
the inequalities in the previous steps and taking the telescoping sum from t = 0, . . . , T yield
the bound of the optimization error. Below we provide a remark on Theorem 3.5 under
different choices of step sizes.

Remark 3. Note that the original result with the squared PS optimization error in the
general nonconvex case is in the form of

1

T

T�1X

t=0

EA

h
min
�2�M

krFS(xt)�k
2
i
= O

�
↵�1T�1 + ↵+ � + ⇢

�
. (3.12)

And it holds for any choice of ↵, �, T as long as 0 < ↵  1/(2`f,1). Based on this result, one
optimal choice to ensure the best O(T�

1
2 ) convergence rate of the optimization error in square

is ↵ = ⇥(T�
1
2 ), � = ⇥(T�

1
2 ), ⇢ = O(T�

1
2 ). However, this results in a constant error bound

of the CA distance according to Theorem 3.3. To ensure better convergence to CA direction,
one possible choice, ↵ = ⇥(T�

3
4 ), � = ⇥(T�

1
4 ), and ⇢ = O(T�

1
2 ), is suboptimal with regard

to the convergence to Pareto stationarity, as evidenced by Theorem 3.5. This exhibits a
trade-off between convergence to the CA direction and convergence to Pareto stationarity.
To ensure a faster convergence rate in the SC case without requiring convergence of CA
distance, one can also choose � = O(T�2), ↵ = ⇥(T�1 lnT ), then the convergence rate of
the optimization error in square is O(T�1 lnT ).

3.3 Optimization, generalization and conflict avoidance trade-off

Combining the results in Sections 3.1 and 3.2, we are ready to analyze and summarize the
three-way trade-off of MoDo. With At(S) = xt denoting the output of algorithm A at the
t-th iteration, we can decompose the PS population risk Rpop(At(S)) as (cf. (2.1) and (3.1))

EA,S
⇥
Rpop(At(S))

⇤
 EA,S

h
min
�2�M

krFS(At(S))�k
i
+ EA,S

h
krF (At(S))�rFS(At(S))kF

i
.
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The general nonconvex case. Suppose Assumptions 1 and 3 hold. By the generalization
error bound in Theorem 3.1, and the optimization error bound in Theorem 3.5, denote
t̂ 2 argmint2[T ]Ropt(xt), the PS population risk of the output of MoDo can be bounded by

EA,S

h
Rpop(At̂(S))

i
= O

⇣
↵�

1
2T�

1
2 + ↵

1
2 + �

1
2 + T

1
2n�

1
2

⌘
. (3.13)

Discussion of trade-off. Choosing step sizes ↵ = ⇥(T�
1
2 ), � = ⇥(T�

1
2 ), and number of

steps T = ⇥(n
2
3 ), then the expected PS population risk is O(n�

1
6 ), which matches the PS

population risk upper bound of a general nonconvex single objective in (Lei, 2023). A clear
trade-off in this case is between the optimization error and generalization error, controlled by
T . Indeed, increasing T leads to smaller optimization errors but larger generalization errors,
and vice versa. To satisfy convergence to CA direction, it requires � = !(↵), i.e., ↵

� = o(1),
based on Theorem 3.3, and the optimization error in turn becomes worse, so does the PS
population risk. Specifically, choosing ↵ = ⇥(T�

1
2 ), � = ⇥(T�

1
4 ), and T = ⇥(n

4
5 ) leads to

the expected PS population risk in O(n�
1
10 ), and the distance to CA direction in O(n�

1
10 ).

This shows another trade-off between conflict avoidance and optimization error.
The strongly convex case. Suppose Assumptions 1 and 2 hold. By the generalization

error and the optimization error given in Theorems 3.2 and 3.5, the PS population risk of
MoDo can be bounded by

EA,S

h
Rpop(At̂(S))

i
= O

⇣
↵�

1
2T�

1
2 + ↵

1
2 + �

1
2 + n�

1
2

⌘
. (3.14)

Discussion of trade-off. Choosing ↵ = ⇥(T�
1
2 ), � = ⇥(T�1), and T = ⇥(n2), the expected

PS population risk in gradients is O(n�
1
2 ). However, choosing � = ⇥(T�1) leads to large

distance to the CA direction according to Theorem 3.3 because the term 4/(�T ) in (3.5)
increases with T . To ensure convergence to the CA direction, it requires � = !(T�1), under
which the tighter bound in Theorem 3.2 does not hold but the bound in Theorem 3.1 still
holds. In this case, the PS population risk under the proper choice of ↵, �, and T is O(n�

1
6 )

as discussed in the previous paragraph. Therefore, to avoid conflict among gradients, MoDo
needs to sacrifice the sample complexity of PS population risk, demonstrating a trade-off
between conflict avoidance and PS population risk, as illustrated in Figure 2.

4 Application to Other MOL Algorithms

Our theoretical framework is general and can be applied to other stochastic MOL algorithms
to analyze these three errors. To demonstrate this, we apply our framework to analyze other
stochastic MOL algorithms including SMG (Liu and Vicente, 2021) and MoCo (Fernando
et al., 2023) in this section. Both SMG and MoCo mitigate the bias in the CA direction
during optimization. To achieve this, SMG (Liu and Vicente, 2021) increases the batch size
during optimization, MoCo (Fernando et al., 2023) uses momentum-based methods. We then
describe in detail the updates of SMG and MoCo.

SMG substitutes the full-batch gradient rFS(xt) used in MGDA in (2.5) with its
stochastic estimate rFZt(xt), where Zt is a randomly sampled mini-batch of data at the
t-th iteration, and its batch size |Zt| is increasing with the iteration t to mitigate the CA
direction bias. The SMG algorithm is summarized in Algorithm 3.
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Algorithm 3 SMG (Liu and Vicente, 2021)
1: Input: Initial model x0, the learning rates

{↵t}
T
t=0, and the regularization ⇢ = 0.

2: for t = 0, . . . , T � 1 do
3: Compute rFZt(xt) with |Zt| = O(t)
4: Compute CA direction at xt with (2.5)

by replacing rFS(xt) with rFZt(xt);
5: Update xt+1 via xt+1 = xt + ↵td(xt);
6: end for
7: output xT

Algorithm 4 MoCo (Fernando et al., 2023)
1: Input: Initial model x0, the learning rates

{↵t}
T
t=0, and the regularization ⇢ = 0.

2: Set Y0 = rFz0(xt);
3: for t = 0, . . . , T � 1 do
4: Sample gradients rFzt+1(xt);
5: Update Yt+1 by (4.1a);
6: Update �t+1 by (4.1b)
7: Update xt+1 by (4.1c)
8: end for
9: output xT

Different from SMG, MoCo (Fernando et al., 2023) adopts a momentum-based method
to mitigate the CA direction bias. It uses the moving average of the stochastic gradient to
compute the CA direction. The MoCo algorithm uses the update functions given by

Yt+1 = Yt � �t(Yt �rFzt+1(xt)) (4.1a)
�t+1 2 argmin�2�M kYt�k

2 (4.1b)
xt+1 = xt � ↵tYt�t (4.1c)

where Yt is the moving average of the stochastic gradients, and Yt�t is the estimated CA
direction. The MoCo algorithm is summarized in Algorithm 4.

Next, we proceed to formally introduce our theoretical results on three errors for SMG
and MoCo algorithms in the general nonconvex case.

4.1 Multi-objective generalization

We summarize the PS generalization error bounds of SMG (Algorithm 3) and MoCo (Algo-
rithm 4) in the general nonconvex case in Theorem 4.1. The proof of this theorem follows
similar steps as the proof for the PS generalization error of MoDo in Theorem 3.1, by first
deriving their MOL uniform stability bounds, and applying Proposition 3.2 to connect their
PS generalization errors with their MOL uniform stability bounds.

Theorem 4.1 (Generalization errors of SMG and MoCo). Let A be the SMG al-
gorithm with batch size O(t) at the t-th iteration, or the MoCo algorithm. If
EA
⇥
krFz(A(S))k2F

⇤
 G2 for any z and S, then the PS generalization errors of SMG

and MoCo satisfy

(SMG) EA,S [Rgen(A(S))] = O(Tn�
1
2 ); (MoCo) EA,S [Rgen(A(S))] = O(T

1
2n�

1
2 ). (4.2)

The proof is deferred to Appendix A.3. Theorem 4.1 indicates that the PS generalization
error of MoCo in the general nonconvex case are in the same rates as MoDo, with O(T

1
2n�

1
2 ),

while the generation error of SMG is worse with increasing batch sizes. The result further
demonstrates the generality of our proposed theoretical framework to analyze the MOL
uniform stability and PS generalization errors of various stochastic MOL algorithms.
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Table 2: Comparison with prior stochastic MOL algorithms in terms of assumptions and
the guarantees of the three errors, where logarithmic dependence is omitted, and Opt., CA
dist., and Gen. are short for optimization error, CA distance, and generalization error,
respectively. For MoDo, applying Thms 3.3 and 3.5 with ↵ = ⇥(T�

1
2 ), � = ⇥(T�

1
2 ) yields

the optimization error and the CA distance in the second last row; setting ↵ = ⇥(T�
3
4 ),

� = ⇥(T�
1
4 ), ⇢ = O(T�

1
2 ) yields the optimization error and the CA distance in the last row.

Algorithm Batch
size NC Lipschitz

�⇤(x)
Bounded
function Opt. CA

dist. Gen.

SMG (Liu and Vicente, 2021, Thm 5.3) O(t) 7 3 7 T� 1
8 - -

CR-MOGM (Zhou et al., 2022, Thm 3) O(1) 3 7 3 T� 1
4 - -

MoCo (Fernando et al., 2023, Thm 2) O(1) 3 7 7 T� 1
20 T� 1

5 -
MoCo (Fernando et al., 2023, Thm 4) O(1) 3 7 3 T� 1

4 O(1) -
SMG (Ours, Thms 4.1-4.3) O(t) 3 7 7 T� 1

8 T� 1
2 Tn� 1

2

MoCo (Ours, Thms 4.1-4.3) O(1) 3 7 7 T� 1
16 T� 1

4 T
1
2 n� 1

2

MoDo (Ours, Thms 3.1,3.3,3.5) O(1) 3 7 7 T� 1
4 O(1) T

1
2 n� 1

2

MoDo (Ours, Thms 3.1,3.3,3.5) O(1) 3 7 7 T� 1
8 T� 1

4 T
1
2 n� 1

2

Next, we show how to apply our theoretical framework to analyze the CA distances and
PS optimization errors of the stochastic MOL algorithms, SMG and MoCo.

4.2 Multi-objective CA distance and optimization error

Notably, in the CA distance and optimization error analysis, we have also developed new
techniques to relax the assumptions and/or improve the final convergence rates of different
algorithms; see a detailed comparison in Table 2. To obtain the improved analysis, one
critical property is that the CA direction is unique and Hölder continuous (cf. Lemmas B.1
and 4.1), despite that �⇤(x) is not Lipschitz continuous in general.

For simplicity, we use Q 2 Rd⇥M to denote either full-batch gradient matrix rFS(x) or
its stochastic estimate. Then the subproblem without regularization, i.e., ⇢ = 0, is

min
�2�M

kQ�k2 (4.3)

which is a constrained quadratic programming problem. The estimate of the CA direction
used in either SMG with Q = rFZt(xt), or MoCo with Q = Yt, can be computed by
dQ = Q�⇤

Q, with �⇤

Q 2 argmin�2�M kQ�k2.
We then proceed to prove the Hölder continuity of dQ w.r.t. Q in Lemma 4.1, which

is essential for deriving the CA direction distance and PS optimization error of SMG and
MoCo. This result also generalizes to constrained quadratic programming problems with
general compact and convex set constraints.

Lemma 4.1 (Hölder continuity of dQ w.r.t. Q). For all Q,Q0
2 Rd⇥M , define �⇤

2

argmin�2�M kQ�k2, and �⇤0
2 argmin�2�M kQ0�k2, and dQ = Q�⇤, dQ0 = Q0�⇤0, then dQ

and dQ0 are both unique and satisfy

kdQ � dQ0k
2
 4max

(
sup

�2�M

kQ�k, sup
�2�M

kQ0�k

)
· sup
�2�M

k(Q�Q0)�k. (4.4)
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Proof. The uniqueness of dQ,⇢ with ⇢ � 0 are given in Lemma B.1, which covers the
uniqueness of dQ (⇢ = 0), we can then rewrite

kdQ � dQ0k
2 =kQ�⇤

�Q0�⇤0
k
2 = kQ�⇤

k
2 + kQ0�⇤0

k
2
� 2hQ�⇤, Q0�⇤0

i

=kQ�⇤
k
2
� kQ0�⇤0

k
2 + 2hQ0�⇤0, Q0�⇤0

�Q�⇤
i

=kQ�⇤
k
2
� kQ0�⇤0

k
2 + 2hQ0�⇤0, Q0�⇤0

�Q0�⇤
i| {z }

0

+2hQ0�⇤0, Q0�⇤
�Q�⇤

i

where hQ0�⇤0, Q0�⇤0
�Q0�⇤

i  0 by Lemma B.2, (B.3a). Then it can be further bounded by

kQ�⇤
�Q0�⇤0

k
2
(a)
 min

�2�M
kQ�k2 � min

�2�M
kQ0�k2 + 2kQ0�⇤0

kk(Q0
�Q)�⇤

k

=� max
�2�M

�kQ�k2 + max
�2�M

�kQ0�k2 + 2kQ0�⇤0
kk(Q0

�Q)�⇤
k

(b)
 max

�2�M

�
kQ�k2 � kQ0�k2

�
+ 2kQ0�⇤0

kk(Q0
�Q)�⇤

k

(c)
 max

�2�M
k(Q�Q0)�k

�
kQ�k+ kQ0�k

�
+ 2kQ0�⇤0

kk(Q0
�Q)�⇤

k

4max
n

sup
�2�M

kQ�k, sup
�2�M

kQ0�k
o
· sup
�2�M

k(Q�Q0)�k

where (a) follows from Cauchy-Schwarz inequality; (b) follows from subadditivity of maximum
operator; (c) follows from triangle inequality. The proof is complete.

With the property in Lemma 4.1, we are able to derive the CA direction distances of
SMG (Algorithm 3) and MoCo (Algorithm 4), as summarized in Theorem 4.2.

Theorem 4.2 (CA direction distances of SMG and MoCo). Suppose either: 1)
Assumptions 1, 3 hold; or, 2) Assumptions 1, 2 hold, with `f defined in Lemma 3.1.
Considering {xt} and {�t} generated by SMG with batch size O(t) at the t-th iteration or
MoCo, both with 0 < ↵t = ↵  1/(2`f,1), then under either condition 1) or 2), their CA
direction distances can be bounded by

(SMG)
1

T

T�1X

t=0

Eca(xt,�t+1) = O(T�
1
2 ); (MoCo)

1

T

T�1X

t=0

Eca(xt,�t+1) = O(T�
1
4 ). (4.5)

Proof of Theorem 4.2 is deferred to Appendix B.4. Theorem 4.2 indicates that increasing
the batch size during optimization as in SMG or using momentum-based methods for gradient
estimation as in MoCo can both mitigate the bias in the CA direction, and lead to the
convergence of the CA direction distances for stochastic MOL algorithms.

Based on Lemma 4.1, we derive improved PS optimization error bounds for SMG and
MoCo. In addition, we remove the assumption of bounded function values on the trajectory,
by deriving a tighter bound on the inner product term. The PS optimization error bounds of
SMG (Algorithm 3) and MoCo (Algorithm 4) are summarized in Theorem 4.3.
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Theorem 4.3 (PS optimization errors of SMG and MoCo). Suppose Assump-
tions 1 and 3 hold. Define cF such that EA[FS(x0)�0] � minx2Rd EA[FS(x)�0]  cF .
Considering {xt} generated by SMG with batch size O(t) at the t-th iteration or MoCo,
both with ↵t = ↵  1/(2`f,1), and proper choices of ↵,� depending on T , then their PS
optimization errors can be bounded by

(SMG) EA

h
min
t2[T ]

Ropt(xt)
i
= Õ

⇣
T�

1
8

⌘
; (MoCo) EA

h
min
t2[T ]

Ropt(xt)
i
= O

⇣
T�

1
16

⌘
. (4.6)

Proof of Theorem 4.3 is deferred to Appendix C.2. Theorem 4.3 provides the PS
optimization error guarantees of SMG and MoCo under the same assumptions as Theorem 3.5,
which relaxes the assumption of bounded function values on the optimization trajectory as
used in (Fernando et al., 2023; Zhou et al., 2022). It also improves the convergence rate of
MoCo in PS optimization error without such an assumption, see the comparison in Table 2.

5 Related Works

We review related work from the following three aspects – multi-task learning, theory of
MOL, and generalization based on algorithm stability.

Multi-task learning (MTL). As one application of MOL, MTL leverages shared
information among various tasks to train models to perform multiple tasks, and has been
widely applied to natural language processing, computer vision, and robotics (Zhang and
Yang, 2021). A simple method for MTL is to take the weighted average of the per-task losses
as the objective. The weights can be static or dynamic during optimization. Weights for
different tasks can be chosen based on different criteria such as gradient norms (Chen et al.,
2018) or task difficulty (Guo et al., 2018). These methods are often heuristic and designed
for specific applications. Another line of work tackles MTL through MOL (Sener and Koltun,
2018; Liu et al., 2021a). A foundational algorithm in this regard is MGDA (Désidéri, 2012),
which takes dynamic weighting of gradients to obtain a CA direction for all objectives.
Stochastic variants of MGDA with optimization convergence guarantees have been proposed
in (Liu and Vicente, 2021; Zhou et al., 2022; Fernando et al., 2023). Algorithms for finding a
set of Pareto optimal models have been proposed in (Navon et al., 2020; Liu et al., 2021b;
Momma et al., 2022), to name a few.

Theory of MOL. Optimization analysis for the deterministic MGDA algorithm has been
provided in (Fliege et al., 2019). Later on, stochastic variants of MGDA were introduced (Liu
and Vicente, 2021; Zhou et al., 2022; Fernando et al., 2023) with bias reduction schemes and
theoretical guarantees of PS optimization error. However, this can also be achieved by the
simplest static weighting method. Therefore, although the community has a rich history
of investigating the optimization of MOL algorithms, their theoretical benefits over static
weighting, and their generalization guarantees remain open. Not until recently, generalization
guarantees for MOL were theoretically analyzed. In (Cortes et al., 2020), a min-max
formulation to solve the MOL problem is analyzed, where the weights are chosen based
on the maximum function values, rather than the CA direction. More recently, (Súkeník
and Lampert, 2022) provides generalization guarantees for MOL for a more general class of
weighting. These two works analyze generalization based on Rademacher complexity of the

18



Three-Way Trade-Off in Multi-Objective Learning

101 102 103 104

T (log scale)

0

0.5

1

1.5

2

2.5

3

3.5

E
rr

or
s

Ropt

Rgen

Rpop

Eca

(a) Number of iterations T .

10-3 10-2 10-1

, (log scale)

0

0.5

1

1.5

2

2.5

3

3.5

E
rr

or
s

(b) Different step size ↵.

10-3 10-2 10-1

. (log scale)

0

0.5

1

1.5

E
rr

o
rs

(c) Different step size �.

Figure 3: Optimization, generalization, and CA direction distances of MoDo in the SC case
under various T,↵, �, (T = 100, ↵ = 0.01, � = 0.001 by default).

hypothesis class of the learner, with generalization error bound independent of the training
process. Different from these works, we use the algorithm stability framework to derive the
first algorithm-dependent generalization error bounds, highlighting the effect of the training
dynamics. In addition, in contrast to prior works for MOL theory, which focus solely on
either optimization (Zhou et al., 2022; Fernando et al., 2023) or generalization (Cortes et al.,
2020; Súkeník and Lampert, 2022), we propose a holistic framework to analyze the three
types of errors, namely, optimization, generalization, and CA distance in MOL with an
instantiation of the proposed MoDo algorithm. This allows us to study how the theoretical
test performance depends on hyperparameters such as the number of iterations and step
sizes, and how to choose hyperparameters to achieve the best trade-off among the errors.

Algorithm stability and generalization. Stability analysis dates back to the work
(Devroye and Wagner, 1979) in 1970s. Uniform stability and its relationship with gen-
eralization were studied in (Bousquet and Elisseeff, 2002) for the exact minimizer of the
ERM problem with strongly convex objectives. The work (Hardt et al., 2016) pioneered the
stability analysis for stochastic gradient descent (SGD) algorithms with convex and smooth
objectives. The results were extended and refined in (Kuzborskij and Lampert, 2018) with
data-dependent bounds, in (Charles and Papailiopoulos, 2018; Richards and Kuzborskij,
2021; Lei et al., 2022) for non-convex objectives, and in (Bassily et al., 2020; Lei and Ying,
2020) for SGD with non-smooth and convex losses. However, all these studies mainly focus
on single-objective learning problems. To our best knowledge, there is no existing work on
the stability and generalization analysis for multi-objective learning problems and our results
on its stability and generalization are the first-ever-known ones.

6 Experiments

In this section, we conduct experiments to further demonstrate the three-way trade-off among
the optimization, generalization, and conflict avoidance of the MoDo algorithm. An average
over 10 random seeds with 0.5 standard deviation is reported.
6.1 Synthetic experiments

6.1.1 Experiments on toy strongly-convex objectives

Our theory in the SC case is first verified through a synthetic experiment; see the details in
Appendix D.1. Figure 3a shows the PS optimization error and PS population risk, as well
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Figure 4: Optimization, generalization, and CA direction distances of MoDo on MNIST
classification under various T , ↵, �, (T = 1000, ↵ = 0.1, � = 0.01 by default).

as the distance to CA direction, decreases as T increases, which corroborates Lemma 3.3,
and Theorem 3.5. In addition, the generalization error, in this case, does not vary much
with T , verifying Theorems 3.2. In Figure 3b, the optimization error first decreases and
then increases as ↵ increases, which is consistent with Theorem 3.5. Notably, we observe
a threshold for ↵ below which the distance to the CA direction converges even when the
optimization error does not converge, while beyond which the distance to the CA direction
becomes larger, verifying Lemma 3.3. Additionally, Figure 3c demonstrates that increasing �
enlarges the PS optimization error, PS generalization error, and thus the PS population risk,
but decreases the distance to CA direction, which supports Lemma 3.3.

6.1.2 Multi-objective MNIST Experiments

We further verify our theory in the NC case on MNIST image classification (LeCun, 1998)
using a multi-layer perceptron and three objectives: cross-entropy, mean squared error
(MSE), and Huber loss. Following Section 2.2, we evaluate the performance in terms of
Rpop(x), Ropt(x), Rgen(x), and Eca(x,�). The exact PS population risk Rpop(x) is not
accessible without the true data distribution. To estimate the PS population risk, we
evaluate min�2�M krFSte(x)�k on the testing data set Ste that is independent of training
data set S. The PS optimization error Ropt(x) is obtained by min�2�M krFS(x)�k, and the
PS generalization error Rgen(x) is estimated by min�2�M krFSte(x)�k �Ropt(x).

We examine the impact of different T , ↵, � on the errors in Figure 4. Figure 4a shows that
increasing T reduces optimization error and CA direction distance but increases generalization
error, aligning with Theorems 3.1, 3.3, and 3.5. Figure 4b shows that increasing ↵ leads to
an initial decrease and subsequent increase in PS optimization error and population risk.
which aligns with Theorem 3.5 and (3.13). On the other hand, there is an overall increase
in CA direction distance with ↵, which aligns with Theorem 3.3. Figure 4c shows that
increasing � increases both the PS population and optimization errors but decreases CA
direction distance. This matches our bounds for PS optimization error in Theorem 3.5, PS
population risk in (3.13), and CA direction distance in Theorem 3.3.

7 Conclusions, Limitations, and Future Work

This work studied the three-way trade-off in MOL – among optimization, generalization, and
conflict avoidance. Our results showed that, in the general nonconvex setting, the well-known
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trade-off between optimization and generalization controlled by the number of iterations
also exists in MOL. Moreover, dynamic weighting algorithms like MoDo introduced a new
dimension of trade-off in terms of conflict avoidance compared to static weighting. We
demonstrated that this three-way trade-off can be controlled by the step size � for updating
the dynamic weighting parameter � and the number of iterations T . Proper choice of these
parameters led to decent performance on all three metrics. We also demonstrated the power
of this new analytical framework by applying it to analyze SMG and MoCo.

Limitations and future work. This work focuses on MOL with smooth objectives in
unconstrained settings. Future research could explore the theory of non-smooth objectives or
constrained learning. In addition, there is still room for improvement on the complexity of
the proposed MoDo algorithm and the corresponding trade-off by adopting variance reduction
techniques or implementing objective sampling, which we leave for future work. Our work has
broad implications in advancing both the theory and practice of multi-objective optimization,
with potential future applications as follows. 1) Theoretical Applications: Our theoretical
framework extends its utility beyond our proposed MoDo algorithm, allowing analysis of
various MOL algorithms like CAGrad and PCGrad. Additionally, it aids in the investigation
of the advantages of MOL algorithms over static weighting in reducing CA distance. This
validates their use when CA distance reduction is crucial. 2) Practical Applications: Our
theory is crucial for optimizing hyperparameters (e.g., step size, iterations) to minimize
testing risks effectively. It also enables informed algorithm selection based on the trade-off
among three errors. Lastly, our theory may inspire the development of MOL algorithms that
balance these errors more effectively.

Appendix

Appendix A. Bounding the PS Generalization Error

A.1 Proof of Propositions 3.1 and 3.2

Proof. [Proof of Proposition 3.1] For a given model x, it holds that

Rgen(x) = min
�2�M

krF (x)�k � min
�2�M

krFS(x)�k = � max
�2�M

�krF (x)�k+ max
�2�M

�krFS(x)�k

(a)
 max

�2�M
(krF (x)�k � krFS(x)�k)

(b)
 max

�2�M
(k(rF (x)�rFS(x))�k)

(c)
 max

�2�M
(krF (x)�rFS(x)kFk�kF)  krF (x)�rFS(x)kF (A.1)

where (a) follows from the subadditivity of max operator, (b) follows from triangle inequality,
(c) follows from Cauchy-Schwartz inequality. Setting x = A(S), and taking expectation over
A,S on both sides of the above inequality proves the result.

Proof. [Proof of Proposition 3.2] The proof extends that of (Lei, 2023) for single objective
learning to our MOL setting. Recall that S = {z1, . . . , zn}, which are drawn i.i.d. from the
data distribution D. Define the perturbed dataset S(i) = {z1, . . . , z0i, . . . , zn} sampled i.i.d.
from D with z0i independent of zj , for all i, j 2 [n]. Let z̃ be an independent sample of zj , z0j , for
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all j 2 [n], and from the same distribution D. We first decompose the difference of population
gradient and empirical gradient on the algorithm output n(rF (A(S)) � rFS(A(S))) as
follows using the gradient on A(S(i)). Since Ez̃[rFz̃(A(S))] = rF (A(S)), it holds that

n
�
rF (A(S))�rFS(A(S))

�
= nEz̃[rFz̃(A(S))]� nrFS(A(S))

=nEz̃[rFz̃(A(S))]�

 
nX

i=1

rFzi(A(S))

!
+

nX

i=1

⇣
Ez0i

[rF (A(S(i)))]� Ez0i
[rF (A(S(i)))]

⌘

+
nX

i=1

⇣
Ez0i

[rFzi(A(S(i)))]� Ez0i
[rFzi(A(S(i)))]

⌘

=
nX

i=1

Ez̃,z0i
[rFz̃(A(S))�rFz̃(A(S(i)))] +

nX

i=1

Ez0i
[Ez̃[rFz̃(A(S(i)))]�rFzi(A(S(i)))]

| {z }
⇠i(S)

+
nX

i=1

Ez0i

⇥
rFzi(A(S(i)))�rFzi(A(S))

⇤
(A.2)

where the last equality follows from rearranging and that zi, z0i, z̃ are mutually independent.
Applying triangle inequality to (A.2), it then follows that

nkrF (A(S))�rFS(A(S))kF 

nX

i=1

Ez̃,z0i
[krFz̃(A(S))�rFz̃(A(S(i)))kF] +

���
nX

i=1

⇠i(S)
���
F

+
nX

i=1

Ez0i
[krFzi(A(S(i)))�rFzi(A(S))kF]. (A.3)

Note S and S(i) differ by a single sample. By Definition 3.1, the MOL uniform stability ✏F,
and Jensen’s inequality, we further get

nE [krF (A(S))�rFS(A(S))kF]  2n✏F + E
h���

nX

i=1

⇠i(S)
���
F

i
. (A.4)

We then proceed to bound E
⇥��Pn

i=1 ⇠i(S)
��
F

⇤
, which satisfies

 
E
h���

nX

i=1

⇠i(S)
���
F

i!2

 E
h���

nX

i=1

⇠i(S)
���
2

F

i
=

nX

i=1

E
⇥
k⇠i(S)k

2
F

⇤
| {z }

J1,i

+
X

i,j2[n]:i 6=j

E[h⇠i(S), ⇠j(S)i]| {z }
J2,i,j

.

(A.5)

For J1,i, according to the definition of ⇠i(S) in (A.2) and Jensen inequality, it holds that

J1,i = E[k⇠i(S)k2F] = E
h��Ez0i

⇥
Ez̃[rFz̃(A(S(i)))]�rFzi(A(S(i)))

⇤��2
F

i

(a)
 E

h��Ez̃[rFz̃(A(S(i)))]�rFzi(A(S(i)))
��2
F

i

(b)
= E

h��Ez̃[rFz̃(A(S))]�rFz0i
(A(S))

��2
F

i
= E [Vz̃(rFz̃(A(S)))] , (A.6)
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where (a) follows from Jensen’s inequality, (b) follows from the symmetry between zi and
z0i. To bound J2,i,j with i 6= j, introduce S00 = {z001 , . . . , z

00
n} drawn i.i.d. from the data

distribution D. For each i 6= j 2 [n], introduce Sj as a neighboring dataset of S by replacing
zj with z00j , and S(i)

j as a neighboring dataset of S(i) by replacing zj with z00j , i.e.,

Sj = {z1, . . . , zj�1, z
00

j , zj+1, . . . , zn}, (A.7a)

S(i)
j = {z1, . . . , zi�1, z

0

i, zi+1, . . . , zj�1, z
00

j , zj+1, . . . , zn}. (A.7b)

Then the idea is to bound J2,i,j using the newly introduced neighboring datasets Sj and S(i)
j ,

so as to connect to the definition of the stability ✏F. We first show that E [h⇠i(S), ⇠j(S)i] =
E [h⇠i(S)� ⇠i(Sj), ⇠j(S)� ⇠j(Si)i] because for i 6= j,

E [h⇠i(Sj), ⇠j(S)i]
(c)
= 0, E [h⇠i(Sj), ⇠j(Si)i]

(d)
= 0, E [h⇠i(Sj), ⇠j(Si)i]

(e)
= 0. (A.8)

For i 6= j, (c) follows from

E [h⇠i(Sj), ⇠j(S)i] = EEzj [h⇠i(Sj), ⇠j(S)i] = E
⇥⌦
⇠i(Sj),Ezj [⇠j(S)]

↵⇤
= 0, (A.9)

where the second identity holds since ⇠i(Sj) is independent of zj and the last identity follows
from Ezj [⇠j(S)] = 0 due to the symmetry between z̃ and zi, and their independence with
S(i), derived as

Ezi [⇠i(S)] = Ezi

h
Ez0i

[Ez̃[rFz̃(A(S(i)))]�rFzi(A(S(i)))]
i
= 0, 8i 2 [n]. (A.10)

In a similar way, for i 6= j, (d) and (e) follow from

E [h⇠i(S), ⇠j(Si)i] = EEzi [h⇠i(S), ⇠j(Si)i] = E [h⇠j(Si),Ezi [⇠i(S)]i] = 0, (A.11)
E [h⇠i(Sj), ⇠j(Si)i] = EEzi [h⇠i(Sj), ⇠j(Si)i] = E [h⇠j(Si),Ezi [⇠i(Sj)]i] = 0. (A.12)

Based on (A.8), for i 6= j we have

J2,i,j =E [h⇠i(S), ⇠j(S)i] = E [h⇠i(S)� ⇠i(Sj), ⇠j(S)� ⇠j(Si)i]

E
⇥
k⇠i(S)� ⇠i(Sj)kF k⇠j(S)� ⇠j(Si)kF

⇤


1

2
E
h
k⇠i(S)� ⇠i(Sj)k

2
F

i
+

1

2
E
h
k⇠j(S)� ⇠j(Si)k

2
F

i
(A.13)

where we have used ab 
1
2

�
a2 + b2

�
. According to the definition of ⇠i(S) and ⇠i(Sj) we

know the following identity for i 6= j

E
h
k⇠i(S)� ⇠i(Sj)k

2
F

i
=E
h���Ez0i

Ez̃
⇥
rFz̃(A(S(i)))�rFz̃(A(S(i)

j ))
⇤

+ Ez0i

⇥
rFzi(A(S(i)

j ))�rFzi(A(S
(i)))

⇤���
2

F

i
. (A.14)

It then follows from the inequality (a+ b)2  2
�
a2 + b2

�
and the Jensen’s inequality that

E[k⇠i(S)� ⇠i(Sj)k
2
F] 2E[krFz̃(A(S(i)))�rFz̃(A(S(i)

j ))k2F]
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+ 2E[krFzi(A(S
(i)
j ))�rFzi(A(S(i)))k2F]. (A.15)

Since S(i), S(i)
j and S(j), S(j)

i are two pairs of neighboring datasets, it follows from the
definition of stability that

E
h
k⇠i(S)� ⇠i(Sj)k

2
F

i
 4✏2F, and E

h
k⇠j(S)� ⇠j(Si)k

2
F

i
 4✏2F, 8i 6= j. (A.16)

We can plug the above inequalities back into (A.13) and bound J2,i,j by

J2,i,j = E [h⇠i(S), ⇠j(S)i]  4✏2F, 8i 6= j. (A.17)

Combining the bound for J1,i in (A.6) and J2,i,j in (A.17) and substituting them back
into (A.5), it then follows that

E
h���

nX

i=1

⇠i(S)
���
2

F

i
= E

h nX

i=1

k⇠i(S)k
2
F

i
+

X

i,j2[n]:i 6=j

E[h⇠i(S), ⇠j(S)i]

 nE [Vz̃(rFz̃(A(S)))] + 4n(n� 1)✏2F. (A.18)

We can plug the above inequality back into (A.4), use the subadditivity of square root
function, and get

nE[krF (A(S))�rFS(A(S))kF]  4n✏F +
p
nE [Vz̃(rFz̃(A(S)))]. (A.19)

The proof is complete.

A.2 Proof of Theorem 3.1 – Generalization of MoDo in the NC case

In this subsection, we prove Theorem 3.1, which establishes the PS generalization error of
MoDo, SMG, and MoCo in the nonconvex case.

Organization of proof. We first give the concept of sampling-determined MOL algo-
rithms in Definition A.1, which generalizes the concept in (Lei, 2023) for single-objective
learning. Then we show that MoDo is sampling-determined in Proposition A.1. Combining
Propositions 3.1 and A.1, we are able to prove the upper bound of the MOL uniform stability.
A matching lower bound of the MOL uniform stability is provided in Lemma A.2. Combining
the upper and lower bounds, the proof for Theorem 3.1 is complete.

Definition A.1 (Sampling-determined algorithm (Lei, 2023)). Let A be a random-
ized algorithm that randomly chooses an index sequence I(A) = {it,s} to compute stochastic
gradients. We say a symmetric algorithm A is sampling-determined if the output model is
fully determined by {zi : i 2 I(A)}.

Proposition A.1 (MoDo, SMG, MoCo, are sampling-determined). MoDo (Algo-
rithms 2, 3, and 4) are sampling determined. In other words, Let I(A) = {it} be the sequence
of index chosen by these algorithms from training set S = {z1, . . . , zn}, and zi

i.i.d.
⇠ P for all

i 2 [n] to build stochastic gradients, the output A(S) is determined by {zj | j 2 I(A)}. To be
precise, A(S) is independent of zj if j /2 I(A).
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Proof. [Proposition A.1] Let I(A) = {I1, . . . , IT }, It = {it,s}2s=1 and it,s 2 [n] for all
1  t  T . Let ZI(A) = {zit,s | t 2 [T ], s 2 [2]}. By the description in Algorithm 2,
A(S) = GZIT

� · · · �GZI1
(x0), where GZ(·) is the stochastic update function of the model

parameter given random mini-batch Z. Therefore, for all possible random mini-batch Z
selected by A, we have

P(A(S) = x | zj = z, j /2 I(A)) =P(GZIT
� · · · �GZI1

(x0) = x | zj = z, j /2 I(A))

=P(GZIT
� · · · �GZI1

(x0) = x | j /2 I(A))

=P(A(S) = x | j /2 I(A)) (A.20)

where the last equality holds because zj /2 SI(A), and zj is independent of all elements
in SI(A) by i.i.d. sampling. Therefore, A(S) is independent of zj if j /2 I(A), MoDo is
sampling-determined.

Similarly, for SMG, let It = {it,s}
|Zt|

s=1, and it,s 2 [n] for all t 2 [T ], then (A.20) still holds
for A being the SMG algorithm. Therefore, SMG is also sampling-determined.

Finally, for MoCo, its update at iteration t depends on the stochastic sample selected at
iteration t, as well as all the stochastic samples at previous iterations. Denote the update
function at each iteration as GZI1:t

(xt), where ZI1:t = {zI1 , zI2 , . . . , zIt}, then we have

P(A(S) = x | zj = z, j /2 I(A)) =P(GZI1:T
� · · · �GZI1:1

(x0) = x | zj = z, j /2 I(A))

=P(GZI1:T
� · · · �GZI1:1

(x0) = x | j /2 I(A))

=P(A(S) = x | j /2 I(A)). (A.21)

which proves MoCo is sampling-determined.

Lemma A.1. (Lei, 2023, Theorem 5 (b)) Let A be a sampling-determined random algorithm
(Definition A.1) and S, S0 be neighboring datasets with n data points that differ only in the
i-th data point. If supz EA

⇥
krFz(A(S))k2F | i 2 I(A)

⇤
 G2 for any S, then

sup
z

EA[krFz(A(S))�rFz(A(S0))k2F]  4G2
· P{i 2 I(A)}. (A.22)

Lemma A.2 (Lower bound of MOL uniform stability in the NC case). There ex-
ists a vector-valued objective function Fz(x), where for each m 2 [M ], z 2 Z, the scalar-valued
function fz,m(x) is nonconvex and smooth, and there exists neighboring datasets S and S0

with |S| = |S0
| = n, which differ with at most one sample, and a randomized algorithm MoDo,

denoted as A, such that the MOL uniform stability of the t-th iteration output with t 2 [T ] is
lower bounded by

sup
z

EA[krFz(A(S))�rFz(A(S
0))k2F] = ⌦

⇣ t

n

⌘
.

Proof. From the definition of the sampling-determined algorithms, and that MoDo selects
two samples at each iteration, we can compute the probability of i⇤ 2 I(A) as

P(i⇤ 2 I(A)) = 1�
⇣n� 1

n

⌘2T
(A.23)
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whose lower bound can be computed by

P(i⇤ 2 I(A)) = 1�
⇣n� 1

n

⌘2T (a)
� 1� 1 +

1

1 + 2T�1
n

·
2T

n
=

T

n(1 + 2T�1
n )

(b)
�

2T

3n
(A.24)

where (a) follows from the inequality that (1 + c)r  1 + rc
1�(r�1)c for c 2 [�1, 1

r�1), r > 1,
plugging in r = 2T > 1, c = �1/n < 0 < 1/(r � 1); and (b) follows from T  n.

The MOL uniform stability of a sampling-determined algorithm in the general non-convex
case can then be lower bounded by

sup
z

EA[krFz(A(S))�rFz(A(S0))k2F]

= sup
z

⇣
EA[krFz(A(S))�rFz(A(S0))k2F | i⇤ 2 I(A)] · P(i⇤ 2 I(A))

+ EA[krFz(A(S))�rFz(A(S0))k2F | i⇤ /2 I(A)] · P(i⇤ /2 I(A))
⌘

� sup
z

EA[krFz(A(S))�rFz(A(S0))k2F | i⇤ 2 I(A)] · P(i⇤ 2 I(A))

� sup
z

EA[krFz(A(S))�rFz(A(S0))k2F | i⇤ 2 I(A)] ·
2T

3n
. (A.25)

We proceed to bound the term supz EA[krFz(A(S))�rFz(A(S0))k2F | i⇤ 2 I(A)] in the above
inequality by constructing the following simple example with M = 2, |S| = |S0

| = n > 10,
S = {0, . . . , 0}, S0 = {0, . . . , 0,�1

8⇡}.

fz,1(x) = fz,2(x) = sin(x+ z)

rfz,1(x) = rfz,2(x) = cos(x+ z)

For algorithm A, choose 2  T  10 < n, 1 step size ↵t = ↵ = ⇡
80 , initialization x0 = x00 = 1

4⇡.
Let xt = At(S), and x0t = At(S0). Since |rfz,1(x)|  1, we have

|x0 � xT |  ↵

�����

T�1X

t=0

rFz(xt)�t

�����  ↵
T�1X

t=0

|rFz(xt)�t|  ↵T 
1

8
⇡. (A.26)

Similarly, we have

|x00 � x0T | 
1

8
⇡. (A.27)

Therefore, for all t 2 [T ], it holds that

1

8
⇡  xt 

3

8
⇡,

1

8
⇡  x0t 

3

8
⇡. (A.28)

We need to bound EA[krFz(A(S))�rFz(A(S0))k2F | i⇤ 2 I(A)] in (A.25). Considering the
case i⇤ 2 I(A), let t0 2 [T � 1] denote the first iteration to select i⇤, then

rfz0(x
0

t0)�rfz(xt0) = cos(x0t0 + z0)� cos(xt0 + z) = cos
⇣
x0t0 �

1

8
⇡
⌘
� cos(xt0)

1. This choice of T simplifies the analysis. Other choices are possible depending on the choice of x0 and ↵t.
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=� 2 sin
⇣
xt0 �

1

16
⇡
⌘
sin
⇣
�

1

16
⇡
⌘
� 0.076

which implies

xt0+1 � x0t0+1 =xt0 � x0t0 + ↵(rfz0(x
0

t0)�rfz(xt0))

=↵(rfz0(x
0

t0)�rfz(xt0)) � 0.076↵ > 0. (A.29)

We then prove by induction that xT � x0T � 0.076↵ using the statements below:
1) xt0+1 � x0t0+1 � 0.076↵;
2) xt+1 � x0t+1 � xt � x0t � 0.076↵ if xt � x0t � 0.076↵ > 0.

The first statement is proved in (A.29). The second statement can be proved by

xt+1 � x0t+1 =xt � x0t + ↵(rfz0(x
0

t)�rfz(xt))

=xt � x0t + ↵(cos(x0t + z0)� cos(xt + z)) � 0.

The last inequality follows from that for t0 < t  T , 1
8⇡  x0t < xt 

3
8⇡ as (A.28), where

rfz(x) = cos(x+ z) is monotonically decreasing with x+ z 2 [0, 12⇡]. And since xt � x0t > 0,
z0  z, x0t + z0  xt + z, therefore cos(x0t + z0)� cos(xt + z) � 0. Then we arrive at

xT � x0T � 0.076↵ �
7⇡

800
. (A.30)

By the Mean value theorem, there exists x̄ 2 [x0T , xT ] ⇢ [18⇡,
3
8⇡] such that

|rfz(A(S))�rfz(A(S0))| = |rfz(xT )�rfz(x
0

T )| = |r
2fz(x̄)||xT � x0T | � sin

⇣1
8
⇡
⌘ 7⇡

800
.

(A.31)

Therefore, combining (A.25) and (A.31) yields

sup
z

EA[krFz(A(S))�rFz(A(S0))k2F] = ⌦
�
T/n

�
. (A.32)

The proof of the lower bound in the nonconvex case is complete.

The following remark discusses the application of the above MOL uniform stability lower
bound to single-objective learning (SOL).

Remark 4. Our lower bound in the NC case can be easily reduced to the SOL problems
with sampling-determined algorithms since our proof is based on the construction of a special
case with identical multi-objectives where the update of � does not affect the update of x. The
reduction to the SOL setting is also the first lower bound with sampling-determined algorithms
for SOL in the NC case that matches the upper bound in (Lei, 2023).

A.2.1 Proof of Theorem 3.1

Proof. [Theorem 3.1] From Proposition A.1, MoDo algorithm is sampling-determined. Then
based on Lemma A.1, its MOL uniform stability in Definition 3.1 can be bounded by

✏2F  4G2
· P{i 2 I(A)}. (A.33)
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Let it be the index of the sample selected by A at t-th iteration, It(A) be the indices of the
samples selected by A up to the t-th iteration, with t 2 [T ], and i⇤ be the index of the data
point that is different in S and S0. Then

P{i⇤ 2 It(A)} 

tX

k=1

P {ik = i⇤} 
t

n
. (A.34)

Combining (A.33) and (A.34) gives the MOL uniform stability of the t-th iterate with t 2 [T ]
is upper bounded by

✏2F 
4G2t

n


4G2T

n
. (A.35)

This proves the upper bound in a). The proof of the lower bound in b) is given in Lemma A.2
in Appendix A.2. Then based on Propositions 3.1-3.2, the PS generalization error is upper
bounded by

EA,S [Rgen(At(S))]EA,S [krF (At(S))�rFS(At(S))kF] by Proposition 3.1

4✏F +
p

n�1ES [Vz⇠D(rFz(At(S)))] by Proposition 3.2

=O(T
1
2n�

1
2 ). by (A.35)

The proof of the upper bound is complete. Lemma A.2 provides the lower bound. Combining
both completes the proof.

A.3 Proof of Theorem 4.1 – Generalization of SMG and MoCo in the NC case

Proof. [Theorem 4.1] The proof follows similar steps as the proof for Theorem 3.1. First,
Proposition A.1 states that SMG and MoCo are sampling-determined, and thus their MOL
uniform stability depends on the probability P{i 2 I(A)} by Lemma A.1.

For MoCo, following similar proof steps as MoDo in Theorem 3.1, we have the MOL
uniform stability of MoCo is ✏2F = O(Tn�1). Then combining with Proposition 3.2 which
connects the MOL uniform stability and PS generalization error, it yields that their PS
generalization errors are EA,S [Rgen(At(S))] = O(T

1
2n�

1
2 ) for all t 2 [T ].

For SMG, suppose we choose t as the batch size at iteration t. Let it be the set of indices
of the samples selected by SMG at t-th iteration with |it| = t, It(A) be the indices of the
samples selected by SMG up to the t-th iteration, with t 2 [T ], and i⇤ be the index of the
data point that is different in S and S0. Then

P{i⇤ 2 It(A)} 

tX

k=1

P {i⇤ 2 ik} 

tX

k=1

k

n
=

(1 + t)t

2n
. (A.36)

Combining (A.36) with Lemma A.1, we have the MOL uniform stability of SMG is upper
bounded by

✏2F 
2G2(1 + T )T

n
. (A.37)
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Then based on Propositions 3.1-3.2, the PS generalization error of SMG is upper bounded by

EA,S [Rgen(At(S))]4✏F +
p
n�1ES [Vz⇠D(rFz(At(S)))]=O(Tn�

1
2 ). (A.38)

The proof is complete.

A.4 Proof of Lemma 3.1 – xt bounded in the SC case

Organization of proof. Without loss of generality, we assume infx2Rd fz,m(x) < 1 for
all m 2 [M ] and z 2 Z in the SC case. Lemma A.3 shows that the optimal solution of
Fz(x)� given any stochastic sample z 2 Z, and weighting parameter � 2 �M , is bounded.
Lemma A.4 shows that if the argument parameter is bounded, then the updated parameter
by MoDo at each iteration is also bounded by exploiting the co-coerciveness of strongly
convex and smooth objectives. Finally, based on Lemma A.3 and Lemma A.4, we first prove
that with a bounded initialization x0, the model parameter {xt}Tt=1 generated by MoDo
algorithm is bounded on the trajectory. Then by the smoothness assumption of fz,m(x), we
immediately have that krfz,m(x)k is bounded for x 2 {xt}Tt=1 generated by MoDo algorithm,
which completes the proof of Lemma 3.1.

A.4.1 Auxiliary Lemmas

This section provides the auxiliary lemmas to prove Lemma 3.1. The proofs can be found
at (Chen et al., 2023a, Appendix A.4.1)

Lemma A.3. Suppose Assumptions 1, 2 hold. W.l.o.g., assume infx2Rd fz,m(x) < 1 for
all m 2 [M ] and z 2 Z. For any given � 2 �M , and stochastic sample z 2 Z, define
x⇤�,z = argminx2Rd Fz(x)�, then infx2Rd Fz(x)� < 1 and kx⇤�,zk < 1, i.e., there exist finite
positive constants cF ⇤ and cx⇤ such that

inf
x2Rd

Fz(x)�  cF ⇤ and kx⇤�,zk  cx⇤ . (A.39)

Lemma A.4. Suppose Assumptions 1, 2 hold, and define  = 3`f,1/µ � 3. For any given
� 2 �M , and a stochastic sample z 2 Z, define x⇤�,z = argminx Fz(x)�. Then by Lemma A.3,
there exists a positive finite constant cx,1 � cx⇤ such that kx⇤�,zk  cx⇤  cx,1. Recall the
multi-objective gradient update is

G�,z(x) = x� ↵rFz(x)� (A.40)

with step size 0  ↵  `�1
f,1. Defining cx,2 = (1 +

p
2)cx,1, we have that

if kxk  cx,2, then kG�,z(x)k  cx,2. (A.41)

A.4.2 Proof of Lemma 3.1

Proof. [Lemma 3.1] We first prove (a), i.e., {xt} generated by the MoDo algorithm are
bounded. Define  = 3`f,1/µ and x⇤�,z = argminx Fz(x)� with � 2 �M . Under Assump-
tions 1, 2, by Lemma A.3, kx⇤�,zk < 1, i.e., there exists a finite positive constant cx⇤ such
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that kx⇤�,zk  cx⇤ . Choose the initial iterate to be bounded, i.e., there exists a finite positive
constant cx0 such that kx0k  cx0 . Then we will prove that for {xt} generated by MoDo
algorithm with ↵t = ↵ and 0  ↵  `�1

f,1, we have

kxtk  cx, with cx = max{(1 +
p
2)cx⇤ , cx0}. (A.42)

To prove (A.42), we rely on Lemma A.4, which states that if the current iterate xt is
bounded, then with MoDo update, the next iterate xt+1 is also bounded. Let cx,1 =
max{(1+

p
2)�1cx0 , cx⇤}, and cx,2 = (1+

p
2)cx,1 = max{cx0 , (1+

p
2)cx⇤} in Lemma A.4.

We then consider the following two cases:
1) If (1 +

p
2)cx⇤  cx0 , then kx⇤�,zk  cx⇤  (1 +

p
2)�1cx0 . Then it satisfies the

condition in Lemma A.4 that kx⇤�,zk  cx,1 and kx0k  cx,2. Applying Lemma A.4 yields
kx1k  cx,2.

2) If (1+
p
2)cx⇤ > cx0 , then kx0k  cx0 < (1+

p
2)cx⇤ . Then it satisfies the condition

in Lemma A.4 that kx⇤�,zk  cx,1 and kx0k  cx,2. Applying Lemma A.4 yields kx1k  cx,2.
Therefore, (A.42) holds for t = 1. We then prove by induction that (A.42) also holds for

t 2 [T ]. Assume (A.42) holds at 1  k  T � 1, i.e.,

kxkk  cx = cx,2 (A.43)

Then by Lemma A.4, at k + 1,

kxk+1k = kG�k+1,Zk+1
(xk)k  cx,2. (A.44)

Since kx1k  cx,2, for t = 0, . . . , T � 1, we have

kxt+1k = kG�t+1,Zt+1(xt)k  cx,2. (A.45)

Therefore, by mathematical induction, kxtk  cx,2 = cx, for all t 2 [T ]. The proof of (a) is
thus complete.

We then prove (b). This result follows directly from (a), Assumption 1, i.e., the `f,1-
smoothness assumption for all objectives, and boundedness of the Pareto optimal solutions
given in Lemma A.3. Specifically, by Lemma A.3, there exist finite positive constant cx⇤

such that kx⇤�,zk  cx⇤ . Then by Assumption 1, the `f,1-Lipschitz continuity of the gradient
rFz(x)�, we have

krFz(x)�k =krFz(x)��rFz(x
⇤

�,z)�k

`f,1kx� x⇤�,zk  `f,1(kxk+ kx⇤�,zk)  `f,1(cx + cx⇤) (A.46)

where the first equality uses the fact that rFz(x⇤�,z)� = 0. Define `f := `f,1(cx + cx⇤), and
`F :=

p
M`f , and then it holds for all � 2 �M that

krF (xt)�k  `f and krF (xt)k  krF (xt)kF 

p

M`f = `F . (A.47)

The proof of (b) is thus complete.
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A.5 Proof of Theorem 3.2 – Generalization of MoDo in the SC case

Organization of proof. In Section A.5.1, we introduce the properties of the MoDo update.
Building upon these properties, in Section A.5.2, we prove the upper bound of argument
stability in Theorem A.1. To show the tightness of the upper bound, in Section A.5.3,
Theorem A.2, we provide a matching lower bound of the argument stability. Combining the
upper bound in Section A.5.2 and the lower bound in Section A.5.3 leads to the results in
Theorem 3.2, whose proof is in Section A.5.4.

A.5.1 Expansiveness and boundedness of MoDo update

In this section, we list the properties of the update function of MoDo at each iteration,
including boundedness and approximate expansiveness, whose proofs can be found at (Chen
et al., 2023a, Appendix B.5.1). These properties are then used to derive the algorithm
stability. For z, z1, z2 2 S, � 2 �M , recall that the update functions of MoDo is

Gx,z1,z2(�) = ⇧�M

⇣
�� �(rFz1(x)

>
rFz2(x) + ⇢I)�

⌘

G�,z(x) = x� ↵rFz(x)�.

Lemma A.5 (Boundedness of MoDo update). Let `f be a positive constant. If krFz(x)�k 

`f for all � 2 �M , z 2 S and x 2 {xt}Tt=1 generated by the MoDo algorithm with step size
↵t  ↵, then G�,z(x) is (↵`f )-bounded on the trajectory of MoDo, i.e.,

sup
x2{xt}

T
t=1

kG�,z(x)� xk  ↵`f . (A.48)

Lemma A.6 (Properties of MoDo update in SC case). Suppose Assumptions 1, 2
hold. Let `f be a positive constant. If for all �,�0

2 �M , z 2 S, and x 2 {xt}Tt=1,
x0 2 {x0t}

T
t=1 generated by the MoDo algorithm on datasets S and S0, respectively, we have

krFz(x)�k  `f , krFz(x0)�0
k  `f , and krFz(x)k  `F , krFz(x0)k  `F , and step sizes

of MoDo satisfy ↵t  ↵, �t  �, it holds that

kG�,z(x)�G�0,z(x
0)k2 (1� 2↵µ+ 2↵2`2f,1)kx� x0k2

+ 2↵`F kx� x0kk�� �0
k+ 2↵2`2F k�� �0

k
2 (A.49)

kGx,z1,z2(�)�Gx0,z1,z2(�
0)k2 

⇣
(1 + `2F�)

2 + (1 + `2F�)`g,1�
⌘
k�� �0

k
2

+
⇣
(1 + `2F�)`g,1� + `2g,1�

2
⌘
kx� x0k2. (A.50)

Lemma A.7 (Growth recursion with approximate expansiveness). Fix an arbitrary
sequence of updates G1, . . . , GT and another sequence G0

1, . . . , G
0

T . Let x0 = x00 be a starting
point in ⌦ and define �t = kx0t � xtk where xt, x0t are defined recursively through

xt+1 = Gt(xt), x0t+1 = G0

t(x
0

t) (t > 0).

Let ⌘t > 0, ⌫t � 0, and &t � 0. Then, for any p > 0, and t 2 [T ], we have the recurrence
relation (with �0 = 0)

�2t+1 

8
><

>:

⌘t�2t + ⌫t, Gt = G0
t is (⌘t, ⌫t)-approximately expansive in square;

(1 + p)min{⌘t�2t + ⌫t, �2t }+ (1 + 1
p )4&

2
t Gt and G0

t are &t-bounded,

Gt is (⌘t, ⌫t)-approximately expansive in square.

31



Chen, Fernando, Ying and Chen

A.5.2 Upper bound of MOL uniform stability

In Theorem A.1 we bound the argument stability, which is then used to derive the MOL
uniform stability and PS generalization error in Theorem 3.2.

Theorem A.1 (Argument stability of MoDo in the SC case). Suppose Assumptions 1,
2, hold. Let A be the MoDo algorithm in Algorithm 2. Choose the step sizes ↵t  ↵ 

min{1/(2`f,1), µ/(2`2f,1)}, and �t  �  min
n

µ2

120`2f `g,1
, 1
8(3`2f+2`g,1)

o
/T . Then it holds for all

t 2 [T ] that

EA[kAt(S)�At(S
0)k2] 

48

µn
`2f

⇣
↵+

12 + 4M`2f
µn

+
10M`4f�

µ

⌘
. (A.51)

Proof. [Theorem A.1] Under Assumptions 1, 2, Lemma 3.1 implies that for {xt} generated
by the MoDo algorithm, and for all � 2 �M , and for all m 2 [M ],

krFz(xt)�k  `f,1(cx + cx⇤) = `f . and krFz(xt)k  krFz(xt)kF 

p

M`f = `F . (A.52)

For notation simplicity, denote �t = kxt�x0tk, ⇣t = k�t��0
tk, xT = AT (S) and x0T = AT (S0).

Denote the index of the different sample in S and S0 as i⇤, and the set of indices selected
at the t-th iteration as It, i.e., It = {it,s}3s=1. When i⇤ /2 It, for any c1 > 0, based on
Lemma A.6,

�2t+1 (1� 2↵tµ+ 2↵2
t `

2
f,1)�

2
t + 2↵t`F �t⇣t+1 + 2↵2

t `
2
F ⇣

2
t+1

(1� 2↵tµ+ 2↵2
t `

2
f,1)�

2
t + ↵t`F (c1�

2
t + c�1

1 ⇣2t+1) + 2↵2
t `

2
F ⇣

2
t+1

(1� ↵tµ)�
2
t + ↵t`F (c1�

2
t + c�1

1 ⇣2t+1) + 2↵2
t `

2
F ⇣

2
t+1 (A.53)

where the second last inequality is due to Young’s inequality; the last inequality is due to
choosing ↵t  µ/(2`2f,1).

When i⇤ 2 It, from Lemma A.5, the (↵t`f )-boundedness of the update at t-th iteration,
and Lemma A.7, the growth recursion, for a given constant p > 0, we have

�2t+1  (1 + p)�2t + (1 + 1/p)4↵2
t `

2
f . (A.54)

Taking expectation of �2t+1 over It, we have
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(A.55)
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At each iteration of MoDo, we randomly select three independent samples (instead of one)
from the training set S. Then the probability of selecting the different sample from S and S0

at the t-th iteration, P(i⇤ 2 It) in the above equation, can be computed as follows

P(i⇤ 2 It) = 1�
⇣n� 1

n

⌘2


2

n
. (A.56)

Consequently, the probability of selecting the same sample from S and S0 at the t-th iteration
is P(i⇤ /2 It) = 1� P(i⇤ 2 It).

Let `g,1 = `f `F,1 + `F `f,1. Recalling when i⇤ /2 It, ⇣t+1  (1 + `2F�t)⇣t + 2�t`g,1�t from
Lemma A.6, it follows that

⇣2t+1 

⇣
(1 + `2F�t)

2 + (1 + `2F�t)`g,1�t
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�2t
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�
1 + (3`2F + 2`g,1)| {z }

c3

�t
�
⇣2t + 3`g,1�t�

2
t (A.57)

where the last inequality follows from `g,1�t  1, and `2F�t  1.
And since ⇣t and �t are independent of It, it follows that

EIt [⇣
2
t+1 | i

⇤ /2 It] 
�
1 + c3�t

�
⇣2t + 3`g,1�t�

2
t . (A.58)

Combining (A.55) and (A.58), we have

EIt [�
2
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1� ↵t(µ� `F c1)P(i⇤ /2 It) + pP(i⇤ 2 It)

⌘
�2t +

⇣
1 +

1

p

⌘
P(i⇤ 2 It)4↵

2
t `

2
f

+ ↵tc2
⇣�

1 + c3�t
�
⇣2t + 3`g,1�t�

2
t

⌘
P(i⇤ /2 It) (A.59)
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where we define ⌘t = 1� ↵t(µ� `F c1 � 3c2`g,1�t)P(i⇤ /2 It).
While when i⇤ 2 It, for a given constant p2 > 0, we have
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Taking expectation of ⇣2t+1 over It gives
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Based on linearity of expectation and applying (A.61) recursively yields
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where (a) follows from choosing �t  �  1/(8c3T ), p2 = n/(8T ), (b) follows from t� t0  T ,
and (1 + a

T )
T
 ea, and the inequality (c) follows from e

1
2 < 2. Note that �0 = 0, ⇣1 = 0.

Applying (A.55) at t = 0 gives
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Next, we will prove by induction that (A.63) also holds for t > 1. Assuming that (A.63)
holds for all 0  t  k  T � 1, we apply (A.59) to the case where t = k to obtain
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⇥

 
3

n

 
1 +

1

p

!
4↵2`2f + 24M`4fc2

 
8�T

n
+ �

!
↵

n

!
(A.64)

where (a) follows from (A.62), and (b) follows from (A.63) for 0  t  k and that �k  �T  1.
The coefficient J1 in (A.64) can be further bounded by
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where (c) is from �t  �t+1, �t  � for all t = 0, . . . , T ; (d) is from the definition of ⌘k; (e) is
because �  µ2/(120`2F `g,1T ), ↵  1/(2`f,1)  1/(2µ) and choosing c1 = µ/(4`F ) leads to
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Combining (A.64) and (A.65) implies
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where the equality follows by the definition of �t given in (A.63). The above statements from
(A.64)-(A.66) show that if (A.63) holds for all t such that 0  t  k  T � 1, it also holds
for t = k + 1. Therefore, we can conclude that for all t 2 [T ], it follows
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where the first inequality follows from �t  �T for all t 2 [T ]; the last equality follows from
taking p = ↵µn/12, and computing the sum of geometric series. By plugging in c1 = µ/(4`F ),
c2 = `F c

�1
1 + 2↵`2F , c3 = 3`2F + 2`g,1, for all t 2 [T ],we have that
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where the last inequality follows from c2 = `2F (4µ
�1 + 2↵)  5M`2fµ

�1, and c2c
�1
3 

5`2Fµ
�1/(3`2F )  2µ�1.

A.5.3 Lower bound of MOL uniform stability

This section provides a lower bound of the MOL uniform stability in the SC case. The full
proof is available at (Chen et al., 2023a, Section B.5.3).

Theorem A.2. (Chen et al., 2023a, Theorem B.2) Suppose Assumptions 1 and 2 hold.
Under Example 1 in (Chen et al., 2023a) with M = 2, choose �0 = 1

M 1, x0 = x00 = 7v,
↵ = 1

4µT , 0 < � 
1

2MT `F `f
, ⇢ = 0, and T  4n

2
3 for the MoDo algorithm. Denote {xt},

{�t} and {x0t}, {�0
t} as the sequences generated by the MoDo algorithm with dataset S and

S0, respectively. Then it holds that

E[kxT � x0T k] �
�T

2n2
+

1

16n
. (A.69)

A.5.4 Proof of Theorem 3.2

Proof. [Theorem 3.2] Combining the argument stability in Theorem A.1, and Assumption 1,
the MOL uniform stability can be bounded by

sup
z

EA[krFz(A(S))�rFz(A(S0))k2F] EA[`
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. (A.70)

Then based on Propositions 3.1-3.2, we have

EA,S [Rgen(A(S))]EA,S [krF (A(S))�rFS(A(S))kF] by Proposition 3.1

4✏F +
p

n�1ES [Vz⇠D(rFz(A(S)))] by Proposition 3.2

=O(n�
1
2 ). by (A.70)

The proof of the upper bound is complete. We then prove the MOL uniform stability lower
bound based on the argument uniform stability lower bound in Theorem A.2. By the strong
convexity of the function fz,m(x), for all m 2 [M ]

sup
z

EA[krFz(A(S))�rFz(A(S0))k2F] � EA[Mµ2
kA(S)�A(S0)k2] by Assumption 2

�Mµ2
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⌘2
by Theorem A.2 and Jensen’s inequality

�
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64n2
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4
M`F `f

� 8�T

The proof of the lower bound is complete.
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Appendix B. Bounding the CA Distance

B.1 Auxiliary lemmas

This section summarizes properties of the generalized subproblem min�2�M kQ�k2 + ⇢k�k2

with ⇢ � 0 and properties of the update function of the MoDo algorithm, where Q can be
the full-batch gradient rFS(x) or its stochastic estimate. Proofs of these auxiliary lemmas
can be found in (Chen et al., 2023a, Appendix C.1). Before proceeding, we first define a few
notations we will use repeatedly in this section.

The CA weight �⇤

Q,⇢ 2 argmin
�2�M

kQ�k2 + ⇢k�k2 (B.1a)

The CA direction dQ,⇢ := Q�⇤

Q,⇢ (B.1b)

Lemma B.1 (Uniqueness of CA direction dQ,⇢). Given Q 2 Rd⇥M , ⇢ � 0, then dQ,⇢ :=
Q�⇤

Q,⇢ with �⇤

Q,⇢ 2 argmin�2�M kQ�k2 + ⇢k�k2 exists, and dQ,⇢ is unique.

Proof. When ⇢ = 0, the proof is given in (Désidéri, 2012, Section 2). When ⇢ > 0, it is a
standard result for strictly convex problems with a unique �⇤

Q,⇢, thus unique dQ,⇢.

Lemma B.2. Given Q 2 Rd⇥M , recall �⇤

Q,⇢ with ⇢ � 0 is defined as

�⇤

Q,⇢ 2 argmin
�2�M

kQ�k2 + ⇢k�k2. (B.2)

Then, for any � 2 �M , it holds that

hQ�⇤

Q,⇢, Q�i � kQ�⇤

Q,⇢k
2
� ⇢, (B.3a)

and kQ��Q�⇤

Q,⇢k
2
 kQ�k2 � kQ�⇤

Q,⇢k
2 + 2⇢. (B.3b)

Lemma B.3 (Continuity of �⇤

Q,⇢ with ⇢ > 0). Given Q 2 Rd⇥M , ⇢ > 0 and x 2 Rd,
for �⇤

Q,⇢ defined in (B.2), the following inequality holds

k�⇤

Q,⇢ � �⇤

Q0,⇢k  ⇢�1
kQ>Q�Q0>Q0

k. (B.4)

Furthermore, suppose either 1) Assumptions 1, 3 hold, or 2) Assumptions 1, 2 hold, with `F
defined in Lemma 3.1. Then for x 2 {xt}Tt=1, x0 2 {x0t}

T
t=1 generated by MoDo algorithm on

training dataset S and S0, respectively, let �⇤
⇢(x) = �⇤

rFS(x),⇢
, �⇤

⇢(x
0) = �⇤

rFS(x0),⇢, it implies

k�⇤

⇢(x)� �⇤

⇢(x
0)k  2⇢�1`F,1`F kx� x0k. (B.5)

Lemma B.4. Given Q 2 Rd⇥M , ⇢ � 0, ⇢̄ > 0, with �⇤

Q,⇢ defined in (B.1a), then we have
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Lemma B.5 (Properties of MoDo update of �t). Consider {xt}, {�t} generated by
the MoDo algorithm. For all � 2 �M , ⇢ � 0, it holds that

2�tEAh�t � �, (rFS(xt)
>
rFS(xt) + ⇢I)�ti

EA[k�t � �k2]� EA[k�t+1 � �k2] + �2t EA[k(rFzt,1(xt)
>
rFzt,2(xt) + ⇢I)�tk

2], (B.7)
and �tEA(krFS(xt)�tk

2
� krFS(xt)�k

2 + ⇢k�tk
2
� ⇢k�k2 + ⇢k�t � �k2)

EA[k�t � �k2]� EA[k�t+1 � �k2] + �2t EA[k(rFzt,1(xt)
>
rFzt,2(xt) + ⇢I)�tk

2]. (B.8)

B.2 Proof of Theorem 3.3 – CA direction distance of MoDo

Organization of proof. In Lemma B.6, we prove the upper bound of the CA direction
distance in terms of two averages of sequences, S1,T , and S2,T . Then under either Assump-
tions 1, 3, or Assumptions 1, 2, we prove the upper bound of S1,T , and S2,T , and thus the
CA direction distance in Theorem 3.3.

Lemma B.6. Suppose Assumption 1 holds. Let {xt}, {�t} be the sequences produced by the
MoDo algorithm with step sizes ↵t = ↵ > 0, �t = � > 0, and regularization ⇢ � 0. With a
positive constant ⇢̄ > 0, define

S1,T =
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Proof. Define �⇤
⇢̄(xt) = argmin�2�M

1
2krFS(xt)�k2+

⇢̄
2k�k

2 with ⇢̄ > 0. Note that different
from ⇢ � 0, ⇢̄ > 0 is strictly positive, and used as an intermediate parameter only for analysis
but not for algorithm update.

Substituting � = �⇤
⇢̄(xt) in Lemma B.5, (B.8), we have
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Setting �t = � > 0, and telescoping the above inequality gives
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�
⇢

�
EA[k�tk

2
� k�⇤

⇢̄(xt)k
2 + k�t � �⇤

⇢̄(xt)k
2]

=
1

�T

⇣ T�1X

t=0

EA[k�t � �⇤
⇢̄(xt)k

2
� k�t+1 � �⇤

⇢̄(xt)k
2]
⌘

| {z }
I1

+
1

T

T�1X

t=0

�EA[k(rFzt,1(xt)
>
rFzt,2(xt) + ⇢I)�tk

2]

�
⇢

�
EA[k�tk

2
� k�⇤

⇢̄(xt)k
2 + k�t � �⇤

⇢̄(xt)k
2] (B.12)

where I1 can be further derived as

I1 =
T�1X

t=0

EA[k�t � �⇤
⇢̄(xt)k

2]� EA[k�t+1 � �⇤
⇢̄(xt)k

2]

=EA[k�0 � �⇤
⇢̄(x0)k

2]� EA[k�T � �⇤
⇢̄(xT�1)k

2] +
T�2X

t=0

EA[k�t+1 � �⇤
⇢̄(xt+1)k

2
� k�t+1 � �⇤

⇢̄(xt)k
2]

EA[k�0 � �⇤
⇢̄(x0)k

2]� EA[k�T � �⇤
⇢̄(xT�1)k

2]

+
T�2X

t=0

EA[k2�t+1 � �⇤
⇢̄(xt+1)� �⇤

⇢̄(xt)kk�
⇤
⇢̄(xt+1)� �⇤

⇢̄(xt)k]  4 + 4
T�2X

t=0

EA[k�
⇤
⇢̄(xt+1)� �⇤

⇢̄(xt)k]

(B.13)

where k�⇤
⇢̄,t+1(xt+1)� �⇤

⇢̄(xt)k, by Lemma B.3, can be bounded by

k�⇤

⇢̄,t+1(xt+1)� �⇤

⇢̄(xt)k ⇢̄�1
krFS(xt+1) +rFS(xt)kkrFS(xt+1)�rFS(xt)k

⇢̄�1`F,1krFS(xt+1) +rFS(xt)kkxt+1 � xtk

⇢̄�1↵`F,1krFS(xt+1) +rFS(xt)kkrFZt+1�t+1k. (B.14)

Hence, it follows that

I1 4 + 4⇢̄�1↵`F,1

T�1X

t=0

EA[krFS(xt+1) +rFS(xt)kkrFZt+1�t+1k] = 4 + 4⇢̄�1↵`F,1TS2,T

(B.15)

plugging which into (B.12) gives

1

T

T�1X

t=0

EA[krFS(xt)�tk
2
� krFS(xt)�

⇤

⇢̄(xt)k
2] 

4

�T
(1 + ⇢̄�1↵`F,1TS2,T ) + �S1,T +

⇢

�
.

(B.16)

Recall �⇤
⇢(xt) = argmin�2�M krFS(xt)�k2 + ⇢k�k2. Then

1

T

T�1X

t=0

EA[krFS(xt)�tk
2
� krFS(xt)�

⇤

⇢(xt)k
2]

=
1

T

T�1X

t=0

EA[krFS(xt)�tk
2
� krFS(xt)�

⇤

⇢̄(xt)k
2 + krFS(xt)�

⇤

⇢̄(xt)k
2
� krFS(xt)�

⇤

⇢(xt)k
2]
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(B.16)


4

�T
(1 + ⇢̄�1↵`F,1TS2,T ) + �S1,T +

⇢

�
+

1

T

T�1X

t=0

EA[krFS(xt)�
⇤

⇢̄(xt)k
2
� krFS(xt)�

⇤

⇢(xt)k
2]


4

�T
(1 + ⇢̄�1↵`F,1TS2,T ) + �S1,T +

⇢

�
+ ⇢̄ (B.17)

where the last inequality follows from Lemma B.4. The proof is complete.

Proof. [Theorem 3.3] Building on the result in Lemma B.6, and by the convexity of the
subproblem, min�2�M

1
2krFS(xt)�k2 + ⇢k�k2, and Lemma B.2, we have

1

T

T�1X

t=0

EA[krFS(xt)�t �rFS(xt)�
⇤
⇢(xt)k

2] 
1

T

T�1X

t=0

EA[krFS(xt)�tk
2
� krFS(xt)�

⇤
⇢(xt)k

2] + 2⇢

⇢̄+ 2⇢+
4

�T
(1 + ⇢̄�1↵T `F,1S2,T ) +

⇢

�
+ �S1,T . (B.18)

By Assumptions 1, 3 or Assumptions 1, 2 and Lemma 3.1, we have

S1,T =
1

T

T�1X

t=0

EA[k(rFzt,1(xt)
>
rFzt,2(xt) + ⇢I)�tk

2]  (`f `F + ⇢)2 = (M
1
2 `2f + ⇢)2 (B.19)

S2,T =
1

T

T�1X

t=0

EA[krFS(xt+1) +rFS(xt)kkrFZt+1�t+1k]  2`f `F = 2M
1
2 `2f . (B.20)

Substituting S1,T , S2,T in (B.18) with the above bound yields

1

T

T�1X

t=0

EA[krFS(xt)�t �rFS(xt)�
⇤

⇢(xt)k
2]

⇢̄+ 2⇢+
4

�T
(1 + 2⇢̄�1↵T `F,1`f `F ) +

⇢

�
+ �(M

1
2 `2f + ⇢)2. (B.21)

Based on the definition of the CA direction distance, we have

Eca(xt,�t+1) = kEA[rFZt+1(xt)�t+1 � d(xt)]k
2 = kEA[rFS(xt)�t+1 �rFS(xt)�

⇤

⇢(xt)]k
2

EA[krFS(xt)�t+1 �rFS(xt)�
⇤

⇢(xt)k
2]

2EA[krFS(xt)�t �rFS(xt)�
⇤

⇢(xt)k
2] + 2EA[krFS(xt)(�t+1 � �t)k

2]

2EA[krFS(xt)�t �rFS(xt)�
⇤

⇢(xt)k
2] + 2�2`2FEA[k(rFzt,1(xt)

>
rFzt,2(xt) + ⇢I)�tk

2].

(B.22)

Because `F,1`F  M`f,1`f , choosing ⇢̄ = 2(↵M`f,1`2f/�)
1
2 yields

1

T

T�1X

t=0

Eca(xt,�t+1) 
1

T

T�1X

t=0

2EA[krFS(xt)�t �rFS(xt)�
⇤

⇢(xt)k
2] + 2M�2`2fS1,T

2⇢̄+ 4⇢+
8

�T
(1 + 2⇢̄�1↵TM`f,1`

2
f ) +

2⇢

�
+ 2�(1 +M�)(M

1
2 `2f + ⇢)2
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=
8

�T
+ 12

r
M`f,1`2f

↵

�
+

2⇢

�
+ 4⇢+ 2�(1 +M�)(M

1
2 `2f + ⇢)2. (B.23)

This proves the result.

B.3 Proof of Theorem 3.4 – CA weight distance of MoDo

In this section, we consider the regularization ⇢ > 0, and prove Theorem 3.4, the guarantee
of CA weight distance, which is stronger than the guarantee of CA direction distance.
Proof. [Theorem 3.4] Consider the function g(�;rFS(x), ⇢) :=

1
2krFS(x)�k2 +

1
2⇢k�k

2
� 0,

which is ⇢-strongly convex. Based on Lemma B.5, (B.8), the property of the update of �,

�tEA[g(�t;rFS(xt), ⇢)� g(�;rFS(xt), ⇢) + ⇢k�t � �k2]

EA[k�t � �k2]� EA[k�t+1 � �k2] + �2t EA[k(rFzt,1(xt)
>
rFzt,2(xt) + ⇢I)�tk

2]

where setting �t = � > 0 and rearranging yields

EA[k�t+1 � �k2] (1� ⇢�)EA[k�t � �k2] + �2EA[k(rFzt,1(xt)
>
rFzt,2(xt) + ⇢I)�tk

2]

� �EA[g(�t;rFS(xt), ⇢)� g(�;rFS(xt), ⇢)]. (B.24)

Substituting � = �⇤
⇢(xt) = argmin�2�M g(�;rFS(xt), ⇢), we have

EA[k�t+1 � �⇤

⇢(xt)k
2] (1� ⇢�)EA[k�t � �⇤

⇢(xt)k
2] + �2EA[k(rFzt,1(xt)

>
rFzt,2(xt) + ⇢I)�tk

2]

� �EA[g(�t;rFS(xt), ⇢)� g(�⇤

⇢(xt);rFS(xt), ⇢)]

(1� ⇢�)EA[k�t � �⇤

⇢(xt)k
2] + �2(M

1
2 `2f + ⇢)2 (B.25)

where the last inequality holds because g(�⇤
⇢(xt);rFS(xt), ⇢) = min�2�M g(�;rFS(xt), ⇢),

and k(rFzt,1(xt)
>
rFzt,2(xt) + ⇢I)�tk  M

1
2 `2f + ⇢.

Then EA[k�t � �⇤
⇢(xt)k

2] can be further bounded by

EA[k�t � �⇤

⇢(xt)k
2] EA[k�t � �⇤

⇢(xt�1)k
2] + EA(k�t � �⇤

⇢(xt)k
2
� k�t � �⇤

⇢(xt�1)k
2)

EAk�t � �⇤

⇢(xt�1)k
2 + 4EAk�

⇤

⇢(xt)� �⇤

⇢(xt�1)k (B.26)

where k�⇤
⇢(xt)� �⇤

⇢(xt�1)k, by Lemma B.3, can be bounded by

k�⇤

⇢(xt)� �⇤

⇢(xt�1)k ⇢�1
krFS(xt�1) +rFS(xt)kkrFS(xt�1)�rFS(xt)k

⇢�1`F,1krFS(xt�1) +rFS(xt)kkxt�1 � xtk

2⇢�1↵`F,1krFS(xt�1) +rFS(xt)kkrFZt�tk  2⇢�1↵`F,1`F `f
(B.27)

where the last inequality follows from either: 1) Assumptions 1, 3; or 2) Assumptions 1, 2,
with `f and `F defined in Lemma 3.1.
Combining (B.25), (B.26) and (B.27) gives

EA[k�t+1 � �⇤

⇢(xt)k
2] (1� ⇢�)EA[k�t � �⇤

⇢(xt�1)k
2] + �2(M

1
2 `2f + ⇢)2 + 8⇢�1↵M`f,1`

2
f .
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Applying the above inequality recursively yields

EA[k�T+1 � �⇤

⇢(xT )k
2] (1� ⇢�)TEA[k�1 � �⇤

⇢(x0)k
2] + ⇢�1�(M

1
2 `2f + ⇢)2 + 8⇢�2��1↵M`f,1`

2
f

4(1� ⇢�)T + ⇢�1�(M
1
2 `2f + ⇢)2 + 8⇢�2��1↵M`f,1`

2
f .

The proof is complete.

B.4 Proof of Theorem 4.2 – CA direction distances of SMG and MoCo

Proof. [Theorem 4.2] As a direct consequence of Lemma 4.1 by plugging in Q0 = rFS(x),
given x 2 Rd and Q 2 Rd⇥M , define �⇤(x) 2 argmin�2�M krFS(x)�k2, and �⇤

Q 2

argmin�2�M kQ�k2, then it holds that

krFS(x)�
⇤(x)�Q�⇤

Qk
2
 4max

n
sup

�2�M

kQ�k, sup
�2�M

krFS(x)�k
o
· kQ�rFS(x)k.

(B.28)

If max{sup�2�M kQ�k, sup�2�M krFS(x)�k}  `f , then the CA direction distance can be
further bounded by

krFS(x)�
⇤(x)� EA[Q�⇤

Q]k
2
 EA[krFS(x)�

⇤(x)�Q�⇤

Qk
2]

(B.28)
 4`fEA[kQ�rFS(x)k].

(B.29)

For the SMG algorithm, plugging in Q = rFZ(x), with Z denoting a subset or mini-batch
randomly sampled from S. Then it holds that

krFS(x)�
⇤(x)� EA[rFZ(x)�

⇤

rFZ(x)]k
2
 4`fEA[krFZ(x)� EA[rFZ(x)]k] = O

�
1/
p

|Z|
�
.

(B.30)

This suggests when the size |Z| increases, EZ [krFZ(x)�rFS(x)k] decreases, then the upper
bound of krFS(x)�⇤(x) � EZ [rFZ(x)�⇤

rFZ(x)]k
2 also decreases. This proves the bias to

the CA direction is mitigated by increasing the batch size. With {xt}, {Zt} denoting the
sequence of models and the stochastic mini-batch of data generated by the SMG algorithm,
and |Zt| = O(t), it holds that

1

T

T�1X

t=0

EA[krFS(xt)�
⇤(xt)� EA[rFZt(xt)�

⇤

rFZt (xt)]k
2] = O(T�

1
2 ). (B.31)

Similarly, for the MoCo algorithm, Q = Yt = (1� �t�1)Yt�1 + �t�1rFzt�1(xt�1), denotes
its moving average gradient at iteration t. Let �t = � > 0 be a constant given T , then by
(46) in (Fernando et al., 2023), set ↵ = ⇥(T�

3
4 ), and � = ⇥(T�

1
2 ), we have

1

T

T�1X

t=0

EA[kYt �rFS(xt)k
2] = O(��1T�1 + � + ↵2��2) = O(T�

1
2 ). (B.32)
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This states that 1
T

PT�1
t=0 EA[kYt �rFS(xt)k] is converging, so is the CA direction distance

of MoCo, given by

1

T

T�1X

t=0

EA[krFS(xt)�
⇤(xt)� EA[Yt�

⇤

Yt
]k2] 

1

T

T�1X

t=0

4`fEA[krFS(xt)� EA[Yt]k]


1

T

T�1X

t=0

4`fEA[krFS(xt)� Ytk] 

 
1

T

T�1X

t=0

4`fEA[krFS(xt)� Ytk
2]

! 1
2

= O(T�
1
4 ).

The proof is complete.

Appendix C. Bounding the PS Optimization Error

C.1 Proof of Theorems 3.5 – Optimization of MoDo

Organization of proof. In Lemma C.1, we prove the upper bound of the PS optimization
error in terms of three averages of sequences, S1,T , S3,T , and S4,T . Then we prove the upper
bound of S1,T , S3,T , and S4,T , and thus the PS optimization error either in the NC case
under Assumptions 1, 3 or in the SC case under Assumptions 1, 2. In Lemma C.2, we prove
the last-iterate convergence in the SC case, which can be tighter than Lemma C.1 in the SC
case with � = O(T�

3
2 ). Combining the results leads to Theorem 3.5.

C.1.1 Auxiliary Lemmas

Lemma C.1. Suppose Assumption 1 holds. Consider the sequence {xt}, {�t} generated by
MoDo in unbounded domain for x. Define

S1,T =
1

T

T�1X

t=0

EA[k(rFzt,1(xt)
>
rFzt,2(xt) + ⇢I)�tk

2] (C.1a)

S3,T =
1

T

T�1X

t=0

EA[k(rFzt,1(xt)
>
rFzt,2(xt) + ⇢I)�tkkrFS(xt)

>
rFS(xt)�0k] (C.1b)

S4,T =
1

T

T�1X

t=0

EA[krFZt+1(xt)�t+1k
2]. (C.1c)

Then it holds that

1

T

T�1X

t=0

EA[krFS(xt)�
⇤
t (xt)k

2] 
1

↵T
EA[FS(x0)� FS(xT )]�0 +

1

2
�S1,T + �S3,T +

1

2
↵`f,1S4,T + ⇢.

Proof. By the `f,1-smoothness of FS(x)� for all � 2 �M , we have

FS(xt+1)�� FS(xt)�  hrFS(xt)�, xt+1 � xti+
`f,1
2

kxt+1 � xtk
2

� ↵thrFS(xt)�,rFZt+1(xt)�t+1i+
`f,1
2

↵2
t krFZt+1(xt)�t+1k

2. (C.2)
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Taking expectation over Zt+1 on both sides of the above inequality gives

EZt+1 [FS(xt+1)]�� FS(xt)�  �↵thrFS(xt)�,rFS(xt)�t+1i+
`f,1
2

↵2
tEZt+1 [krFZt+1(xt)�t+1k

2].

(C.3)

By Lemma B.5, (B.7), we have

2�tEAh�t � �, (rFS(xt)
>
rFS(xt) + ⇢I)�ti

EA[k�t � �k2]� EA[k�t+1 � �k2] + �2t EA[k(rFzt,1(xt)
>
rFzt,2(xt) + ⇢I)�tk

2]. (C.4)

Rearranging the above inequality and letting �t = � > 0 gives

� EAh�, (rFS(xt)
>
rFS(xt))�ti  �EAh�t, (rFS(xt)

>
rFS(xt) + ⇢I)�ti+ ⇢EA[�

>�t]

+
1

2�
EA[k�t � �k2 � k�t+1 � �k2] +

1

2
�EA[k(rFzt,1(xt)

>
rFzt,2(xt) + ⇢I)�tk

2]

� EA[krFS(xt)�tk
2] + ⇢EA[�

>�t � k�tk
2] +

1

2�
EA[k�t � �k2 � k�t+1 � �k2]

+
1

2
�EA[k(rFzt,1(xt)

>
rFzt,2(xt) + ⇢I)�tk

2]. (C.5)

Plugging the above inequality into (C.3), and setting ↵t = ↵ > 0, we have

EA[FS(xt+1)�� FS(xt)�]  �↵EAhrFS(xt)�,rFS(xt)�t+1i+
`f,1
2

↵2EA[krFZt+1(xt)�t+1k
2]

� ↵EA[krFS(xt)�tk
2] +

↵

2�
EA[k�t � �k2 � k�t+1 � �k2] + ↵⇢

+ ↵EAhrFS(xt)�,rFS(xt)(�t � �t+1)i+
1

2
↵2`f,1EA[krFZt+1(xt)�t+1k

2]

+
1

2
↵�EA[k(rFzt,1(xt)

>
rFzt,2(xt) + ⇢I)�tk

2]. (C.6)

Taking telescope sum and rearranging yields, for all � 2 �M ,

1

T

T�1X

t=0

EA[krFS(xt)�tk
2] 

1

2�T

T�1X

t=0

EA[k�t � �k2 � k�t+1 � �k2] +
1

↵T

T�1X

t=0

EA[FS(xt)� FS(xt+1)]�

+
1

2T

T�1X

t=0

⇣
�EA[k(rFzt,1(xt)

>
rFzt,2(xt) + ⇢I)�tk

2] + ↵`f,1EA[krFZt+1(xt)�t+1k
2]

+ 2EAhrFS(xt)�,rFS(xt)(�t � �t+1)i
⌘
+ ⇢

⇢+
1

2�T
EA[k�0 � �k2 � k�T � �k2] +

1

↵T
EA[FS(x0)� FS(xT )]�+

1

2
�S1,T + �S3,T +

1

2
↵`f,1S4,T .

(C.7)

Setting � = �0 in the above inequality yields

1

T

T�1X

t=0

EA[krFS(xt)�tk
2] 

1

↵T
EA[FS(x0)� FS(xT )]�0 +

1

2
�S1,T + �S3,T +

1

2
↵`f,1S4,T + ⇢.
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Finally, the results follow from the definition of �⇤
t (xt) that 1

T

PT�1
t=0 EA[krFS(xt)�⇤

t (xt)k
2] 

1
T

PT�1
t=0 EA[krFS(xt)�tk

2].

Lemma C.2. Suppose Assumptions 1, 2 hold, with `f defined in Lemma 3.1. Define cF
such that EA[FS(x0)�0]� infx2Rd EA[FS(x)�0]  cF . Considering {xt} generated by MoDo,
with ↵t = ↵  1/(2`f,1), �t = �, then it holds that

EA

h
min
�2�M

krFS(xT )�k
2
i
=O

⇣
(1� ↵µ)T + ↵+M(�T )2

⌘
.

Proof. By the `f,1-smoothness of FS(x)� for all � 2 �M , we have

FS(xt+1)�� FS(xt)�  hrFS(xt)�, xt+1 � xti+
`f,1
2

kxt+1 � xtk
2

� ↵thrFS(xt)�,rFZt+1(xt)�t+1i+
`f,1
2

↵2
t krFZt+1(xt)�t+1k

2. (C.8)

Taking expectation over Zt+1 on both sides of the above inequality gives
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Let ↵t = ↵ and rearranging the above inequality yields

EZt+1 [FS(xt+1)]�� inf
x

FS(x)�

(1� ↵µ)(FS(xt)�� inf
x

FS(x)�) +
1

2
↵krFS(xt)(�� �t+1)k

2 +
`f,1
2

↵2EZt+1 [krFZt+1(xt)�t+1k
2]

(1� ↵µ)(FS(xt)�� inf
x

FS(x)�) +
1

2
↵krFS(xt)(�� �t+1)k

2 +
1

2
`f,1↵

2`2f

=(1� ↵µ)(FS(xt)�� inf
x

FS(x)�) +
1

2
↵st +

1

2
↵2`f,1`

2
f (C.10)

where we let st = krFS(xt)(�� �t+1)k2. Apply the above inequality recursively, we get
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where let � = �0, then st  (�t`F )2, then
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2
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And by the smoothness of the functions FS(x)�0, it holds that

EA

h
min
�2�M
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2
i
EA[krFS(xT )�0k
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. (C.13)

The proof is complete.

C.1.2 Proof of Theorem 3.5

Proof. [Theorem 3.5] Lemma C.1 states that, under Assumption 1, we have
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1

2
↵`f,1S4,T .

Then we proceed to bound S1,T , S3,T , S4,T . Under either Assumptions 1, 3, or Assumptions 1,
2 with `f , `F defined in Lemma 3.1, we have that for all z 2 S and � 2 �M , krFz(xt)�k  `f ,
and krFz(xt)k  `F . Then S1,T , S3,T , S4,T can be bounded below
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1

T
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S4,T =
1
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which proves that
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Then by 1
T

PT�1
t=0 EA[krFS(xt)�⇤

t (xt)k] 
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1
T

PT�1
t=0 EA[krFS(xt)�⇤

t (xt)k
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⌘ 1

2 from the Jensen’s
inequality and the convexity of the square function, as well as the subadditivity of the square
root function, under either Assumptions 1 and 3 or Assumptions 1 and 2, it holds that
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This proves the first part of Theorem 3.5. And by Lemma C.2, in the SC case, under
Assumptions 1 and 2, it additionally holds that
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Combining (C.16) and (C.17) proves the second part of Theorem 3.5.

C.2 Proof of Theorem 4.3 – Optimization of SMG and MoCo

Proof. [Theorem 4.3] We use the general notation Qt 2 Rd⇥M to represent the gradient
estimate for SMG or MoCo at iteration t. Recall that Qt = rFZt(xt) for SMG update,
and Qt = Yt for MoCo update. We first derive the results with the general Qt which holds
for both SMG and MoCo. Then we derive the bounds for SMG and MoCo separately by
substituting Qt with their actual gradient estimate, i.e., rFZt(xt) or Yt.

By the `f,1-smoothness of FS(x)� for all � 2 �M , we have
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2
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where xt+1 � xt = ↵tdQt , with dQt := Qt�⇤
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2 argmin�2�M kQt�k2. Then,
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The inner product term can be bounded as
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where (a) follows from Lemma B.2, (B.3a), (b) follows from Lemma 4.1. Plugging (C.20)
into (C.19), taking expectations on both sides and rearranging yield
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For all t 2 [T ], plugging in ↵t = ↵, and taking the telescope sum yield

1

T

T�1X

t=0

EA[krFS(xt)�
⇤

t (xt)k
2]

47



Chen, Fernando, Ying and Chen
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For SMG, by increasing the batch size during optimization with |Zt| = O(t), it holds that
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Therefore, for SMG, plugging (C.22) back into (C.21), its PS optimization error is
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where by applying Jensen’s inequality, subadditivity of the square root function, and choosing
↵ = ⇥(T�

1
2 ), it holds that

EA
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Ropt(xt)
i
= Õ(T�

1
8 ).

For MoCo, Qt = Yt = (1 � �t�1)Yt�1 + �t�1rFzt�1(xt�1). Let �t = � > 0 be a constant
given T , then by (46) in (Fernando et al., 2023), we have

1

T

T�1X

t=0

EA[kYt �rFS(xt)k
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where by setting ↵ = ⇥(T�
3
4 ), and � = ⇥(T�

1
2 ), and plugging back into (C.21), we obtain
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The proof is complete.

Appendix D. Implementation Details

Compute. Experiments are done on a machine with GPU NVIDIA RTX A5000. We use
MATLAB R2021a for the synthetic experiments in strongly convex case, and Python 3.8,
CUDA 11.7, Pytorch 1.8.0 for other experiments. Unless otherwise specified, all experiments
are repeated 5 times with average performances and standard deviations reported.
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D.1 Synthetic experiments

D.1.1 Experiments on strongly convex objectives

Below we provide the details of experiments that generate Figure 3. We use the following
synthetic example for the experiments in the strongly convex case. The m-th objective
function with stochastic data sample z is specified as

fz,m(x) =
1

2
b1,mx>Ax� b2,mz>x (D.1)

where b1,m > 0 for all m 2 [M ], and b2,m is another scalar. We set M = 3, b1 =
[b1,1; b1,2; b1,3] = [1; 2; 1], and b2 = [b2,1; b2,2; b2,3] = [1; 3; 2]. The default parameters are
T = 100, ↵ = 0.01, � = 0.001. In other words, in Figure 3a, we fix ↵ = 0.01, � = 0.001,
and vary T ; in Figure 3b, we fix T = 100, � = 0.001, and vary ↵; and in Figure 3c, we fix
T = 100,↵ = 0.01, and vary �.

D.1.2 Experiments on non-convex objectives

The toy example used in Figure 1 is modified from (Liu et al., 2021a) to consider stochastic
data. Denote the model parameter as x = [x1, x2]> 2 R2, stochastic data as z = [z1, z2]> 2 R2

sampled from the standard multi-variate Gaussian distribution. The individual empirical
objectives are defined as:

fz,1(x) = c1(x)h1(x) + c2(x)gz,1(x) and fz,2(x) = c1(x)h2(x) + c2(x)gz,2(x), where
h1(x) = ln(max(|0.5(�x1 � 7)� tanh(�x2)|, 0.000005)) + 6,

h2(x) = ln(max(|0.5(�x1 + 3)� tanh(�x2) + 2|, 0.000005)) + 6,

gz,1(x) = ((�x1 + 3.5)2 + 0.1 ⇤ (�x2 � 1)2)/10� 20� 2 ⇤ z1x1 � 5.5 ⇤ z2x2,

gz,2(x) = ((�x1 � 3.5)2 + 0.1 ⇤ (�x2 � 1)2)/10� 20 + 2 ⇤ z1x1 � 5.5 ⇤ z2x2,

c1(x) = max(tanh(0.5 ⇤ x2), 0) and c2(x) = max(tanh(�0.5 ⇤ x2), 0). (D.2)

The training dataset size is n = 20. For all methods, the number of iterations is T = 50000.
The initialization �0 = [0.5, 0.5]>. Other hyperparameters are summarized in Table 3.

Table 3: Summary of hyper-parameter choices for nonconvex synthetic and MNIST image
classification experiments.

Synthetic MNIST
Static MGDA MoDo Static MGDA MoDo

optimizer of xt Adam Adam Adam SGD SGD SGD
xt step size (↵t) 5⇥ 10�3 5⇥ 10�3 5⇥ 10�3 0.1 5.0 1.0
�t step size (�t) - - 10�4 - - 1.0

batch size 16 full 16 64 64 64

D.1.3 MNIST dataset experiments

Below are the details to generate Figure 4. The model architecture is a two-layer multi-layer
perceptron (MLP). Each hidden layer has a size of 512, and no activation. The input size
is 784, the size of an MNIST image in the vector form, and the output size is 10, the
number of digit classes. The training, validation, and testing data sizes are 50k, 10k, and
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10k, respectively. Hyper-parameters such as step sizes are chosen based on each algorithm’s
validation accuracy performance, as given in Table 3.
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