
Published as a conference paper at ICLR 2023

MITIGATING GRADIENT BIAS IN MULTI-OBJECTIVE
LEARNING: A PROVABLY CONVERGENT APPROACH

Heshan Fernando1, Han Shen1, Miao Liu2, Subhajit Chaudhury2, Keerthiram Murugesan2, Tianyi Chen1

1Rensselaer Polytechnic Institute 2IBM Thomas J. Watson Research Center

ABSTRACT

Machine learning problems with multiple objectives appear either i) in learning
with multiple criteria where learning has to make a trade-off between multiple
performance metrics such as fairness, safety and accuracy; or, ii) in multi-task
learning where multiple tasks are optimized jointly, sharing inductive bias among
them. These multiple-objective learning problems are often tackled by the multi-
objective optimization framework. However, existing stochastic multi-objective
gradient methods and their recent variants (e.g., MGDA, PCGrad, CAGrad, etc.) all
adopt a biased gradient direction, which leads to degraded empirical performance.
To this end, we develop a stochastic multi-objective gradient correction (MoCo)
method for multi-objective optimization. The unique feature of our method is that it
can guarantee convergence without increasing the batch size even in the nonconvex
setting. Simulations on supervised and reinforcement learning demonstrate the
effectiveness of our method relative to state-of-the-art methods.

1 INTRODUCTION

Multi-objective optimization (MOO) involves optimizing multiple, potentially conflicting objectives
simultaneously. Recently, MOO has gained attention in various application settings such as optimizing
hydrocarbon production (You et al., 2020), tissue engineering (Shi et al., 2019), safe reinforcement
learning (Thomas et al., 2021), and training neural networks for multiple tasks (Sener & Koltun,
2018). We consider the stochastic MOO problem as

min
x2X

F (x) := (E⇠[f1(x, ⇠)],E⇠[f2(x, ⇠)], . . . ,E⇠[fM (x, ⇠)]) (1)

where X ✓ Rd is the feasible set, and fm : X 7! R with fm(x) := E⇠[fm(x, ⇠)] for m 2 [M]. Here
we denote [M] := {1, 2, . . . ,M} and denote ⇠ as a random variable. In this setting, we are interested
in optimizing all of the objective functions simultaneously without sacrificing any individual objective.
Since we cannot always hope to find a common variable x that achieves optima for all functions
simultaneously, a natural solution instead is to find the so-termed Pareto stationary point x that
cannot be further improved for all objectives without sacrificing some objectives. In this context, a
multiple gradient descent algorithm (MGDA) has been developed for achieving this goal (Désidéri,
2012). The idea of MGDA is to iteratively update the variable x via a common descent direction for
all the objectives through a time-varying convex combination of gradients from individual objectives.
Recently, various MGDA-based MOO algorithms have been proposed, especially for multi-task
learning (MTL) (Sener & Koltun, 2018; Chen et al., 2018; Yu et al., 2020a; Liu et al., 2021a).

While the deterministic MGDA algorithm and its variants are well understood in literature, only little
theoretical study has been taken on its stochastic counterpart. Recently, (Liu & Vicente, 2021) has
introduced the stochastic multi-gradient (SMG) method as a stochastic counterpart of MGDA (see
Section 2.3 for details). To establish convergence, however, (Liu & Vicente, 2021) requires a strong
assumption on the fast decaying first moment of the gradient, which was enforced by linearly growing
the batch size. While this allows for analysis of multi-objective optimization in stochastic setting,
this may not be true for many MTL tasks in practice. Furthermore, the analysis in (Liu & Vicente,

The work was supported by the National Science Foundation CAREER project 2047177 and the RPI-IBM
Artificial Intelligence Research Collaboration. Correspondence to: Tianyi Chen (chentianyi19@gmail.com).

1

mailto:chentianyi19@gmail.com

Published as a conference paper at ICLR 2023

(a) Mean objective (b) Objective 1 (c) Objective 2

(d) MGDA (e) SMG (f) PCGrad (g) CAGrad (h) MoCo (ours)

Figure 1: A toy example from (Liu et al., 2021a) with two objective (Figures 1b and 1c) to show
the impact of gradient bias. We use the mean objective as a reference when plotting the trajectories
corresponding to each initialization (3 initializations in total). The starting points of the trajectories
are denoted by a black •, and the trajectories are shown fading from red (start) to yellow (end).
The Pareto front is given by the gray bar, and the black ? denotes the point in the Pareto front
corresponding to equal weights to each objective. We implement recent MOO algorithms such as
SMG (Liu & Vicente, 2021), PCGrad (Yu et al., 2020a), and CAGrad (Liu et al., 2021a), and MGDA
(Désidéri, 2012) alongside our method. Except for MGDA (Figure 1d) all the other algorithms only
have access to gradients of each objective with added zero mean Gaussian noise. It can be observed
that SMG, CAGrad, and PCGrad fail to find the Pareto front in some initializations.

2021) cannot cover the important setting with non-convex multiple objectives, which is prevalent in
challenging MTL tasks. This leads us to a natural question:

Can we design a stochastic MOO algorithm that provably converges to a Pareto stationary point
without growing batch size and also in the nonconvex setting?

Our contributions. In this paper, we answer this question affirmatively by providing the first
stochastic MOO algorithm that provably converges to a Pareto stationary point without growing batch
size. Specifically, we make the following major contributions:

C1) (Asymptotically unbiased multi-gradient). We introduce a new method for MOO that we
call the stochastic Multi-objective gradient with Correction (MoCo) method. MoCo is a
simple algorithm that addresses the convergence issues of stochastic MGDA and provably
converges to a Pareto stationary point under several stochastic MOO settings. We use
a toy example in Figure 1 to demonstrate the empirical benefit of our method. In this
example, MoCo is able to reach the Pareto front from all initializations, while other MOO
algorithms such as SMG, CAGrad, and PCGrad fail to find the Pareto front due to using
biased multi-gradient.

C2) (Unified non-asymptotic analysis). We generalize our MoCo method to the case where the
individual objective function has a nested structure and thus obtaining unbiased stochastic
gradients is costly. We provide a unified convergence analysis of the nested MoCo algorithm
in smooth non-convex and convex stochastic MOO settings. To our best knowledge, this is
the first analysis of smooth non-convex stochastic gradient-based MOO.

C3) (Experiments on MTL applications). We provide an empirical evaluation of our method
with existing state-of-the-art MTL algorithms in supervised learning and reinforcement
learning (RL) settings, and show that our method can outperform prior methods such as
stochastic MGDA, PCGrad, CAGrad, and GradDrop.

2 BACKGROUND

In this section, we introduce the concepts of Pareto optimality and Pareto stationarity and then discuss
MGDA and its existing stochastic counterpart. We then motivate our proposed method by elaborating
the challenge in stochastic MOO. The notations used in the paper are summarized in Appendix A.

2

Published as a conference paper at ICLR 2023

2.1 PARETO OPTIMALITY AND PARETO STATIONARITY

In MOO, we are interested in finding the points which can not be improved simultaneously for all the
objective functions, leading to the notion of Pareto optimality. Consider two feasible solutions to (1)
x, x

0
2 X . We say that x dominates x0 if fm(x)  fm(x0) for all m 2 [M], and F (x) 6= F (x0). If a

point x⇤
2 X is not dominated by any x 2 X , we say x

⇤ is Pareto optimal. The collection of all the
Pareto optimal points are called as the Pareto set. The collection of vector objective values F (x⇤) for
all the Pareto optimal x⇤ is called as the Pareto front.

Akin to the single objective case, a necessary condition for Pareto optimality is Pareto stationarity. If
x is a Pareto stationary point, then there is no common descent direction for all fm(x) at x. Formally,
x is a called a Pareto stationary point if range(rF (x)>) \ (�RM

++) = ; where rF (x) 2 Rd⇥M

is the Jacobian of F (x), i.e. rF (x) := (rf1(x),rf2(x), . . . ,rfM (x)), and RM

++ is the positive
orthant cone. When all fm(x) are strongly convex, a Pareto stationary point is also Pareto optimal.

2.2 MULTIPLE GRADIENT DESCENT ALGORITHM (MGDA)
The MGDA algorithm has been proposed in (Désidéri, 2012) that can converge to a Pareto stationary
point of F (x). MGDA achieves this by seeking a convex combination of individual gradients
rfm(x) (also known as the multi-gradient), given by d(x) =

P
M

m=1 �
⇤
m
(x)rfm(x) where the

weights �⇤(x) := (�⇤
1(x), ...,�

⇤
M
(x))> are found by solving the following sub-problem:

�
⇤(x) = argmin

�

krF (x)�k2 s. t. � 2 �M := {� 2 RM
| 1>

� = 1, � � 0}. (2)

With this multi-gradient d(x), the kth iteration of MGDA is given by

xk+1 = ⇧X (xk � ↵kd(xk)) with d(xk) =
MX

m=1

�
⇤
m
(xk)rfm(xk) (3)

where ↵k is the learning rate, and ⇧X denotes the projection to set X . It can be shown that MGDA
optimizes all objectives simultaneously following the direction �d(x) whenever x is not a Pareto
stationary point and will terminate once it reaches a Pareto stationary point (Fliege et al., 2019).

However, in many real world applications we either do not have access to the true gradient of functions
fm or obtaining the true gradients is prohibitively expensive in terms of computation. This leads us
to a possible stochastic counterpart of MGDA, which is discussed next.

2.3 STOCHASTIC MULTI-OBJECTIVE GRADIENT AND ITS BRITTLENESS

The stochastic counterpart of MGDA, referred to as SMG algorithm, has been studied in (Liu
& Vicente, 2021). In SMG algorithm, the stochastic multi-gradient is obtained by replacing the
true gradients rfm(x) in (2) with their stochastic approximations rfm(x, ⇠), where rfm(x) =
E⇠ [rfm(x, ⇠)]. Specifically, the stochastic multi-gradient is given by

g(x, ⇠) =
MX

m=1

�
g

m
(x, ⇠)rfm(x, ⇠) with �

g(x, ⇠) = arg min
�2�M

�����

MX

m=1

�mrfm(x, ⇠)

�����

2

. (4)

While this change of the subproblem facilitates use of stochastic gradients in place of deterministic
gradients, it raise issues in the biasedness in the stochastic multi-gradient calculated in this method.

The bias of SMG. To better understand the cause of this bias, consider the case M = 2 of
(4) for simplicity. We can rewrite the problem for solving for convex combination weights as
arg min

�2[0,1]
k�rf1(x, ⇠) + (1� �)rf2(x, ⇠)k

2, which admits the closed-form solution for � as

�
g(x, ⇠) =

"
(rf2(x, ⇠)�rf1(x, ⇠))

>
rf2(x, ⇠)

krf1(x, ⇠)�rf2(x, ⇠)k
2

#

+,1|

(5)

where [x]+,1| = max(min(x, 1), 0). It can be seen that the solution for � is non-linear in rf1(x, ⇠)
and rf2(x, ⇠), which suggests that E[�g(x, ⇠)] 6= �

⇤(x) and thus E[g(x, ⇠)] 6= d(x).

To ensure convergence, a recent approach proposed to replace the stochastic gradient rfm(x, ⇠) with
its mini-batch version with the batch size growing with the number of iterations (Liu & Vicente,

3

Published as a conference paper at ICLR 2023

Algorithm 1 MoCo: Stochastic Multi-objective gradient with Correction

1: Input Initial model parameter x0, tracking parameters {y0,i}Mm=1, convex combination coefficient
parameter �0, and their respective learning rates {↵k}

K

k=0, and {�k}
K

k=0, {�k}Kk=0.
2: for k = 0, . . . ,K � 1 do
3: for objective m = 1, . . . ,M do
4: Obtain gradient estimator hm,k . either hm,k = rfm(xk, ⇠k) or hm,k in (13)-(14)
5: Update yk+1,m following (6)
6: end for
7: Update �k+1 and xk+1 following (9)-(10)
8: end for
9: Output xK

2021). However, this may not be desirable in practice and often leads to sample inefficiency. In multi-
objective reinforcement learning settings, this means running increasingly many number of roll-outs
for policy gradient calculation, which may be infeasible. On the other hand, Yang et al. (2021) also
analyzes MGDA in the stochastic, smooth, and non-convex setting, and establishes convergence.
However, to overcome the bias issue in stochastic MGDA, Yang et al. (2021) assumes having access
to �

⇤(x), which allows access to an unbiased estimate of the true multi-gradient d(x). However, this
assumption is not practical since computing �

⇤(x) requires access to true gradients rfm(x), which
may not be true in a stochastic setting. In contrast, in the following section we propose a method that
reduces the bias in multi-gradient asymptotically and enjoys provable convergence.

3 STOCHASTIC MULTI-OBJECTIVE GRADIENT DESCENT WITH CORRECTION

In this section, we will first propose a new stochastic update that addresses the biased multi-gradient
in MOO, extend it to the nested MOO setting, and then establish its convergence result. To achieve
this, we use a momentum-like gradient estimate and a regularized version of MGDA subproblem.

3.1 A BASIC ALGORITHMIC FRAMEWORK

We start by discussing how to obtain rfm(x) without incurring the bias issue. The key idea is to
approximate true gradients of each objective using a ‘tracking variable’, and use these approximations
in finding optimal convex combination coefficients, similar to MGDA and SMG. At each iteration
k, assuming we have access to hk,m which is a stochastic estimator of rfm(xk) (e.g., hk,m =
rfm(xk, ⇠k)). We obtain rfm(xk) by iteratively updating the ‘tracking’ variable yk,m 2 Rd by

yk+1,m = ⇧Lm

⇣
yk,m � �k

�
yk,m � hk,m

�⌘
, m = 1, 2, · · · ,M, (6)

where �k is the step size and ⇧Lm denotes the projection to set {y 2 Rd
| kyk  Lm}, and Lm is

the Lipschitz constant of fm on X .

Under some assumptions on the stochastic gradients hk,m that will be specified in Section 3.3, we
can show that for a given xk, the recursion in (6) admits a unique fixed-point y⇤

m
(xk) that satisfies

y
⇤
m
(xk) = E[hk,m] = rfm(xk). (7)

In this subsection we will first assume that hk,m is an unbiased estimator of rfm(xk), and will
generalize to the biased estimator in the next subsection. In this case, with only one sample needed at
each iteration, the distance between ym,k and rfm(xk) is expected to diminish as k increases.

Even with an accurate estimate of rfm(x), solving (1) is still not easy since these gradients could
conflict with each other. As described in Section 2.2, given x 2 X , the MGDA algorithm finds
the optimal scalars, denoted as {�

⇤
m
(x)}M

m=1, to scale each gradient rfm(x) such that d(x) =P
M

m=1 �
⇤
m
(x)rfm(x), and �d(x) is a common descent direction for every fm(x). For obtaining

the corresponding convex combinations when we do not have access to the true gradient, we propose
to use Yk := (yk,1, ..., yk,M) 2 Rd⇥M as an approximation of rF (xk). In general, the solution for
(2) is not necessarily unique. We overcome this issue by adding `2 regularization. Specifically, with
⇢ > 0 denoting the regularization constant, the new subproblem is given by

�
⇤
⇢
(x) = argmin

�

krF (x)�k2 +
⇢

2
k�k

2 s. t. � 2 �M := {� 2 RM
| 1>

� = 1, � � 0}. (8)

4

Published as a conference paper at ICLR 2023

Remark 1 (On the Lipschitz continuity of �⇤
⇢
(x)). Since (2) and (4) depend on x, the subproblems

change at each iteration. To analyze the convergence of the algorithm, it is important to quantify
the change of solutions �⇤(x) and �

g(x, ⇠) at different x. One natural way is to assume the afore-
mentioned solutions are Lipschitz continuous in rF (x); see (Liu & Vicente, 2021). However, this
condition does not hold in general since rF (x) is not positive definite at least at Pareto stationary
points, and thus the solutions to (2) and (4) are not unique. We overcome this issue by adding the
regularization ⇢ to ensure uniqueness of the solution and the Lipschitz continuity of �⇤

⇢
(x) in x.

With this regularized reformulation, we find �
⇤
⇢
(x) by running stochastic projected gradient descent

of (8), given by

�k+1 = ⇧�M

�
�k � �k

�
Y

>
k
Yk + ⇢I

�
�k

�
, (9)

where �k is the step size, I 2 RM⇥M is the identity matrix, and operator ⇧�M denotes the projection
to the probability simplex �M . With �k as an approximation of �⇤

⇢
(xk) and Yk as an approximation

of rF (xk), we then update xk with

xk+1 = ⇧X (xk � ↵kYk�k), (10)
where X is a closed convex set. We have summarized the basic MoCo algorithm in Algorithm 1.

3.2 GENERALIZATION TO NESTED MOO SETTING

In this section we extend MoCo to the bi-level MOO setting. Recall, in the previous section, we
have introduced the gradient estimator hk,m. In the simple case where rfm(x, ⇠) is obtained, setting
hk,m = rfm(xk, ⇠k) leads to the exact solution y

⇤
m
(xk) = rfm(xk). However, in some practical

applications as shown in Section 5.2, rfm(x, ⇠) is difficult to obtain, and hence hk,m can be biased.

To put this on concrete ground, we first consider the following nested multi-objective problem:

min
x2X

F (x) := (E⇠[f1(x, z
⇤
1(x), ⇠)],E⇠[f2(x, z

⇤
2(x), ⇠)], . . . ,E⇠[fM (x, z⇤

M
(x), ⇠)])

s.t. z
⇤
m
(x) := arg min

z2Rd
lm(x, z) := E'[lm(x, z,')], m = 1, 2, · · · ,M (11)

where lm is a strongly-convex function, and ' is a random variable. For convenience, we define
fm(x, z) := E⇠[fm(x, z, ⇠)] and fm(x) := fm(x, z⇤

m
(x)). The problem (11) is a generalization of

the popular bilevel optimization framework Ghadimi & Wang (2018); Hong et al. (2020); Liu et al.
(2020); Ji et al. (2021); Chen et al. (2021; 2022).

Under some conditions that will be specified later, it has been shown in (Ghadimi & Wang, 2018)
that the gradient of fm(x) takes the following form:

rfm(x) = rxfm(x, z⇤
m
(x))�r

2
xz
lm(x, z⇤

m
(x))[r2

zz
lm(x, z⇤

m
(x))]�1

rzfm(x, z⇤
m
(x)) (12)

where rxf(x, z⇤m(x)) = @f(x,z)
@x

|z=z⇤
m(x), r2

xz
l(x, z⇤

m
(x)) = @l(x,z)

@x@z
|z=z⇤

m(x) and likewise for
rzf(x, z⇤m(x)) and r

2
zz
l(x, z⇤

m
(x)). Computing the unbiased stochastic estimate of (12) requires

z
⇤
m
(x), which is often costly in practice. Instead, we iteratively update zk,m to approach z

⇤
m
(xk) via

zk+1,m = zk,m � �krzlm(xk, zk,m,'k). (13)
Then we use zk,m to replace z

⇤
m
(xk) in the place of (12) to compute a biased gradient estimator as

hk,m = rxfm(xk, zk,m, ⇠k)�r
2
xz
lm(xk, zk,m,'

0
k
)Hzz

k,m
rzfm(xk, zk,m, ⇠k) (14)

where 'k, '0
k

have the same distribution as that of ', and H
zz

k,m
is a stochastic approximation of the

Hessian inverse [r2
zz
lm(xk, zk,m)]�1. Given xk, when zk,m reaches the optimal solution z

⇤
m
(xk), it

follows from (12) that E[hk,m] = rfm(xk). We summarize the algorithm for MoCo with inexact
gradient in Algorithm 2 (see Appendix D). When zk,m is non-optimal, we quantify the error below.
Lemma 1. Define Fk as the �-algebra generated by Y1, Y2, ..., Yk. Consider the sequences generated
by (6), (9), (10), (13) and (14). Under certain standard assumptions that will be specified in the
supplementary, we have for any m 2 [M] and for any k that

1

K

KX

k=1

E
⇥
kE[hk,m|Fk]�rfm(xk)k

2
⇤
= O

⇣
↵
2
K

�
2
K

⌘
, E

⇥
khk,m � E [hk,m|Fk] k

2
|Fk

⇤
 �

2
0 (15)

where E[·] is the total expectation, ↵K ,�K are the learning rates, and �0 > 0 is a constant.

5

Published as a conference paper at ICLR 2023

Lemma 1 shows that the average bias of the gradient estimator will diminish if ↵k and �k are chosen
properly. In addition, the variance of the estimator is also bounded by a constant. Allowing biased
gradient in this manner facilitates MoCo to tackle more challenging MTL tasks as highlighted below.
Remark 2 (Connection between nested MOO with multi-objective actor-critic). Choosing each fm

in (11) to be the infinite-horizon accumulated reward and each lm to be the critic objective function
will lead to the popular actor-critic algorithm in reinforcement learning (Konda & Borkar, 1999;
Wen et al., 2021). In this work, we have extended this to the multi-objective case, and conducted
experiments on multi-objective soft actor critic in Appendix K.3.

3.3 A UNIFIED CONVERGENCE RESULT

In this section we provide the convergence analysis for our proposed method. First, we make
following assumptions on the objective functions.
Assumption 1. For m 2 [M]: fm(x) is Lipschitz continuous with modulus Lm and rfm(x) is
Lipschitz continuous with modulus Lm,1, for any x 2 X .

Due to the x update in (10), the optimal solution for yk,m and �k sequences are changing at each
iteration, and the change scales with kxk+1 �xkk. In order to guarantee the convergence of yk,m and
�k, the change in optimal solution needs to be controlled. The first half of Assumption 1 ensures that
rf(x) is uniformly bounded, that is, kxk+1 �xkk is upper bounded and thus controlled. The second
half of the assumption is standard in establishing the convergence of non-convex functions (Bottou
et al., 2018). Next, we make an alternative version of Assumption 1 for analysis in the convex setting.
Assumption 2. Function fm(x) is convex for any m 2 [M] and the feasible set X is bounded.

Notice when X is bounded, then there exists a constant Cx such that kx�x
0
k  Cx for any x, x

0
2 X .

This assumption controls kxk+1 � xkk when the objective functions are convex. Next, to unify the
analysis of the nested MOO in Section 3.2 and the basic MOO in Section 3.1, we make the following
assumption on the quality of the gradient estimator hk,m.

Assumption 3. For any m 2 [M], there exist constants cm,�m such that 1
K

P
K

k=1 EkE[hk,m|Fk]�
rfm(xk)k2  cm↵

2
K
/�

2
K

and E[khk,m�E[hk,m|Fk]k2|Fk]�
2
m

for any k.

Assumption 3 requires the stochastic gradient hk,m almost unbiased and has bounded variance.
Compared to (Liu & Vicente, 2021, Assumption 5.2), Assumption 3 is weaker, because i) it does not
require the variance �

2
m

to decrease in the same speed as ↵2
k
; and ii) it allows bias in the stochastic

gradient of each objective function. In practice, the batch size is often fixed, and thus the variance is
non-decreasing, which suggests one benefit of Assumption 3 over that in (Liu & Vicente, 2021).
Lemma 2. Consider the sequences generated by Algorithm 1. Assume that K � M such that
K = O(M10). Then, under Assumptions 1 and 3, or Assumptions 2 and 3, if we choose step sizes
↵k = ⇥(K� 9

10), �k = ⇥(K� 1
2), �k = ⇥(K� 2

5), and ⇢ = ⇥(K� 1
5), it holds that

1

K

KX

k=1

E
⇥
kd(xk)� Yk�kk

2
⇤
= O(K� 1

5). (16)

With suitable choice of ⇢, as �k and Yk converge to �
⇤
⇢
(xk) and rF (xk) respectively, the update

direction Yk�k for xk converges to d(xk) = rF (xk)�⇤(xk), which is the desired MGDA direction.
It can be seen that our method achieves vanishingly small expected error in stochastic multi-gradient
asymptotically for all trajectories, while SMG fails to reduce the error in multi-gradient.

The following theorem then captures the convergence of xk under convex objective functions.
Theorem 1. Consider the sequences generated by Algorithm 1. Under Assumptions 2 and 3, if we
choose ↵k = ⇥(K� 9

10), �k = ⇥(K� 1
2), �k = ⇥(K� 2

5), and ⇢ = ⇥(K� 1
5), it holds 8x⇤

2 X that

1

K

KX

k=1

E[�⇤(xk) · (F (xk)� F (x⇤))] = O

⇣
K

� 1
10

⌘
. (17)

If we choose x
⇤ as the Pareto-optimal point and �

⇤(xk)>0, Theorem 1 captures the convergence to
the Pareto-optimal objective values.

6

Published as a conference paper at ICLR 2023

(a) MGDA (b) SMG (c) PCGrad (d) CAGrad (e) MoCo (ours)

Figure 2: Comparison of trajectories in the objective space. We use five initializations in the same toy
example in Figure 1, and plot the optimization trajectory in the objective space. MGDA converges to
the Pareto front from all of the initializations. SMG, PCGrad, and CAGrad which only have access to
single stochastic gradient per objective fail to converge to the Pareto front in some initializations. Our
MoCo follows a similar trajectory to that of MGDA, and finds the Pareto front for each initialization.

In many practical problems the objective functions are non-convex, and the following theorem
establishes the convergence of the proposed method for non-convex functions.
Theorem 2. Consider the sequences generated by Algorithm 1 with X = Rd. Under Assumptions 1
and 3, if we choose ↵k = ⇥(K� 9

10), �k = ⇥(K� 1
2), �k = ⇥(K� 2

5), and ⇢ = ⇥(K� 1
5), it holds

1

K

KX

k=1

E
⇥
krF (xk)�

⇤(xk)k
2
⇤
= O

⇣
K

� 1
10

⌘
. (18)

Theorem 2 shows that the MGDA direction rF (xk)�⇤(xk) converges to 0, which indicates that the
proposed method is able to achieve Pareto-stationarity. It is the first finite-time convergence guarantee
for the stochastic MGDA method under non-convex objective functions.
Theorem 3. Consider the sequences generated by Algorithm 1 with X = Rd. Furthermore assume
there exists a constant F > 0 such that for all k 2 [K], kF (xk)k  F . Then, under Assumptions 1
and 3, if we choose ↵k = ⇥(K� 3

5), �k = ⇥(K� 2
5), �k = ⇥(K�1), and ⇢ = 0, it holds that

1

K

KX

k=1

E
⇥
krF (xk)�

⇤(xk)k
2
⇤
= O

⇣
MK

� 2
5

⌘
. (19)

Theorem 3 shows Algorithm 1 will converge to a Pareto stationary point with an improved convergence
rate, if the sequence of functions F (x1), F (x2), . . . , F (xk) are bounded.
Remark 3 (Comparison with SMG). Theorems 1 and 2 provide the convergence rates of MoCo under
Assumptions 1–3 and Assumptions 1 and 3, respectively. Compared to the convergence analysis of
SMG in (Liu & Vicente, 2021), the convergence rates in Theorems 1 and 2 are derived under small
batch size, without the unjustified assumption on the Lipschitz continuity of �⇤(x) and additionally
account for the non-convex MOO setting. This may not be true unless rF (x) is full rank which
can not be true at Pareto stationary points. We overcome this problem by adding a properly chosen
regularization to the problem. We also provide an improved sample/iteration complexity with Theorem
3 under some additional assumptions on F (xk). Furthermore, we provide an improvement over
Theorem 3 with a modified assumption on the stochastic gradient bias in Appendix J.

4 RELATED WORK

To put our work in context, we review prior art that we group in the following two categories.

Multi-task learning. MTL algorithms find a common model that can solve multiple possibly related
tasks. MTL has shown great success in many fields such as natural language processing, computer
vision and robotics (Hashimoto et al., 2016), (Ruder, 2017), (Zhang & Yang, 2021), (Vandenhende
et al., 2021). One line of research involves designing machine learning models that facilitate MTL,
such as architectures with task specific modules (Misra et al., 2016), with attention based mechanisms
(Rosenbaum et al., 2017), (Yang et al., 2020), or with different path activation corresponding to
different tasks. Our method is model agnostic, and thus can be applied to these methods in a
complementary manner. Another line of work focuses on decomposing a problem into multiple local

7

Published as a conference paper at ICLR 2023

Method
Segmentation (Higher Better) Depth (Lower Better)

�m% #mIoU Pix Acc Abs Err Rel Err

Independent 74.01 93.16 0.0125 27.77 -
Cross-Stitch (Misra et al., 2016) 73.08 92.79 0.0165 118.5 90.02

MTAN (Liu et al., 2019) 75.18 93.49 0.0155 46.77 22.60
MGDA (Sener & Koltun, 2018) 68.84 91.54 0.0309 33.50 44.14

PCGrad (Yu et al., 2020a) 75.13 93.48 0.0154 42.07 18.29
GradDrop (Chen et al., 2020) 75.27 93.53 0.0157 47.54 23.73
CAGrad (Liu et al., 2021a) 75.16 93.48 0.0141 37.60 11.64

MoCo (ours) 75.42 93.55 0.0149 34.19 9.90

Table 1: Multi-task supervised learning on CityScape dataset with the 7-class semantic segmentation
and depth estimation results. Results are averaged over 3 independent runs. CAGrad, PCGrad,
GradDrop and our method are applied on the MTAN backbone.

tasks and learn these tasks using smaller models (Rusu et al., 2015),(Parisotto et al., 2015), (Teh et al.,
2017), (Ghosh et al., 2017). These models are then aggregated into a single model using knowledge
distillation (Hinton et al., 2015). Our method does not require multiple models in learning, and focus
on learning different tasks simultaneously using a single model.

Gradient-based MOO. This line of work involves optimizing multiple objectives simultaneously
using gradient manipulations. A foundational algorithm in this regard is MGDA(Désidéri, 2012),
which dynamically combine gradients to find a common descent direction for all objectives. A
comprehensive convergence analysis for the deterministic MGDA algorithm has been provided
in (Fliege et al., 2019). Recently, (Liu & Vicente, 2021) extends this analysis to the stochastic
counterpart of multi-gradient descent algorithm, for smooth convex and strongly convex functions.
However, this work makes strong assumptions on the bias of the stochastic gradient and does not
consider the nested MOO setting that is central to the multi-task reinforcement learning. In Yang et al.
(2021), the authors establish convergence of stochastic MGDA under the assumption of access to true
convex combination coefficients, which may not be true in a practical stochastic optimization setting.
Another related line of work considers the optimization challenges related to MTL, considering task
losses as objectives. One common approach is to find gradients for balancing learning of different
tasks. The simplest way is to re-weight per task losses based on a specific criteria such as uncertainty
(Kendall et al., 2017), gradient norms (Chen et al., 2018) or task difficulty (Guo et al., 2018). These
methods are often heuristics and may be unstable. More recent work (Sener & Koltun, 2018), (Yu
et al., 2020a), (Liu et al., 2021a), (Gu et al., 2021) introduce gradient aggregation methods which
mitigate conflict among tasks while preserving utility. In (Sener & Koltun, 2018), MTL has been
first tackled through the lens of MOO techniques using MGDA. In (Yu et al., 2020a), a new method
called PCGrad has been developed to amend gradient magnitude and direction in order to avoid
conflicts among per task gradients. In (Liu et al., 2021a), an algorithm similar to MGDA, named
CAGrad, has been developed, which uniquely minimizes the average task loss. In (Liu et al., 2021b),
an impartial objective gradient modification mechanism has been studied. Concurrent to our work,
a Nash bargaining solution has been proposed in (Navon et al., 2022) for weighting per objective
gradients. All the aforementioned works on MTL use the deterministic objective gradient for analysis
(if any), albeit the accompanying empirical evaluations are done in a stochastic setting. There are
also gradient-based MOO algorithms that find a set of Pareto optimal points for a given problem
rather than one. To this end, works such as (Liu et al., 2021c; Liu & Vicente, 2021; Lin et al., 2019;
Mahapatra & Rajan, 2021; Navon et al., 2020; Lin et al., 2022; Kyriakis et al., 2021; Yang et al.,
2021; Zhao et al., 2021; Momma et al., 2022), develop algorithms that find multiple points in the
Pareto front in mutil-task supervised learning or reinforecement learning settings, ensuring some
quality of the obtained set of Pareto points. Our work is orthogonal to this line of research, and can
potentially be combined with those method to achieve better performance.

5 EXPERIMENTS

In this section, first we provide further illustration of our method in comparison with existing gradient-
based MOO algorithms in the toy example introduced in Section 1. Then we provide empirical

8

Published as a conference paper at ICLR 2023

Method
Segmetation Depth Surface Normal

�m% #(Higher Better) (Lower Better) Angle Distance
(Lower Better)

Within t�

(Higher better)
mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

Independent 38.30 63.76 0.6754 0.2780 25.01 19.21 30.14 57.20 69.15 -

Cross-Stitch 37.42 63.51 0.5487 0.2188 28.85 24.52 22.75 46.58 59.56 6.96
MTAN 39.29 65.33 0.5493 0.2263 28.15 23.96 22.09 47.50 61.08 5.59
MGDA 30.47 59.90 0.6070 0.2555 24.88 19.45 29.18 56.88 69.36 1.38
PCGrad 38.06 64.64 0.5550 0.2325 27.41 22.80 23.86 49.83 63.14 3.97

GradDrop 39.39 65.12 0.5455 0.2279 27.48 22.96 23.38 49.44 62.87 3.58
CAGrad 39.79 65.49 0.5486 0.2250 26.31 21.58 25.61 52.36 65.58 0.20

MoCo (ours) 40.30 66.07 0.5575 0.2135 26.67 21.83 25.61 51.78 64.85 0.16

Table 2: Multi-task supervised learning on NYU-v2 dataset with 13-class semantic segmentation,
depth estimation, and surface normal prediction results on NYU-v2 dataset. Results are averaged over
3 independent runs. CAGrad, PCGrad, GradDrop and MoCo are applied on the MTAN backbone.

comparison of our proposed method with the state-of-the-art MTL algorithms, using challenging and
widely used real world MTL benchmarks in supervised and reinforcement learning settings. The
details of hyperparameters are provided in Appendix K.

Toy example. To further elaborate on how MoCo converges to a Pareto stationary point, we again
optimize the two objectives given in Figure 1 and demonstrate the performance in the objective space
(Figure 2). MGDA with true gradients converges to a Pareto stationary point in all initializations.
However, it can be seen that SMG, PCGrad,and CAGrad methods fail to converge to a Pareto
stationary point, and end up in dominated points in the objective space for some initializations. This
is because these algorithms use a biased multi-gradient that does not become zero. In contrast, MoCo
converges to Pareto stationary points in every initialization, and follows a similar trajectory to MGDA.

5.1 SUPERVISED LEARNING

We compare MoCo with existing MTL algorithms using NYU-v2 (Silberman et al., 2012) and
CityScapes (Cordts et al., 2015) datasets. We follow the experiment setup of (Liu et al., 2021a)
and combine our method with MTL method MTAN (Liu et al., 2019), which applies an atten-
tion mechanism. We evaluate our method in comparison to CAGrad, PCGrad, vanilla MTAN
and Cross-Stitch (Misra et al., 2016). Following (Maninis et al., 2019; Liu et al., 2021a; Navon
et al., 2022), we use the per-task performance drop of a metric Sm for method A with respect
to baseline B as a measure of the overall performance of a given method, which is given by
�m= 1

M

P
M

m=1(�1)`m (SA,m � SB,m)/SB,m , where M is the number of tasks, SB,m and SA,m

are the values of metric Sm obtained by the baseline and the compared method respectively. Here,
`m=1 if higher values for Sm are better and 0 otherwise.

The results of the experiments are shown in Table 1 and 2. Our method, MoCo, outperforms all
the existing MTL algorithms in terms of �m% for both Cityscapes and NYU-v2 datasets. Since
our method focuses on gradient correction, our method can also be applied on top of existing
gradient-based MOO methods. Additional experiments regarding this are provided in Appendix K.

5.2 REINFORCEMENT LEARNING

For the multi-task reinforcement learning setting, we use the multi-task reinforcement learning bench-
mark MT10 available in the Met-world environment (Yu et al., 2020b). We follow the experimental
setup used in (Liu et al., 2021a) and provide the empirical comparison between our MoCo method
and the existing baselines. Specifically, we use MTRL codebase (Sodhani & Zhang, 2021) and use
soft actor-critic (SAC) (Haarnoja et al., 2018) as the underlying reinforcement learning algorithm.
Due to space limitation, the experiment results in a multi-task reinforcement learning setting and
details of hyperparameter selection are provided in Appendix K.

9

Published as a conference paper at ICLR 2023

REFERENCES

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional encoder-
decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Machine Intell., 39(12):
2481–2495, 2017.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization Methods for Large-Scale Machine
Learning. SIAM Review, 60(2), 2018.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. Tighter Analysis of Alternating Stochastic Gradient
Method for Stochastic Nested Problems. In Proc. Advances in Neural Info. Process. Syst., virtual,
December 2021.

Tianyi Chen, Yuejiao Sun, Quan Xiao, and Wotao Yin. A single-timescale method for stochastic
bilevel optimization. In Proc. of International Conference on Artificial Intelligence and Statistics,
virtual, 2022.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In Proc. of International
Conference on Machine Learning, virtual, July 2018.

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and
Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign
dropout. In Proc. Advances in Neural Info. Process. Syst., virtual, December 2020.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Scharwächter, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset. In CVPR Workshop
on the Future of Datasets in Vision, Boston, MA, June 2015.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist multiob-
jective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182–197,
2002.

Asen L. Dontchev and R. Tyrrell Rockafellar. Implicit Functions and Solution Mappings. Springer,
2009.

Jean-Antoine Désidéri. Multiple-gradient Descent Algorithm (MGDA) for Multi-objective Optimiza-
tion. Comptes Rendus Mathematique, 350(5-6), 2012.

Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently identifying
task groupings for multi-task learning. Advances in Neural Information Processing Systems, 34,
2021.

Jörg Fliege, A Ismael F Vaz, and Luís Nunes Vicente. Complexity of Gradient Descent for Multi-
objective Optimization. Optimization Methods and Software, 34(5):949–959, 2019.

Saeed Ghadimi and Mengdi Wang. Approximation Methods for Bi-level Programming. arXiv
preprint:1802.02246, 2018.

Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash Kumar, and Sergey Levine. Divide-and-
conquer reinforcement learning. arXiv preprint:1711.09874, 2017.

Daniel Golovin and Qiuyi Zhang. Random hypervolume scalarizations for provable multi-objective
black box optimization. arXiv preprint arXiv:2006.04655, 2020.

Xiang Gu, Xi Yu, Jian Sun, Zongben Xu, et al. Adversarial reweighting for partial domain adaptation.
In Proc. Advances in Neural Info. Process. Syst., virtual, December 2021.

Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic task priori-
tization for multitask learning. In Proceedings of the European conference on computer vision,
Munich, Germany, July 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

10

Published as a conference paper at ICLR 2023

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, and Richard Socher. A Joint Many-task
Model: Growing a Neural Network for Multiple NLP Tasks. arXiv preprint:1611.01587, 2016.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network. arXiv
preprint:1503.02531, 2015.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A Two-Timescale Frame-
work for Bilevel Optimization: Complexity Analysis and Application to Actor-Critic. arXiv
preprint:2007.05170, 2020.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced
design. In Proc. of International Conference on Machine Learning, virtual, 2021.

A Kendall, Y Gal, and R Cipolla. Multi-task learning using uncertainty to weigh losses for scene
geometry and semantics. arXiv preprint:1705.07115, 2017.

Joshua Knowles. Parego: A hybrid algorithm with on-line landscape approximation for expensive
multiobjective optimization problems. IEEE Transactions on Evolutionary Computation, 10(1):
50–66, 2006.

Mina Konakovic Lukovic, Yunsheng Tian, and Wojciech Matusik. Diversity-guided multi-objective
bayesian optimization with batch evaluations. Advances in Neural Information Processing Systems,
33:17708–17720, 2020.

Vijaymohan Konda and Vivek Borkar. Actor-critic-type learning algorithms for markov decision
processes. SIAM Journal on Control and Optimization, 38(1):94–123, 1999.

Jayash Koshal, Angelia Nedić, and Uday V Shanbhag. Multiuser optimization: Distributed algorithms
and error analysis. SIAM Journal on Optimization, 21(3):1046–1081, 2011.

Panagiotis Kyriakis, Jyotirmoy Deshmukh, and Paul Bogdan. Pareto policy adaptation. In Interna-
tional Conference on Learning Representations, 2021.

Baijiong Lin and Yu Zhang. LibMTL: A Python Library for Multi-Task Learning. arXiv
preprint:2203.14338, 2022.

Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, and Sam Kwong. Pareto multi-task learning. In
Proc. Advances in Neural Info. Process. Syst., Vancouver, Canada, December 2019.

Xi Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto set learning for neural multi-objective combinatorial
optimization. arXiv preprint arXiv:2203.15386, 2022.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-Averse Gradient Descent for
Multi-task Learning. In Proc. Advances in Neural Info. Process. Syst., virtual, December 2021a.

Liyang Liu, Yi Li, Zhanghui Kuang, J Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and Wayne
Zhang. Towards impartial multi-task learning. In Proc. of International Conference on Learning
Representations, virtual, May 2021b.

Risheng Liu, Pan Mu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A generic first-order
algorithmic framework for bi-level programming beyond lower-level singleton. In Proc. of
International Conference on Machine Learning, pp. 6305–6315, 2020.

Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention. In
Proc. of IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, June
2019.

Suyun Liu and Luis Nunes Vicente. The Stochastic Multi-gradient Algorithm for Multi-objective
Ooptimization and its Application to Supervised Machine Learning. Annals of Operations Research,
pp. 1–30, 2021.

Xingchao Liu, Xin Tong, and Qiang Liu. Profiling Pareto Front With Multi-Objective Stein Variational
Gradient Descent. In Proc. Advances in Neural Info. Process. Syst., virtual, December 2021c.

11

Published as a conference paper at ICLR 2023

Debabrata Mahapatra and Vaibhav Rajan. Exact pareto optimal search for multi-task learning:
Touring the pareto front. arXiv preprint:2108.00597, 2021.

Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. Attentive single-tasking of multiple
tasks. In Proc. of IEEE Conference on Computer Vision and Pattern Recognition, Long Beach,
CA, June 2019.

Elliot Meyerson and Risto Miikkulainen. The traveling observer model: Multi-task learning through
spatial variable embeddings. arXiv preprint arXiv:2010.02354, 2020.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for
multi-task learning. In Proc. of IEEE Conference on Computer Vision and Pattern Recognition,
Las Vegas, NV, June 2016.

Michinari Momma, Chaosheng Dong, and Jia Liu. A multi-objective/multi-task learning framework
induced by pareto stationarity. In International Conference on Machine Learning, pp. 15895–15907.
PMLR, 2022.

Aviv Navon, Aviv Shamsian, Ethan Fetaya, and Gal Chechik. Learning the pareto front with
hypernetworks. In Proc. of International Conference on Learning Representations, virtual, April
2020.

Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and
Ethan Fetaya. Multi-Task Learning as a Bargaining Game. arXiv preprint:2202.01017, 2022.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. arXiv preprint:1511.06342, 2015.

Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing networks: Adaptive selection of
non-linear functions for multi-task learning. arXiv preprint:1711.01239, 2017.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv
preprint:1706.05098, 2017.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. arXiv preprint:1511.06295, 2015.

Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new
domains. In European conference on computer vision, Crete, Greece, September 2010.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Proc.
Advances in Neural Info. Process. Syst., Montreal, Canada, December 2018.

Jia Shi, Jinchun Song, Bin Song, and Wen F Lu. Multi-objective Optimization Design through
Machine Learning for Drop-on-demand Bioprinting. Engineering, 5(3):586–593, 2019.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support
inference from rgbd images. In European conference on computer vision, Firenze, Italy, October
2012.

Shagun Sodhani and Amy Zhang. Mtrl - multi task rl algorithms. Github, 2021. URL https:
//github.com/facebookresearch/mtrl.

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas
Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. Proc. Advances in
Neural Info. Process. Syst., December 2017.

Philip S Thomas, Joelle Pineau, Romain Laroche, et al. Multi-objective spibb: Seldonian offline
policy improvement with safety constraints in finite mdps. In Proc. Advances in Neural Info.
Process. Syst., virtual, December 2021.

Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai,
and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. IEEE Trans. Pattern
Anal. Machine Intell., 2021.

12

https://github.com/facebookresearch/mtrl
https://github.com/facebookresearch/mtrl

Published as a conference paper at ICLR 2023

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. In Proc. of IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, Hawaii, July 2017.

Haoxiang Wang, Han Zhao, and Bo Li. Bridging multi-task learning and meta-learning: Towards
efficient training and effective adaptation. In International Conference on Machine Learning, pp.
10991–11002. PMLR, 2021.

Junfeng Wen, Saurabh Kumar, Ramki Gummadi, and Dale Schuurmans. Characterizing the gap
between actor-critic and policy gradient. In Proc. of International Conference on Machine Learning,
virtual, July 2021.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
modularization. In Proc. Advances in Neural Info. Process. Syst., virtual, December 2020.

Yijun Yang, Jing Jiang, Tianyi Zhou, Jie Ma, and Yuhui Shi. Pareto policy pool for model-based
offline reinforcement learning. In International Conference on Learning Representations, 2021.

Feiyang Ye, Baijiong Lin, Zhixiong Yue, Pengxin Guo, Qiao Xiao, and Yu Zhang. Multi-objective
meta learning. In Proc. Advances in Neural Info. Process. Syst., virtual, December 2021.

Junyu You, William Ampomah, and Qian Sun. Development and Application of a Machine Learning
Based Multi-objective Optimization Workflow for CO2-EOR Projects. Fuel, 264:116758, 2020.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. In Proc. Advances in Neural Info. Process. Syst., virtual,
December 2020a.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, Virtual, November 2020b.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Trans. Knowledge Data Eng.,
2021.

Yiyang Zhao, Linnan Wang, Kevin Yang, Tianjun Zhang, Tian Guo, and Yuandong Tian. Multi-
objective optimization by learning space partitions. arXiv preprint arXiv:2110.03173, 2021.

Shiji Zhou, Wenpeng Zhang, Jiyan Jiang, Wenliang Zhong, GU Jinjie, and Wenwu Zhu. On the
convergence of stochastic multi-objective gradient manipulation and beyond. In Proc. Advances in
Neural Info. Process. Syst., New Orleans, December 2022.

13

Published as a conference paper at ICLR 2023

A NOTATIONS

In this section we summarize the notations used in the paper and a corresponding brief description.

Notation Description
x Decision variable / model parameter
⇠ Some random variable independent of x
X Feasible set of x
M Number of objectives in the MOO problem

fm(x) An objective such that fm : X ! R, where m 2 {1, 2, . . . ,M}

F (x) Vector of functions containing f1(x), f2(x), . . . , fM (x), such that F : X ! RM

rF (x) Jacobian of F (x), wich has rf1(x),rf2(x), . . . ,rfM (x) as columns
R

M

++ Positive othant cone of dimension M

�M
M dimensional probability simplex

1 M dimensional vector of ones
� An element of �M

�
⇤(x) A solution to the problem (2) (original MGDA subproblem)

�
g(x) A solution to the problem (4) (SMG subproblem)

�
⇤
⇢
(x) The unique solution to the problem (8) (`2 regularized sub-problem)

d(x) MGDA mult-gradient given by (36)
xk Model parameter at iteration k, updated as (10)
hk,m Stochastic gradient estimator of rfm(xk)
yk,m “Tracking” variable that approximates rfm(xk)
Yk Matrix containing yk,1, yk,2, . . . , yk,M as columns, updated as (6)
�k Estimate for �⇤

⇢
(xk), updated as (9)

↵k,�k, �k Learning rates of xk, yk,m, and �k updates, respectively
⇢ `2 regularization parameter used in (8)

Extension to bi-level optimization setting
z Lower level parameter where z 2 Rd

lm Lower level objective such that fm : X ! R, where m 2 {1, 2, . . . ,M}

' Some random variable independent of x, z
z
⇤
m
(x) Minimizer of lm(x, z) with respect to z for any x 2 X

zk,m Approximation of z⇤
m
(xk), updated as equation 13

r
2
zz
lm(x, z) Hessian of lm(x, z) w.r.t. to z

H
zz

k,m
Stochastic approximation of r2

zz
lm(xk, zk,m)

Table 3: Some important notations used in the paper

B ADDITIONAL RELATED WORK

In this section we provide brief discussion on additional work related to MTL and MOO. We first
discuss a closely related concurrent work Zhou et al. (2022), which was not available at the time
of submission of this paper. In Zhou et al. (2022), the authors introduce a unified framework for
stochastic gradient-based MOO algorithms. Similar to MoCo, the proposed algorithm in Zhou et al.
(2022) also uses momentum-like techniques to reduce the multi-gradient bias. The key algorithmic
difference of the aforementioned method compared to MoCo is that MoCo uses momentum-based
correction on the full gradient estimation while Zhou et al. (2022) uses the momentum-like moving
averaging for convex combination coefficients � computed using stochastic gradients. As a conse-
quence of this difference, it is not clear if the averaged weight � obtained in Zhou et al. (2022) will
ensure convergence of the stochastic MOO update direction to any deterministic MOO direction.
On the other hand, in our work, we can show the convergence to MGDA direction in Lemma 2. In
terms of theoretical results in Zhou et al. (2022), the authors provide convergence guarantees of the
proposed algorithm for both convex and non-convex cases with convergence rates similar to that of
single objective stochastic gradient descent (SGD). However, in order to obtain these results, Zhou
et al. (2022) requires additional assumptions on bound of the function values, which is not required in
standard single objective SGD convergence analysis. On the other hand, in this work, the convergence

14

Published as a conference paper at ICLR 2023

guarantees presented in Theorems 1 and 2 are based on fairly standard assumptions in optimization
literature, and does not assume any bound on the function value. Furthermore, the results are based
on weaker assumptions on the stochastic gradient bias which facilitates bi-level MOO. In addition,
we provide improved convergence results for MoCo in Theorems 3 and 4, with stronger assumptions
on function value bounds similar to those in Zhou et al. (2022), but still with weaker assumptions on
the bias of stochastic gradients.

In addition to gradient based MOO which is the main focus of this paper, there also exist non gradient
based blackbox MOO algorithms such as (Deb et al., 2002; Golovin & Zhang, 2020; Knowles,
2006; Konakovic Lukovic et al., 2020), which are based on an evolutionary algorithm or Bayesian
optimization. However, these methods often suffer from the curse of dimensionality, and may not be
feasible in large scale MOO problems.

On the other hand, recent works in MTL have analyzed MTL from different viewpoints. In (Wang
et al., 2021), the authors explore the connection between gradient based meta learning and MTL. In
(Ye et al., 2021), the meta learning problem with multiple objectives in the upper levels has been
tackled via a gradient based MOO approach. The importance of task grouping in MTL is analysed
in works such as (Fifty et al., 2021). In (Meyerson & Miikkulainen, 2020), the authors show that
seemingly unrelated tasks can be used for MTL.

C SUMMARY OF COMPARISON WITH CLOSELY RELATED PRIOR WORK

Method Batch size Non-convex Lipschitz continuity
of �⇤(x)

Bounded
functions

Biased
gradient

Sample
complexity

SMG
(Theorem 1) O

�
✏�2

�
7 3 7 7 O

�
✏�4

�

MoCo
(Theorem 1) O(1) 7 7 7 O

⇣
↵2

�2

⌘
O

�
✏�10

�

MoCo
(Theorem 2) O(1) 3 7 7 O

⇣
↵2

�2

⌘
O

�
✏�10

�

MoCo
(Theorem 3) O(1) 3 7 3 O

⇣
↵2

�2

⌘
O

�
✏�2.5

�

MoCo
(Theorem 4) O(1) 3 7 3 O (�) O

�
✏�2

�

Table 4: Comparison of MoCo with prior work on gradient based stochastic MOO, stochastic multi-
gradient method (SMG)(Liu & Vicente, 2021). Here the “Batch size” column represents the number
of samples used at each (outer level) iteration, “Non-convex” column denotes whether the analysis is
valid for non-convex functions, “Lipschitz continuity of �⇤(x)” column denotes whether Lipschitz
continuity of �⇤(x) (see Remark 1) with respect to x was assumed, “Bounded functions” column
denotes whether boundedness of function values was assumed, “Biased gradients” column denotes
bias in the stochastic gradient of ofunctions allowed in analysis, and “Sample complexity” column
provides the (outer level) sample complexity of the corresponding method.

D ALGORITHM FOR MOCO WITH INEXACT GRADIENT

In this section we provide the omitted pseudo-code for MoCo with inexact gradients described in
Section 3.2. As remarked in Section 3.2, this algorithm can relate to the actor critic setting with
multiple critics. In Appendix K.3, we provide empirical evaluations of multi-task reinforcement
learning using soft actor critic.

E PROOF OF LEMMA 1

Throughout the section, we write E[·|Fk] as Ek[·] for conciseness. Consider the following conditions

(a) For any x 2 X , lm(x, z) is strongly convex w.r.t. z with modulus µm > 0.

15

Published as a conference paper at ICLR 2023

Algorithm 2 MoCo with inexact gradient

1: Input Initial model parameter x0, tracking parameters {y0,i}
M

m=1, lower level parameter
{z0,i}

M

m=1, convex combination coefficient parameter �0, and their respective learning rates
{↵k}

K

k=0, and {�k}
K

k=0, {�k}Kk=0.
2: for k = 0, . . . ,K � 1 do
3: for objective m = 1, . . . ,M do
4: Update zk+1,m following (13)
5: Obtain hk,m following (14)
6: Update yk+1,m following (6)
7: end for
8: Update �k+1 and xk+1 following (9)-(10)
9: end for

10: Output xK

(b) There exist constants Lxz, lxz, lzz such that rzlm(x, z) is Lxz-Lipschitz continuous w.r.t. x;
rzlm(x, z) is Lzz-Lipschitz continuous w.r.t. z. rxzlm(x, z), rzzlm(x, z) are respectively
lxz-Lipschitz and lzz-Lipschitz continuous w.r.t. (x, z).

(c) There exist constants lfx, lfz, l0fz, lz such that rxfm(x, z) and rzfm(x, z) are respectively
lfx and lfz Lipschitz continuous w.r.t. z; rzfm(x, z) is l0

fz
-Lipschitz continuous w.r.t. x;

fm(x, z) is lz-Lipschitz continuous w.r.t. z.

(d) There exist constants CH and �H such that kEk[Hzz

k,m
] � [rzzlm(xk, zk,m)]�1

k
2



CH↵
2
k
/�

2
k

and EkkH
zz

k,m
k
2

 �
2
H

. There exist constants Cx, Cxz, Cz, Cl

such that Ekkrxfm(xk, zk,m, ⇠k)k2  C
2
x

, Ekkrxzlm(xk, zk,m,'
0
k
)k2  C

2
xz

,
Ekkrzfm(xk, zk,m, ⇠k)k2  C

2
z

and Ekkrzlm(xk, zk,m,'k)k2  C
2
l

.

The above conditions are standard in the literature (Ghadimi & Wang, 2018). In particular, condition
(d) on H

zz

k,m
can be guaranteed by (Ghadimi & Wang, 2018, Algorithm 3). With these conditions, we

first give a restatement of Lemma 1.

Lemma 3 (Restatement of Lemma 1). Consider the sequences generated by (13), (6), (9) and (10).
Under conditions (a)–(d), if we choose the step sizes as those of Lemma 2, we have for any m that

1

K

KX

k=1

EkE[hk,m|Fk]�rfm(xk)k
2 = O

⇣
↵
2
K

�
2
K

⌘
. (20)

There exists a constant �0 such that

E[khk,m � E[hk,m|Fk]k
2
|Fk]  �

2
0 . (21)

Proof. We first prove (21) with

Ekkhk,m � Ek[hk,m]k2

= Ekkhk,mk
2
� kEk[hk,m]k2  Ekkhk,mk

2

 2Ekkrxfm(xk, zk,m, ⇠k)k
2 + 2Ek

⇥
kr

2
xz
lm(xk, zk,m,'

0
k
)k2kHzz

k,m
k
2
krzfm(xk, zk,m, ⇠k)k

2
⇤

 2C2
x
+ 2C2

xz
C

2
z
�
2
H
, (22)

where the last inequality follows from item (d) along with the independence of r2
xz
lm(xk, zk,m,'

0
k
),

H
zz

k,m
and rzfm(xk, zk,m, ⇠k) given Fk.

Next we start to prove (20).

Ek[hk,m] = rxfm(xk, zk,m)�r
2
xz
lm(xk, zk,m)Ek[H

zz

k,m
]rzfm(xk, zk,m). (23)

16

Published as a conference paper at ICLR 2023

In the following proof, we write z
⇤
k,m

(xk) as z⇤
k,m

. The above inequality along with (12) implies

kEk[hk,m]�rfm(xk)k

 krxfm(xk, zk,m)�rxfm(xk, z
⇤
k,m

)k

+ kr
2
xz
lm(xk, zk,m)Ek[H

zz

k,m
]rzfm(xk, zk,m)�r

2
xz
lm(xk, zk,m)[rzzlm(xk, zk,m)]�1

rzfm(xk, zk,m)k

+ kr
2
xz
lm(xk, zk,m)[rzzlm(xk, zk,m)]�1

rzfm(xk, zk,m)

�r
2
xz
lm(xk, z

⇤
k,m

)[rzzlm(xk, z
⇤
k,m

)]�1
rzfm(xk, z

⇤
k,m

)k

 lfxkzk,m � z
⇤
m
(xk)k+ LxzlzkEk[H

zz

k,m
]� [rzzlm(xk, zk,m)]�1

k

+
�Lxzlz

µm

+
lfz

µm

+
lfzlzlzz

µ2
m

�
kzk,m � z

⇤
m
(xk)k (24)

where the last inequality follows from conditions (a)–(c). The inequality (24) implies

kEk[hk,m]�rfm(xk)k
2
 2L2

xz
l
2
z
kEk[H

zz

k,m
]� [rzzlm(xk, zk,m)]�1

k
2

+ 2
�
lfx +

Lxzlz

µm

+
lfz

µm

+
lfzlzlzz

µ2
m

�2
kzk,m � z

⇤
m
(xk)k

2

 2L2
xz
l
2
z
CH

↵
2
K

�
2
K

+ 2(lfx +
Lxzlz

µm

+
lfz

µm

+
lfzlzlzz

µ2
m

)2kzk,m � z
⇤
m
(xk)k

2

(25)
where the last inequality follows from condition (d) on the quality of Hzz

k,m
. Thus to prove (20), it

suffices to prove 1
K

P
K

k=1 Ekzk,m � z
⇤
k,m

k
2 = O

�
↵

2
K

�
2
K

�
next.

The convergence of zk,m. We start with

kzk+1,m � z
⇤
k+1,mk

2 = kzk+1,m � z
⇤
k,m

k
2 + 2hzk+1,m � z

⇤
k,m

, z
⇤
k,m

� z
⇤
k+1,mi+ kz

⇤
k,m

� z
⇤
k+1,mk

2
.

(26)
The first term is bounded as

Ekkzk+1,m � z
⇤
k,m

k
2

= Ekkzk,m � �krzlm(xk, zk,m,'k)� z
⇤
k,m

k
2

= kzk,m � z
⇤
k,m

k
2
� 2�khzk,m � z

⇤
k,m

,rzlm(xk, zk,m)i+ �
2
k
Ekkrzlm(xk, zk,m,'k)k

2

 (1� 2µm�k)kzk,m � z
⇤
k,m

k
2 + C

2
l
�
2
k

(27)
where the last inequality follows from condition (a) and (d).

Under conditions (a)–(c), it is shown that there exists a constant Lz,m such that z⇤
m
(x) is Lz,m-

lipschitz continuous (Ghadimi & Wang, 2018)[Lemma 2.2 (b)]. Let Lz = maxm Lz,m, then the
second term in (26) can be bounded as

hzk+1,m � z
⇤
k,m

, z
⇤
k,m

� z
⇤
k+1,mi  Lzkzk+1,m � z

⇤
k,m

kkxk � xk+1k

 LzCy↵kkzk+1,m � z
⇤
k,m

k


µm

2
�kkzk+1,m � z

⇤
k,m

k
2 +

1

2
L
2
z
C

2
y
µ
�1
m

↵
2
k

�k

(28)

where Cy = sup kYkk = sup
x2X krF (x)k < 1 (by Assumption 1 or 2 and projection), and the

last inequality uses the Young’s inequality.

The last term in (26) is bounded as

kz
⇤
k,m

� z
⇤
k+1,mk

2
 L

2
z
C

2
y
↵
2
k
. (29)

Substituting (27)–(29) into (26) yields

Ekkzk+1,m � z
⇤
k+1,mk

2
 (1� µm�k)kzk,m � z

⇤
k,m

k
2 + C

2
l
�
2
k
+ L

2
z
C

2
y
µ
�1
m

↵
2
k

�k

+ L
2
z
C

2
y
↵
2
k
.

(30)

17

Published as a conference paper at ICLR 2023

Taking total expectation on both sides, and then telescoping implies that (set ↵k = ↵K ,�k = �K , 8k)

1

K

KX

k=1

Ekzk,m � z
⇤
k,m

k
2 = O

� 1

K�K

�
+O

�
�K

�
+O

�
↵K

�
+O

�↵2
K

�
2
K

�
. (31)

The last inequality along with the step size choice in Lemma 3 implies that

1

K

KX

k=1

Ekzk,m � z
⇤
k,m

k
2 = O

�↵2
K

�
2
K

�
, (32)

which along with (25) implies (20). This completes the proof.

F PROOF OF LEMMA 2

Before we present the main proof, we first introduce the Lemmas 4 and 5, which are direct conse-
quences of (Dontchev & Rockafellar, 2009, Theorem 2F.7) and (Koshal et al., 2011, Lemma A.1),
respectively.

Lemma 4. Under Assumption 1 , there exists a constant L� := ⇢
�1
P

M

m=1 Lm such that the
following inequality holds

k�
⇤
⇢
(x)� �

⇤
⇢
(x0)k  L�krF (x)�rF (x0)k, (33)

which further indicates

k�
⇤
⇢
(x)� �

⇤
⇢
(x0)k  L�,F kx� x

0
k, (34)

where L�,F := ⇢
�1

L, with L =

✓
MP

m=1
Lm

◆✓
MP

m=1
Lm,1

◆
.

Lemma 5. For any ⇢ > 0 and x 2 X , we have

0  krF (x)�⇤
⇢
(x)k2 � krF (x)�⇤(x)k2 

⇢

2

✓
1�

1

M

◆
. (35)

Now we start to prove Lemma 2.

Proof. Throughout the following proof, we write E[·|Fk] as Ek[·] for conciseness. With d(xk) =
rF (xk)�⇤(xk), we have

kd(xk)� Yk�kk
2

= krF (xk)�
⇤(xk)�rF (xk)�

⇤
⇢
(xk) +rF (xk)�

⇤
⇢
(xk)� Yk�

⇤
⇢
(xk) + Yk�

⇤
⇢
(xk)� Yk�kk

2

 3krF (xk)(xk)�
⇤(xk)�rF (xk)�

⇤
⇢
(xk)k

2 + 3krF (xk)�
⇤
⇢
(xk)� Yk�

⇤
⇢
(xk)k

2 + 3kYk�
⇤
⇢
(xk)� Yk�kk

2

 3krF (xk)�
⇤(xk)�rF (xk)�

⇤
⇢
(xk)k

2 + 3krF (xk)� Ykk
2 + 3Cyk�

⇤
⇢
(xk)� �kk

2
. (36)

From (36), to prove Lemma 2, it suffices to show krF (xk)�⇤(xk)�rF (xk)�⇤
⇢
(xk)k diminishes,

and establish the convergence of Yk and �k.

Bounding krF (xk)�⇤(xk) � rF�
⇤
⇢
(xk)k. Denoting �

⇤(xk) as �
⇤
k

and �
⇤
⇢
(xk) as �

⇤
⇢,k

, we first
consider the following bound

krF (xk)�
⇤
k
�rF (xk)�

⇤
⇢,k

k
2 = krF (xk)�

⇤
k
k
2 + krF (xk)�

⇤
⇢,k

k
2
� 2hrF (xk)�

⇤
k
,rF (xk)�

⇤
⇢,k

i

 krF (xk)�
⇤
⇢,k

k
2
� krF (xk)�

⇤
k
k
2


⇢

2
, (37)

where the first inequality is due to the optimality condition

h�,rF (xk)
>
rF (xk)�

⇤
k
i � h�

⇤
k
,rF (xk)

>
rF (xk)�

⇤
k
i = krF (xk)�

⇤
k
k
2

for any � 2 �M , and the last inequality is due to Lemma 5. With the choice of ⇢ = ⇥(K� 1
5) as

required by Theorems 1 and 2, we have

krF (xk)�
⇤
k
�rF (xk)�

⇤
⇢,k

k
2 = O(K� 1

5). (38)

18

Published as a conference paper at ICLR 2023

Convergence of Yk. With Ek[hk,m] = E[hk,m|Fk], we start by

Ekkyk+1,m�rfm(xk+1)k
2 = Ekkyk+1,m�rfm(xk)k

2 + 2Ekhyk+1,m�rfm(xk),rfm(xk)�rfm(xk+1)i

+ Ekkrfm(xk)�rfm(xk+1)k
2
. (39)

We bound the first term in (39) as

Ekkyk+1,m �rfm(xk)k
2

 Ekkyk,m � �k

�
yk,m � hk,m

�
�rfm(xk)k

2

= kyk,m �rfm(xk)k
2
� 2�khyk,m �rfm(xk), yk,m � Ek[hk,m]i+ �

2
k
Ekkyk,m � hk,mk

2

= kyk,m �rfm(xk)k
2
� 2�khyk,m �rfm(xk), yk,m �rfm(xk)i

� 2�khyk,m �rfm(xk),rfm(xk)� Ek[hk,m]i+ �
2
k
Ekkyk,m � hk,mk

2

 (1� 2�k)kyk,m �rfm(xk)k
2 + 2�kkyk,m �rfm(xk)kkrfm(xk)� Ek[hk,m]k+ �

2
k
Ekkyk,m � hk,mk

2

 (1� �k)kyk,m �rfm(xk)k
2 + �kkrfm(xk)� Ek[hk,m]k2 + �

2
k
Ekkyk,m � hk,mk

2 (40)
where the last inequality follows from young’s inequality. Now, consider the last term of (40).
Selecting �k such that 3�2

k
 �k/2, and Assumption 3, we have

�
2
k
Ekkyk,m � hk,mk

2

= �
2
k
Ekkyk,m �rfm(xk) +rfm(xk)� Ek[hk,m] + Ek[hk,m]� hk,mk

2

 3�2
k
kyk,m �rfm(xk)k

2 + 3�2
k
krfm(xk)� Ek[hk,m]k2 + 3�2

k
EkkEk[hk,m]� hk,mk

2


�k

2
kyk,m �rfm(xk)k

2 + 3�2
k
krfm(xk)� Ek[hk,m]k2 + 3�2

m
�
2
k
. (41)

Then, plugging in (41) in (40), we obtain

Ekkyk+1,m �rfm(xk)k
2
 (1�

1

2
�k)kyk,m �rfm(xk)k

2 + �kkrfm(xk)� Ek[hk,m]k2

+ 3�2
k
krfm(xk)� Ek[hk,m]k2 + 3�2

m
�
2
k
. (42)

The second term in (39) can be bounded as

hyk+1,m �rfm(xk),rfm(xk)�rfm(xk+1)i

 kyk+1,m �rfm(xk)kkrfm(xk)�rfm(xk+1)k

 Lm,1kyk+1,m �rfm(xk)kkxk+1 � xkk

 Lm,1Cy↵kkyk+1,m �rfm(xk)k


1

8
�kkyk+1,m �rfm(xk)k

2 + 2L2
m,1C

2
y

↵
2
k

�k


1

8
�kkyk+1,m �rfm(xk)k

2 + 2L̄2
1C

2
y

↵
2
k

�k

(43)

where the second last inequality follows from young’s inequality, and the last inequality follows from
the definition L̄1 = maxm Lm,1.

The last term in (39) can be bounded as

krfm(xk)�rfm(xk+1)k
2
 L̄

2
1kxk+1 � xkk

2
 L̄

2
1C

2
y
↵
2
k
. (44)

Collecting the upper bounds in (42)–(44) and substituting them into (39) gives

Ekkyk+1,m �rfm(xk+1)k
2
 (1�

1

4
�k)kyk,m �rfm(xk)k

2 + (�k + 3�2
k
)krfm(xk)� Ek[hk,m]k2

+ 3�2
m
�
2
k
+ L̄

2
1C

2
y
↵
2
k
+ 4L̄2

1C
2
y

↵
2
k

�k

. (45)

19

Published as a conference paper at ICLR 2023

Suppose ↵k and �k are constants. Taking total expectation and then telescoping both sides of (45)
gives

1

K

KX

k=1

Ekyk,m �rfm(xk)k
2 = O

� 1

K�k

�
+O

� 1
K

KX

k=1

Ekrfm(xk)� Ek[hk,m]k2
�

+O(�k) +O
�↵2

k

�
2
k

�
(46)

Along with the choice of step sizes as required by Theorems 1 and 2, and due to Assumption 3, the
last inequality gives

1

K

KX

k=1

Ekyk,m �rfm(xk)k
2 = O

�
K

� 1
2
�

(47)

which, based on the definitions of Yk and rF (xk), implies that

1

K

KX

k=1

EkYk �rF (xk)k
2 = O

⇣
MK

� 1
2

⌘
. (48)

Convergence of �k. We write �
⇤
⇢
(xk) in short as �⇤

⇢,k
in the following proof. We start by

k�k+1 � �
⇤
⇢,k+1k

2 = k�k+1 � �
⇤
⇢,k

k
2 + 2h�k+1 � �

⇤
⇢,k

,�
⇤
⇢,k

� �
⇤
⇢,k+1i+ k�

⇤
⇢,k

� �
⇤
⇢,k+1k

2
.

(49)
The first term is bounded as

k�k+1 � �
⇤
⇢,k

k
2 = k⇧�M

�
�k � �k

�
Y

>
k
Yk + ⇢I

�
�k

�
� �

⇤
⇢,k

k
2

 k�k � �k

�
Y

>
k
Yk + ⇢I

�
�k � �

⇤
⇢,k

k
2

= k�k � �
⇤
⇢,k

k
2
� 2�kh�k � �

⇤
⇢,k

,
�
Y

>
k
Yk + ⇢I

�
�ki+ �

2
k
k
�
Y

>
k
Yk + ⇢I

�
�kk

2

 k�k � �
⇤
⇢,k

k
2
� 2�kh�k � �

⇤
⇢,k

,
�
Y

>
k
Yk + ⇢I

�
�ki+ (C2

y
+ ⇢)2�2

k
(50)

Consider the second term in the last inequality:

h�k � �
⇤
⇢,k

,
�
Y

>
k
Yk + ⇢I

�
�ki

= h�k � �
⇤
⇢,k

, (Y >
k
Yk �rF (xk)

>
rF (xk))�ki+ h�k � �

⇤
⇢,k

,
�
rF (xk)

>
rF (xk) + ⇢I

�
�ki

� �2Cyk�k � �
⇤
⇢,k

kkYk �rF (xk)k+ h�k � �
⇤
⇢,k

,
�
rF (xk)

>
rF (xk) + ⇢I

�
(�k � �

⇤
⇢,k

)i

+ h�k � �
⇤
⇢,k

,
�
rF (xk)

>
rF (xk) + ⇢I

�
�
⇤
⇢,k

i

� �2Cyk�k � �
⇤
⇢,k

kkYk �rF (xk)k+ ⇢k�k � �
⇤
⇢,k

k
2

� �2C2
y
⇢
�1

kYk �rF (xk)k
2 +

⇢

2
k�k � �

⇤
⇢,k

k
2 (51)

where the second last inequality follows from the optimality condition that

h�k � �
⇤
⇢,k

,
�
rF (xk)

>
rF (xk) + ⇢I

�
�
⇤
⇢,k

i � 0,

and the last inequality in follows from the Young’s inequality.

Plugging in (51) back to (50) gives

k�k+1 � �
⇤
⇢,k

k
2 = (1� ⇢�k)k�k � �

⇤
⇢,k

k
2 + 4C2

y
⇢
�1

�kkYk �rF (xk)k
2 + (C2

y
+ ⇢)2�2

k
. (52)

With Lemma 4, the second term in (49) can be bounded as

h�k+1 � �
⇤
⇢,k

,�
⇤
⇢,k

� �
⇤
⇢,k+1i  L�,F k�k+1 � �

⇤
⇢,k

kkxk � xk+1k

 L�,FCy↵kk�k+1 � �
⇤
⇢,k

k


⇢

4
�kk�k+1 � �

⇤
⇢,k

k
2 + L

2
�,F

C
2
y
⇢
�1↵

2
k

�k
, (53)

20

Published as a conference paper at ICLR 2023

where the last inequality is due to Young’s inequality. The last term in (49) is bounded as

k�
⇤
⇢,k

� �
⇤
⇢,k+1k

2
 L

2
�,F

C
2
y
↵
2
k
. (54)

Substituting (52)–(54) into (49) yields

k�k+1 � �
⇤
⇢,k+1k

2
 (1�

⇢

2
�k)k�k � �

⇤
⇢,k

k
2 + 4C2

y
⇢
�1

�kkYk �rF (xk)k
2 + (C2

y
+ ⇢)2�2

k

+ 2L2
�,F

C
2
y
⇢
�1↵

2
k

�k
+ L

2
�,F

C
2
y
↵
2
k
. (55)

Suppose ↵k, �k, and �k are constants given K. Taking total expectation, rearranging and taking
telescoping sum on both sides of the last inequality gives

1

K

KX

k=1

Ek�k � �
⇤
⇢,k

k
2 = O

✓
1

K⇢�k

◆
+O

1

⇢K

KX

k=1

EkYk �rF (xk)k
2

!
+O

✓
�k

⇢

◆

+O

✓
↵
2
k

�
2
k
⇢4

◆
+O

✓
↵
2
k

�k⇢
3

◆
(56)

where we have used L�,F = O(1
⇢
) from Lemma 4. Then, plugging in the choices ↵k = ⇥(K� 9

10),
�k = ⇥(K� 1

2), �k = ⇥(K� 2
5), ⇢ = ⇥(K� 1

5) and substituting from (48) in (56) gives

1

K

KX

k=1

Ek�k � �
⇤
⇢,k

k
2 = O

�
MK

� 3
10 +K

� 1
5
�
. (57)

Since typically the number of objectives is very small compared to the number of iterations, under
assumption K = O(M10), we get

1

K

KX

k=1

Ek�k � �
⇤
⇢,k

k
2 = O

�
K

� 1
5
�
. (58)

Thus, from (36), (38), (48), and (58), we have

1

K

KX

k=1

Ekd(xk)� Yk�kk
2 = O

�
K

� 1
5
�
. (59)

This completes the proof.

G PROOF OF THEOREM 1

Proof. We first have

kxk+1 � x
⇤
k
2 = k⇧X (xk � ↵kYk�k)� x

⇤
k
2

 kxk � ↵kYk�k � x
⇤
k
2

= kxk � x
⇤
k
2
� 2↵khxk � x

⇤
, Yk�ki+ ↵

2
k
kYk�kk

2

 kxk � x
⇤
k
2
� 2↵khxk � x

⇤
,rF (xk)�

⇤
k
i � 2↵khxk � x

⇤
, Yk�k �rF (xk)�

⇤
k
i+ ↵

2
k
C

2
y

 kxk � x
⇤
k
2
� 2↵k�

⇤
k
· (F (xk)� F (x⇤))� 2↵khxk � x

⇤
, Yk�k �rF (xk)�

⇤
k
i+ ↵

2
k
C

2
y

(60)
where the last inequality uses the convexity of fm(x)(8m).

The third term in (60) can be bounded using the Cauchy–Schwarz inequality as

hxk � x
⇤
, Yk�k �rF (xk)�

⇤
k
i � �Cx(kYk �rF (xk)k+ Cyk�k � �

⇤
⇢,k

k+ krF (xk)�
⇤
k
�rF (xk)�

⇤
⇢,k

k)
(61)

where Cx is the upper bound of kx� x
0
k for x, x0

2 X , which follows from Assumption 2.

21

Published as a conference paper at ICLR 2023

Substituting the above inequality into (60) and rearranging gives

�
⇤
k
(F (xk)� F (x⇤)) 

1

2↵k

(kxk � x
⇤
k
2
� kxk+1 � x

⇤
k
2) + Cx(kYk �rF (xk)k+ Cyk�k � �

⇤
⇢,k

k

+ krF (xk)�
⇤
k
�rF (xk)�

⇤
⇢,k

k) +
C

2
y

2
↵k. (62)

Taking telescope sum on the last inequality gives

1

K

KX

k=1

�
⇤
k
(F (xk)� F (x⇤))


kx1 � x

⇤
k
2

2K↵k

+
Cx

K

KX

k=1

(kYk �rF (xk)k+ Cyk�k � �
⇤
⇢,k

k+ krF (xk)�
⇤
k
�rF (xk)�

⇤
⇢,k

k) +
C

2
y

2
↵k

(63)

which along with (38), (48), and (58) indicates 1
K

P
K

k=1 E[�⇤
k
· (F (xk)� F (x⇤))] = O(K� 1

10) if
we choose ↵k = ⇥(K� 9

10), �k = ⇥(K� 1
2), �k = ⇥(K� 2

5), and ⇢ = ⇥(K� 1
5).

H PROOF OF THEOREM 2

Before we go into the main proof, we first show the following key lemma.

Lemma 6. For any x 2 X and � 2 �M , with d(x) = rF (x)�⇤(x), it holds that

hd(x),rF (x)�i � kd(x)k2. (64)

Proof. We write d�(x) = rF (x)� in the following proof. Since �M is a convex set, for any �
0
2

�M , we have ↵(�0
� �

⇤) + �
⇤
2 �M for any ↵ 2 [0, 1]. Then by d(x) = argmin�2�M kd�(x)k2,

we have

kd(x)k2  k↵(d�0(x)� d(x)) + d(x)k2. (65)
Expanding the right hand side of the inequality gives

↵
2
kd�0(x)� d(x)k2 + ↵hd(x), d�0(x)� d(x)i � 0. (66)

Since this needs to hold for ↵ arbitrarily close to 0, we have

hd(x), d�0(x)� d(x)i � 0, 8�
0
2 �M (67)

which indicates the result inequality by rearranging.

Now we can prove Theorem 2.

Proof. By the Lm,1-smoothness of fm, we have for any m,

fm(xk+1)  fm(xk) + ↵khrfm(xk),�Yk�ki+
Lm,1

2
kxk+1 � xkk

2

 fm(xk) + ↵khrfm(xk),�Yk�ki+
Lm,1

2
C

2
y
↵
2
k
. (68)

The second term in the last inequality can be bounded as

hrfm(xk),�Yk�ki

= hrfm(xk),rF (xk)�
⇤
k
� Yk�ki+ hrfm(xk),�rF (xk)�

⇤
k
i

 Lm

�
kYk �rF (xk)k+ Cyk�k � �

⇤
⇢,k

k+ krF (xk)�
⇤
k
�rF (xk)�

⇤
⇢,k

k
�
+ hrfm(xk),�rF (xk)�

⇤
k
i

 Lm

�
kYk �rF (xk)k+ Cyk�k � �

⇤
⇢,k

k+ krF (xk)�
⇤
k
�rF (xk)�

⇤
⇢,k

k
�
� krF (xk)�

⇤
k
k
2
,

(69)

22

Published as a conference paper at ICLR 2023

where the last inequality follows from Lemma 6 by letting rF (xk)� = rfm(xk), and the first
inequality follows from

hrfm(xk),rF (xk)�
⇤
k
� Yk�ki

 LmkrF (xk)�
⇤
k
� Yk�kk

 LmkrF (xk)�k � Yk�k +rF (xk)�
⇤
⇢,k

�rF (xk)�k +rF (xk)�
⇤
k
�rF (xk)�

⇤
⇢,k

k

 Lm

�
kYk �rF (xk)k+ Cyk�k � �

⇤
⇢,k

k+ krF (xk)�
⇤
k
�rF (xk)�

⇤
⇢,k

k
�
. (70)

Plugging (69) into (68), taking expectation on both sides and rearranging yields

↵kEkrF (xk)�
⇤
k
k
2
 E[fm(xk)� fm(xk+1)] + Lm↵k

�
EkYk �rF (xk)k+ CyEk�k � �

⇤
⇢,k

k

+ krF (xk)�
⇤
k
�rF (xk)�

⇤
⇢,k

k
�
+

Lm,1

2
C

2
y
↵
2
k
. (71)

Taking telescope sum on both sides of the last inequality gives

1

K

KX

k=1

EkrF (xk)�
⇤
k
k
2


1

↵kK
(fm(x1)� inf fm(x)) + Lm

1

K

KX

k=1

�
EkYk �rF (xk)k+ CyEk�k � �

⇤
⇢,k

k

+ krF (xk)�
⇤
k
�rF (xk)�

⇤
⇢,k

k
�
+

Lm,1

2
C

2
y
↵k (72)

which along with (38), (48), and (58) indicates 1
K

P
K

k=1 EkrF (xk)�⇤
k
k
2 = O(K� 1

10) if we choose
↵k = ⇥(K� 9

10), �k = ⇥(K� 1
2), �k = ⇥(K� 2

5), and ⇢ = ⇥(K� 1
5).

I PROOF OF THEOREM 3

Proof. Recall from (68), by the Lm,1-smoothness of fm, we have for any m,

fm(xk+1)  fm(xk) + ↵khrfm(xk),�Yk�ki+
Lm,1

2
C

2
y
↵
2
k
. (73)

Multiplying both sides by �
m

k
and summing over all m 2 [M], we obtain

F (xk+1)�k  F (xk)�k + ↵khrF (xk)�k,�Yk�ki+
L̄1

2
C

2
y
↵
2
k
, (74)

where we have used �k := (�1
k
,�

2
k
, . . . ,�

m

k
, . . . ,�

M

k
)> and L̄1 = maxm Lm,1. We can bound the

second term of (74) as

hrF (xk)�k,�Yk�ki = hrF (xk),�rF (xk) +rF (xk)� Yki

 �krF (xk)�kk
2 +

1

2
krF (xk)�kk

2 +
1

2
krF (xk)� Ykk

2

= �
1

2
krF (xk)�kk

2 +
1

2
krF (xk)� Ykk

2
, (75)

where the first inequality is due to Cauchy-Schwartz and Young’s inequalities. Substituting (75) in
(74) and rearranging, we have

↵k

2
krF (xk)�kk

2
 F (xk)�k � F (xk+1)�k +

↵k

2
krF (xk)� Ykk

2 +
LL̄1

2
↵
2
k
C

2
y
. (76)

Given K, let ↵k,�k and �k be constants for any k 2 [K]. We then take total expectation on both
sides and sum over iterations to obtain

↵k

2

KX

k=1

EkrF (xk)�kk
2


KX

k=1

E [F (xk)�k � F (xk+1)�k] +
↵k

2

KX

k=1

EkrF (xk)� Ykk
2 +

L̄1

2
↵
2
k
KC

2
y
.

(77)

23

Published as a conference paper at ICLR 2023

We bound the first term on the right-hand side of the inequality (77) as
KX

k=1

E [F (xk)�k � F (xk+1)�k] = E
"
K�1X

k=1

F (xk+1)(�k+1 � �k) + F (x1)�1 � F (xK+1)�k

#

 E
"
K�1X

k=1

kF (xk+1)kk�k+1 � �kk+ kF (x1)kk�1k+ kF (xK+1)kk�kk

#

 F

K�1X

k=1

k�kY
>
k
Yk�kk+ 2F

 FC
2
y
(K � 1)�k + 2F, (78)

where the first inequality is due to Cauchy-Schwartz, the second inequality is due to the bounds on
F (xk), �k and we have used the update for �k for all k 2 [K] with ⇢ = 0, and third inequality is due
to the bound on Yk for all k 2 [K]. Substituting (78) in (77) and dividing both sides by ↵kK

2 , we have

1

K

KX

k=1

EkrF (xk)�kk
2
 2FC

2
y

(K � 1)

K

�k

↵k

+ 4F
1

↵kK
+

1

K

KX

k=1

EkrF (xk)� Ykk
2 + L̄1↵kC

2
y

(79)

which, along with (46) and choosing ↵k = ⇥(K� 3
5), �k = ⇥(K� 2

5), and �k = ⇥(K�1), we obtain

1

K

KX

k=1

EkrF (xk)�kk
2 = O(MK

� 2
5). (80)

The result then follows by observing that for any k 2 [K], we have

krF (xk)�kk
2
� min

�

krF (xk)�k
2 = krF (xk)�

⇤
k
k
2
. (81)

J IMPROVED CONVERGENCE RATE WITH MODIFIED ASSUMPTIONS

In this section we state and prove Theorem 4, which improves upon the results presented in Theorem
3, with modified assumptions. We will first state the modified assumptions.

Assumption 4. For any m, there exist constants cm,�m such that 1
K

P
K

k=1 EkE[hk,m|Fk]�
rfm(xk)k2  c

0
m
�K and E[khk,m�E[hk,m|Fk]k2|Fk]�

2
m

for any k.

Similar to Assumption 3, Assumption 4 requires the stochastic gradient hk,m almost unbiased and has
bounded variance, and this is also weaker than the standard unbiased stochastic gradient assumption.
Furthermore, Assumption 4 can be satisfied by running multiple nested updates, which require
additional lower-level samples. With this assumption, we present the following improved result.

Theorem 4. Consider the sequences generated by Algorithm 1. Furthermore assume there exists a
constant F > 0 such that for all k 2 [K], kF (xk)k  F . Then, under Assumptions 1 and 4, if we
choose step sizes ↵k = ⇥(K� 1

2), �k = ⇥(K� 1
2), �k = ⇥(K� 3

4), and ⇢ = 0, it holds that

1

K

KX

k=1

E
⇥
krF (xk)�

⇤(xk)k
2
⇤
= O

⇣
MK

� 1
2

⌘
. (82)

Proof. Convergence of Yk. We begin the proof by revisiting the convergence analysis on Yk in the
proof of Theorem 3, under the assumptions considered in Theorem 4. For convenience, we restate
(39) here as

Ekkyk+1,m�rfm(xk+1)k
2 = Ekkyk+1,m�rfm(xk)k

2 + 2Ekhyk+1,m�rfm(xk),rfm(xk)�rfm(xk+1)i

+ Ekkrfm(xk)�rfm(xk+1)k
2
. (83)

24

Published as a conference paper at ICLR 2023

We bound the first term in (83) similar to that in (42), as

Ekkyk+1,m �rfm(xk)k
2


⇣
1�

1

2
�k

⌘
kyk,m �rfm(xk)k

2 + �kkrfm(xk)� Ek[hk,m]k2

+ 3�2
k
krfm(xk)� Ek[hk,m]k2 + 3�2

m
�
2
k
. (84)

The second term in (83) can be bounded as

hyk+1,m �rfm(xk),rfm(xk)�rfm(xk+1)i

 kyk+1,m �rfm(xk)kkrfm(xk)�rfm(xk+1)k

 Lm,1kyk+1,m �rfm(xk)kkxk+1 � xkk

 Lm,1↵kkyk+1,m �rfm(xk)kkYk�kk


1

8
�kkyk+1,m �rfm(xk)k

2 + 2L2
m,1

↵
2
k

�k

kYk�kk
2


1

8
�kkyk+1,m �rfm(xk)k

2 + 2L̄2
1
↵
2
k

�k

kYk�kk
2 (85)

where the third inequality is due to the xk update, the second last inequality follows from young’s
inequality, and the last inequality follows from the definition L̄1 = maxm Lm,1.

The last term in (83) can be bounded as

krfm(xk)�rfm(xk+1)k
2
 L̄

2
1kxk+1 � xkk

2
 L̄

2
1↵

2
k
kYk�kk

2
. (86)

Collecting the upper bounds in (84)–(86) and substituting them into (83) gives

Ekkyk+1,m �rfm(xk+1)k
2
 (1�

1

4
�k)kyk,m �rfm(xk)k

2 + (�k + 3�2
k
)krfm(xk)� Ek[hk,m]k2

+ 3�2
m
�
2
k
+

✓
L̄
2
1↵

2
k
+ 4L̄2

1
↵
2
k

�k

◆
kYk�kk

2
. (87)

For all k, let ↵k = ↵K , �k = �K , and �k = �K be constants given K. Then, taking total expectation
and then telescoping both sides of (87) gives

1

K

KX

k=1

Ekyk,m �rfm(xk)k
2 = O

� 1

K�K

�
+O

� 1
K

KX

k=1

Ekrfm(xk)� Ek[hk,m]k2
�

+O(�K) +

✓
L̄
2
1
↵
2
K

�K

+ 4L̄2
1
↵
2
K

�
2
K

◆
1

K

KX

k=1

EkYk�kk
2
. (88)

Summing the last inequality over all objectives m 2 [M], and using Assumption 4, we obtain

1

K

KX

k=1

EkYk �rF (xk)k
2 = O

� M

K�K

�
+O(M�K) +

✓
ML̄

2
1↵

2
K
+ 4ML̄

2
1
↵
2
K

�K

◆
1

K

KX

k=1

EkYk�kk
2
,

(89)

where we have used
MP

m=1
kyk,m �rfm(xk)k2 � kYk �rF (xk)k2. Then with the decomposition

kYk�kk
2
 2kYk �rF (xk)k

2 + 2krF (xk)�kk
2
, (90)

we can arrive at

1

K

KX

k=1

EkYk �rF (xk)k
2 = O

� M

K�K

�
+O(M�K) +

✓
2ML̄

2
1↵

2
K
+ 8ML̄

2
1
↵
2
K

�K

◆
1

K

KX

k=1

EkrF (xk)�kk
2

+

✓
2ML̄

2
1↵

2 + 8ML̄
2
1
↵
2
K

�K

◆
1

K

KX

k=1

EkYk �rF (xk)k
2
. (91)

Now, note that with the choice of stepsize ↵K 
1

4L̄
p
M
�K , 0 < �K < 1, and ↵K and �K are on

the same time scale, there exist some constant 0 < C1 < 1 and valid choice of �K such that the

25

Published as a conference paper at ICLR 2023

following inequality holds

1� 2ML̄
2
1↵

2
K
� 8ML̄

2
1
↵
2
K

�K

� C1. (92)

An example for a constant that satisfy the last inequality for aforementioned choice of ↵K and �K is
C1 = 1

4 . Then, from (91) and (92), we can arrive at

1

K

KX

k=1

EkYk�rF (xk)k
2 = O

� M

K�K

�
+O(M�K)+

✓
2ML̄

2
1

C1
↵
2
K
+

8ML̄
2
1

C1

↵
2
K

�K

◆
1

K

KX

k=1

EkrF (xk)�kk
2

(93)
Next, we analyse the xk sequence. For this purpose, we follow along similar lines as in the proof of
Theorem 3. Accordingly, from (68), we have for any m,

fm(xk+1)  fm(xk) + ↵khrfm(xk),�Yk�ki+
Lm,1

2
C

2
y
↵
2
k
. (94)

Multiplying both sides by �
m

k
and summing over all m 2 [M], we obtain

F (xk+1)�k  F (xk)�k + ↵khrF (xk)�k,�Yk�ki+
L̄1

2
C

2
y
↵
2
k
, (95)

where we have used �k := (�1
k
,�

2
k
, . . . ,�

m

k
, . . . ,�

M

k
)> and L̄1 = maxm Lm,1. We can bound the

second term of (95) as

hrF (xk)�k,�Yk�ki = hrF (xk)�k,�rF (xk)�k +rF (xk)�k � Yk�ki

 �krF (xk)�kk
2 + hrF (xk)�k,rF (xk)�k � Yk�ki

 �krF (xk)�kk
2 +

1

2
krF (xk)�kk

2 +
1

2
krF (xk)� Yk�kk

2

 �
1

2
krF (xk)�kk

2 +
1

2
krF (xk)� Ykk

2
, (96)

where the second inequality is due to Cauchy-Schwartz and Young’s inequalities, and the last
inequality is due to bound on �k. Substituting (96) in (95) and rearranging, we have

↵k

2
krF (xk)�kk

2
 F (xk)�k � F (xk+1)�k +

↵k

2
krF (xk)� Ykk

2 +
L̄1

2
↵
2
C

2
y
. (97)

For all k, let ↵k = ↵K , �k = �K , and �k = �K be constants given K. We then take total expectation
on both sides and sum over iterations to obtain

↵K

2

KX

k=1

EkrF (xk)�kk
2


KX

k=1

E [F (xk)�k � F (xk+1)�k] +
↵K

2

KX

k=1

EkrF (xk)� Ykk
2 +

L̄1

2
↵
2
K
KC

2
y
.

(98)
We bound the first term on the right-hand side of the inequality (98) as
KX

k=1

E [F (xk)�k � F (xk+1)�k] = E
"
K�1X

k=1

F (xk+1)(�k+1 � �k) + F (x1)�1 � F (xK+1)�k

#

 E
"
K�1X

k=1

kF (xk+1)kk�k+1 � �kk+ kF (x1)kk�1k+ kF (xK+1)kk�kk

#

 F

K�1X

k=1

k�KY
>
k
Yk�kk+ 2F

 FCy

KX

k=1

�KkYk�kk+ 2F, (99)

where the first inequality is due to Cauchy-Schwartz, the second inequality is due to the bounds on
F (xk), �k and we have used the update for �k for all k 2 [K] with ⇢ = 0, and third inequality is due
to the bound on Yk for all k 2 [K].

26

Published as a conference paper at ICLR 2023

Substituting (99) in (98) and dividing both sides by ↵KK

2 , we have

1

K

KX

k=1

EkrF (xk)�kk
2

 2FCy

1

K

�K

↵K

KX

k=1

EkYk�kk+ 4F
1

↵KK
+

1

K

KX

k=1

EkrF (xk)� Ykk
2 + L̄1↵KC

2
y

 2F 2
C

2
y

�
2
K

↵
2
K

+
1

4K

KX

k=1

EkYk�kk
2 + 4F

1

↵KK
+

1

K

KX

k=1

EkrF (xk)� Ykk
2 + L̄1↵KC

2
y

 2F 2
C

2
y

�
2
K

↵
2
K

+
3

2K

KX

k=1

EkrF (xk)� Ykk
2 +

1

2K

KX

k=1

EkrF (xk)�kk
2 + 4F

1

↵KK
+ L̄1↵KC

2
y

= O
� �2

K

↵
2
K

�
+O

� M

K�K

�
+O(M�K) +O(

1

↵KK
) +O(↵K)

+

✓
1

2
+

3ML̄
2
1

C1
↵
2
K
+

12ML̄
2
1

C1

↵
2
K

�K

◆
1

K

KX

k=1

EkrF (xk)�kk
2 (100)

where the last equality is by substituting from (93). Now, with a similar argument that we made in
(92), given some C1, there exist some constant 0 < C2 < 1 such that

1

2
�

3ML̄
2
1

C1
↵
2
K
�

12ML̄
2
1

C1

↵
2
K

�K

� C2. (101)

Feasible choices of C1, C2 would be C1 = C2 = 1
4 . Then, we can have

1

K

KX

k=1

EkrF (xk)�kk
2 = O

� �2
K

↵
2
K

�
+O

� M

K�K

�
+O(M�K) +O(

1

↵KK
) +O(↵K). (102)

By choosing ↵K = ⇥(K� 1
2), �K = ⇥(K� 1

2), �K = ⇥(K� 3
4), we arrive at

1

K

KX

k=1

EkrF (xk)�kk
2 = O(MK

� 1
2). (103)

The result then follows by observing that for any k 2 [K], we have

krF (xk)�kk
2
� min

�

krF (xk)�k
2 = krF (xk)�

⇤
k
k
2
. (104)

K DETAILS OF EXPERIMENTS

In this section, we describe the omitted details of experiments in the main paper.

K.1 TOY EXAMPLE

To show the advantages of our algorithm, we use a toy example similar to (Liu et al., 2021a). The
example consists of optimizing two objectives f1(x) and f2(x) with x = (x1, x2)> 2 R2, given by

f1(x) = p1(x)q1(x) + p2(x)r1(x); f2(x) = p1(x)q2(x) + p2(x)r2(x)

where we define

q1(x) = log (|0.5max (�x1 � 7)� tanh(�x2)|, 0.000005)) + 6,

q2(x) = log (|0.5max (�x1 � 7)� tanh(�x2) + 2|, 0.000005)) + 6,

r1(x) =
⇣
(�x1 + 7)2 + 0.1 (�x1 � 8)2

⌘
/10� 20, r2(x) =

⇣
(�x1 � 7)2 + 0.1 (�x1 � 8)2

⌘
/10� 20,

p1(x) = max (tanh (0.5x2) , 0) , p2(x) = max (tanh (�0.5x2) , 0) .

27

Published as a conference paper at ICLR 2023

(a) Trajectory 1 (b) Trajectory 2 (c) Trajectory 3

Figure 3: Comparison of multi-gradient error

Generation of Figure 1. For generating the trajectories in Figure 1 we use 3 initializations

x0 2 {(�8.5, 7.5), (�8.5, 5), (10,�8)},

and run each algorithm for 70000 iterations. For all the algorithms, we use the initial learning rate
of 0.001, exponentially decaying at a rate of 0.05. In this example for MoCo, we use �k = 5/k0.5,
where k is the number of iterations.

Generation of Figure 2. For the comparison of MOO algorithms in objective space depicted in
Figure 2, we use 5 initializations

x0 2 {(�8.5, 7.5), (�8.5, 5), (10,�8), (0, 0), (9, 9)}.

The optimization configurations for each algorithm is similar to that of the aforementioned trajectory
example, except with initial learning rate of 0.0025.

Comparison with SMG with growing batch size. For the comparison of the multi-gradient bias
among SMG, SMG with increasingly large batch size, and MoCo, we use the norm of the error
of the stochastic multi-gradient calculated using the three trajectories randomly initialized from
x0 2 {(�8.5, 7.5), (�8.5, 5), (10,�8)}. For calculating the bias of the multi-gradient, we compute
the multi-gradient using 10 sets of gradient samples at each point of the trajectory, take the average
and record the norm of the difference between the computed average and true multi-gradient. All three
methods are run for 70000 iterations, and follow the same optimization configuration used for Figure
2. For SMG with increasing batch size, we increase the number of samples in the minibatch used for
estimating the gradient by one every 10000 iterations. We report the bias of the multi-gradient with
respect to the number of iterations and also number of samples in Figure 3. In the figure, Trajectories
1, 2, and 3 correspond to initializations (�8.5, 7.5), (�8.5, 5), and (10,�8), respectively. It can
be seen that our method performs comparable to SMG with increasing batch size, but with fewer
samples. Furthermore, SMG has non-decaying bias in some trajectories.

K.2 SUPERVISED LEARNING

In this section we provide additional details and experiments on Cityscapes and NYU-v2 datasets,
and also provide experiment results on two additional datasets Office-31 and Office-home. Each
experiment consists of solving multiple supervised learning problems related to each dataset. We

28

Published as a conference paper at ICLR 2023

(a) Semantic loss (b) Depth loss

Figure 4: Training and test loss for the Cityscapes tasks

(a) Semantic loss (b) Depth loss (c) Surface normal loss

Figure 5: Training and test loss for the NYU-v2 tasks

consider each such task as an objective, which then can be simultaneously optimized by a gradient
based MOO algorithm. We describe details on formulating each task as an objective next.

Problem formulation. First we look into the problem formulation of NYU-v2 and Cityscapes
experiments. For NYU-v2 dataset, 3 tasks are involved: pixel-wise 13-class classification, pixel-wise
depth estimation, and pixel-wise surface normal estimation. In Cityscapes experiments, there are
2 tasks involved: pixel-wise 7-class classification and pixel-wise depth estimation. The following
problem formulation applies for both NYU-v2 and Cityscapes tasks, excpet for the surface normal
estimation task which only relates to NYU-v2 dataset. Let the set of images be {U}

N

i=1, pixel-wise
class labels be {T1}

N

i=1, pixel-wise depth values be {T2}
N

i=1, and pixel-wise surface normal values
be {T3}

N

i=1, where N is the number of training data samples. Let x be the model that we train to
perform all the tasks simultaneously. Let the image dimension be P ⇥Q. We will use Tm for ground
truth and T̂m for the corresponding prediction by the model x, where m 2 [M] and M is the number
of tasks. We can now formulate the corresponding objective for each task, as given in (Liu et al.,
2019). The objective for pixel-wise classification is pixel-wise cross-entropy, which is given as

f1(x) = �
1

NPQ

X

i,p,q

T1,i(p, q) log T̂1,i(p, q)

where i 2 [N], p 2 [P], and q 2 [Q]. Similarly, we can have the objectives for pixel-wise depth
estimation and surface normal estimation, respectively, as

f2(x) =
1

NPQ

X

i,p,q

|T1,i(p, q)� T̂1,i(p, q)| and f3(x) =
1

NPQ

X

i,p,q

T1,i(p, q) · T̂1,i(p, q),

where · is the elementwise dot product. With these objectives, we can formulate the problem (1) for
Cityscapes and NYU-v2 tasks, with f3 only used in the latter.

Similar to NYU-v2 and Cityscapes experiments, we can also formulate the supervised learning tasks
on Office-31 and Office-home MTL as an instance of problem (1).

Cityscapes dataset. For implementing evaluation Cityscapes dataset, we follow the experiment
set up used in (Liu et al., 2021a). All the MTL algorithms considered are trained using a SegNet
(Badrinarayanan et al., 2017) model with attention mechanism MTAN (Liu et al., 2019) applied on
top of it for different tasks. All the MTL methods in comparison are trained for 200 epochs, using a
batch size of 8. We use Adam as the optimizer with a learning rate of 0.0001 for the first 100 epochs,
and with a learning rate of 0.00005 for the rest of the epochs. Following (Liu et al., 2021a) for each

29

Published as a conference paper at ICLR 2023

Method
Segmentation Depth

�m% #(Higher Better) (Lower Better)
mIoU Pix Acc Abs Err Rel Err

Independent 74.01 93.16 0.0125 27.77 -
PCGrad (Yu et al., 2020a) 75.13 93.48 0.0154 42.07 18.29
CAGrad (Liu et al., 2021a) 75.16 93.48 0.0141 37.60 11.64

MoCo (ours) 75.42 93.55 0.0149 34.19 9.90
PCGrad + MoCo 75.49 93.62 0.0146 46.07 20.07
CAGrad + MoCo 75.07 93.39 0.0137 36.78 10.12

Table 5: MoCo with existing gradient manipulation MTL algorithms for Cityscapes dataset tasks.
Results are averaged over 3 independent runs.

Method
Segmetation Depth Surface Normal

�m% #(Higher Better) (Lower Better) Angle Distance
(Lower Better)

Within t�

(Higher better)
mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

Independent 38.30 63.76 0.6754 0.2780 25.01 19.21 30.14 57.20 69.15 -

PCGrad (Yu et al., 2020a) 38.06 64.64 0.5550 0.2325 27.41 22.80 23.86 49.83 63.14 3.97
CAGrad (Liu et al., 2021a) 39.79 65.49 0.5486 0.2250 26.31 21.58 25.61 52.36 65.58 0.20

MoCo (ours) 40.30 66.07 0.5575 0.2135 26.67 21.83 25.61 51.78 64.85 0.16
PCGrad + MoCo 38.80 65.02 0.5492 0.2326 27.39 22.75 23.64 49.89 63.21 3.62
CAGrad + MoCo 39.58 65.49 0.5535 0.2292 25.97 20.86 26.84 53.79 66.65 -0.97

Table 6: MoCo with existing gradient manipulation MTL algorithms for NYU-v2 dataset tasks.
Results are averaged over 3 independent runs.

method in comparison we report the average test performance of the model over last 10 epochs,
averaged over 3 seeds. For implementing MoCo in Cityscapes dataset we use �k = 0.05/k0.5,
�k = 0.1/k0.5, where k is the iteration number. For the projection to simplex in the �k update,
we use a softmax function. The training and test loss curves for semantic segmentation and depth
estimation are shown in Figures 4a and 4b respectively.

NYU-v2 dataset. For NYU-v2 dataset, we follow the same setup as Cityscapes dataset, except with
a batch size of 2. For implementing MoCo in NYU-v2 experiments, we use �k = 0.99, �k = 0.1
with gradient normalization followed by weighting each gradient with corresponding task loss. This
normalization was applied to avoid biasing towards one task, as can be seen is the case for MGDA.
For the projection to simplex in the �k update in MoCo, we apply softmax function to the update,
to improve computational efficiency. The training and test loss curves for semantic segmentation,
depth estimation, and surface normal estimation for NYU-v2 dataset are shown in Figures 5a, 5b,
and 5c respectively. It can be seen that the model start to slightly overfit to the training data set with
respect to the semantic loss after the 100th epoch. However this did not significantly harm the test
performance in terms of accuracy compared to the other algorithms.

MoCo with existing MTL algorithms We apply the gradient correction introduced in MoCo on top
of existing MTL algorithms to further improve the performance. Specifically, we apply the gradient
correction of MoCo for PCGrad and CAGrad on Cityscapes and NYU-v2. For the gradient correction
(update step (6)) in PCGrad we use �k = 0.99 for both Cityscapes and NYU-v2 datasets, and for
that in CAGrad we use �k = 0.99 for Cityscapes dataset and �k = 0.99/k0.5 for NYU-v2 dataset.
The results are shown in Tables 5 and 6 for Cityscapes and NYU-v2 datasets, respectively. We
restate the results for independent task performance and original MTL algorithm performance for
reference. It can be seen that the gradient correction improves the performance of the algorithm
which only use stochastic gradients. For PCGrad where no explicit convex combination coefficient
computation for gradients is involved, there is an improvement of �m% for NYU-v2 by 0.35%. For
Cityscapes, it can be seen a slight degradation in terms of �m%, in exchange for improvement in
3 out of 4 performance metrics. This can be expected as PCGrad does not explicitly control the

30

Published as a conference paper at ICLR 2023

Method
Domain

�m%
Amazon DSLR Webcam

Mean 84.22 94.81 97.04 -
MGDA 79.60 96.45 97.96 0.94
PCGrad 84.10 95.08 96.30 0.21

GradDrop 84.73 96.17 96.85 -0.61
CAGrad 84.22 94.26 97.41 0.07

MoCo (ours) 84.33 97.54 98.33 -1.45

Table 7: Results on Office-31 dataset. We show the 31-class classification results over 3 domains on
Office-31 data set. The results are obtained from the epoch with the best validation performance.

Method
Domain

�m%
Art Clipart Product Real-World

Mean 63.88 77.90 89.55 79.39 -
MGDA 63.63 73.78 90.18 79.82 1.11
PCGrad 63.06 77.46 89.09 78.70 0.81

GradDrop 63.82 78.22 89.19 78.88 0.18
CAGrad 63.06 77.03 89.62 79.53 0.54

MoCo (ours) 63.38 79.41 90.25 78.70 -0.27

Table 8: Multi-task learning results on Office-Home dataset. We show the 65-class classification
results over 4 domains on Office-Home data set. For each method the results are obtained from the
epoch with the best validation performance.

converging point to be closer to the average loss. For CAGrad which explicitly computes dynamic
convex combination coefficients for gradients using stochastic gradients such that it converges closer
to a point that perform well in terms of average task loss, there is an improvement of �m% for
Cityscapes by 1.52% and that for NYU-v2 by 1.17%. This suggests that incorporating the gradient
correction of MoCo in existing gradient based MTL algorithms also boosts their performance.

In addition to the experiments described above, we demonstrate the performance of MoCo in compar-
ison with other MTL algorithms using Office-31 (Saenko et al., 2010) and Office-home(Venkateswara
et al., 2017) datasets. Both of these datasets consist of images of several classes belonging to dif-
ferent domains. We use the method "Mean" as the baseline for �m%, instead of independent task
performance. The Mean baseline is the method where the average of task losses on each domain
is used as the single objective optimization problem. For reporting per domain performance for all
the methods compared in Office-13 and Office-home experiments, the test performance at the epoch
with highest average validation accuracy (across domains) is used for each independent run. This
performance measure is then averaged over three independent runs.

Office-31 dataset. The dataset consists of three classification tasks on 4,110 images collected from
three domains: Amazon, DSLR, and Webcam, where each domain has 31 object categories. For
implementing experiments using Office-home and Office-31 datasets, we use the experiment setup
and implementation given by LibMTL framework (Lin & Zhang, 2022). The MTL algorithms
are implemented using hard parameter sharing architecture, with ResNet18 backbone. As per the
implementation in (Lin & Zhang, 2022), 60% of the total dataset is used for training, 20% for
validation, and the rest 20% for testing. All methods in comparison are run for 100 epochs. For
MoCo implementation, we use �k = 0.5/k0.5 and �k = 0.1/k0.5. We report the test performance of
best performing model based on validation accuracy after each epoch, averaged over 3 seeds. The
results are given in Table 7. It can be seen that MoCo significantly outperforms other methods in
most taks, and also in terms of �m%.

Office-home dataset. This dataset consists of four classification tasks over 15,500 labeled images on
four domains; Art: paintings, sketches and/or artistic depictions, Clipart: clipart images, Product:
images without background and Real-World: regular images captured with a camera. Each domain
has 65 object categories. We follow the same experiment setup as Office-31, and for MoCo imple-

31

Published as a conference paper at ICLR 2023

Figure 6: Metaworld MT10 benchmark tasks (Yu et al., 2020b).

mentation, we use �k = 0.5/k0.5 and �k = 0.1/k0.5. The results are given in Table 8. It can be seen
that MoCo significantly outperforms other methods in most taks, and also in terms of �m%.

Method success (mean ± stderr)

Multi-task SAC 0.49± 0.073

Multi-task SAC + Task Encoder 0.54± 0.047

Multi-headed SAC 0.61± 0.036

PCGrad 0.72± 0.022

CAGrad 0.83± 0.045

MoCo (ours) 0.75± 0.050

CAGrad + MoCo (ours) 0.86± 0.022

One SAC agent per task (upper bound) 0.90± 0.032

Table 9: Multi-task reinforcement learning results on MT10 Metworld benchmark.

K.3 REINFORCEMENT LEARNING

For the multi-task reinforcement learning setting, we use the multi-task reinforcement learning
benchmark MT10 available in Met-world environment (Yu et al., 2020b). Figure 6 illustrates the
10 tasks associated with MT10 benchmark. We follow the experimental setup used in (Liu et al.,
2021a) and provide the empirical comparison between our MoCo method and the existing baselines.
Specifically, we use MTRL codebase (Sodhani & Zhang, 2021) and use soft actor-critic (SAC)
(Haarnoja et al., 2018) as the underlying reinforcement learning algorithm. All the methods are
trained for 2 million steps with a batch size of 1280. Each method is evaluated once every 10000
steps and the highest average test performance of a method over 5 random seeds over the entire
training stage is reported in Table 9. In this experiment, the vanilla MoCo outperforms PCGrad,
but its performance is not as good as CAGrad that optimizes the average performance of all tasks.
We further run the gradient correction of MoCo on top of CAGrad, and the resultant algorithm
outperforms the vanilla CAGrad. This suggests that incorporating the gradient correction of MoCo in
existing gradient based MTL algorithms also boosts their performance.

Table 10 summarizes the hyper-parameters choices used for MoCo in each of the experiments.

Cityscapes NYU-v2 Office-31 Office-home MT10
optimizer of xk Adam Adam Adam Adam Adam
xk stepsize (↵k) 0.0001 0.0001 0.0001 0.0001 0.0003
Yk stepsize (�k) 0.05/k0.5 0.99 0.5/k0.5 0.5/k0.5 0.99
�k stepsize (�k) 0.1/k0.5 0.1 0.1/k0.5 0.1/k0.5 10

batch size 8 2 64 64 1280
training epochs 200 200 100 100 2⇥106 steps

Table 10: Summary of hyper-parameter choices for MoCo in each experiment

32

	Introduction
	Background
	Pareto optimality and Pareto stationarity
	Multiple Gradient Descent Algorithm (MGDA)
	Stochastic multi-objective gradient and its brittleness

	Stochastic Multi-objective Gradient Descent With Correction
	A basic algorithmic framework
	Generalization to nested MOO setting
	A unified convergence result

	Related work
	Experiments
	Supervised learning
	Reinforcement learning

	Notations
	Additional Related Work
	Summary of comparison with closely related prior work
	Algorithm for MoCo with Inexact Gradient
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Improved convergence rate with modified assumptions
	Details of experiments
	Toy example
	Supervised learning
	Reinforcement learning

