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Abstract

This paper develops conformal inference methods to construct a confidence interval for
the frequency of a queried object in a very large discrete data set, based on a sketch
with a lower memory footprint. This approach requires no knowledge of the data distri-
bution and can be combined with any sketching algorithm, including but not limited to
the renowned count-min sketch, the count-sketch, and variations thereof. After explaining
how to achieve marginal coverage for exchangeable random queries, we extend our solution
to provide stronger inferences that can account for the discreteness of the data and for
heterogeneous query frequencies, increasing also robustness to possible distribution shifts.
These results are facilitated by a novel conformal calibration technique that guarantees
valid coverage for a large fraction of distinct random queries. Finally, we show our meth-
ods have improved empirical performance compared to existing frequentist and Bayesian
alternatives in simulations as well as in examples of text and SARS-CoV-2 DNA data.

Keywords: conformal inference, discrete data, distribution shifts, sketching, uncertainty

1. Introduction

1.1 Estimating Frequencies from Sketched Data

Estimating the frequency of a queried object given a lossy reduced representation, or sketch,
of a large discrete data set is a classical problem (e.g., Misra and Gries, 1982; Charikar
et al., 2002, etc). This task is relevant in diverse fields including machine learning (Shi
et al., 2009), cybersecurity (Schechter et al., 2010), natural language processing (Goyal
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et al., 2012), privacy (Cormode et al., 2018), and biology (Zhang et al., 2014). For example,
in biology, researchers may want to efficiently count the occurrences of a contiguous sequence
of nucleotides within a large DNA database, as that can help identify common motifs that
are associated with evolutionary relatedness between different organisms or are involved in
important regulatory processes (Saavedra et al., 2020).

Sketching tends to be motivated either by memory limitations, as large numbers of dis-
tinct symbols may otherwise be computationally expensive to analyze (Zhang et al., 2014),
or by privacy constraints when dealing with sensitive data (Kockan et al., 2020). Several
sketching algorithms can provide compressed data representations that enable accurate ap-
proximations of the frequency of any object (Cormode and Yi, 2020). Classical approaches
are based on random hashing (Cormode and Yi, 2020), but some recent works have pro-
posed more sophisticated machine learning-driven algorithms that can automatically adapt
to the features of the data distribution in order to optimize the data compression (Hsu
et al., 2019; Jiang et al., 2019; Aamand et al., 2019; Bertsimas and Digalakis, 2021).

An important statistical problem in the context of sketching is to quantify the uncer-
tainty of frequency queries, as exact recovery of the latter is typically unfeasible due to some
loss of information during the data compression. Prior works took a number of very differ-
ent routes to address this topic, ranging from data-conditional and Bayesian methods to the
bootstrap (Cormode and Yi, 2020; Ting, 2018; Cai et al., 2018; Dolera et al., 2021). This
paper presents a novel conformal inference method (Vovk et al., 2005). As we will explain,
our approach is principled and offers some notable advantages, starting from the ability to
obtain informative inferences without any parametric assumptions about the distribution
of the sketched data. Further, a key strength of our approach is that it can provide rigorous
uncertainty estimates for any sketching algorithm, including the classical count-min sketch
(CMS) (Cormode and Muthukrishnan, 2005), its non-linear variations (Estan and Varghese,
2002), the count-sketch (CS) (Charikar et al., 2002), and even more complex learning-based
techniques (Bertsimas and Digalakis, 2021). As we shall see, different sketching algorithms
can lead to more or less accurate frequency queries for different types of data, and therefore
the flexibility of our methods will be practically useful.

After reformulating the problem so that standard split conformal inference can be ap-
plied, developing our methodology requires overcoming several challenges. First, standard
conformal inference techniques provide relatively weak statistical guarantees, which are less
satisfactory than usual in the context of answering frequency queries about discrete data.
Indeed, if some objects in the data are much more frequent than others, standard statistical
coverage guarantees can be satisfied even by meaningless inferences that are only valid for
the most common queries. We address this limitation by proposing two methodological
improvements that provide conformal inferences whose validity holds separately for queries
with different frequencies, and for all distinct objects in a possibly large set of queries. Fur-
ther, we prove that our methods are more robust to distribution shifts compared to standard
conformal inferences, which rely on the relatively strong assumption of data exchangeability.

1.2 Problem Statement and Preview of our Contributions

We now present a simplified version of our problem statement and data observation model;
see Section 3 for the complete version. Consider m data points Z1, . . . , Zm ∈ Z , taking
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Figure 1: Schematic visualization of the problem of estimating the empirical frequency of
a queried object in a large data set, given a sketched representation of the latter.

values in a discrete and possibly infinite dictionary Z . We consider the setting where m
is very large, and Z is possibly also large; thus exact computations with Z1, . . . , Zm are
infeasible. Instead, the data are processed via an arbitrary sketching function φ : Z m → C
that produces a reduced representation of these data with lower memory footprint, where
C consists for instance of L discrete counters, so that C = N

L with L ≪ m. A well-known
example of φ is the CMS (Cormode and Muthukrishnan, 2005), reviewed in Appendix A.
The methods developed in this paper can be applied in combination with the CMS or with
any other sketching function. However, the choice of φ is important in practice because it
affects the efficiency of the data compression and the informativeness of our inferences, as
it will become clear in Sections 6–7.

In general, our target of inference is the number of occurrences (or empirical frequency)
of a given object (or query) z ∈ Z in the data set Z1, . . . , Zm:

fm(z) :=

m
∑

i=1

✶ [Zi = z] . (1)

Of course, since Z1, . . . , Zm are not available for direct computations, the exact value of
fm(z) is not known. Instead, we aim to approximate these values for an appropriate z using
the sketch. Specifically, we seek an informative confidence interval for fm(z) that enjoys
precise statistical guarantees in finite samples, as previewed next. As a starting point, we
assume that the query, z = Zm+1, is a random draw from some distribution PZ , sampled
exchangeably with Z1, . . . , Zm. See Figure 1 for a schematic visualization of this problem.

The exchangeability of (Z1, . . ., Zm+1), which will be relaxed later in the paper, imposes
additional conditions compared to some classical analyses of sketching algorithms (Cormode
and Yi, 2020). Such analyses typically treat the data as arbitrary—and thus can also handle
non-stationary streams or adversarial cases. However, we believe our exchangeability condi-
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tion is often realistic, for instance in applications where the data are processed in a random
order; see Sections 7 and 8 for examples. Treating the data as an approximately i.i.d. sample
from some distribution has been suggested before in the context of sketching (Ting, 2018;
Cai et al., 2018; Aamand et al., 2019; Dolera et al., 2021), but our perspective involves key
novelties. First, we assume only exchangeability, not independence. Second, we allow PZ

to be arbitrary and unknown. Third, our results apply to any sketching algorithm.

Section 2 reviews the relevant conformal inference background. Then, Section 3 connects
conformal inference to our problem and explains how to construct a confidence interval1

[L̂m,α(Zm+1), Ûm,α(Zm+1)] for fm(Zm+1) with guaranteed marginal coverage,

P
[

L̂m,α(Zm+1) ≤ fm(Zm+1) ≤ Ûm,α(Zm+1)
]

≥ 1− α, (2)

at the desired level α ∈ (0, 1). Such a coverage property is called marginal because it
involves a probability taken with respect to the randomness in both the data and the query.
Its interpretation is as follows: the confidence interval will cover fm(Zm+1) for at least a
fraction 1− α of data points Z1, . . . , Zm and future queries Zm+1.

Marginal coverage is not trivial to achieve with a reasonably short interval, but it is also
not fully satisfactory because our problem involves discrete data that are likely to include
many repeated observations of the same objects. Unfortunately, inferences satisfying (2)
are not necessarily reliable for a sufficient proportion of distinct or unique queries, which is
what we would ideally like to guarantee. To the contrary, confidence intervals with marginal
coverage are likely to have lower coverage for rarer queries, as illustrated by the following
thought experiment. Imagine a distribution PZ with support on Z = {0, 1, 2, . . . , 10100},
such that P [Zi = 0] = 0.95 and P [Zi = z] = 0.05/(|Z | − 1) for all z ∈ Z \ {0} and i ≥ 1.
Marginal coverage at level 95% would be satisfied even by a non-informative confidence
interval that always contains the true frequency for a new query if Zm+1 = 0 and is empty
otherwise. However, those inferences are incorrect for all but one possible query. This issue
motivates the development of methods with stronger coverage guarantees.

In Section 4, we begin to address the limitations of marginal coverage by presenting a
method for constructing confidence intervals that are valid for both rarer and more com-
mon random queries, taking inspiration from Mondrian conformal inference for classifica-
tion (Vovk et al., 2003). Section 5 extends these ideas by developing and studying a novel
construction of conformal confidence intervals with guaranteed coverage for a large fraction
of distinct/unique queries in a possibly redundant test set. This method is related to the
works of Dunn et al. (2022) and Park et al. (2022) on conformal inference for hierarchical
models and meta-learning, but the specific notion of coverage proposed here had not been
investigated before. Coverage for a large fraction of distinct queries implies that less fre-
quent queries are given a higher weight. For instance, the example above, we expect that
out of M = 1000 test examples 950 are equal to zero and the others are all distinct. Then,
covering 95% of the uniques means that we expect to cover approximately 0.95 · 951 ≈ 903
distinct queries. Clearly, this is more informative than an interval that covers only zero.

Exchangeability has a broad scope, and in certain cases it can be ensured by permut-
ing the data—as in the experiments described in this paper. However, in practice, when

1. Since fm(Zm+1) is also random, it is technically speaking a prediction interval, not a confidence interval.
However, we still refer to it as a confidence interval to keep the terminology consistent with prior work.
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the data come from a real-time stream—such as a sensor monitoring the weather, internet
traffic, etc.—systematic distribution shifts can occur that make test data dissimilar from
training data. Motivated by this problem, we will show that our proposed method also leads
to increased robustness to distribution shifts, which allows some relaxation of the exchange-
ability assumptions and thus broadens the relevance of our results to more applications,
possibly to online data streams (Cao et al., 2023).

Finally, Sections 6–7 present several experiments and illustrations of our methods, using
both synthetic data from realistic power-law distributions and two empirical data examples.
The latter concern 16-mers in SARS-CoV-2 DNA sequences and 2-grams in English liter-
ature. We consider the classical CMS (Cormode and Muthukrishnan, 2005), the CMS-CU
(Estan and Varghese, 2002), the CS (Charikar et al., 2002), and non-random sketches based
on data-driven hash functions (Bertsimas and Digalakis, 2021). We compare our methods,
according to different performances metrics, to existing uncertainty estimation techniques
developed for CMS sketches, including bootstrap and Bayesian approaches (Cormode and
Yi, 2020; Ting, 2018; Cai et al., 2018; Dolera et al., 2021). In addition to being more
flexible, as we are not limited to working with the CMS, our methods tend to outperform
the existing benchmarks even when the latter are applicable, producing shorter confidence
intervals with more consistent coverage. Further, we verify that our method aiming for
coverage of unique elements has a higher robustness to distribution shifts compared to the
simpler approach targeting marginal coverage. Additional experiments are discussed in the
appendix. Section 8 concludes with a discussion and some ideas for future work.

1.3 Related Work

There exist many algorithms for computing approximate frequency queries given a reduced-
memory sketch; some are based on random hashing (Fan et al., 2000; Goyal and Daumé,
2011; Pitel and Fouquier, 2015; Cormode and Yi, 2020), while others may involve complex
learning algorithms (Bertsimas and Digalakis, 2021). Several works have also studied the
problem of quantifying uncertainty in this context, but we are the first to propose a confor-
mal inference approach that is not limited to a specific sketching algorithm. In fact, to the
best of our knowledge, the related prior research has focused on the CMS algorithm (Cor-
mode and Muthukrishnan, 2005). The classical uncertainty estimation strategies treated
the data as fixed and leveraged only the randomness in the hash functions of the CMS (Cor-
mode and Muthukrishnan, 2005), which we review in Appendix A. While that approach can
lead to rigorous confidence bounds for the unknown empirical frequencies under minimal
assumptions, the results are often too conservative to be practically useful (Ting, 2018).

This is why more recent works treated the data as random and either derived frequentist
inferences using re-sampling techniques (Ting, 2018) or calculated a Bayesian posterior
distribution for the frequency of the queried object starting from a prior model for the
sketched data (Cai et al., 2018; Dolera et al., 2021; Beraha and Favaro, 2023). Our work
is closer to Ting (2018), as we seek frequentist probabilistic guarantees while treating the
data as random, but our solution is very different. The method of Ting (2018) is limited
to the CMS, whereas we use conformal inference and can handle any sketching algorithm,
including non-linear and learning-based ones (Estan and Varghese, 2002; Hsu et al., 2019;
Aamand et al., 2019; Bertsimas and Digalakis, 2021). Such flexibility is useful because
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different sketching algorithms may allow more efficient data compression and more accurate
frequency estimates depending on the data distribution (Aamand et al., 2019).

Conformal inference was pioneered by Vovk and collaborators (Saunders et al., 1999;
Vovk et al., 2005) and brought to the statistics spotlight by works such as Lei et al. (2013);
Lei and Wasserman (2014); Lei et al. (2018). Although primarily conceived for supervised
prediction (Vovk et al., 2009; Vovk, 2015; Lei and Wasserman, 2014; Romano et al., 2019;
Izbicki et al., 2019; Park et al., 2021; Qiu et al., 2023), conformal inference has found other
applications including outlier and anomaly detection (Bates et al., 2023; Kaur et al., 2022;
Li et al., 2022; Liang et al., 2022), causal inference (Lei et al., 2021, e.g.,), and survival
analysis (Candès et al., 2023). We mention here that the ideas in conformal prediction have
deep roots in statistics, dating back at least to the pioneering works of Wilks (1941), Wald
(1943), Scheffe and Tukey (1945), and Tukey (1947, 1948); see also Geisser (2017).

1.4 Relation to Shorter Conference Paper

The potential of conformal inference in sketching remained untapped before the shorter
version of this work (Sesia and Favaro, 2022), which appeared in the proceedings of the
NeurIPS 2022 conference. This extended manuscript contains novel methods and several
original theoretical results, in Section 5, studying the construction of confidence intervals
with valid coverage for a large fraction of distinct queries. This is stronger and more chal-
lenging guarantee compared to marginal coverage, and it is useful because it leads to more
easily interpretable inferences when the data are discrete and may involve many repeated
observations. Further, we will show that the methodological extensions introduced in this
paper improve the robustness to distribution shifts and other possible violations of the data
exchangeability assumption (Tibshirani et al., 2019; Barber et al., 2023), which could be
relevant for example when sketching streaming data (Cao et al., 2023). Finally, Sections 6–7
of this manuscript contain several additional numerical results, and the whole paper has
been re-organized to provide a more general description of the proposed methodology that
better highlights its general applicability in combination with any sketching algorithm.

2. Preliminaries on Conformal Prediction

Consider supervised learning, with data pairs (Xi, Yi) where Xi are a vector of features for
the i-th observation and Yi are the corresponding outcome or label, which may be continuous-
or discrete-valued. The usual goal in supervised learning is to use (X1, Y1), . . . , (Xn, Yn) to
learn a predictor of an unseen label Yn+1 using a new observation with features Xn+1.
Related to this, conformal prediction can be used to construct a prediction interval [L̂n,α

(Xn+1), Ûn,α(Xn+1)] with guaranteed marginal coverage,

P[L̂n,α(Xn+1) ≤ Yn+1 ≤ Ûn,α(Xn+1)] ≥ 1− α,

for any fixed α ∈ (0, 1), assuming that (X1, Y1), . . . , (Xn+1, Yn+1) is an exchangeable random
sample from some unknown distribution over (X,Y ). Conformal prediction can leverage
supervised learning methods to approximately reconstruct the relation between X and Y ,
capturing it in L̂n,α, Ûn,α, and it automatically calibrates such prediction interval to achieve
marginal coverage. While it is sufficient to focus on conformal intervals in this paper, similar
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techniques can also be used to construct more general prediction sets (e.g., Vovk et al., 2005;
Romano et al., 2020b; Angelopoulos et al., 2021, etc).

A simple version of conformal prediction—known as split or inductive conformal pre-
diction (Papadopoulos et al., 2002; Lei et al., 2018)—begins by randomly splitting the
observations into two disjoint subsets: a training set and a calibration set. The first
ntrain ∈ {1, . . . , n} data points are used as the training set, to fit a machine learning model
for predicting Y given X; e.g., a neural network or a random forest. The out-of-sample
predictive accuracy of this model is then measured in terms of a conformity score for each
of the n− ntrain held-out data points in the calibration set. In combination with the model
learned from the training data, the quantiles of the empirical distribution of these scores
are used to construct prediction intervals for future test points as a function of Xn+1. As
detailed shortly, these intervals are guaranteed to cover Yn+1 with probability at least 1−α,
treating all data as random. Importantly, the coverage holds in finite samples, regardless
of the accuracy of the predictive model, as long as Xn+1 is exchangeable with the held-out
data points. It is unnecessary for the training data to be also exchangeable, as these may
be viewed as fixed.

One perspective on conformal prediction is to construct a nested sequence (Vovk et al.,
2005; Gupta et al., 2022) of prediction intervals [L̂n,α(x; t), Ûn,α(x; t)], indexed by t ∈ T ⊆ R

for each x; based on the fitted machine learning model. This sequence is nested, in the sense
that L̂n,α(x; t2) ≤ L̂n,α(x; t1) and Ûn,α(x; t2) ≥ Ûn,α(x; t1) for all t2 ≥ t1. Further, assume
there exists t∞ ∈ T such that L̂n,α(X; t∞) ≤ Y ≤ Ûn,α(X; t∞) almost surely. For example,

one may consider the sequences ψ̂n(x) ± t, t ≥ 0, where ψ̂n is a regression function for
a bounded label Y given X output by machine learning model and t plays the role of a
“predictive standard error”. For one-sided (lower) confidence intervals [L̂n,α(x; t),∞), we
may set Ûn,α(x; t) =∞.

Then, the conformity score for a point withX = x and Y = y is defined as the smallest—
infimum—index t such that y is contained in the prediction interval [L̂n,α(x; t), Ûn,α(x; t)]:

E(x, y) := inf
{

t ∈ T : y ∈ [L̂n,α(x; t), Ûn,α(x; t)]
}

. (3)

Let Icalib ⊂ {1, . . . , n} be the subset of held-out data points, with cardinality |Icalib|.
Let Q̂n,1−α be the ⌈(1 − α)(|Icalib| + 1)⌉-th smallest conformity score E(Xi, Yi) among all
i ∈ Icalib. The conformal prediction interval for a new data point with features Xn+1 is:

[

L̂n,α(Xn+1; Q̂n,1−α), Ûn,α(Xn+1; Q̂n,1−α)
]

. (4)

Intuitively, this satisfies marginal coverage because Yn+1 falls outside (4) if and only if
E(Xn+1, Yn+1) > Q̂n,1−α. The rest of the proof is a simple exchangeability argument;
see Vovk et al. (2005), Romano et al. (2019), or the proof of Theorem 1 in Appendix D.

3. Confidence Intervals with Marginal Coverage

3.1 Data Exchangeability and Conformal Confidence Intervals

As anticipated in Section 1.2, we study a sketching problem in which the query Zm+1 and
m data points, Z1, . . . , Zm, are an exchangeable random sample from some distribution
PZ on Z . We assume that the full data set is too large to process directly. Recall that
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our goal is to construct a confidence interval with guaranteed marginal coverage (2) for
the number of occurrences fm(Zm+1)—defined in (1)—of the query Zm+1 in the data set.
Since Z1, . . . , Zm cannot be observed, we rely on the information contained in the sketch
φ(Z1, . . . , Zm). Importantly, we would like to retain as much flexibility as possible with
regard to the sketching function φ.

To connect this problem with the conformal inference framework reviewed in Section 2,
we need to define the appropriate features and outcomes. Our approach is to store the
true frequencies for all objects in the first n observations in a warm-up stage, for some
fixed n≪ m that is sufficiently large subject to memory constraints2. An extension of this
method allowing n to be data-dependent will be discussed later in Section 3.4. Let n0 ≤ n
indicate the number of distinct objects among the first n observations. The memory required
to store these frequencies is O(n0), which is typically negligible if n is small compared to
the size of the sketch. We use these stored frequencies to define features and outcomes,
transforming our task into supervised prediction, as detailed below.

During the warm-up phase, we store the frequencies of the distinct objects among the
first n observations Z1, . . . , Zn from the data stream. We denote these counts as fwu

n (z),
defined for all z ∈ Z as

fwu
n (z) :=

n
∑

i=0

✶ [Zi = z] . (5)

Next, the remaining m − n data points are streamed and compressed using any black-
box sketching function φ of choice. At the same time, however, we also keep track of
the true frequencies for all instances of objects already seen during the warm-up phase.
In other words, the following counters are computed and stored along with the sketch3

φ(Zn+1, . . . , Zm):

f svm−n(z) :=

{

∑m
i=n+1 ✶ [Zi = z] , if fwu

n (z) > 0,

0, otherwise.
(6)

Again, this requires only O(n0) memory. Next, we define the variables Yi for all i ∈
{1, . . . , n} ∪{m+ 1} as the true frequencies of Zi among Zn+1, . . . , Zm:

Yi :=
m
∑

i′=n+1

✶ [Zi′ = Zi] . (7)

For all i ∈ {1, . . . , n} ∪{m+1}, the frequencies of Zi can be written as fm(Zi) = Yi+f
wu
n (Zi).

Thus, fwu
n (Zi) and Yi together determine the outcome fm(Zi) of interest. For i ∈ {1, . . . , n},

Yi are observed and equal Yi = f svm−n(Zi). In contrast, for the query Zm+1, we have
Ym+1 = f svm−n(Zm+1) only if the value of Zm+1 has occurred among Z1, . . . , Zn and thus
the frequency of Zm+1 has been stored. Otherwise, the value of Ym+1 is not known. Since
fwu
n (Zm+1) and Ym+1 determine fm(Zm+1), it is reasonable to aim to build a predictive
model or conformal interval for Ym+1 based on the observed data Zm+1 and the sketch.

2. Note that the index n+ 1 of the test point from Section 2 is now replaced by m+ 1.
3. Compared to the setup from Section 1.2, here the sketch is only applied to the observations Zn+1, . . . , Zm

instead of Z1, . . . , Zm, because the frequencies of the first n observations are already stored exactly.
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To formalize this, for each i ∈ {1, . . . , n}∪{m+1}, define the features Xi as the vectors
containing the data point Zi and the information in the sketch:

Xi := (Zi, φ(Zn+1, . . . , Zm)) . (8)

To obtain a conformal guarantee, we will rely on result that the pairs (X1, Y1), . . .,
(Xn, Yn), (Xm+1, Ym+1) are exchangeable with one another—where, as discussed, Ym+1 is
possibly unobserved. All mathematical proofs are in Appendix D.

Proposition 1 If the unsketched data points Z1, . . . , Zm+1 are exchangeable, then the pairs
of random variables (X1, Y1), . . . , (Xn, Yn), (Xm+1, Ym+1) in (7)–(8) are also exchangeable
with one another.

Proposition 1 opens the door to applying conformal inference to the supervised obser-
vations (X1, Y1), . . . , (Xn, Yn) in order to predict Ym+1 given Xm+1, guaranteeing marginal
coverage. In particular, using the inductive/split conformal prediction methodology re-
viewed in Section 2, one can randomly split the observations indexed by {1, . . . , n} into a
training subset indexed by {1, . . . , ntrain} for some fixed ntrain < n, and a disjoint calibra-
tion subset indexed by {ntrain + 1, . . . , n}. The training set is used for fitting a predictor
for computing nested confidence intervals, [L̂m,α(·; t), Ûm,α(·; t)], t ∈ T ; see the next sec-
tions for further implementation details. The aim is that Y ∈ [L̂m,α(X; t), Ûm,α(X; t)] holds
with large probability; and thus this interval can be used to predict Y and hence also
fm(Z) = Y + fwu

n (Z). In certain cases, this predictor will leverage a classical deterministic
sketching method, making the training step unnecessary.

To choose a suitable value for the parameter t, following the general approach reviewed in
Section 2, the calibration set of observations indexed by {ntrain+1, . . . , n} is used to compute
conformity scores E(Xi, Yi) for i ∈ {ntrain + 1, . . . , n}. Then, with ncal = n − ntrain, the
conformal interval is constructed as in (4), by setting t as the ⌈(1−α)(ncal+1)⌉-th smallest
score of E(Xi, Yi) for i ∈ {ntrain + 1, . . . , n}. The resulting interval from (4) guarantees
valid marginal coverage for a new test query in finite samples.

This solution is outlined by Algorithms 1–2 and visualized schematically in Figure 2. Al-
gorithm 2 outputs the final confidence interval after Algorithm 1 sketches and pre-processes
the data. This modular organization will prove useful in the following sections to sim-
plify the exposition of extensions of our methodology. The following result states that the
confidence interval output by Algorithm 2 has the desired marginal coverage.

Theorem 1 If the data Z1, . . . , Zm+1 are exchangeable, the confidence interval output by
Algorithm 2 satisfies the marginal coverage property defined in (2).

Remark. Algorithm 2 could be trivially modified to output perfect “singleton” con-
fidence intervals for any new queries that happen to be identical to an object previously
observed during the warm-up phase. We will not take advantage of this option in the ex-
periments presented in this paper in order to provide a fairer comparison with alternative
methods which do not involve a similar warm-up phase.

9



Sesia, Favaro, and Dobriban

PZ

Z1 Z2 Z3 · · · Zm Zm+1

Z1 · · · Zn Zn+1 · · · Zm

Sketching algorithm φLossless storage

E1
. . . En · · ·C1 CL

fm(Zm+1) =
∑m

i=1
✶ [Zi = Zm+1]

[

L̂m,α(Zm+1), Ûm,α(Zm+1)
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Figure 2: A diagram of the conformalized sketching method in Algorithms 1–2.

3.2 Conformity Scores for Confidence Intervals with Fixed Width

The method described by Algorithms 1–2 can accommodate any data-adaptive intervals
[L̂m,α(x; t), Ûm,α(x; t)]—for computing nested confidence intervals, which may depend on
the sketch φ := φ(Zn+1, . . . , Zm). A simple one-sided construction of these confidence
intervals is possible if the sketching algorithm provides us with a non-trivial deterministic
upper bound f̂up(Xm+1) = f̂up(Zm+1, φ) for the query frequency—such that f(Xm+1) ≤
f̂up(Zm+1, φ) for all Zm+1—as it is the case with the CMS (Cormode and Muthukrishnan,
2005). In those cases, we suggest to calibrate the parameter t of the following sequence of
potential lower bounds on the query frequency:

L̂fixed
m,α ((Zm+1, φ); t) := max{0, f̂up(Zm+1, φ)− t}, t ∈ {0, 1, . . . ,m}. (9)

In words, a potential lower bound for fm(Zm+1) in (9) is defined by shifting the deterministic
upper bound down by a constant t. The appropriate value of t guaranteeing marginal
coverage is chosen by applying Algorithm 2 at the nominal level α. If Yi ≤ f̂up(Xi) for all
i ∈ {ntrain + 1, . . . , n}, then the chosen t can also be written as the ⌈(1 − α)(ncal + 1)⌉-th
smallest value of f̂up(Xi)− Yi among i ∈ {ntrain + 1, . . . , n}.

This approach does not require training data, in the sense that it allows one to use
ntrain = 0 and use all n observations with tracked frequencies for calibration. Further,
two-sided conformal confidence intervals can be constructed as explained in Appendix B.1.
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Algorithm 1 Conformalized sketching (data sketching, training, and calibration)

Input: Data set Z1, . . . , Zm. Sketching function φ. Warm-up period n≪ m.
Input: A trainable predictor to compute nested intervals [L̂m,α(·; t), Ûm,α(·; t)]t∈T .
Input: Number of data points ntrain < n used for training [L̂m,α(·; t), Ûm,α(·; t)].
Initialize a sparse counter fwu

n (z) = 0, ∀z ∈ Z.
for i = 1, . . . , n do
Increment fwu

n (Zi)← fwu
n (Zi) + 1.

Initialize a sparse counter f svm−n(z) = 0, ∀z ∈ Z.
Initialize an empty sketch φ(∅).
for i = n+ 1, . . . ,m do
Update the sketch φ with the new observation Zi.
if fwu

n (Zi) > 0 then
Increment f svm−n(Zi)← f svm−n(Zi) + 1.

for i = 1, . . . , n do
Set Xi = (Zi, φ(Zn+1, . . . , Zm)) as in (8).
Set Yi = f svm−n(Zi).

Train [L̂m,α(·; t), Ûm,α(·; t)], t ∈ T , using the data in {(Xi, Yi)}ntrain

i=1 .
for i = ntrain + 1, . . . , n do

Compute the conformity score E(Xi, Yi) with (3), using [L̂m,α(·; t), Ûm,α(·; t)].
Output: Data sketch φ;
Output: Sparse counter fwu

n (z), ∀z ∈ Z;
Output: Trained predictor [L̂m,α(·; t), Ûm,α(·; t)];
Output: Conformity scores E(Xi, Yi) for all i ∈ {ntrain + 1, . . . , n}.

Algorithm 2 Conformalized sketching with marginal coverage

Input: Same as for Algorithm 1.
Input: Random query Zm+1. Desired coverage level 1− α ∈ (0, 1).
Compute using Algorithm 1:
Input: Data sketch φ; a sparse counter fwu

n (z), ∀z ∈ Z;
Input: Variables Xi = (Zi, φ(Zn+1, . . . , Zm)) and Yi = f svm−n(Zi) for i ∈ {1, . . . , n}.
Input: Trained predictor for computing nested intervals [L̂m,α(·; t), Ûm,α(·; t)]t∈T ;
Input: Conformity scores E(Xi, Yi) for all i ∈ {ntrain + 1, . . . , n}.
Compute Q̂ncal,1−α as the ⌈(1− α)(ncal + 1)⌉-th smallest score, with ncal = n− ntrain.
Set Xm+1 = (Zm+1, φ(Zn+1, . . . , Zm)) as in (8).
Output: a (1− α)-level confidence interval

[

fwu
n (Zm+1) + L̂m,α(Xm+1; Q̂ncal,1−α), f

wu
n (Zm+1) + Ûm,α(Xm+1; Q̂ncal,1−α)

]

for the unobserved frequency fm(Zm+1) of Zm+1 defined in (1).

3.3 Conformity Scores for Confidence Intervals with Adaptive Width

A more flexible confidence interval construction with query-dependent width can some-
times lead to more informative predictions compared to the simpler method described in
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Section 3.2. This approach, which we call “adaptive”, involves training a machine learning
model to approximate the optimal width of the confidence intervals, and it is inspired by
the methods of Chernozhukov et al. (2021) and Sesia and Romano (2021). For simplicity,
we focus here on the construction of one-sided intervals, assuming that a deterministic up-
per bound f̂up for the desired query frequency is already available (e.g., as in the case of
the CMS). However, the same idea can be generalized easily to construct instead two-sided
confidence intervals; see Appendix B.1.

Consider a machine learning model taking as input the deterministic upper bound
f̂up(Zi) and estimating the conditional distribution of f̂up(Zi)−fm(Zi) given f̂up(Zi). For ex-
ample, think of a quantile neural network (Taylor, 2000) or a quantile random forest (Mein-
shausen, 2006). After fitting this model on the training data set of size ntrain, let q̂t be the
estimated αt-th lower quantile of f̂up(Zi)− fm(Zi) | f̂up(Zi), for all t ∈ {1, . . . , T} and some
fixed sequence 0 = α1 < . . . < αT = 1. Without loss of generality, assume that quantile
crossings do not occur (He, 1997) and let q̂0 = 0, q̂T = m − n. Then, define the following
monotone sequence of conformal lower bounds, recalling that Xm+1 = (Zm+1, φ):

L̂adaptive
m,α ((Zm+1, φ); t) := max

{

0, f̂up(Xm+1)− q̂t
(

f̂up(Xm+1)
)}

, t ∈ {0, 1, . . . ,m}.

Finally, the calibrated value of t guaranteeing marginal coverage is obtained by applying
Algorithm 2 at the nominal level α. This approach can lead to a lower confidence bound
whose distance from the upper bound is adaptive to the test instance Xm+1. This can
be an advantage because the sketching algorithms may introduce higher uncertainty about
common queries compared to rarer ones, or vice versa, depending on the data distribution,
and such patterns may be learnt given a sufficient number of observations.

3.4 Data-Adaptive Warm-up

Algorithm 1 requires pre-specifying the total number of data points n processed during
the warm-up phase. A possible limitation of this approach is that the number of distinct
objects n0 ≤ n among the first n observations depends on the data distribution PZ and
cannot be known in advance. In particular, if the data follow a distribution with a power-
law tail behaviour, as it is often the case in many practical applications (Clauset et al.,
2009), some types of objects may be much more likely than others to be observed, resulting
in n0 ≪ n. Given that the memory cost of Algorithm 1 depends on the number of distinct
objects observed during the warm-up phase, it would be more intuitive to allow the user
to control the duration of the warm-up phase by directly specifying the desired value of
n0 instead of n. In other words, one may want to run the warm-up phase of Algorithm 1
for a flexible number of steps n, until exactly n0 distinct objects are observed. Unfortu-
nately, a straightforward implementation of this alternative strategy, which is outlined by
Algorithm A7 in Appendix B.2, does not lead to theoretically valid conformal inferences
because the randomness in n breaks the desired exchangeability of the calibration data with
the test query Zm+1. Nonetheless, Algorithm A7 does provide a reasonable heuristic that
often works well in practice, as we shall see empirically in Section 6.

Alternatively, a rigorous solution can be obtained by modifying Algorithm A7 so that
the conformal inferences are calibrated using only the observations collected during a second
distinct warm-up phase, whose duration is fixed conditional on the first warm-up phase. In
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particular, the duration of the second warm-up phase is set equal to n, namely the (random)
number of data points collected until n0 distinct objects are observed during the first warm-
up phase. By the exchangeability of the data, one thus expects to observe approximately
n0 distinct objects in the second warm-up phase. Further, this two-step preserves the
exchangeability of the calibration data with the test query Zm+1 conditional on the value of
n and on all the data observed during the first warm-up phase, thus enabling theoretically
valid conformal inferences. See Algorithm A8 for an outline of this procedure.

4. Confidence Intervals with Frequency-Conditional Coverage

As explained in Section 1.2, marginal coverage is not fully satisfactory because our data
are discrete and more common queries should not be over-counted. Therefore, we begin to
address the limitations of marginal coverage by extending the method presented in Section 3
to obtain confidence intervals valid simultaneously for both rarer and more common queries.
Our approach is inspired by Mondrian conformal inference (Vovk et al., 2003), which has
been previously used—for instance—to construct prediction sets with label-conditional cov-
erage for classification problems (Vovk et al., 2005; Sadinle et al., 2019; Romano et al.,
2020b). However, departing from multi-class classification, we will not seek perfect cover-
age conditional on the exact frequency of the queried object. In fact, that problem is likely
to be impossible to solve without stronger assumptions (Barber et al., 2021), as fm(Zm+1)
can take a very large number of values when the sketched data set is big. Instead, we
will focus on achieving a relaxed version of frequency-conditional coverage which groups
together queries with similar frequencies.

Fix any partition B = (B1, . . . , BL) of {1, . . . ,m} into L sub-intervals, for some relatively
small integer L. The choice of B and L will be discussed below. For the time being, it suffices
to emphasize that this partition may be arbitrary, as long it is fixed prior to seeing the data
Z1, . . . , Zm+1. Our goal is to construct a confidence interval [L̂m,α(Zm+1), Ûm,α(Zm+1)]
depending on φ(Z1, . . . , Zm) and B that is reasonably short in practice and guarantees
frequency-range conditional coverage:

P
[

L̂m,α(Zm+1) ≤ fm(Zm+1) ≤ Ûm,α(Zm+1) | fm(Zm+1) ∈ B
]

≥ 1− α, ∀B ∈ B. (10)

Thus, coverage is guaranteed for observations Zm+1 with fm(Zm+1) ∈ B, for each B.
Confidence intervals satisfying (10) can be obtained by modifying Algorithm 2 as outlined
in Algorithm 3; by computing empirical quantiles for the conformity scores corresponding
to the calibration data points in each frequency bin separately. Then, the final confidence
interval for the random query is computed based on the largest quantile across all bins. The
theoretical validity of this solution is established below in Theorem 2.

Theorem 2 If the data Z1, . . . , Zm+1 are exchangeable, the confidence interval output by
Algorithm 3 satisfies the frequency-conditional property defined in (10).

Remark. The choice of the partition B involves an important trade-off. On the one
side, frequency-conditional coverage (10) becomes stronger with finer partitions; a larger
value of |B| tends to yield more reliable intervals. On the other side, coarser partitions
(smaller |B|) enable a larger calibration sample within each bin, leading to tighter and more
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Algorithm 3 Conformalized sketching with frequency-conditional coverage

Input: Data set Z1, . . . , Zm. Sketching function φ. Warm-up period n≪ m.
Input: A (trainable) predictor to compute nested intervals [L̂m,α(·; t), Ûm,α(·; t)]t∈T .
Input: Number of data points ntrain < n used for training [L̂m,α(·; t), Ûm,α(·; t)].
Input: A partition B = (B1, . . . , BL) of {0, . . . ,m} into L intervals.
Input: Random query Zm+1. Desired coverage level 1− α ∈ (0, 1).
Compute using Algorithm 1:
Input: Data sketch φ; a sparse counter fwu

n (z), ∀z ∈ Z;
Input: Variables Xi = (Zi, φ(Zn+1, . . . , Zm)) and Yi = f svm−n(Zi) for i ∈ {1, . . . , n}.
Input: Trained predictor [L̂m,α(·; t), Ûm,α(·; t)];
Input: Conformity scores E(Xi, Yi) for all i ∈ {ntrain + 1, . . . , n}.
for i = ntrain + 1, . . . , n do

Assign each score E(Xi, Yi) to an appropriate frequency bin B ∈ B based on Yi.
for l = 1, . . . , L do
Compute the number nl of scores assigned to bin Bl.
Compute Q̂nl,1−α(Bl) as the ⌈(1− α)(nl + 1)⌉-th smallest score in bin Bl.

Set Q̂∗
n,1−α = maxl Q̂nl,1−α(Bl).

Set Xm+1 = (Zm+1, φ(Zn+1, . . . , Zm)) as in (8).
Output: a (1− α)-level confidence interval

[

fwu
n (Zm+1) + L̂m,α(Xm+1; Q̂

∗
n,1−α), f

wu
n (Zm+1) + Ûm,α(Xm+1; Q̂

∗
n,1−α)

]

for the unobserved frequency fm(Zm+1) of Zm+1 defined in (1).

stable intervals. Concretely, the illustrations described in this paper will adopt |B| = 5,
although finer partitions may be used when working with very large data sets.

As |B| should be small relative to the number n of calibration data points to have short
intervals, frequency-conditional coverage can only be guaranteed conditional on a relatively
rough approximation of the true empirical frequency of a new query. Therefore, rarer
queries may still suffer from lower coverage compared to more common queries within the
same frequency bin, as we shall see empirically in Section 6. This remaining limitation
motivates the more sophisticated approach presented below, which is designed to guarantee
valid coverage for a sufficiently large fraction of all distinct queries occurring in random test
set with repetitions, regardless of their relative frequencies.

5. Confidence Intervals with Valid Coverage for Distinct Queries

Section 5.1 describes our methodology for constructing confidence intervals with valid cover-
age for distinct queries. Then, Sections 5.2 and 5.3 study some of its robustness properties.

5.1 Construction of Confidence Intervals with Coverage for Distinct Queries

First, we introduce some notations. Recall that a multiset V of objects {v1, . . . , vm} is
simply the set of v1, . . . , vm with repetitions. Since we are dealing with settings where
there are potentially a lot of repeated values, it is helpful to refer to the multiset Zcal of

14



Conformal Frequency Estimation using Discrete Sketched Data

calibration data points Zi for all i ∈ Ical = {ntrain + 1, . . . , n}, for an appropriate n < m.
As above, we define ncal as the cardinality of Ical.

Next, for some M > 0, we aim for coverage for distinct queries among M new queries.
Therefore, we consider a multiset Ztest ofM queries, indexed by Itest = {m+1, . . . ,m+M},
which we assume to be sampled from PZ exchangeably with one another as well as with
the m sketched data points. This generalizes the setting considered so far, where we had
considered M = 1.

Define also Unique(Ztest) ⊆ Ztest as the subset of unique objects in Ztest. Then, we
formalize “coverage over uniques” by first sampling Z∗ from the uniform distribution over
Unique(Ztest):

Z1, . . . , Zm, Zm+1, . . . , Zm+M
exch.∼ PZ ,

Z∗ ∼ Uniform [Unique(Zm+1, . . . , Zm+M )] .
(11)

Then, the goal is to construct a confidence interval [L̂m,α(Z
∗), Ûm,α(Z

∗)] achieving coverage
of fm(Z∗) over the random draw of Z∗, i.e., on average over the uniques in the test set:

P
∗
[

L̂m,α(Z
∗) ≤ fm(Z∗) ≤ Ûm,α(Z

∗)
]

≥ 1− α, (12)

for any desired α ∈ (0, 1). Above, the probability P
∗ is taken with respect to Z1, . . . , Zm+M

as well as to the randomness in Z∗, according to the model defined in (11). Equations (11)–
(12) say that our goal is to cover at least a fraction 1− α of the distinct queries in the test
set; on average over the distribution of the test and calibration data. In the special case of
a test set with cardinality M = 1, the property in (12) reduces to marginal coverage.

To achieve (12) with any value of M , we follow an approach inspired by Dunn et al.
(2022); Park et al. (2022). We randomly partition the calibration data into G = ⌊ncal/M⌋
multisets Zcal

g , for g ∈ [G] := {1, . . . , G}, called calibration shards. Without loss of general-

ity, assume the cardinality of each Zcal
g is M . For our method to be powerful, we will need

ncal > M , and ideally we would like ncal ≫M ; or equivalently a large G.

Following the same notation as above, let Unique(Zcal
g ) ⊆ Zcal

g denote the subset of

unique objects in the calibration shard Zcal
g , for all g ∈ [G]. Then, for each g ∈ [G], pick

an element from each calibration shard Zcal
g uniformly at random and call it Z̃g ∈ Z. By

construction, the shard-unique element pairs (Zcal
g , Z̃g), g ∈ [G], are exchangeable with

one another as well as with (Ztest, Z∗), for all g ∈ [G]. Therefore, a confidence interval
[L̂m,α(Z

∗), Ûm,α(Z
∗)] satisfying (12) can be obtained by applying the method from Section 3

with the calibration set Zcal replaced by (Z̃1, . . . , Z̃G).

This solution is outlined in Algorithm 4 and its theoretical validity is established by
Theorem 3. Algorithm 4 is written as to potentially allow the size M ′ of each of the G
calibration shards to be different from the size M of the test set. This generalization of
Algorithm 4 with M ′ 6=M will be studied theoretically in the next section, and it is worth
considering because one may sometimes be tempted to apply Algorithm 4 with M ′ < M in
practical applications with limited amounts of data. However, the remainder of this section
will continue to focus on the standard choice of M ′ =M .
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Algorithm 4 Conformalized sketching with valid coverage for distinct queries

Input: Same as for Algorithm 2, with query Z∗.
Input: Calibration set size M ′.
Compute using Algorithm 1:
Input: Data sketch φ; a sparse counter fwu

n (z), ∀z ∈ Z;
Input: Variables Xi = (Zi, φ(Zn+1, . . . , Zm)) and Yi = f svm−n(Zi) for i ∈ {1, . . . , n}.
Input: Trained predictor for computing nested intervals [L̂m,α(·; t), Ûm,α(·; t)];
Input: Conformity scores E(Xi, Yi) for all i ∈ {ntrain + 1, . . . , n}.
Define G = ⌊ncal/M ′⌋, where ncal = n− ntrain.
Partition at random {ntrain + 1, . . . , n} into G subsets Icalg .
for g = 1, . . . , G do
Pick uniformly at random one value Z∗

g from the set Unique({Zi}i∈Ical
g
).

Set X∗
g =

(

Z∗
g , φ(Zn+1, . . . , Zm)

)

as in (8), and Y ∗
g = f svm−n(Z

∗).
Set E∗

g = E(X∗
g , Y

∗
g ).

Compute Q̂G,1−α as the ⌈(1− α)(G+ 1)⌉-th smallest score in {E∗
g}Gg=1.

Set X∗ = (Z∗, φ(Zn+1, . . . , Zm)) as in (8).
Output: a (1−α)-level confidence interval for the frequency fm(Z∗) of Z∗ defined in (1):

[

fwu
n (Z∗) + L̂m,α(X

∗; Q̂∗
ncal,1−α), f

wu
n (Z∗) + Ûm,α(X

∗; Q̂∗
ncal,1−α)

]

.

Theorem 3 Assume the data Z1, . . . , Zm+M are exchangeable and the query Z∗ is sampled
according to (11). If Algorithm 4 is applied with parameter M ′ equal to the test set size M ,
the output confidence interval satisfies the distinct-query coverage property defined in (12).

Remark. The cardinality M of the query set controls the trade-off between the power
and reliability of the confidence intervals output by Algorithm 4, assuming the latter is
applied with parameter M ′ = M as prescribed by Theorem 3. On the one hand, smaller
values ofM lead to tighter and more stable intervals due to a larger number G of data points
available for calibration. On the other hand, larger values of M lead to stronger theoretical
guarantees, as they reduce the dependence between the expected conditional coverage for
a particular query and the population frequency of that query. In general, we recommend
that Algorithm 4 should be applied with values of M so large as to result in a number
G of final calibration data points in the hundreds. Concretely, the numerical experiments
presented in this paper will apply Algorithm 4 with values of M allowing G ≥ 100.

We conclude this section by emphasizing that Algorithm 4 and Algorithm 3 differ in their
formally stated goals (achieving distinct-query coverage and frequency-conditional coverage,
respectively), but they are designed to mitigate the same limitation of confidence intervals
with marginal coverage. On the one hand, distinct-query coverage is intuitively more ap-
pealing and easier to explain compared to frequency-conditional coverage, as anticipated in
Section 4. On the other hand, Algorithms 4 and Algorithm 3 require a calibration set that is
large relative to the size of the query set. Therefore, the relative advantages of Algorithms 3
and 4 in finite samples may not necessarily be straightforward to see, suggesting the need
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for a deeper theoretical study of Algorithm 4 (in the remainder of this section) as well as
careful simulations (in Section 7).

5.2 Robustness to Sample Inflation

To better understand the benefits of Algorithm 4, we study the robustness of its distinct-
query coverage guarantee in situations where it is not applied with the default settings, due
to a limited sample size. In particular, we are interested in understanding what happens if
the sizeM ′ of the calibration shards Zcal

g , for all g ∈ [G], is smaller than the test sample size
M . As mentioned, this scenario is motivated when we aim to reach a strong unique-coverage
guarantee with a large M despite having only a relatively small calibration sample size.

Let us begin the analysis by recalling the key modelling assumption used throughout
this paper: all data points are sampled exchangeably from a discrete distribution PZ with
support on some countable dictionary Z. To facilitate the analysis hereafter, we further

assume the data are independent; that is, Zi
i.i.d.∼ PZ , for all i ∈ [m +M ]. Moreover, we

denote PZ =
∑

j∈N pjδaj , where the aj ∈ Z are the distinct symbols in the dictionary Z,
while pj ≥ 0 are their respective probabilities for all j ∈ N, such that

∑

j∈N pj = 1.

Let V = Unique(Ztest) denote the set of unique values in the test set Ztest, which
contains all Zi indexed by the test index set i ∈ Itest. For any positive integers k and M
such that M ≥ k, let CM,k be the set of k-compositions of M : these are the sequences

c = (c1, . . . , ck) of positive integers cj ≥ 1 such that
∑k

j=1 cj = M . For instance, (1, 1, 2)
is a k = 3-composition of M = 4. It is known that the number of such sequences is
|CM,k| =

(

M−1
k−1

)

; see e.g., Riordan (2012). For instance, (1, 1, 2), (1, 2, 1), and (2, 1, 1) are

all k = 3-compositions of M = 4, and their number is
(

3
1

)

= 3.
With this notation, we can characterize the probability distribution of the set V of

unique values among a random sample from PZ ; see Proposition A9 in Appendix C. From

there, we obtain the following result characterizing the distribution U
[M ]
Z of a uniformly

sampled element ζ over the set of uniques V , when V ∼ P [M ]
Z . This result will be useful in

our analysis of the robustness of Algorithm 4 to situations in which M ′ 6= M . We are not
aware of Propositions A9 and 4 being known in the literature; we believe they may be of
independent interest and could find uses in future analyses of coverage over unique/distinct
elements.

Proposition 4 (Uniform distribution over unique elements) Let Z test be an i.i.d.
sample of size M from a discrete distribution PZ =

∑

i∈N pjδaj , where aj ∈ Z are dis-

tinct, and pj ≥ 0 for all j ∈ N. Let U
[M ]
Z be the distribution of a uniformly sampled element

ζ of V = Unique(Z test). Then, for all j1 ∈ N, the probability mass function of ζ at aj1 is

U
[M ]
Z (ζ = aj1) =

M
∑

k=1

1

k

∑

J={j1,...,jk}⊂Nk, |J |=k

∑

c∈CM,k

(

M

c1 c2 . . . ck

)

pc1j1 · · · p
ck
jk
. (13)

In particular, U
[1]
Z = U

[2]
Z = PZ , and for all j1 ∈ N,

U
[3]
Z (ζ = aj1) =

pj1(2p
2
j1
− 3pj1 + 3)

2
+
pj1
2

∑

{j2,j3}⊂(N\{j1})2, |J |=2

pj2pj3 .
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Proposition 4 suggests that one should generally expect to lose coverage over distinct
queries when applying Algorithm 4 with a calibration set size M ′ that is different from the

size M of the test set. Indeed, the U
[M ]
Z -probability of the event ζ = aj can either increase

or decrease as a function of M , depending on the probability pj of aj under PZ . To see
this, define the function τ : [0, 1]→ [0, 1], such that for all p ∈ [0, 1],

τ(p) =
p(2p2 − 3p+ 3)

2
. (14)

A plot of τ is in Figure A10 (a), Appendix E. Then, for PZ taking only two possible distinct
values a1 and a2, with probabilities p1 and p2, respectively, Proposition 4 implies that for

j = 1, 2, U
[3]
Z (ζ = aj) = τ(pj). Now, for p ∈ [0, 1/2), τ(p) < p, while for p ∈ (1/2, 1],

τ(p) > p. Assuming p1 < p2, we have U
[3]
Z (ζ = a1) < U

[2]
Z (ζ = a1), while U

[3]
Z (ζ = a2) >

U
[2]
Z (ζ = a2). Thus, the probability of ζ = ai can either increase or decrease as a function

of M , depending on pi. Hence, we expect that the probability of the coverage event using
calibration data points of size M ′, which is a union of such elementary events, can also
increase or decrease as a function of M .

More specifically, let E = {L̂m,α(Z
∗) ≤ fm(Z∗) ≤ Ûm,α(Z

∗)} be the coverage event
from (12), whose probability is lower bounded in Theorem 3. Let the random variables Zi,
i ∈ Ical that constitute the calibration set of size ncal and i ∈ Itest that are test set of size
M be i.i.d. according to PZ . The probability of coverage can be written in terms of the
variables Z̃g, for g ∈ [G], chosen from the calibration shards, which are i.i.d. following the

distribution U
[M ′]
Z —abbreviated as Z̃1:G ∼ (U

[M ′]
Z )|G|—and an independent random variable

Z∗ chosen uniformly over the test set, which follows the distribution U
[M ]
Z , as

P
Z∗∼U

[M ]
Z

, Z̃1:G∼(U
[M′]
Z

)|G|
[E ] = E

Z∗∼U
[M ]
Z

P
Z̃1:G∼(U

[M′]
Z

)|G|
[E ] = E

Z∗∼U
[M ]
Z

e(Z∗). (15)

Above, we defined e(Z∗) = P
Z̃1:G∼(U

[M′]
Z

)|G|
[E ] to be the conditional probability of the cover-

age event E , given Z∗. Theorem 3 says the expectation in (15) is at least 1−α if M ′ =M .

However, when M ′ 6=M , we have showed that U
[M ]
Z can be different from U

[M ′]
Z . Thus the

above expectation of e(Z∗) may decrease, and the method may lose coverage if M ′ 6=M .
Aiming to understand the extent by which the coverage can be affected, we let PN(Z;K)

be the set of discrete probability distributions over Z supported on at mostK distinct values.
This is of interest especially because smaller K leads to a more analytically tractable theory,
as described below. Then, we introduce the quantity

∆(M,M ′;K) = sup
PZ∈PN(Z;K)

sup
j∈N

∣

∣

∣U
[M ]
Z ({aj})− U [M ′]

Z ({aj})
∣

∣

∣ ,

which measures the worst-case difference between the probabilities of observing a value

aj according to the distributions U
[M ]
Z and U

[M ′]
Z . Here, we are thinking of U

[M ′]
Z as the

calibration distribution and U
[M ]
Z as the test distribution. Thus, if our conformal prediction

algorithm outputs sets of size at most s ≥ 0, then the probability of those sets differs by at
most s ·∆(M,M ′;K) between the training at test distributions.

Studying ∆(M,M ′;K) seems challenging in general, as it involves maximizing differ-
ences of probabilities given in (13). These are nontrivial quantities to deal with, because
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(a) large values of M lead to large-degree polynomials in the expressions for the pjs, and
(b) large values of K lead to large numbers of degrees of freedom (i.e., many different pjs).

To illustrate some of the difficulties, consider for instance the case K = 3. Denoting the
three objects in PZ by a1, a2, a3, one can verify using (25) in Proposition A9 and (13) in
Proposition 4 that, for j = 1, 2, 3,

U
[M ]
Z (ζ = aj) =

1 + pMj − (1− pj)M + 1/2
∑

l 6=j(pj + pl)
M

3
.

Therefore,

∆(M,M ′; 3) =
1

3
sup

p,q,r∈[0,1]:p+q+r=1

∣

∣pM − (1− p)M + 1/2[(p+ q)M + (p+ r)M ]

−
[

pM
′ − (1− p)M ′

1/2[(p+ q)M
′
+ (p+ r)M

′
]
]∣

∣

∣
.

Denoting a = p+ q, b = p+ r, and noting p = a+ b− 1, with the function

ΛM (a, b) = (a+ b− 1)M − (2− a− b)M + 1/2(aM + bM ),

we find

∆(M,M ′; 3) =
1

3
sup

a,b∈[0,1]:a+b≥1
|ΛM (a, b)− ΛM ′(a, b)| .

This expression does not appear to be straightforward to analyze using standard tools. In
particular, setting the gradients of the objective to zero in order to understand the maxi-
mizing a, b does not seem to lead to a tractable answers, due to the high order polynomials
involved. Moreover the problem seems to get even more complicated for larger K, with
more complicated polynomials to analyze.

The above results have illustrated some of the theoretical challenges that arise when
analyzing ∆(M,M ′;K). Therefore, in order to provide some theoretical results, we focus
on the simpler but still non-trivial case of K = 2; i.e., we imagine there are only two distinct
objects in the population PZ . However in our experiments we will continue to use general
K, and will see experimental results that broadly agree with the message of the theory.

To do this, we can assume without loss of generality that the size M ′ of the available
calibration shards Zcal

g , for all g ∈ [G], is smaller than the test sample sizeM , i.e.,M > M ′,
as ∆ is symmetric in M,M ′. Moreover, we can also assume without loss of generality that

M ′ ≥ 2, since U
[1]
Z = U

[2]
Z and thus the cases M ′ = 1 and M ′ = 2 are equivalent. For fixed

M > M ′ ≥ 2, our theoretical results are presented in terms of the function h : [0,∞) → R

defined, for all δ ∈ [0,∞), as

h(δ) = ln
1 + δM−1

1 + δM ′−1
− (M −M ′) ln(1 + δ). (16)

This function comes up after suitable calculations when maximizing ∆. Our next result
characterizes ∆(M,M ′; 2) based on the function h. The proof relies on carefully studying
the monotonicity properties of ∆ using calculus; see Section D.7.

19



Sesia, Favaro, and Dobriban

Proposition 5 (Characterizing ∆(M,M ′; 2)) Fix M > M ′ ≥ 2 and take the function h
as defined in (16). There is a unique solution δ∗ ∈ [0, 1] to h(δ∗) = ln(M ′/M), and

∆(M,M ′; 2) =
1

2

∣

∣

∣

∣

∣

1− δM∗
(1 + δ∗)M

− 1− δM ′

∗

(1 + δ∗)M
′

∣

∣

∣

∣

∣

.

As an illustration, we consider the setting where M = aM ′, for some a > 1. This
corresponds to applying Algorithm 4 using calibration shards of size M ′, with M ′ being
smaller than the target test set size M by a factor 1/a. Naturally, one would like to know
how low the coverage can be in this case compared to the ideal situation in which M ′ =M .
Our next result shows that the loss in coverage may remain relatively bounded, as long as
a is moderate and M is large. The proof leverages Proposition 5 and relies on a detailed
analysis of the polynomial equation satisfied by δ∗; see Section D.8.

Corollary 6 (Asymptotics of ∆(M,M/a; 2)) For M ≥ amax{2/(a− 1), 2+ log2[a/(a−
1)]}, with ν(a) := a−

1
a−1 (1− 1

a) and

β(M,a) := 23−M/aa−1/(a−1)/(a− 1) + 2[M(1− 1/a)]−M/a, (17)

we have |∆(M,M/a; 2)− ν(a)| ≤ β(M,a).

The error term β(M,a) is exponentially small in M for a fixed a > 1, and can be viewed
as negligible. Moreover, the main term ν(a) is also quite small; for instance, if a = 1.1,
we have ν(a) ≈ 0.035. Combined with (15) and Theorem 3, Corollary 6 implies that the
coverage over unique values for a test set of size M and calibration sets of size M ′ = M/a
satisfies, for M large enough as specified in Corollary 6,

P
Z∗∼U

[M ]
Z

, Z̃1:G∼(U
[Ma]
Z

)|G| [E ] ≥ 1− α− 2 · ν(a)− β(M,a).

This immediately gives the following result, which guarantees that the coverage of Algo-
rithm 4 when applied with M ′ 6=M is correct up to a small error term 2ν(a).

Theorem 7 Assume that the data Z1, . . . , Zm+M are exchangeable and let Algorithm 4
be applied at the nominal coverage level α ∈ (0, 1) with parameter M ′ = M/a for some
a > 1, where M is the size of the test set. Then, the output confidence interval satisfies
the distinct-query coverage property defined in (12) at level α + 2 · ν(a) + β(M,a), where
ν(a) = a−1/(a−1)(1− 1/a) and β is defined in (17).

To better understand this result, it helps to look at the plot of the function ν shown in
Figure A10 (b). For instance, if a = 1.2, we have ν(a) ≈ 0.067; therefore, a 95% nominal
coverage level may result empirical coverage over distinct queries that is as low as 80.6%
when M = 100. If a = 1.1, we have, as already mentioned, ν(a) ≈ 0.035; therefore, a
95% nominal coverage level may result empirical coverage over distinct queries that is as
low as 87.0% when M = 100. Of course, Theorem 7 gives a conservative lower bound
for the coverage over distinct queries which refers to the worst-case scenario over all data
distributions PZ . In practice, Algorithm 4 applied with M ′ < M may sometimes result in
higher coverage than anticipated by Theorem 7, as we will see empirically in Sections 6–7.
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5.3 Robustness to Distribution Shift

An additional advantage of the distinct-query coverage property defined in (11) is that it
tends to be more “robust” to certain types of distribution shift compared to the standard
notion of marginal coverage. In other words, if Algorithm 4 is applied in a situation where
the queried objects are not sampled from the same distribution as the sketched data, its
effective coverage over distinct queries may be lower than the ideal 1 − α expected under
perfect exchangeability, but this loss may not be as large as that of Algorithm 2.

Recall that U
[M ]
Z is the distribution of unique values in a sample Z1, . . . , ZM of size

M from PZ ; and that the coverage over uniques from (12) refers to a test data point from

U
[M ]
Z . The next result establishes that, in the special case of a support of size K = 2 studied

above, the probabilities shift less in the worst case under the distribution U
[M ]
Z of unique

values than under the original distribution PZ , for a large range of probability values pi of
PZ . Experiments presented in Sections 6–7 show similar results for larger K as well. The
proof relies on the mean value theorem and can be found in Section D.10.

Theorem 8 (Bounding the effect of distribution shift) Let Z and Z ′ take two values

with probabilities p1, p2, and p
′
1, p

′
2, respectively. For M ≥ 3, let U

[M ]
Z be the distribution of

a uniformly sampled element over Unique(V ), when V ∼ P [M ]
Z ; and define U

[M ]
Z′ similarly.

Define c ∈ (0, 1/2) as the unique solution of

cM−1 + (1− c)M−1 =
2

M
. (18)

Let
Sc = {PZ = (p1, p2) : pj ∈ (c, 1− c), j = 1, 2} .

Then, for all PZ , PZ′ ∈ Sc, with PZ 6= PZ′,

sup
E⊂{a1,a2}|G|+1

∣

∣

∣

∣

∣

P
Z∗∼U

[M ]
Z

, Z̃1:G∼
(

U
[M ]
Z

)|G| [E ]− P
Z∗∼U

[M ]

Z′ , Z̃1:G∼
(

U
[M ]
Z

)|G| [E ]
∣

∣

∣

∣

∣

<

sup
E⊂{a1,a2}|G|+1

∣

∣

∣
P
Z∗∼PZ , Z̃1:G∼P

|G|
Z

[E ]− P
Z∗∼PZ′ , Z̃1:G∼P

|G|
Z

[E ]
∣

∣

∣
.

In other words, since the coverage event E = {L̂m,α(Z
∗) ≤ fm(Z∗) ≤ Ûm,α(Z

∗)} from
(12) is included among the sets where the supremum is evaluated, Theorem 8 tells us that
the coverage of the sets output by Algorithm 4 tends to be relatively stable for certain
classes of data distributions PZ . Specifically, for a given PZ , the change in coverage when

shifting from the distribution of uniques U
[M ]
Z to the distribution of uniques U

[M ]
Z′ is strictly

smaller, in the worst case, than the corresponding change in coverage when shifting from
PZ to PZ′ . This suggests that Algorithm 4 may be relatively robust to distribution shifts
in the query set.

Now, we can try to better understand the family of PZ over which the distribution of
unique values is more stable. Since c < 1/2, we have c < 1 − c; thus, it follows from (18)
that (1− c)M−1 ≤ 2/M ≤ 2(1− c)M−1, which can be rearranged to obtain:

1− (2/M)1/(M−1) ≤ c ≤ 1− (1/M)1/(M−1).

21



Sesia, Favaro, and Dobriban

Therefore, c = O(M−1 lnM) for large M . This implies that the distribution U
[M ]
Z of the

unique values is less affected by changes in the distribution of probabilities in PZ than PZ

itself, for a large range of possible values of pj from O(M−1 lnM) to 1−O(M−1 lnM).

While Theorem 8 focuses on a special case in which the data distribution PZ has sup-
port on only two possible objects in order to simplify the theoretical analysis, the relative
robustness of Algorithm 4 to distribution shift in more general settings is supported by
empirical experiments, as shown in Sections 6–7.

6. Experiments with Synthetic Data

Section 6.1 describes experiments in which we seek marginal or frequency-conditional cover-
age using the CMS sketch. Section 6.2 presents similar experiments based on the CMS-CU.
Section 6.3 focuses on coverage for distinct queries. Section 6.4 studies robustness to distri-
bution shifts. Section 6.5 applies our methods in combination with a learning-based sketch
(Bertsimas and Digalakis, 2021) and with the CS sketch (Charikar et al., 2002). Section 6.6
summarizes additional results presented in the appendix.

6.1 Marginal and Frequency-Conditional Coverage with the CMS

We apply Algorithm 3 in combination with the CMS (Cormode and Muthukrishnan, 2005)
on synthetic data. The CMS is implemented using d = 3 random hash functions of width
w = 1000. As this sketch already gives a deterministic upper bound for any frequency query,
the goal of our experiments is to compute corresponding lower bounds for 95% coverage.

The data are generated i.i.d. from a Zipf distribution—a standard option to describe
power-law tail behavior (Zipf, 2016). Power-law distributions are observed in many scientific
applications, and they are useful to understand many natural and social phenomena (Ferrer i
Cancho and Solé, 2001; Adamic and Huberman, 2002; Clauset et al., 2009; Muchnik et al.,
2013). To be precise, we sample a random query Zm+1 and m = 100, 000 data points
according to the law P [Zi = z] = z−a/ζ(a) for all z ∈ {1, 2 . . . , }, where ζ is the Riemann
Zeta function and a > 1 controls the power-law tail behavior.

Prior literature has already studied the problem of uncertainty estimation for frequency
queries based on the CMS (Cormode and Yi, 2020; Ting, 2018; Cai et al., 2018; Dolera et al.,
2021), which provides us with three informative benchmarks. The first one is the classical
95% lower bound (Cormode and Muthukrishnan, 2005) obtained by treating the data as
fixed and modeling only the randomness in hash functions, as explained in Appendix A.2.
This approach is often too conservative when applied to non-adversarial data (Ting, 2018).

The second benchmark is the Bayesian method of Cai et al. (2018), which assumes a
non-parametric Dirichlet process prior for the distribution of the data, estimates its scaling
parameter by maximizing the marginal likelihood of the observed sketch, and then com-
putes the posterior distribution of the queried frequency. The lower 5% quantile of this
posterior distribution is taken as the lower confidence bound for a frequency query. The
third benchmark is the bootstrap method of Ting (2018), which is also designed for the
CMS and does not extend to other non-linear sketches (which we will study later).

Algorithm 3 is applied using the first n = 5000 data points for warm-up and then
sketching the remaining 95, 000 data points with the CMS, as explained in Section 3.1.
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remains qualitatively similar to that observed in Section 6.1. Unsurprisingly, our results
also confirm that all methods considered here lead to shorter confidence intervals when ap-
plied with the CMS-CU instead of the CMS, consistently with the fact that the CMS-CU
was designed to improve the compression efficiency by reducing the impact of random hash
collisions; see Figure A16 for a direct comparison. Thus, to provide a more practically rel-
evant depiction of each method’s performance, the experiments presented in the following
sections will adopt the CMS-CU as the baseline sketch instead of the CMS.

We conclude this section by referring to Figures A17 and A18 in the appendix, which
investigate the validity of our intervals based on the CMS-CU over distinct queries. These
figures report on performance metrics analogous to those shown in Figures A12 and A13,
respectively. The results indicate that the intervals targeting marginal (2) or frequency-
range conditional (10) coverage at the 95% level tend to be valid for fewer than 95% of all
distinct queries, and that such lack of theoretical coverage is more evident now compared to
when the data were sketched using the CMS. This observation motivates the experiments
described in the next section, in which we apply the stronger methods presented in Section 5.

6.3 Coverage for Distinct Queries

This section investigates the performance of Algorithm 4, our proposed method for con-
structing confidence intervals with guaranteed coverage for distinct queries. These experi-
ments follow the same setup as those in Section 6.2, simulating data from a Zipf distribution
with tail parameter a = 1.5. The difference is that the coverage and length performance
metrics are now averaged only on the distinct queries, Unique(Ztest), from a random test
set Ztest of sizeM = 100. Algorithm 4 is applied at level 1−α = 95% using the fixed-width
one-sided conformity scores described in Section 3.2, and varying M ′, which controls the
size of the calibration shards, as a control parameter between 1 and 100.

Figure 5 confirms that the desired 95% coverage for distinct queries (12) is achieved
when Algorithm 4 is applied with M ′ ≈ M , as predicted by Theorem 3. By contrast, the
coverage for distinct queries is lower whenM ′ is small. This should not be surprising because
Algorithm 4 reduces to Algorithm 2 ifM ′ = 1, and the latter is designed to provide marginal
coverage (2), not coverage for distinct queries (12). In fact, as shown in Figure A19, even
Algorithm 3, which targets the relatively stronger notion of frequency-range conditional
coverage (10), does not always provide valid inference for distinct queries.

Finally, Figure 5 also highlights that the distinct-query coverage practically achieved
by applying on these data Algorithm 4 with smaller values of M ′ is much higher then the
worst-case asymptotic lower bound, max(0, 1− α− 2 · ν(100/M ′)), given by Theorem 7.

6.4 Robustness to Distribution Shifts

This section investigates the robustness of the confidence intervals output by Algorithms 2
and 4 to distribution shifts in the query set. These experiments follow the same setup as
those in Section 6.3, simulating data from a Zipf distribution with different values of the
tail parameter. The difference is that now the M = 100 random test queries are sampled
from a mixture distribution with two components. The first component is the same Zipf
distribution from which the sketched data are generated, while the second component is an
independent continuous uniform distribution on [0, 1].
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age (10), calibrating the conformity scores separately within L = 5 frequency bins, instead
of marginal coverage (2). Figures A21 and A22 presents qualitatively similar results from
experiments analogous to those in Figures 7 and A20, respectively, in which the sketch
width is fixed while the tail parameter of the Zipf distribution is varied.

6.6 Additional Numerical Experiments

Appendix E contains the results of supplementary experiments based on the CMS and CMS-
CU applied to synthetic data from different distributions. Figures A23–A26 report on ex-
periments based on data from a random probability measure distributed as the Pitman-Yor
prior (Pitman and Yor, 1997) with a standard Gaussian base distribution and parameters
λ > 0 and σ ∈ [0, 1), as explained in Appendix B.4. We set λ = 5000 and vary σ. For
σ = 0 the Pitman-Yor prior reduces to the Dirichlet prior (Ferguson, 1973), while σ > 0
results in heavier tails. Figures A27–A28 report on additional experiments in which our
methods are applied in combination with the CS sketch (Charikar et al., 2002), in order
to compress data with rare high-frequency items (heavy hitters). Concretely, these data
are generated according to the following probability distribution: a heavy hitter Z = 0
is observed with probability 1/

√
m, where m = 100, 000; otherwise Z ∼ Unif(0, 1) with

probability 1 − 1/
√
m. The results show that the CS leads to more informative conformal

confidence intervals compared to the CMS, CMS-CU, or ML sketches. This should not
be surprising given that the CS is designed to reduce the negative impact of random hash
collisions in such a way as to make frequency queries about heavy hitters relatively more
accurate (Charikar et al., 2002). Finally, Figures A29–A32 show the results of simulations
involving two-sided confidence intervals, whose detailed setup is explained in Appendix F.

7. Illustrations on Empirical Data

Section 7.1 presents illustrations based on 16-mers data in SARS-CoV-2 DNA sequences,
while Section 7.2 focuses on counting 2-grams in an English literature data set.

7.1 Analysis of 16-Mers in SARS-CoV-2 DNA Sequences

This illustration involves a data set of nucleotide sequences from SARS-CoV-2 viruses made
publicly available by the National Center for Biotechnology Information (Hatcher et al.,
2017). The data include 43,196 sequences, each consisting of approximately 30,000 nu-
cleotides. The goal is to estimate the empirical frequency of each 16-mer, a distinct se-
quence of 16 DNA bases in contiguous nucleotides. Given that each nucleotide has one of
4 bases, there are 416 ≈ 4.3 billion possible 16-mers. Thus, exact tracking of all 16-mers is
not unfeasible, which allows us to validate the sketch-based queries. Sequences containing
missing values are removed during pre-processing, for simplicity.

The experiments are carried out as in Section 6.1, with the difference that a larger
sample of size 1,000,000 is sketched using the CMS-CU due to its higher efficiency; the
width w of the hash functions is varied as a control parameter. All 16-mers are processed in
a random order, which ensures their exchangeability. Figure 8 compares the performances
of all methods as a function of the hash width, in terms of marginal coverage and mean
confidence interval width.
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Figure A45 shows the confidence intervals reported in Figure 9 approximately remain
valid even if their average coverage is evaluated with respect to distinct queries only; of
course, this is not guaranteed in general. Figure A46 illustrates the performance of Algo-
rithm 4, showing that valid inference for distinct queries can be achieved with a wide range
of the parameter M ′, despite the more pessimistic worst-case predictions of Theorem 7. Fi-
nally, Figure A47 investigates the robustness of the alternative types of conformal intervals
output by Algorithms 2 and 4 to distribution shifts in the test queries, similarly to Figure 6.

8. Discussion

This work opens several opportunities for further research. In the future one may study
and compare theoretically, in some settings, the length of our conformal confidence intervals
under different types of coverage guarantees. A possible approach may take inspiration from
relevant work in the context of regression by Lei et al. (2018) and Sesia and Candès (2020).

Further, it would be interesting to explore the relevance of the methods and theory
presented in Section 5 beyond sketching. For example, the results of Section 5 could be
repurposed to construct conformal prediction sets for regression or multi-class classification
tasks that achieve valid coverage over subsets of individual test cases with certain unique
attributes. In those contexts, our work may lead to an alternative framework for dealing
with uncertainty estimation under algorithmic fairness constraints (Romano et al., 2020a)
or stratified sampling mechanisms (Dunn et al., 2022; Park et al., 2022).

Finally, the uncertainty estimation methods developed in this paper may also be relevant
for more general forms of randomized sketching used for other numerical, statistical, and
learning problems (Vempala, 2005; Halko et al., 2011; Mahoney, 2011; Woodruff, 2014;
Drineas and Mahoney, 2016; Martinsson and Tropp, 2020); see e.g., Dobriban and Liu
(2019); Liu and Dobriban (2019); Lacotte and Pilanci (2020); Yang et al. (2021).

Software and Computations

Accompanying software and data are available online at https://github.com/msesia/

conformalized-sketching. Experiments were carried out in parallel on a computing clus-
ter; each experiment required less than a few hours with a standard CPU and less than
5GB of memory (20 GB are needed for the analysis of the SARS-CoV-2 DNA data).
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Appendix A. Relevant Background on the Count-Min Sketch

A.1 The CMS Algorithm

The count-min sketch (CMS) of Cormode and Muthukrishnan (2005) compresses a data
set by applying to each observation d ≥ 1 different w-wide hash functions hj : Z →
[w] := {1, . . . , w}, for all j ∈ [d] := {1, . . . , d} and some integer number of buckets w ≥ 1.
Each hash function maps the elements of Z into one of w buckets, so that distinct values
of z populate the buckets approximately uniformly. Hash functions are typically chosen
at random from a pairwise independent family H. This ensures the probability (over the
randomness in the choice of hash functions) that two distinct objects z1, z2 ∈ Z are mapped
by two different hash functions into the same bucket is 1/w2. The data Z1, . . . , Zm are thus
compressed into a sketch matrix C ∈ N

d×w with rows summing to m. The element in the
j-th row and k-th column of C counts the data points mapped by the j-th hash function
into the k-th bucket:

Cj,k =
m
∑

i=1

✶ [hj(Zi) = k] , j ∈ [d], k ∈ [w]. (19)

One chooses d and w such that d·w ≪ m, and thus the matrix C loses information compared
to the full data set; however, it has the advantage of requiring much less space to store.

Given a sketch C from (19), we are interested in estimating the empirical frequency of
an object z ∈ Z , as defined in (1). A typical point estimate is the smallest count among
the d buckets into which z is mapped:

f̂CMS
up (z) = min

j∈[d]

{

Cj,hj(z)

}

. (20)

This procedure is outlined by Algorithm A5.

Algorithm A5 CMS

Input: Data Z1, . . . , Zm. Sketch dimensions d, w. Hash functions h1, . . . , hd. Query z.
Initialize: Cj,k = 0 for all j ∈ [d], k ∈ [w].
for i = 1, . . . ,m do
for j = 1, . . . , d do
Increment Cj,hj(Zi) ← Cj,hj(Zi) + 1

Compute f̂CMS
up (z) = minj∈[d]{Cj,hj(z)}.

Output: deterministic upper-bound for the frequency of z in the data set: f̂CMS
up (z).

A.2 Classical Upper and Lower Bounds for CMS Frequency Queries

As f̂CMS
up (z) ≥ fm(z), the expression in (20) always gives a deterministic upper bound

for fm(z); see Cormode and Muthukrishnan (2005). Although f̂CMS
up (z) may be larger

than fm(z) due to hash collisions, the independence of the hash functions still enables the
following classical probabilistic lower bound for fm(z). Cormode and Muthukrishnan (2005)
showed that for any δ, ε ∈ (0, 1), choosing d = ⌈− log δ⌉ and w = ⌈e/ε⌉, for any fixed z ∈ Z ,
and with f̂CMS

up (z) from (19),

PH[fm(z) ≥ f̂CMS
up (z)− εm] ≥ 1− δ. (21)
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For example, if δ = 0.05 and thus d = 3, this says that f̂CMS
up (z) −m · ⌈e/w⌉ is a lower

bound on fm(z) with 95% probability. The subscript H in the bound (21) clarifies that the
randomness is with respect to the hash functions, while Z1, . . . , Zm and z are fixed. This
bound can be useful to inform the choices of d and w prior to sketching, but it is not fully
satisfactory as a way of quantifying the uncertainty about the true frequency of a given
query. First, it is often too conservative (Ting, 2018) if the data are randomly sampled
from some distribution as opposed to being arbitrary and potentially worst-case. Second,
it is not flexible: δ cannot be chosen by the practitioner because it is fixed by d, and ε
is uniquely determined by the hash width. Thus, the bound in (21) does not always give
practically useful confidence intervals.

A.3 Bootstrap Confidence Intervals for CMS Frequency Queries

An alternative approach to computing lower and upper bounds for fm(z) using the CMS
was proposed by Ting (2018), in order to address the often excessive conservativeness of the
classical bounds described above. The method of Ting (2018) is based on bootstrapping,
and departs from classical analysis of the CMS as it leverages randomness in the data
instead of randomness in the hash functions. Precisely, it assumes the data and the queried
object are an independent and identically distributed (i.i.d.) random sample from some
unknown distribution. This condition means that one is interested in the typical behavior
of the algorithm over certain scenarios described by the distribution. The condition does
not always apply but, when it does, it can be extremely useful because it leads to much more
informative confidence intervals. In fact, the confidence intervals described by Ting (2018)
are nearly exact for the CMS, up to a finite-sample discrepancy between the bootstrap and
population distributions.

A limitation of the bootstrap approach is that it relies on the specific linear structure of
the CMS—the sketch matrix C in (20) is a linear combination of the true frequencies of all
objects in the data set—and is not easily extendable to other sketching algorithms that may
outperform the CMS in practice. For example, the CMS is relatively sensitive to random
hash collisions, which can result in overly conservative deterministic upper bounds. This
challenge has motivated the development of alternative non-linear algorithms, such as the
CMS with conservative updates (CMS-CU) of Estan and Varghese (2002) which we briefly
review below.

A.4 The CMS-CU Algorithm

The difference between the CMS (Cormode and Muthukrishnan, 2005) and the CMS-CU
(Estan and Varghese, 2002) is that, whenever a new object z is sketched by the latter, only
the row of C with the smallest value of Cj,hj(z) is updated, while the other counters remain
unaltered. Then, a valid deterministic upper bound for the CMS-CU can be calculated with
the same formula in (20). This procedure is outlined in Algorithm A6. While the CMS-
CU can lead to higher query accuracy compared to the vanilla CMS (Estan and Varghese,
2002), the theoretical analysis of the CMS-CU beyond a deterministic upper bound is more
challenging, and it appears to be a relatively less explored topic.

34



Conformal Frequency Estimation using Discrete Sketched Data

Algorithm A6 CMS-CU

Input: Data Z1, . . . , Zm. Sketch dimensions d, w. Hash functions h1, . . . , hd. Query z.
Initialize: Cj,k = 0 for all j ∈ [d], k ∈ [w].
for i = 1, . . . ,m do
Compute j∗ = argminj∈[d]Cj,hj(Zi).
Increment Cj∗,hj∗ (Zi) ← Cj∗,hj∗ (Zi) + 1

Compute f̂CMS−CU
up (z) = minj∈[d]{Cj,hj(z)}.

Output: deterministic upper-bound for the frequency of z in the data set: f̂CMS−CU
up (z).
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Appendix B. Additional Methodological Details

B.1 Constructing Two-Sided Conformal Confidence Intervals

This section describes two alternatives methods for constructing two-sided conformal con-
fidence intervals. The first method, explained in Appendix B.1.1, consists of separately
calibrating two sequences of lower and upper one-sided confidence intervals, each adopting
the significance level α/2 instead of α. This is relatively easy to implement but may be less
efficient than the second method, explained in Appendix B.1.2, which consists of directly
calibrating a sequence of nested two-sided intervals.

B.1.1 Construction Based on Bonferroni Correction

One approach to building two-sided conformal confidence intervals for fm(Xm+1) at level
1−α consists of constructing a pair of lower and upper one-sided confidence intervals at level
1− α/2. In particular, consider the following two nested sequences Sl

t and S
u
t of one-sided

confidence intervals, each indexed by a scalar parameter t:

Sl
t = [L̂m,α/2(Xm+1; t), f̂

CMS
up (Xm+1)], Su

t = [0, Ûm,α/2(Xm+1; t)],

where f̂CMS
up (Xm+1) is a deterministic upper bound for the unknown true empirical frequency

of Xm+1; e.g., see Appendix A.1. The sequences Sl
t and Su

t can be separately calibrated
using the conformal inference method described in Sections 3 and 4, for any given choice of
frequency-range partition B, as we shall make more precise below. This gives two distinct
data-adaptive thresholds Q̂∗,l

n,1−α/2 and Q̂∗,u
n,1−α/2, respectively, such that, ∀B ∈ B,

P

[

fm(Xm+1) ≥ L̂m,α/2(Xm+1; Q̂
∗,l
n,1−α/2) | fm(Zm+1) ∈ B

]

≥ 1− α

2
,

and

P

[

fm(Xm+1) ≤ Ûm,α/2(Xm+1; Q̂
∗,u
n,1−α/2) | fm(Zm+1) ∈ B

]

≥ 1− α

2
.

By a union bound, we obtain that the following two-sided conformal confidence interval has
valid coverage, in the sense of (10), at level 1− α:

[L̂m,α/2(Xm+1; Q̂
∗,l
n,1−α/2), Ûm,α/2(Xm+1; Q̂

∗,u
n,1−α/2)].

Different practical implementations are available to construct the sequences of candidate
lower bounds L̂m,α/2(Xm+1; t) and upper bounds Ûm,α/2(Xm+1; t). Two concrete examples
are explained below.

Constant conformity scores. A simple option to construct L̂m,α/2(Xm+1; t) is to di-

rectly apply the method described in Section 3.2, for example by shifting f̂CMS
up (Xm+1) down-

ward by a constant t. Then, the conformalized threshold Q̂∗,l
n,1−α/2 can be calibrated as usual.

The sequence of candidate upper bounds Ûm,α/2(Xm+1; t) can also be constructed similarly

to L̂m,α/2(Xm+1; t), for example by adding a constant t to the trivial lower bound of 0, up to

the deterministic upper bound f̂CMS
up (Xm+1). The threshold Q̂∗,u

n,1−α/2 for Ûm,α/2(Xm+1; t)
can then be calibrated as usual with Algorithm 2.
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Bootstrap conformity scores. An alternative option to construct the sequence
L̂m,α/2(Xm+1; t) consists of shifting downward by a constant t the bootstrap lower bound cal-

culated with the method of Ting (2018), at level α/2. Similarly, the sequence Ûm,α/2(Xm+1; t)
can be obtained by shifting upward by a constant t the analogous bootstrap upper bound at
level 1−α/2. Thus, in the special case of the vanilla CMS, our conformal confidence intervals
based on these scores intuitively become very similar to the bootstrap confidence intervals
of Ting (2018). In general, however, the difference remains that the intervals of Ting (2018)
rely on the linearity of the CMS, while ours are theoretically valid regardless of how the
data are sketched. We have observed this option works well in practice, at least within the
scope of our numerical experiments. Therefore, this is the implementation adopted in our
numerical experiments described in Section F.

B.1.2 Construction Based on Conditional Histograms

Two-sided conformal confidence intervals for fm(Xm+1) can be constructed by following the
general recipe outlined in Section 3.1. To implement this method practically, one needs to
fix an increasing sequence of candidate intervals [L̂m,α(·; t), Ûm,α(·; t)], depending on Zm+1

and φ(Zn+1, . . . , Zm). Possible choices for such sequence may be directly borrowed from the
existing literature on conformal inference for regression, including for example the quantile
regression approach of Romano et al. (2019) or the conditional histogram approach of Sesia
and Romano (2021). Here, we describe a particular implementation that combines the idea
in Sesia and Romano (2021) with a Bayesian model, in continuity with the works of Cai
et al. (2018) and Dolera et al. (2021) on Bayesian empirical frequency estimation from
sketched data. However, the same idea could easily accommodate a quantile regression
model or any other machine learning algorithm instead of the Bayesian model, as explained
in Sesia and Romano (2021). Note that the following paragraphs largely retrace the same
steps as in Sesia and Romano (2021), which are however useful to recap here to make the
presentation self contained.

For any j ∈ [m], let ϕ̂j(x) indicate the posterior probability of fm(Xm+1) = j for
Xm+1 = x as estimated by any Bayesian model for frequency estimation given sketched
data, such as that of Cai et al. (2018) based on a Dirichlet process prior, for example.
For convenience of notation, we will sometimes refer to the full posterior distribution of
fm(Xm+1) simply as ϕ̂. Note that, in general, the form of the posterior distribution ϕ̂
may depend on m as well as on the sketched data in φ(Zn+1, . . . , Zm). Following in the
footsteps of Sesia and Romano (2021), define the following bi-valued function S taking as
input a query x, the posterior distribution ϕ̂, a scalar threshold t ∈ [0, 1], and two intervals
S−, S+ ⊆ {1, . . . ,m}:

S(x, ϕ̂, S−, S+, t) := argmin
(l,u)∈{1,...,m}2 : l≤u







|u− l| :
u
∑

j=l

ϕ̂j(x) ≥ t, S− ⊆ [l, u] ⊆ S+







. (22)

Above, it is implied that we choose the value of (l, u) minimizing
∑u

j=l ϕ̂j(x) among the
feasible ones with minimal |u − l|, whenever the optimization problem does not have a
unique solution. Therefore, we can assume without loss of generality that (22) has a unique
solution; if that is not the case, we can break the ties at random by adding a little noise
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to ϕ̂. As explained in Sesia and Romano (2021), the problem defined in (22) can be solved
efficiently, at computational cost linear in m. Note that we will sometimes refer to sub-
intervals of [m] as either contiguous subsets of {1, . . . ,m} (e.g., S−) or as pairs of lower and
upper endpoints (e.g., [l, u]).

If S− = ∅ and S+ = {1, . . . ,m}, the expression in (22) computes the shortest interval
with total posterior probability mass above t. In general, the optimization in (22) involves
the additional nesting constraint that the output S must satisfy S− ⊆ S ⊆ S+, which will
be needed to guarantee the resulting sequence of confidence intervals indexed by t is nested.
Note that the inequality in (22) involving t may not be binding at the optimal solution
due to the discrete nature of the optimization problem. However, the above construction
could be easily modified by introducing some suitable randomization leading to confidence
intervals that are even tighter on average, as explained in Sesia and Romano (2021).

For any integer T ≥ 1, consider an increasing sequence tτ ∈ [0, 1], for τ ∈ {0, . . . , T}. A
nested sequence of T intervals indexed by τ ∈ {0, . . . , T}, which may be written as

St =
[

L̂m,α(Xm+1; tτ ), Ûm,α(Xm+1; tτ )
]

,

for appropriate endpoints L̂m,α(Xm+1; tτ ) and Ûm,α(Xm+1; tτ ), respectively, is then con-
structed from (22) as follows. First, fix any starting index τ̄ ∈ {0, 1, . . . , T} and define Sτ̄
by applying (22) without the nesting constraints (with S− = ∅ and S+ = {1, . . . ,m}):

Sτ̄ := S(x, ϕ̂, ∅, {1, . . . ,m}, tτ̄ ), (23)

Note the explicit dependence on x and ϕ̂ of the left-hand-side above is omitted for simplicity,
although it is important to keep in mind that Sτ̄ does of course depend on these quantities.

Having computed the initial interval Sτ̄ , we recursively extend the definition to the wider
intervals indexed by τ = τ̄ + 1, . . . , T as follows:

Sτ := S(x, ϕ̂, Sτ−1, {1, . . . ,m}, tτ ).

See Sesia and Romano (2021) for a schematic visualization of this step. Similarly, the
narrower intervals Sτ indexed by τ = τ̄ − 1, τ̄ − 2, . . . , 0 are defined recursively as:

Sτ := S(x, ϕ̂, ∅, Sτ+1, tτ ).

See Sesia and Romano (2021) for a schematic visualization of this step. As a result of
this construction, the sequence of intervals {Sτ}Tτ=0 is nested regardless of the starting
point τ̄ in (23), for which a typical choice is such that tτ̄ = 1 − α. Then, two-sided
conformal confidence intervals for fm(Xm+1) can be obtained by applying Algorithm 2 with
this particular sequence of input nested intervals. We refer to Sesia and Romano (2021) for
further details on the construction of nested intervals outlined above.
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B.2 Conformalized Sketching with Adaptive Warm-Up Period

Algorithm A7 Conformalized sketching with adaptive warm-up period (heuristic)

Input: Data set Z1, . . . , Zm. Sketching function φ.
Input: Number n0 ≪ m of unique objects to be observed during the warm-up phase.
Input: A (trainable) predictor to compute nested intervals [L̂m,α(·; t), Ûm,α(·; t)]t∈T .
Input: Number of data points ntrain < n used for training [L̂m,α(·; t), Ûm,α(·; t)].
Initialize a sparse counter fwu

n (z) = 0, ∀z ∈ Z.
for iwp = 1, . . . ,m do
Increment fwu

n (Zi)← fwu
n (Zi) + 1.

if Number of unique observed objects ≥ n0 then
Break

Set n = iwp.
Initialize a sparse counter f svm−n(z) = 0, ∀z ∈ Z.
Initialize an empty sketch φ(∅).
for i = n+ 1, . . . ,m do
Update the sketch φ with the new observation Zi.
if fwu

n (Zi) > 0 then
Increment f svm−n(Zi)← f svm−n(Zi) + 1.

for i = 1, . . . , n do
Set Xi = (Zi, φ(Zn+1, . . . , Zm)) as in (8).
Set Yi = f svm−n(Zi).

Train [L̂m,α(·; t), Ûm,α(·; t)] using the data in {(Xi, Yi)}ntrain

i=1 .
for i = ntrain + 1, . . . , n do

Compute the conformity score E(Xi, Yi) with (3), using [L̂m,α(·; t), Ûm,α(·; t)].
Output: Data sketch φ;
Output: Sparse counter fwu

n (z), ∀z ∈ Z;
Output: Trained predictor [L̂m,α(·; t), Ûm,α(·; t)];
Output: Conformity scores E(Xi, Yi) for all i ∈ {ntrain + 1, . . . , n}.
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Algorithm A8 Conformalized sketching with two-step adaptive warm-up period

Input: Data set Z1, . . . , Zm. Sketching function φ.
Input: Number n0 ≪ m of unique objects to be observed during the warm-up phase.
Input: A (trainable) predictor to compute nested intervals [L̂m,α(·; t), Ûm,α(·; t)]t∈T .
Input: Number of data points ntrain < n used for training [L̂m,α(·; t), Ûm,α(·; t)].
Initialize a sparse counter fwu

n (z) = 0, ∀z ∈ Z.
for iwp = 1, . . . ,m do
Increment fwu

n (Zi)← fwu
n (Zi) + 1.

if Number of unique observed objects ≥ n0 then
Break

Set n = iwp.

Initialize a sparse counter fwu,2
n (z) = 0, ∀z ∈ Z.

for i = n+ 1, . . . , 2n do
Increment fwu

n (Zi)← fwu
n (Zi) + 1.

Increment fwu,2
n (Zi)← fwu,2

n (Zi) + 1.
Initialize a sparse counter f svm−n(z) = 0, ∀z ∈ Z.
Initialize an empty sketch φ(∅).
for i = 2n+ 1, . . . ,m do
Update the sketch φ with the new observation Zi.
if fwu,2

n (Zi) > 0 then
Increment f svm−n(Zi)← f svm−n(Zi) + 1.

for i = n+ 1, . . . , 2n do
Set Xi = (Zi, φ(Zn+1, . . . , Zm)) as in (8).
Set Yi = f svm−n(Zi).

Train [L̂m,α(·; t), Ûm,α(·; t)] using the data in {(Xi, Yi)}n+ntrain

i=n+1 .
for i = n+ ntrain + 1, . . . , 2n do

Compute the conformity score E(Xi, Yi) with (3), using [L̂m,α(·; t), Ûm,α(·; t)].
Output: Data sketch φ;
Output: Sparse counter fwu

n (z), ∀z ∈ Z;
Output: Trained predictor [L̂m,α(·; t), Ûm,α(·; t)];
Output: Conformity scores E(Xi, Yi) for all i ∈ {n+ ntrain + 1, . . . , 2n}.
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B.3 Conformalized Sketching with ML Algorithms

Algorithm A9 Conformalized sketching with data-driven ML sketch

Input: Data set Z1, . . . , Zm.
Input: Number n0 ≪ m of unique objects to be observed during the warm-up phase.
Input: A trainable modelM to predict the relative frequency of an object.
Input: A Bloom filter F .
Input: A (trainable) predictor to compute nested intervals [L̂m,α(·; t), Ûm,α(·; t)]t∈T .
Input: Number of data points ntrain < n used for training [L̂m,α(·; t), Ûm,α(·; t)].
Initialize a sparse counter fwu

n (z) = 0, ∀z ∈ Z.
for iwp = 1, . . . ,m do
Increment fwu

n (Zi)← fwu
n (Zi) + 1.

if Number of unique observed objects ≥ n0 then
Break

Set n = iwp.
Train the modelM using the data in {(Zi, f

wu
n (Zi))}i∈[1,...,n].

Initialize the ML sketch φ based onM and F , as explained in Section E.3.
Initialize a sparse counter fwu,2

n (z) = 0, ∀z ∈ Z.
for i = n+ 1, . . . , 2n do

Increment fwu
n (Zi)← fwu

n (Zi) + 1.
Increment fwu,2

n (Zi)← fwu,2
n (Zi) + 1.

Initialize a sparse counter f svm−n(z) = 0, ∀z ∈ Z.
Initialize an empty sketch φ(∅).
for i = 2n+ 1, . . . ,m do
Update the sketch φ with the new observation Zi.
if fwu,2

n (Zi) > 0 then
Increment f svm−n(Zi)← f svm−n(Zi) + 1.

for i = n+ 1, . . . , 2n do
Set Xi = (Zi, φ(Zn+1, . . . , Zm)) as in (8).
Set Yi = f svm−n(Zi).

Train [L̂m,α(·; t), Ûm,α(·; t)] using the data in {(Xi, Yi)}n+ntrain

i=n+1 .
for i = n+ ntrain + 1, . . . , 2n do

Compute the conformity score E(Xi, Yi) with (3), using [L̂m,α(·; t), Ûm,α(·; t)].
Output: Data sketch φ;
Output: Sparse counter fwu

n (z), ∀z ∈ Z;
Output: Trained predictor [L̂m,α(·; t), Ûm,α(·; t)];
Output: Conformity scores E(Xi, Yi) for all i ∈ {n+ ntrain + 1, . . . , 2n}.
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B.4 Sampling from a Pitman-Yor Predictive Distribution

The data points are sampled sequentially from the following predictive distribution, which
has parameters λ > 0 and σ ∈ [0, 1). After sampling Z1 from a standard normal distribution,
N (0, 1), fix any i ≥ 1 and let Z1, . . . , Zi indicate the data stream observed up to that point.
Denote by ki the number of distinct elements within it, and by Vi = (Vi,1, . . . , Vi,ki) the set
of such distinct values. Further, let ci,l indicate the number of times that object Vi,l has
been observed in Z1, . . . , Zi, for l ∈ {1, . . . , ki}. Then, Zi+1 is generated as follows:

Zi+1 | Z1, . . . , Zi =

{

Vi,l, with probability
ci,l−σ
λ+i , for l ∈ {1, . . . , ki},

N (0, 1), with probability λ+kiσ
λ+i .

Above, the second case which occurs with probability (λ + kiσ)/(λ + i) corresponds to
sampling a new unique value from the standard normal distribution.

Appendix C. Auxiliary Theoretical Results

C.1 Probability Distribution of the Set of Uniques

Note that the size of V is between 1 and M ; and the values taken by V range over subsets
{aj1 , . . . , ajk} ⊆ Z, where 1 ≤ k ≤M and j1, . . . , jk ∈ N are distinct indices.

Proposition A9 (Probability distribution of the set of uniques) Let Z test be an i.i.d.
sample of size M from a discrete distribution PZ =

∑

i∈N pjδaj , where aj ∈ Z are dis-

tinct, and pj ≥ 0 for all j ∈ N. Let P
[M ]
Z be the probability distribution of Z test. Let

V = Unique(Z test) denote the set of unique values in Z test. For any 1 ≤ k ≤M , and any
distinct indices j1, . . . , jk ∈ N, the probability mass function of V at {aj1 , . . . , ajk} equals

P
[M ]
Z (V = {aj1 , . . . , ajk}) =

∑

c∈CM,k

(

M

c1 c2 . . . ck

)

pc1j1 · · · p
ck
jk

(24)

=
∑

S⊂{j1,...,jk}

(−1)k+|S|





∑

j∈S

pj





M

. (25)

The proof of (24) follows directly from the definitions, while that of (25)—which we will
use extensively later—relies on a careful combinatorial argument, pairing sets of odd and
even sizes; see Appendix D.5.

To better understand (24), consider the trivial example in which M = 1. In this case,

P
[1]
Z (V = {aj}) = pj for all j ∈ N. Thus, P

[1]
Z , the distribution of uniques when sampling

a single element from the distribution PZ , is equal precisely to PZ itself; i.e., P
[1]
Z = PZ .

For M = 2, we have that P
[2]
Z (V = {aj}) = p2j for all j ∈ N; this is the probability

of observing ai twice in a row. Further, for all j1, j2 ∈ N with j1 6= j2, we have that

P
[2]
Z (V = {aj1 , aj2}) = 2pj1pj2 ; this is the probability of observing (aj1 , aj2) or (aj2 , aj1), so

that the set of uniques is {aj1 , aj2}. One can also verify that (24) leads to the same results.
Continuing the above example, for M = 2, for all j1, j2 ∈ N with j1 6= j2, (25) leads to

P
[2]
Z (V = {aj1 , aj2}) = (pj1 + pj2)

2 − p2j1 − p2j2 = 2pj1pj2 , agreeing with (24).
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Appendix D. Mathematical Proofs

D.1 Proof of Proposition 1

Proof Consider ((Xπ(1), Yπ(1)), . . . , (Xπ(n), Yπ(n)), (Xπ(m+1), Yπ(m+1))) for any permutation
π of {1, . . . , n,m + 1}. This is equal to ((X ′

1, Y
′
1), . . . , (X

′
n, Y

′
n), (X

′
m+1, Y

′
m+1)), defined

by applying the functions in (7)–(8) to a shuffled data set Zπ̃(1), . . . , Zπ̃(m+1), where π̃
indicates a permutation of {1, . . . ,m+1} that agrees with π on {1, . . . , n,m+1} and leaves
{n+ 1, . . . ,m} unchanged. Therefore,

(

(Xπ(1), Yπ(1)), . . . , (Xπ(n), Yπ(n)), (Xπ(m+1), Yπ(m+1))
)

=
(

(X ′
1, Y

′
1), . . . , (X

′
n, Y

′
n), (X

′
m+1, Y

′
m+1)

)

d
= ((X1, Y1), . . . , (Xn, Yn), (Xm+1, Ym+1)) ,

where the last equality in distribution follows directly from the assumption that Z1, . . . , Zm+1

are exchangeable.

D.2 Proof of Theorem 1

Proof We refer to the proof of the more general Theorem 2, of which this result is a special
case. In fact, Algorithm 2 corresponds to Algorithm 3 applied with trivial partitions that
divide the range of frequencies into a single bin: L = 1. Further, the marginal coverage
property in (2) is a special case of the frequency-conditional coverage property in (10) with
the trivial partitions corresponding to L = 1.

D.3 Proof of Theorem 2

The following notation will be helpful: let B(Yi) ∈ B indicate the frequency bin into which
Yi belongs, for i ∈ {1, . . . , n,m+1}. We begin by proving the result for the simpler case in
which Algorithm 2 is applied using conformity scores that do not require training, in which
case ntrain = 0. For i ∈ {1, . . . , n,m+1}, define the random variables Yi andXi as in (7)–(8),
respectively. We already know from Proposition 1 that (X1, Y1), . . . , (Xn, Yn), (Xm+1, Ym+1)
are exchangeable. This implies that the conformity scores E(Xi, Yi) are exchangeable with
one another, for i ∈ {1, . . . , n,m+1}, because each of them only depends onXi, Yi and on the
separate data points in the sketch φ(Zn+1, . . . , Zm). Therefore, Em+1 is also exchangeable
with the subset of conformity scores with indices in {i ∈ {1, . . . , n} : B(Yi) = B(Ym+1)}.

Now, fix any bin B∗ ∈ B and assume B(Ym+1) = B∗. Now, note that the interval output
by Algorithm 2 does not cover the true frequency fm(Zm+1) if and only if Em+1 > Q̂n,1−α ≥
Q̂nl,1−α(B

∗). However, a standard exchangeability argument for the conformity scores in
{i ∈ {1, . . . , n} : B(Yi) = B∗} shows that P[Em+1 > Q̂nl,1−α(B

∗) | B(Ym+1) = B∗] ≤ 1− α;
for example, see Lemma 1 of Romano et al. (2019). This completes the first part of the
proof.

The second part with ntrain > 0 follows very similarly: Proposition 1 implies that
(Xntrain+1, Yntrain+1), . . . , (Xn, Yn), (Xm+1, Ym+1) are exchangeable, and so must be the con-
formity scores Ei for i ∈ {ntrain + 1, . . . , n,m + 1} because each of them only depends on
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the corresponding Xi, Yi and on the separate set of observations indexed by {1, . . . , ntrain},
as well as on the sketch φ(Zn+1, . . . , Zm). The rest of the proof is exactly the same as in
the first part because the empirical quantiles Q̂nl,1−α(B) are only computed on subsets of
the data indexed by {ntrain + 1, . . . , n}.

D.4 Proof of Theorem 3

Following the same notation as in Algorithm 4, let Z∗ indicate a random object sampled
uniformly from Unique({Zm+1, . . . , Zm+M}). Define also X∗ = (Z∗, φ(Zn+1, . . . , Zm)). By
construction, Z∗ is exchangeable with all Z∗

g for g ∈ [G], and X∗ is exchangeable with all
X∗

g for g ∈ [G]. This implies that the conformity scores E∗
g = E(X∗

g , Y
∗
g ) are exchangeable

with one another, for all g ∈ [G], as well as with E∗ = E(X∗, Y ∗). The result is then
established with the same argument as in the proof of Theorem 2. The true frequency
fm(Z∗) is not covered by the output confidence interval if and only if E∗ > Q̂G,1−α, whose
probability is bound from above by 1 − α according to classical results about tolerance
regions (Krishnamoorthy and Mathew, 2009), see also Lemma 1 in Romano et al. (2019).

D.5 Proof of Proposition A9

Proof To prove (24), note that V = {aj1 , . . . , ajk} if and only if there is a k-composition
c = (c1, . . . , ck) of M such that, for all l ∈ [k], the sequence (Zm+1, . . . , Zm+M ) = (at1 ,
. . . , atM ) contains exactly cl values of ajl . For a given k-composition c = (c1, . . . , ck), there
are

(

M
c1 c2 ...ck

)

indices t1, t2, . . . , tM ∈ N such that for all l ∈ [k], exactly cl of them are equal

to jl. The probability that (Zm+1, . . . , Zm+M ) equals any one of them is pc1j1 · · · p
ck
jk
, showing

(24).
To prove (25), note that, for any S ⊂ N, any product arising from the expansion of

(
∑

l∈S pl
)M

has at least one and at most M distinct indices l. Collecting the products
pi1pi2 . . . piM by the number d ∈ {1, . . . ,M} of distinct indices among their factors, we find

(

∑

l∈S

pl

)M

=

M
∑

d=1

∑

{l1,...,ld}⊂S, li 6=lj for i 6=j

∑

c∈CM,d

(

M

c1 c2 . . . cd

)

pc1l1 · · · p
cd
ld
.

Now fix any {l1, . . . , ld} ⊂ {j1, . . . , jk}, and any c ∈ CM,d. Using the previous formula for
each S on the right hand side of (25), the total coefficient of pc1l1 · · · p

cd
ld

is the following sum
over subsets S

(

M

c1 c2 . . . cd

)

∑

S⊂{j1,...,jk}

(−1)k+|S|I ({l1, . . . , ld} ⊂ S) .

Writing the indicator I ({l1, . . . , ld} ⊂ S) inside the summation constraint, and factoring
out (−1)k, this equals

(−1)k
(

M

c1 c2 . . . cd

)

∑

{l1,...,ld}⊂S⊂{j1,...,jk}

(−1)|S|.

Now, if {l1, . . . , ld} = {j1, . . . , jk}, the above summation (after the pre-factor) has only
one term—S = {j1, . . . , jk}—and equals (−1)|S| = (−1)k.
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Otherwise, the above summation contains 2k−d > 1 terms. We now construct a pairing
of the sets S that index of the summation, such that each pair (S1, S2) contains an odd and
even sized set. There must be an index ja, a ∈ [k], such that ja /∈ {l1, . . . , ld}. Suppose
without loss of generality that we have jk /∈ {l1, . . . , ld} (otherwise rename the indices ja
and jk).

Then, for any set S1 such that {l1, . . . , ld} ⊂ S1 ⊂ {j1, . . . , jk} that does not contain
jk, there is a corresponding set S2 = S1 ∪ {jk} such that {l1, . . . , ld} ⊂ S′ ⊂ {j1, . . . , jk}.
Moreover, all sets S such that {l1, . . . , ld} ⊂ S ⊂ {j1, . . . , jk} fall into exactly one such pair.
Further, in each pair, there is one set of an odd size and one set of an even size.

Thus, in each pair, we have

(−1)|S1| + (−1)|S2| = 0,

Therefore, when {l1, . . . , ld} 6= {j1, . . . , jk}
∑

{j1,...,jd}⊂S⊂{i1,...,ik}

(−1)|S| = 0.

Hence, the coefficient of pc1j1 · · · p
cd
ld

in the expression on the right hand side of (25) is nonzero
only when {l1, . . . , ld} = {j1, . . . , jk}, in which case it equals

(−1)2k
(

M

c1 c2 . . . cd

)

=

(

M

c1 c2 . . . cd

)

.

This shows that (24) and (25) coincide, completing the proof.

D.6 Proof of Proposition 4

Proof The formula in (13) follows directly from Equation (24) in Proposition A9, because
for a set V of size k, the probability of any element being the selected unique ζ equals 1/k.

Next, U
[1]
Z = PZ by definition. In addition,

U
[2]
Z (ζ = aj1) = p2j1 +

1

2

∑

J={j1,j2}⊂N2,|J |=2

∑

c∈C2,2

(

2

c1 c2

)

pc1j1p
c2
j2

= p2j1 +
1

2

∑

j2∈N\{j1}

2pj1pj2 = p2j1 + pj1(1− pj1) = pj1 .

This shows that U
[2]
Z = PZ . Finally,

U
[3]
Z (ζ = aj1)

= p3j1 +
1

2

∑

J={j1,j2}⊂N2,|J |=2

∑

c∈C3,2

(

3

c1 c2

)

pc1j1p
c2
j2
+

1

3

(

3

1 1 1

)

∑

J={j1,j2,j3}⊂N3,|J |=3

pj1pj2pj3

= p3j1 +
1

2

∑

J={j1,j2}⊂N2,|J |=2

∑

c∈C3,2

(

3

c1 c2

)

pc1j1p
c2
j2
+ 2

∑

J={j1,j2,j3}⊂N3,|J |=3

pj1pj2pj3 .
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This further equals

p3j1 +
3

2

∑

j2∈N\{j1}

(p2j1pj2 + pj1p
2
j2) + 2pj1

∑

{j2,j3}⊂(N\{j1})2, |J |=2

pj2pj3

= p3j1 +
3

2
p2j1(1− pj1) + pj1





3

2

∑

j2∈N\{j1}

p2j2 + 2
∑

{j2,j3}⊂(N\{j1})2, |J |=2

pj2pj3



 .

By expanding the square in (1− pj1)2 = (
∑

j2∈N\{j1}
pj2)

2, this further equals

p2j1(3− pj1)
2

+ pj1





3

2



(1− pj1)2 −
∑

{j2,j3}⊂(N\{j1})2, |J |=2

pj2pj3





+2
∑

{j2,j3}⊂(N\{j1})2, |J |=2

pj2pj3





=
pj1(2p

2
j1
− 3pj1 + 3)

2
+
pj1
2

∑

{j2,j3}⊂(N\{j1})2, |J |=2

pj2pj3 .

This finishes the proof.

D.7 Proof of Proposition 5

Proof Let the two objects be denoted by a1 and a2. Then, one can verify using (25) in
Proposition A9 and (13) in Proposition 4 that, for j = 1, 2,

U
[M ]
Z (ζ = aj) =

1 + pMj − (1− pj)M
2

. (26)

Therefore,

∆(M,M ′; 2) =
1

2
sup

p∈[0,1]

∣

∣

∣pM − (1− p)M −
[

pM
′ − (1− p)M ′

]∣

∣

∣ .

Let δ = (1 − p)/p ≥ 0, so that p = 1/(1 + δ), and suppose without loss of generality that
δ ≤ 1; otherwise, change variables to 1 − p ← p. Then, the term inside the absolute value
above can be written as

A(δ) =
1− δM ′

(1 + δ)M ′ −
1− δM
(1 + δ)M

≥ 0. (27)

Now, denoting, for c ≥ 1, g(δ, c) = 1−δc

(1+δ)c , we have

∂g(δ, c)

∂δ
=
−cδc−1(1 + δ)c − (1− δc) · c(1 + δ)c−1

(1 + δ)2c

= −cδ
c−1(1 + δ) + (1− δc)

(1 + δ)c+1
= −c 1 + δc−1

(1 + δ)c+1
.
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Hence,

A′(δ) = −M ′ 1 + δM
′−1

(1 + δ)M ′+1
+M

1 + δM−1

(1 + δ)M+1
.

Thus, A′(δ) ≥ 0 is equivalent to

1 + δM−1

1 + δM ′−1
≥ M ′

M
(1 + δ)M−M ′

,

or, with the function h defined as in (16), to h(δ) ≥ ln(M ′/M). Now,

h′(δ) =
(M − 1)δM−2

1 + δM−1
− (M ′ − 1)δM

′−2

1 + δM ′−1
− M −M ′

1 + δ
.

We claim that h′(δ) < 0 for all δ ∈ [0, 1). Indeed, this is equivalent to the function

ψ̃(M) =
M

1 + δ
− (M − 1)δM−2

1 + δM−1

being increasing in M , for all M ≥ 2. Denote x = M − 1 ≥ 1, ψ(x) = δ · ψ̃(x + 1), and
a = 1/δ ≥ 1. Then,

ψ(x) =
x+ 1

1 + a
− x

1 + ax

and

ψ′(x) =
1

1 + a
− 1 + ax − xax ln a

(1 + ax)2
.

Hence, ψ′(x) > 0 is equivalent to

(1 + a)(1 + ax − xax ln a) < (1 + ax)2.

Now, since a ≥ 1 and x ≥ 1, we have 1 + a ≤ 1 + ax and xax ln a ≥ 0. Equality happens in
both equations if and only if x = 1 and a = 1. This corresponds toM = 2 and δ = 1. Thus,
the above inequality holds for all δ ∈ [0, 1). This shows that h is decreasing for δ ∈ [0, 1).
Since h(0) = 0 and h(1) =M ′−M ≤ ln(M ′/M), and as h is continuous on [0, 1], there is a
unique solution δ∗ ∈ [0, 1] to h(δ∗) = ln(M ′/M). This proves the first claim. Based on our
analysis, it follows that A is maximized over [0, 1] at δ∗. This finishes the proof.

D.8 Proof of Corollary 6

Proof Recalling the form of the function h from (16), the equation for δ ∈ [0, 1] from
Proposition 5 is

M

M ′
(δM−1 + 1) = (1 + δM

′−1)(1 + δ)M−M ′
.

For M = aM ′, this becomes

a(δaM
′−1 + 1) = (1 + δM

′−1)(1 + δ)(a−1)M ′
. (28)
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Now, as a ≥ 1 and δ ≤ 1, we have 2 ≥ (1 + δ)(a−1)M ′
, and thus using the inequality

2 ≤ (1 + 1/x)x for x ≥ 1 with x = (a− 1)M ′, we find that4 as soon as M ′ ≥ 1/(a− 1),

1 + δ ≤ 21/[(a−1)M ′] ≤ 1 +
1

(a− 1)M ′
.

Hence, δ ≤ 1
(a−1)M ′ ; and for M ′ ≥ 2/(a − 1), we thus find δ ≤ 1/2. Using this in (28), we

obtain
a

1 + 2−(M ′−1)
≤ (1 + δ)(a−1)M ′ ≤ a

(

1 + 2−(aM ′−1)
)

.

Therefore,

|(1 + δ)(a−1)M ′ − a| ≤ amax

{

2−(aM ′−1),
2−(M ′−1)

1 + 2(M ′−1)

}

≤ 21−M ′
a.

Hence, using that x 7→ x−a/(a−1) is decreasing on (0,∞), as well as the inequality 1 >
(1− 1/x)c ≥ 1− c/x for all x, c ≥ 1, applied to x = 2M

′−1 and c = a/(a− 1),

∣

∣

∣

∣

1

(1 + δ)aM ′ − a−a/(a−1)

∣

∣

∣

∣

≤
∣

∣

∣

∣

[

a(1− 21−M ′
)
]−a/(a−1)

− a−a/(a−1)

∣

∣

∣

∣

= a−a/(a−1)

[

(

1− 21−M ′
)−a/(a−1)

− 1

]

≤ a−a/(a−1)

[

(

1− 21−M ′
a/(a− 1)

)−1
− 1

]

≤ 2a−a/(a−1)21−M ′
a/(a− 1),

as long as 21−M ′
a/(a− 1) ≤ 1/2, i.e., M ′ ≥ 2 + log2(a/(a− 1)). Similarly,

∣

∣

∣

∣

1

(1 + δ)M ′ − a−1/(a−1)

∣

∣

∣

∣

≤ 2a−1/(a−1)21−M ′
/(a− 1),

as long as 21−M ′
/(a − 1) ≤ 1/2, i.e., M ′ ≥ 2 + log2(1/(a − 1)). Thus, with A from (27),

using also that δ ≤ 1/[(a− 1)M ′],

|A(δ)− a−1/(a−1)(1− 1/a)| =
∣

∣

∣

∣

∣

1− δM ′

(1 + δ)M ′ −
1− δaM ′

(1 + δ)aM ′ −
(

a−1/(a−1) − a−a/(a−1)
)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

(1 + δ)M ′ − a−1/(a−1)

∣

∣

∣

∣

+

∣

∣

∣

∣

1

(1 + δ)aM ′ − a−a/(a−1)

∣

∣

∣

∣

+
δM

′

(1 + δ)M ′ +
δaM

′

(1 + δ)aM ′

≤ 22−M ′
[

a−a/(a−1)a/(a− 1) + a−1/(a−1)/(a− 1)
]

+ 2[(a− 1)M ′]−M ′

≤ 23−M ′
a−1/(a−1)/(a− 1) + 2[(a− 1)M ′]−M ′

.

Finally, denoting by δ∗ the unique solution of (28), ∆(M,M ′; 2) = A(δ∗) from the proof of
Proposition 5, completing this proof.

4. All inequalities in this argument will hold for M ′ sufficiently large, and having determined the required
range, we will not repeatedly specify it.
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D.9 Proof of Theorem 7

Proof This follows immediately by combining Corollary 6 with (15) and Theorem 3.

D.10 Proof of Theorem 8

Proof First, we aim to show that, for pj 6= p′j ,

|U [M ]
Z ({aj})− U [M ]

Z′ ({aj})| < |pj − p′j |. (29)

For simplicity of notation, define p := pi and q := p′i. Define also d : [0, 1] → R as
d(p) = [pM − (1− p)M ]/2, for all p ∈ [0, 1]. It follows from (26) that we need to show

|d(p)− d(q)| < |p− q|.

Suppose without loss of generality that p < q. By the mean value theorem applied to d,
there exists a ω ∈ [p, q], such that d(p)− d(q) = d′(ω)(p− q). Therefore, it suffices to show
that |d′(ω)| < 1 for ω ∈ (c, 1 − c). Now, d′(ω) = M [ωM−1 + (1 − ω)M−1]/2. We note here
that d′(0) =M/2 > 1, d′(1/2) =M/2M−1 < 1 (as M ≥ 3), and d′ is strictly decreasing as a
function of ω for ω ∈ [0, 1/2]. Therefore, the equation d′(c) = 1 has a unique solution over
c ∈ [0, 1/2). This shows that c in (18) is well defined.

Moreover, because d′ is strictly decreasing between [0, 1/2], it follows that d′ is maxi-
mized within the interval [c, 1− c] at c and (by symmetry) at 1− c. Therefore, |d′(ω)| < 1
for ω ∈ (c, 1− c), and (29) follows.

Let TV (·, ·) be the total variation distance. Then, for all PZ , PZ′ ∈ Sc, with PZ 6= PZ′ ,

TV (U
[M ]
Z , U

[M ]
Z′ ) < TV (PZ , PZ′). (30)

Following (15), define eU (Z
∗) = P

Z̃1:G∼
(

U
[M ]
Z

)|G| [E ] and e(Z∗) = P
Z̃1:G∼P

|G|
Z

[E ]. Let AU , A

be the sets of functions over which eU , e can range, respectively. We need to show that

sup
eU∈AU

∣

∣

∣

∣

E
Z∗∼U

[M ]
Z

eU (Z
∗)− E

Z∗∼U
[M ]

Z′
eU (Z

∗)

∣

∣

∣

∣

< sup
e∈A

∣

∣EZ∗∼PZ
e(Z∗)− EZ∗∼PZ′ e(Z

∗)
∣

∣ .

Because E ⊂ {a1, a2}|G|+1 is arbitrary, the possible values of eU include zero and unity, for
any value Z∗ = z. Hence, the above inequality is equivalent to (30), completing the proof.
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95% Lower bound

Conformal

Data Frequency Upper bound Classical Bayesian Bootstrap Fixed Adaptive

SARS-CoV-2
AATTATTATAAGAAAG 81 81 26 81 52 50 36
TCAGACAACTACTATT 76 76 21 55 47 45 32
AAAGTTGATGGTGTTG 73 73 18 59 44 42 31
CAATTATTATAAGAAA 63 63 8 48 34 32 26
ATCAGACAACTACTAT 60 60 5 44 31 29 26
ACCTTTGACAATCTTA 55 55 0 52 26 24 27
ATTTGAAGTCACCTAA 55 55 0 55 26 24 27
CATGCAAATTACATAT 54 54 0 54 25 23 26
GAATTTCACAGTATTC 54 54 0 54 25 23 27
TTTGTAGAAAACCCAG 53 53 0 53 24 22 27

AGTTGCAGAGTGGTTT 24 24 0 13 0 0 20
TCTTCACAATTGGAAC 24 24 0 12 0 1 20
TTCTGCTCGCATAGTG 24 24 0 12 0 0 20
CTACTTTAGATTCGAA 23 23 0 11 0 0 19
GCTGGTGTCTCTATCT 23 23 0 23 0 1 19
TTCTAAGAAGCCTCGG 23 24 0 14 0 0 20
GGGCTGTTGTTCTTGT 22 24 0 12 0 0 20
ACGTTCGTGTTGTTTT 20 20 0 20 0 0 16
GAAGTCTTTGAATGTG 20 20 0 20 0 0 16
CAAACCTGGTAATTTT 3 3 0 3 0 0 0

Literature
of the 12565 12568 12513 12544 12557 12556 12562
in the 6188 6190 6135 6169 6179 6179 6180
and the 6173 6175 6120 6151 6164 6164 6165
the of 6015 6017 5962 5990 6006 6006 6007
the lord 4186 4195 4140 4165 4184 4184 4184
to the 3465 3467 3412 3445 3456 3456 3463
the and 2250 2251 2196 2227 2240 2240 2248
all the 2226 2230 2175 2207 2219 2219 2224
and he 2169 2173 2118 2153 2162 2162 2167
to be 2062 2064 2009 2043 2053 2053 2060

man on 22 29 0 10 18 18 18
their hand 22 24 0 9 13 13 0
no need 20 28 0 9 17 17 16
and brother 12 14 0 2 3 3 0
miss would 10 13 0 3 2 2 0
i please 8 12 0 3 1 1 1
also how 3 13 0 2 2 2 0
in under 3 9 0 2 0 0 0
ten old 3 6 0 1 0 0 0
fault he 1 9 0 1 0 0 0

Table A1: True frequencies, deterministic upper bounds, and 95% lower bounds for 10
common (top) and 10 rare (bottom) random queries in two sketched data sets.
Sketching with CMS-CU with w = 50, 000. Lower bounds written in green are
below the true frequency; those in red are above. For each query, the highest
lowest bound below the true frequency is highlighted in bold.
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95% Lower bound

Conformal

Data Frequency Upper bound Classical Bayesian Bootstrap Fixed Adaptive

SARS-CoV-2
AATTATTATAAGAAAG 81 209 0 4 0 0 18
TCAGACAACTACTATT 76 213 0 8 0 0 18
AAAGTTGATGGTGTTG 73 130 0 2 0 1 18
CAATTATTATAAGAAA 63 233 0 4 11 6 19
ATCAGACAACTACTAT 60 179 0 2 0 0 18
ACCTTTGACAATCTTA 55 292 0 15 70 67 22
ATTTGAAGTCACCTAA 55 258 0 11 36 31 20
CATGCAAATTACATAT 54 204 0 3 0 0 18
GAATTTCACAGTATTC 54 260 0 12 38 35 22
TTTGTAGAAAACCCAG 53 246 0 7 24 18 20

ATGCTGCAATCGTGCT 24 139 0 2 0 0 17
ATTTCCTAATATTACA 24 92 0 1 0 0 17
CTCTATCATTATTGGT 24 121 0 1 0 0 17
TGTTTTATTCTCTACA 24 199 0 3 0 1 19
CAGTACATCGATATCG 23 119 0 2 0 0 17
TAATGGTGACTTTTTG 23 92 0 1 0 0 17
CAACCATAAAACCAGT 22 105 0 1 0 0 17
AGTTATTTGACTCCTG 21 97 0 1 0 1 18
ATAAAGGAGTTGCACC 19 218 0 5 0 0 18

Literature
of the 12565 12630 12086 12325 12463 12454 12563
in the 6188 6242 5698 5906 6075 6067 6096
and the 6173 6314 5770 5972 6147 6139 6169
the of 6015 6162 5618 5834 5995 5985 6014
the lord 4186 4289 3745 3975 4122 4114 4185
to the 3465 3558 3014 3217 3391 3380 3464
the and 2250 2413 1869 2081 2246 2237 2249
all the 2226 2346 1802 1993 2179 2170 2225
and he 2169 2293 1749 1937 2126 2117 2168
to be 2062 2121 1577 1770 1954 1945 2061

very for 15 59 0 2 0 0 0
and faithful 14 94 0 3 0 0 0
but found 9 74 0 2 0 0 0
my speech 6 98 0 3 0 0 0
of eight 5 66 0 2 0 0 0
and soul 4 140 0 6 0 0 0
her prow 3 79 0 2 0 0 0
usual as 2 56 0 2 0 0 0
a invitation 1 80 0 2 0 0 0
angular log 0 146 0 5 0 0 0

Table A2: True frequencies, upper and lower bounds for 10 common (top) and 10 rare
(bottom) random queries in two sketched data sets. Hash width w = 50, 000.
Other details are as in Table A1.
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Appendix F. Additional Experiments with Two-Sided Confidence

Intervals

This section describes additional experiments with synthetic data similar to those described
in Figures 3 (Zipf distribution) and A23 (Pitman-Yor process prior), constructing two-
sided instead of one-sided confidence intervals. For simplicity, we focus on one-sided 95%
conformalized bootstrap confidence intervals based on the simpler Bonferroni approach
described in Appendix B.1.1. The performance of these intervals is compared to those
of one and two-sided standard bootstrap confidence intervals obtained with the method
of Ting (2018).

Figure A29 reports on results based on data generated from a Zipf distribution and
sketched with the CMS-CU, similarly to Figure 3. Here, all methods achieve the desired
95% marginal coverage level, but the conformal confidence intervals are shorter when the
Zipf tail parameter a is larger and hash collisions become rarer, consistently with Figure 3.
It is interesting to note that the two-sided conformal confidence intervals are much narrower
than their one-sided counterparts when a is small and hash collisions are very common, but
this is not true if a is large. The latter is likely a limitation of the specific construction we
have adopted, described in Appendix B.1.1, which may be too conservative in some cases
due to the Bonferroni correction. A suitable implementation of the more sophisticated
conditional histogram (Sesia and Romano, 2021) approach described in Appendix B.1.2
should be expected to produce two-sided intervals that are always narrower than their one-
sided counterparts. Figure A30 reports on results similar to those in Figure A29, with
the only difference that now the data are sketched with the vanilla CMS instead of the
CMS-CU.

Figure A31 reports on results based on data generated from a Pitman-Yor process prior
and sketched with the CMS-CU, similarly to Figure A23. Here, all methods achieve the
desired 95% marginal coverage level, and two-sided intervals are generally much shorter
than their one-sided counterparts. Across all values of σ, the conformal confidence intervals
tend to be shorter than the bootstrap intervals, although this difference becomes very small
in the case of two-sided intervals for large values of σ. Finally, Figure A32 reports on results
similar to those in Figure A31, with the only difference that now the data are sketched with
the vanilla CMS instead of the CMS-CU.

73



Sesia, Favaro, and Dobriban

References

Anders Aamand, Piotr Indyk, and Ali Vakilian. (Learned) frequency estimation algorithms
under zipfian distribution. arXiv preprint arXiv:1908.05198, 2019.

Lada A Adamic and Bernardo A Huberman. Zipf’s law and the internet. Glottometrics, 3
(1):143–150, 2002.

Anastasios Nikolas Angelopoulos, Stephen Bates, Michael I. Jordan, and Jitendra Malik.
Uncertainty sets for image classifiers using conformal prediction. In 9th International
Conference on Learning Representations, 2021, Virtual Event, Austria, May 3-7, 2021,
2021.

Rina F Barber, Emmanuel J Candès, Aaditya Ramdas, and Ryan J Tibshirani. The limits of
distribution-free conditional predictive inference. Information and Inference: A Journal
of the IMA, 10(2):455–482, 2021.

Rina Foygel Barber, Emmanuel J Candès, Aaditya Ramdas, and Ryan J Tibshirani. Con-
formal prediction beyond exchangeability. The Annals of Statistics, 51(2):816–845, 2023.

Stephen Bates, Emmanuel Candès, Lihua Lei, Yaniv Romano, and Matteo Sesia. Testing
for outliers with conformal p-values. The Annals of Statistics, 51(1):149–178, 2023.

Mario Beraha and Stefano Favaro. Random measure priors in Bayesian frequency recovery
from sketches. arXiv preprint arXiv:2303.15029, 2023.

Dimitris Bertsimas and Vassilis Digalakis. Frequency estimation in data streams: Learning
the optimal hashing scheme. IEEE Transactions on Knowledge and Data Engineering,
2021.

Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python:
analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”, 2009.

Burton H Bloom. Space/time trade-offs in hash coding with allowable errors. Communica-
tions of the ACM, 13(7):422–426, 1970.

Diana Cai, Michael Mitzenmacher, and Ryan P Adams. A Bayesian nonparametric view
on count-min sketch. In Advances in Neural Information Processing Systems 31, pages
8782–8791, 2018.

Emmanuel Candès, Lihua Lei, and Zhimei Ren. Conformalized survival analysis. Journal
of the Royal Statistical Society Series B, 85(1):24–45, 2023.

Yukun Cao, Yuan Feng, and Xike Xie. Meta-sketch: A neural data structure for estimating
item frequencies of data streams. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 6916–6924, 2023.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. In International Colloquium on Automata, Languages, and Programming, pages
693–703. Springer, 2002.

74



Conformal Frequency Estimation using Discrete Sketched Data
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