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Abstract

Conformal inference provides a general distribution-free method to rigorously
calibrate the output of any machine learning algorithm for novelty detection. While
this approach has many strengths, it has the limitation of being randomized, in
the sense that it may lead to different results when analyzing twice the same
data, and this can hinder the interpretation of any findings. We propose to make
conformal inferences more stable by leveraging suitable conformal e-values instead
of p-values to quantify statistical significance. This solution allows the evidence
gathered from multiple analyses of the same data to be aggregated effectively while
provably controlling the false discovery rate. Further, we show that the proposed
method can reduce randomness without much loss of power compared to standard
conformal inference, partly thanks to an innovative way of weighting conformal e-
values based on additional side information carefully extracted from the same data.
Simulations with synthetic and real data confirm this solution can be effective at
eliminating random noise in the inferences obtained with state-of-the-art alternative
techniques, sometimes also leading to higher power.

1 Introduction

1.1 Background and motivation

A common problem in statistics and machine learning is to determine which samples, among a
collection of new observations, were drawn from the same distribution as a reference data set (Wilks,
1963; Riani et al., 2009; Chandola et al., 2009). This task is known as novelty detection, out-of-
distribution testing, or testing for outliers, and it arises in numerous applications within science,
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in our context due to the discrete nature of the statistical evidence in conformal inference. We further
refine this method and boost power by adaptively weighting our conformal e-values based on an
estimate of the out-of-sample accuracy of each underlying machine learning model. A preview of the
performance of our solution is given by Figure 1b, which shows that our method can achieve power
comparable to that of standard conformal inferences while mitigating the algorithmic randomness.

1.3 Related work

This paper builds upon e-values (Vovk and Wang, 2021): quantitative measures of statistical evidence,
alternative to p-values, that lend themselves well to the derandomization of data-splitting procedures
and to FDR control under dependence (Wang and Ramdas, 2022). There exist several generic methods
for converting any p-value into an e-value (Vovk and Wang, 2021). While those p-to-e calibrators
could be applied for our novelty detection problem, their power turns out to be often quite low due to
the fact that conformal p-values are discrete and cannot take very small values unless the sample size
is extremely large; see the Supplementary Section S5 for more details.

Therefore, we propose a novel construction of (slightly generalized) e-values inspired by the work
of Ren and Barber (2023) on the derandomization of the knockoff filter (Barber and Candès, 2015),
which focused on a completely different high-dimensional variable selection problem. A different
approach for producing e-values in the context of conformal inference can also be found in Ignatiadis
et al. (2023), although the latter did not focus on derandomization. Our approach differs from that of
Ignatiadis et al. (2023) because we construct e-values simultaneously for the whole test set, aiming to
control the FDR, instead of operating one test point at a time. Simulations show that our approach
tends to yield higher power, especially if the test data contain many outliers.

Our second novelty consists of developing a principled method for assigning data-driven weights
to conformal e-values obtained from different machine learning models, in such a way as to further
boost power. This solution re-purposes transductive (Vovk, 2013) conformal inference ideas to
leverage information contained in the test data themselves while calibrating the conformal inferences,
increasing the power to detect outliers similarly to Marandon et al. (2022) and Liang et al. (2022).

While this paper focuses on derandomizing split-conformal inferences, there exist other distribution-
free methods that can provide finite-sample tests for novelty detection, such as full-conformal
inference (Vladimir et al., 2005) and cross-validation+ (Barber et al., 2021). Those techniques are
more computationally expensive but have the advantage of yielding relatively more stable conformal
p-values because they do not rely on a single random data split. However, full-conformal inference
and cross-validation+ also produce conformal p-values with more complicated dependencies, which
make it difficult to control the FDR without large losses in power (Benjamini and Yekutieli, 2001) or
very expensive computations (Fithian and Lei, 2022; Liang et al., 2022).

Finally, prior works studied how to stabilize conformal predictors by calibrating the output of an
ensemble of simpler models (Löfström et al., 2013; Beganovic and Smirnov, 2018; Linusson et al.,
2020; Kim et al., 2020; Gupta et al., 2022). However, we consider a distinct problem as we focus on
derandomizing conformal novelty detection methods while controlling the FDR.

2 Relevant technical background

2.1 Notation and problem setup

Consider n observations, Xi ∈ Rd, sampled exchangeably (or, for simplicity, independent and
identically distributed) from some unknown distribution P0, for all i ∈ D = [n] = {1, . . . , n}. Then,

imagine observing a test set of ntest “unlabeled” samples Xj ∈ Rd. The problem is to test, for each
j ∈ Dtest = [n + ntest] \ [n], the null hypothesis that Xj is also an inlier, in the sense that it was
randomly sampled from P0 exchangeably with the data in D. We refer to a rejection of this null
hypothesis as the discovery that Xj is an outlier, and we indicate the set of true inlier test points as

Dnull
test , with nnull

test = |Dnull
test |. For each j ∈ Dtest, define Rj as the binary indicator of whether Xj is

labeled by our method as an outlier. Then, the goal is to discover as many true outliers as possible
while controlling the FDR, defined as FDR = E[(

∑
j∈Dnull

test
Rj)/max{1,

∑
j∈Dtest

Rj}].
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2.2 Review of FDR control with conformal p-values

After randomly partitioning D into two disjoint subsets Dtrain and Dcal, of cardinality ntrain and
ncal = n− ntrain respectively, the standard approach for computing split-conformal p-values begins
by training a one-class classification model on the data indexed by Dtrain. This model is applied

out-of-sample to compute conformity scores Ŝi and Ŝj for all calibration and test points i ∈ Dcal and
j ∈ Dtest, with the convention that larger scores suggest evidence of an outlier. Assuming without
loss of generality that all scores take distinct values (otherwise, ties can be broken at random by
adding a little noise), a conformal p-value û(Xj) for each j ∈ Dtest is then calculated by taking the

relative rank of Ŝj among the Ŝi for all i ∈ Dcal: û(Xj) = (1+
∑

i∈Dcal
I{Ŝj ≤ Ŝi})/(1+ncal). If

the null hypothesis for Xj is true, Ŝj is exchangeable with Ŝi for all i ∈ Dcal, and û(Xj) is uniformly
distributed on {1/(1+ncal), 2/(1+ncal), . . . , 1}. Since this distribution is stochastically larger than
the continuous uniform distribution on [0, 1], one can say that û(Xj) is a valid conformal p-value.
Note however that the p-values û(Xj) and û(Xj′) for two different test points j, j′ ∈ Dtest are not
independent of one another, even conditional on Dtrain, because they share the same calibration data.

Despite their mutual dependence, conformal p-values can be utilized within the BH filter to simulta-
neously probe the ntest hypotheses for all test points while controlling the FDR. A convenient way to
explain the BH filter is as follows (Storey, 2002). Imagine rejecting the null hypothesis for all test
points j with û(Xj) ≤ s, for some threshold s ∈ [0, 1]. By monotonicity of û(Xj), this amounts to

rejecting the null hypothesis for all test points j with Ŝj ≥ t, for some appropriate threshold t ∈ R.
An intuitive estimate of the proportion of false discoveries incurred by this rule is:

F̂DP(t) =
ntest

1 + ncal
·
1 +

∑
i∈Dcal

I{Ŝi ≥ t}
∑

j∈Dtest
I{Ŝj ≥ t}

. (1)

This can be understood by noting that
∑

j∈Dtest
I{S

(k)
j ≥ t} is the total number of discoveries, while

the numerator should behave similarly to the (latent) number of false discoveries in Dtest due to the

exchangeability of Ŝi and Ŝj under the null hypothesis. With this notation, it can be shown that the
BH filter applied at level α ∈ (0, 1) computes an adaptive threshold

t̂BH = min
{
t ∈ {Ŝi}i∈Dcal∪Dtest : F̂DP(t) ≤ α

}
, (2)

and rejects all null hypotheses j with Ŝj ≥ t̂BH; see Rava et al. (2021) for a derivation of this
connection. This procedure was proved by Bates et al. (2023) to control the FDR below α.

2.3 Review of FDR control with AdaDetect

Recently, Marandon et al. (2022) proposed AdaDetect, a more sophisticated version of the method
reviewed in Section 2.2. The main innovation of AdaDetect is that it leverages a binary classification
model instead of a one-class classifier. In particular, AdaDetect trains a binary classifier to distinguish
the inlier data in Dtrain from the mixture of inliers and outliers contained in the union of Dcal and
Dtest. The key idea to achieve FDR control is that the training process should remain invariant
to permutations of the calibration and test samples. While the true inlier or outlier nature of the
observations in Dtest is obviously unknown at training time, AdaDetect can still extract some
useful information from the test data which would otherwise be ignored by the more traditional
split-conformal approach reviewed in Section 2.2. In particular, AdaDetect can leverage the test data
to automatically tune any desired model hyper-parameters in order to approximately maximize the
number of discoveries. A similar idea also motivates the alternative method of integrative conformal
p-values proposed by Liang et al. (2022), although the latter requires the additional assumption that
some labeled outlier data are available, and is therefore not discussed in equal detail within this paper.

Despite a more sophisticated use of the available data compared to the split-conformal method
reviewed in Section 2.2, AdaDetect still suffers from the same limitation that it must calibrate
its inferences based on a single random data subset Dcal, and thus its results remain aleatory. For
simplicity, Section 3.1 begins by explaining how to derandomize standard split-conformal inferences;
then, the proposed method will be easily extended in Section 3.3 to derandomize AdaDetect.
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3 Method

3.1 Derandomizing split-conformal inferences

Consider K ≥ 1 repetitions of the split-conformal analysis reviewed in Section 2.2, each starting with

an independent split of the same reference data into D
(k)
train and D

(k)
cal . For each repetition k ∈ [K],

after training the machine learning model on D
(k)
train and computing conformity scores on D

(k)
cal and

Dtest, one can estimate the false discovery proportion corresponding to the rejection of all test points
with scores above a fixed rejection threshold t ∈ R, similarly to (1), with:

F̂DP
(k)

(t) =
ntest

ncal
·

∑
i∈D

(k)
cal

I{Ŝ
(k)
i ≥ t}

∑
j∈Dtest

I{Ŝ
(k)
j ≥ t}

. (3)

Note that the estimate in (3) differs slightly from that in (1) as it lacks the “+1” constant term in the
numerator and denominator. While it is possible to include the “+1” terms in (3), this is not needed
by our theory and we have observed that it often makes our method unnecessarily conservative. For

any fixed αbh ∈ (0, 1), let t̂(k) be the corresponding BH threshold (2) at the nominal FDR level αbh:

t̂(k) = min{t ∈ D̃
(k)
cal−test : F̂DP

(k)
(t) ≤ αbh}, (4)

where D̃
(k)
cal−test = {Ŝ

(k)
i }

i∈Dtest∪D
(k)
cal

. For each test point j ∈ Dtest, define the following rescaled

indicator of whether Ŝ
(k)
j exceeds t̂(k):

e
(k)
j = (1 + ncal) ·

I{Ŝ
(k)
j ≥ t̂(k)}

1 +
∑

i∈D
(k)
cal

I{Ŝ
(k)
i ≥ t̂(k)}

. (5)

Intuitively, this quantifies not only whether the j-th null hypothesis would be rejected by the BH

filter at the nominal FDR level αbh, but also how extreme Ŝ
(k)
j is relative to the calibration scores.

In other words, a large e
(k)
j suggests that the test point may be an outlier, where this variable can

take any of the following values: 0, 1, (1 + ncal)/ncal, (1 + ncal)/(ncal − 1), . . . , (1 + ncal). This
approach, inspired by Ren and Barber (2023), is not the only possible way of constructing e-values to
derandomize conformal inferences, as discussed in Supplementary Section S5. However, we will
show that it works well in practice and it typically achieves higher power compared to standard p-to-e
calibrators (Vovk and Wang, 2021) applied to conformal p-values. This advantage partly derives
from the fact that (5) can gather strength from many different test points, and partly from the fact
that it is not a proper e-value according to the original definition of Vovk and Wang (2021), in the
sense that its expected value may be larger than one even if Xj is an inlier. Instead, we will show that
our e-values satisfy a relaxed average validity property (Ren and Barber, 2023) that is sufficient to
guarantee FDR control while allowing more numerous discoveries.

After evaluating (5) for all j ∈ Dtest and all k ∈ [K], we aggregate the evidence against the j-th null
hypothesis into a single statistic ēj by taking a weighted average:

ēj =

K∑

k=1

w(k)e
(k)
j ,

K∑

k=1

w(k) = 1,

based on some appropriate normalized weights w(k). Intuitively, the role of w(k) is to allow for the
possibility that the machine learning models based on different realizations of the training subset may
not all be equally powerful at separating inliers from outliers. In the remainder of this section, we will
take these weights to be known a-priori for all k ∈ [K], thus representing relevant side information;
e.g., in the sense of Genovese et al. (2006) and Ren and Candès (2023). For simplicity, one may think

for the time being of trivial uninformative weights w(k) = 1/K. Of course, it would be preferable to
allow these weights to be data-driven, but such an extension is deferred to Section 3.2 for conciseness.

Having calculated aggregate e-values ēj with the procedure described above, which is outlined by
Algorithm S1 in the Supplementary Material, our method rejects the null hypothesis for all j ∈ Dtest

whose ēj is greater than an adaptive threshold calculated by applying the eBH filter of Wang and
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Ramdas (2022), which is outlined for completeness by Algorithm S2 in the Supplementary Material.
We refer to Wang and Ramdas (2022) for a more detailed discussion of the eBH filter. Here, it suffices
to recall that the eBH filter computes an adaptive rejection threshold based on the ntest input e-values
and on the desired FDR level α ∈ (0, 1). Then, our following result states that the overall procedure
is guaranteed to control the FDR below α, under a relatively mild exchangeability assumption.

Assumption 3.1. The inliers in D and the null test points are exchangeable conditional on the
non-null test points.

Theorem 3.2. Suppose Assumption 3.1 holds. Then, the e-values computed by Algorithm S1 satisfy:
∑

j∈Dnull
test

E [ēj ] ≤ ntest. (6)

The proof of Theorem 3.2 is in the Supplementary Section S2. Combined with Theorem 2 from Ren
and Barber (2023), this result implies our method controls the FDR below the desired target level α.

Corollary 3.3 (Ren and Barber (2023)). The eBH filter of Wang and Ramdas (2022) applied at level
α ∈ (0, 1) to e-values {ēj}j∈Dtest , satisfying (6) guarantees FDR ≤ α.

Remark 3.4. Assumption 3.1 does not require that the inliers are independent of the outliers.

Remark 3.5. Theorem 3.2 holds regardless of the value of the hyper-parameter αbh of Algorithm S1,
which appears in (4). See Section 3.4 for further details about the choice of αbh.

3.2 Leveraging data-driven weights

Our method can be extended to leverage adaptive weights based on the data in D and Dtest, as long

as each weight w(k) is invariant to permutations of the test point with the corresponding calibration

samples in D
(k)
cal . In other words, we only require that these weights be written in the form of

w(k) = ω(D̃
(k)
cal−test). (7)

The function ω may depend on D
(k)
train but not on D

(k)
cal or Dtest. An example of a useful weighting

scheme satisfying this property is at the end of this section. The general method is summarized by
Algorithm S3 in the Supplementary Material, which extends Algorithm S1. This produces e-values
that control the FDR in conjunction with the eBH filter of Wang and Ramdas (2022).

Theorem 3.6. Suppose Assumption 3.1 holds. Then, the e-values computed by Algorithm S3 satisfy (6),
as long as the adaptive weights obey (7).

An example of a valid weighting function applied in this paper is the following. Imagine having some
prior side information suggesting that the proportion of outliers in Dtest is approximately γ ∈ (0, 1).
Then, a natural choice to measure the quality of the k-th model is to let w̃(k) = |ṽ(k)|, where ṽ(k) is
the standard t-statistic for testing the difference in means between the top ⌈ntest · γ⌉ largest values in

D̃
(k)
cal−test and the remaining ones. See Algorithm S5 in the Supplementary Material for further details.

Intuitively, Algorithm S5 tends to assign larger weights to models achieving stronger out-of-sample
separation between inliers and outliers. Of course, this approach may not always be optimal but
different weighting schemes could be easily accommodated within our framework.

3.3 Derandomizing AdaDetect with E-AdaDetect

The requirement discussed in Section 3.2 that the data-adaptive weights should be invariant to permu-
tations of the calibration and test samples is analogous to the idea utilized by AdaDetect (Marandon
et al., 2022) to train more powerful machine learning models leveraging also the information con-
tained in the test set; see Section 2.3. This implies that Theorem 3.6 remains valid even if our method
is implemented based on K machine learning models each trained by looking also at the unordered

union of all data points in D
(k)
cal ∪ Dtest, for each k ∈ [K]. See Algorithm S4 in the Supplementary

Material for a detailed implementation of this extension of our method, which we call E-AdaDetect.

3.4 Tuning the FDR hyper-parameter

As explained in Section 3.1, our method involves a hyper-parameter αbh controlling the BH thresholds

t̂(k) in (4). Intuitively, higher values of αbh tend to increase the number of both test and calibration
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scores exceeding the rejection threshold at each of the K iterations. Such competing effects make
it generally unclear whether increasing αbh leads to larger e-values in (5) and hence higher power.
This trade-off was studied by Ren and Barber (2023) while derandomizing the knockoff filter, and
they suggested setting αbh < α. In this paper, we adopt αbh = α/10, which we have observed to
work generally well in our context, although even higher power can sometimes be obtained with
different values of αbh, especially if the number of outliers in the test set is large. While we leave it
to future research to determine whether further improvements are possible, it is worth noting that a
straightforward extension of our method, not explicitly implemented in this paper, can be obtained by
further averaging e-values obtained with different choices of αbh. Such extension does not affect the
validity of (6) due to the linearity of expected values.

4 Numerical experiments

4.1 Setup and performance metrics

This section compares empirically the performance of AdaDetect and our proposed derandomized
method described in Section 3.3, namely E-AdaDetect. Both procedures are deployed using a binary
logistic regression classifier (Marandon et al., 2022) as the base predictive model. The reason why
we focus on derandomizing AdaDetect instead of traditional split-conformal inferences based on a
one-class classifier (Bates et al., 2023) is that we have observed that AdaDetect often achieves higher
power on the data considered in this paper, which makes it a more competitive benchmark. However,
additional experiments reporting on the performance of our derandomization method applied in
combination with one-class classifiers can be found in the Supplementary Sections S4.2 and S6.2.

As the objective of this paper is to powerfully detect outliers while mitigating algorithmic randomness,
we assess the performance of each method over M = 100 independent analyses based on the same
fixed data and the same test set. For each repetition m of the novelty detection analysis based on the

fixed data, we identify a subset R(m) ⊆ Dtest of likely outliers (the rejected null hypotheses) and
evaluate the average power and false discovery proportion, namely

P̂ower =
1

M

M∑

m=1

|R(m) ∩ Dnon-null
test |

|Dnon-null
test |

, F̂DR =
1

M

M∑

m=1

|R(m) ∩ Dnull
test |

max{|R(m)|, 1}
, (8)

where Dnon-null
test = Dtest \ D

null
test indicates the true outliers in the test set. The average false discovery

proportion defined in (8) is not the FDR, which is the quantity we can theoretically guarantee to

control. In fact, FDR = E[F̂DR], with expectation taken with respect all randomness in the data.
Nonetheless, we will see that this average false discovery proportion is also controlled in practice
within all data sets considered in this paper. The advantage of this setup is that it makes it natural to
estimate algorithmic variability by observing the consistency of each rejection across independent
analyses. In particular, after defining Rj,m as the indicator of whether the j-th null hypothesis was
rejected in the m-th analysis, we can evaluate the average variance in the rejection events:

V̂ariance =
1

ntest

ntest∑

j=1

1

M − 1

M∑

m=1

(
Rj,m − R̄j

)2
, (9)

where R̄j = (1/M)
∑M

m=1 Rj,m. Intuitively, it would be desirable to maximize power while
simultaneously minimizing both the average false discovery proportion and the variability. In practice,
however, these metrics often compete with one another; hence why we focus on comparing power
and variability for methods designed to control the FDR below the target level α = 0.1.

4.2 Experiments with synthetic data

Synthetic reference and test data consisting of 100-dimensional vectors X are generated as follows.
The reference set contains only inliers, drawn i.i.d. from the standard normal distribution with
independent components, N (0, I100). Unless specified otherwise, the test set contains 90% inliers
and 10% outliers, independently sampled from N (µ, I100). The first 5 entries of µ are equal to a
constant parameter, to which we refer as the signal amplitude, while the remaining 95 entries are
zeros. The size of the reference set is n = 2000, with 1000 samples in the training subset and 1000 in
the calibration subset. The size of the test set is ntest = 1000. Both E-AdaDetect and AdaDetect

are applied based on the same logistic regression classifier with default hyper-parameters.
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