
Journal of Machine Learning Research 24 (2023) 1-87 Submitted 7/21; Revised 5/22; Published 1/23

How Do You Want Your Greedy: Simultaneous or Repeated?∗

Moran Feldman moranfe@cs.haifa.ac.il
Department of Computer Science
University of Haifa
Haifa, Israel

Christopher Harshaw charshaw@berkeley.edu
Simons Institute
Univeristy of California, Berkeley
Berkeley, CA, USA

Amin Karbasi amin.karbasi@yale.edu

Departments of Electrical Engeering, Computer Science, Statsitics & Data Science

Yale University

New Haven, CT, USA

Editor: Francis Bach

Abstract

We present SimultaneousGreedys, a deterministic algorithm for constrained submodular
maximization. At a high level, the algorithm maintains ℓ solutions and greedily updates
them in a simultaneous fashion. SimultaneousGreedys achieves the tightest known
approximation guarantees for both k-extendible systems and the more general k-systems,
which are (k + 1)2/k = k + O(1) and (1 +

√
k + 2)2 = k + O(

√
k), respectively. We also

improve the analysis of RepeatedGreedy, showing that it achieves an approximation
ratio of k+O(

√
k) for k-systems when allowed to run for O(

√
k) iterations, an improvement

in both the runtime and approximation over previous analyses. We demonstrate that both
algorithms may be modified to run in nearly linear time with an arbitrarily small loss in
the approximation.

Both SimultaneousGreedys and RepeatedGreedy are flexible enough to incor-
porate the intersection of m additional knapsack constraints, while retaining similar ap-
proximation guarantees: both algorithms yield an approximation guarantee of roughly
k + 2m+O(

√
k +m) for k-systems and SimultaneousGreedys enjoys an improved ap-

proximation guarantee of k + 2m + O(
√
m) for k-extendible systems. To complement

our algorithmic contributions, we prove that no algorithm making polynomially many
oracle queries can achieve an approximation better than k + 1/2 − ε. We also present
SubmodularGreedy.jl, a Julia package which implements these algorithms. Finally, we
test these algorithms on real datasets.

Keywords: Submodular maximization, k-systems, k-extendible systems, approximation
algorithms

∗. Parts of the repeated greedy analysis and the inapproximability results presented in this paper have
previously appeared in a preliminary form in a conference paper that appeared in COLT 2017 (Feldman
et al., 2017).

©2023 Moran Feldman, Christopher Harshaw, and Amin Karbasi.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/21-0782.html.

https://github.com/crharshaw/SubmodularGreedy.jl
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/21-0782.html

Feldman, Harshaw, and Karbasi

1. Introduction

Submodular optimization has become widely adopted into the methodology of many areas
of science and engineering. In addition to being a flexible modeling paradigm, submodular
functions are defined by a diminishing returns property that naturally appears in a variety
of disciplines, from machine learning and information theory to economics and neuroscience.
Submodular optimization has been used in sensor placement (Krause and Guestrin, 2005),
maximum likelihood inference in determinantal point processes (Gillenwater et al., 2012),
influence maximization (Kempe et al., 2003), functional neuroimaging (Salehi et al., 2017),
data summarization (Lin and Bilmes, 2011; Mirzasoleiman et al., 2013), crowd teaching
(Singla et al., 2014), black-box interpretability (Elenberg et al., 2017), decision making
(Alieva et al., 2020; Chen et al., 2015), and experimental design (Bian et al., 2017; Har-
shaw et al., 2019), to name a few examples. For more information on the applications of
submodularity in machine learning and signal processing, we refer the interested reader to
the recent survey by Tohidi et al. (2020). The simplest constraint class in these optimiza-
tion problems is a cardinality constraint, which limits the number of elements any feasible
solution may contain. However, as more applications emerge, there is a growing need for
the development of fast algorithms that are able to handle more flexible and expressive
constraint classes.

In this paper, we study the problem of maximizing a submodular functions subject to
two constraint classes: k-systems and its (strict) subclass of k-extendible systems. These
constraint classes capture a wide variety of constraints, including cardinality constraints,
spanning trees, general matroids, intersection of matroids, graph matchings, scheduling,
and even planar subgraphs. Moreover, the classes of k-systems and k-extendible systems
enjoy a certain calculus for intersections (described more thoroughly in Section 2.2), which
are desirable properties for practitioners who may be looking to optimize over richer sets
of constraints. In the literature, there are two main algorithmic approaches for maximizing
submodular functions over each of these constraint classes. The repeated greedy approach
was initially proposed for submodular optimization over k-systems by Gupta et al. (2010),
who showed that O(k) repeated iterations suffice to achieve a 3k approximation guarantee.
Mirzasoleiman et al. (2016) refined this analysis, improving the approximation guarantee to
2k. One contribution of this paper is to further improve the analysis of the repeated greedy
technique, showing that O(

√
k) suffices to achieve a k + O(

√
k) approximation guarantee.

The subsample greedy approach was proposed by Feldman et al. (2017) for submodular
optimization over a k-extendible system, and achieves an improved approximation ratio of
(k + 1)2/k = k +O(1).

One of the main downsides to these current approaches is that they are tailor made for
the particular constraint class and do not perform as well otherwise. As we show in this pa-
per, our analysis of the repeated greedy technique is tight in the sense that the algorithm at-
tains an approximation guarantee of only k+Ω(

√
k) for the subclass of k-extendible systems,

regardless of the number of repeated iterations; similarly, the subsample greedy approach is
not known to provide any approximation guarantee for the more general k-systems. More-
over, the types of approximation guarantees provided by the two algorithmic approaches
differ: subsampling approaches are randomized algorithms, and their approximation guar-
antees hold in expectation—which may be too weak for certain applications where strong

2

Greedy: Simultaneous or Repeated?

deterministic guarantees are preferable. Another downside is that while repeated greedy ap-
proaches may be modified to handle additional knapsack constraints (Mirzasoleiman et al.,
2016), we are not aware of any known adaptation of subsampling greedy that allows it to
handle such additional constraints.

Our main contribution in this work is SimultaneousGreedys, a deterministic algo-
rithm for constrained submodular maximization. The new algorithmic idea is to greedily
construct ℓ disjoint solutions in a simultaneous fashion. The solutions are all initialized
to be empty; and at each iteration, an element is added to a solution in a greedy fash-
ion, maximizing the marginal gain amongst all feasible element-solution pairs. At the end
of the algorithm, the best solution is returned amongst the ℓ constructed solutions. One
may interpret this SimultaneousGreedys as a derandomization of the subsample greedy
technique. Subsample greedy produces a random solution whose objective value is large,
in expectation; however, the support of the solution is exponentially sized, and so a näıve
derandomization is infeasible. We show that the average objective value of the ℓ determin-
istically constructed solutions in SimultaneousGreedys is just as large, and in this sense
we reduce the support of the distribution from exponential to constant.

Unlike the previous algorithmic techniques which were limited to specific constraint
types, we show that SimultaneousGreedys achieves the best known approximation guar-
antees of (1+

√
k + 2)2 = k+O(

√
k) and (k+1)2/k = k+O(1) for k-systems and k-extendible

systems, respectively. In fact, these approximation ratios guaranteed by Simultaneous-
Greedys further improve to k + 1 when the submodular objective function is monotone
(in the case of k-systems, one needs to modify the value of ℓ to get this improvement).

Another contribution of this work is to show that both SimultaneousGreedys and
RepeatedGreedy may be modified to create several different variants. First, we show
that by employing an approximate greedy search based on a marginal gain thresholding
technique (Badanidiyuru and Vondrák, 2014), both algorithms can be made to require only
Õ(n/ε) queries to the value and independence oracles1 at the cost of a 1+ ε factor increase
in the approximation guarantees. To our knowledge, this is the first nearly linear time
algorithm for submodular maximization over a k-system. Next, we show that additional
knapsack constraints may be incorporated into both algorithms by incorporating a density
threshold technique (Mirzasoleiman et al., 2016) in the greedy selection procedure. Not
only does this work improve upon the approximation guarantees and efficiency of Mirza-
soleiman et al. (2016) for submodular maximization subject to a k-system constraint and
m additional knapsacks, this work is also the first to provide (further improved) approxi-
mations when the subclass of k-extendible systems are considered. Even with these nearly
linear time and knapsack modifications, the approximation guarantees of Simultaneous-
Greedys are still adaptive in the sense that they improve for k-extendible systems and
they further improve when the objective function is monotone. For this reason, we con-
sider SimultaneousGreedys to be like a Swiss Army knife for constrained submodular
maximization: it is one main tool (the simultaneous greedy procedure) with several vari-
ants (nearly linear run time, density ratio technique) that can be used to produce the best
known results for several problems of interest including k-systems, k-extendible systems,

1. Throughout the paper, we use the Õ notation to suppress poly-logarithmic factors.

3

Feldman, Harshaw, and Karbasi

Algorithm Running Time k-system k-extendible system

Repeated Greedy
(Gupta et al., 2010)

O(n2 · k) 3k (same as for k-system)

Sample Greedy
(Feldman et al., 2017)

O(n2/k) -
k +O(1)

(in expectation)

Repeated Greedy
(this work)

O(n2 ·
√
k) k +O(

√
k) (same as for k-system)

SimultaneousGreedys
(this work)

O(n2 · kc) k +O(
√
k) k +O(1)

FastSGS
(this work)

Õ(n/ε · kc) (1 + ε)k +O(
√
k) (1 + ε)k +O(1)

FANTOM
(Mirzasoleiman et al., 2016)

Õ(n2/ε · km)
(1 + ε)(2k + (2 + 2/k)m)

+O(1) (same as for k-system)

DensitySearchSGS
(this work)

Õ(n/ε ·m(kc/2 +
√
m))

(1 + ε)(k + 2m)

+O(
√
k +m)

(1 + ε)(k + 2m)
+O(

√
m)

Table 1: A comparison with previous works. In the running times, c is a constant equal
to 2 for k-extendible systems and 1 for k-systems. The last two rows involve m knap-
sacks constraints in addition to the independence system constraint. Only modifications of
the simultaneous greedy approach are shown, while modifications of the repeated greedy
approach presented in this paper are suppressed.

intersection of these with additional knapsacks, and a possibly monotone objective. For a
succinct summary of the comparison to previous work, see Table 1.

We complement these algorithmic contributions with a hardness result, showing that
no algorithm making polynomially many queries to the value and independence oracles can
yield an approximation factor smaller than k+1/2−ε over a k-extendible system, a result that
holds even for monotone objective functions. This hardness result demonstrates that the
approximation produced by SimultaneousGreedys in the setting of k-extendible systems
is nearly tight, and we prove it using the symmetric gap technique of Vondrák (2013). Note
that because k-extendible systems are a subclass of k-systems, our hardness also holds for
the more general class of k-systems; however, whether the additional O(

√
k) term in the

approximation factor is necessary for this class remains an open question. Moreover, an
almost as strong hardness of k − ε was already shown for k-systems by Badanidiyuru and
Vondrák (2014).

Before concluding the section, let us make a few remarks on how to interpret the value k
in our results. Throughout the paper, we generally view k as a large constant, e.g., k = 10
or k = 25. This is natural in applications where the complexity of the constraint class is
fixed as the number of elements grows. For example, in the movie recommendation system
application presented in Section 9, the number of genres is large, but remains fixed even as
more movies (elements in the ground set) are added to the database. Indeed, prior work
on k-systems and k-extendible systems typically consider (albeit implicitly) the value k to
be a large constant—and thus, our discussions regarding k are aligned with those in the
existing literature. From this perspective, the difference between an approximation ratio of

4

Greedy: Simultaneous or Repeated?

k+O(
√
k) and k+O(1) is substantial, and hence, the improved approximation guarantees

of SimultaneousGreedys compared to previous works are valuable. Nevertheless, we
emphasize that all of our results hold for arbitrary values of k, and none of our analyses
requires k to be constant with respect to the size of the ground set; rather, it is only the
interpretation of our results that implicitly assumes that k is a large constant.

Organization The organization of the remainder of the paper is as follows: In the remain-
der of Section 1, we review the related works. We present the preliminary definitions and
problem statement in Section 2. In Section 3, we present SimultaneousGreedys and its
analysis. Section 4 contains the nearly linear time modification and Section 5 contains the
additional knapsack modification. Our improved analysis of RepeatedGreedy, including
linear-time and knapsack modifications, is contained in Section 6. The hardness results
are presented in Section 7. Section 8 contains practical considerations when implementing
these algorithms as well as a description of the SubmodularGreedy.jl package. Section 9
contains experiments on real datasets. Finally, we conclude in Section 10.

1.1 Related Work

The study of sumodular maximization over k-systems goes back to Fisher et al. (1978) who
proved that the natural greedy algorithm obtains (k+1)-approximation when the objective
function is monotone. Algorithms for maximizing non-monotone submodular functions
under a k-system constraint, however, were not obtained until much more recently. Gupta
et al. (2010) proposed a repeated greedy approach for this problem. At a high level, the
algorithm repeatedly performs the following procedure: run the greedy algorithm to obtain a
solution S, then perform unconstrained maximization on the elements of S to produce a set
S′, and finally remove the larger set S from the ground set. Among all considered solutions
S and S′, the set with the largest objective value is returned. Gupta et al. (2010) proved that
when the number of iterations of repeated greedy is set to k+1, then the approximation ratio
is roughly 3k. This analysis was improved by Mirzasoleiman et al. (2016) who showed that
the same repeated greedy algorithm achieves an approximation ratio of roughly 2k. Note
that because the repeated greedy based algorithms first consider the set returned by the
greedy algorithm, their approximation ratios automatically improve to k + 1 for monotone
objectives. We also remark that Mirzasoleiman et al. (2016) demonstrated that the repeated
greedy technique may be modified to incorporate additional knapsack constraints through
the use of a density thresholding technique.

An important subclass of the k-systems are the k-extendible systems, which were defined
by Mestre (2006). The class of k-extendible systems is a strict subclass of the k-systems,
and a more through treatment of these set systems, including examples, is provided in
Section 2.2. For k-extendible systems, Feldman et al. (2017) introduced a subsampling
approach as an alternative to repeated greedy, yielding an algorithm that is faster and
also enjoys a somewhat better approximation guarantee. The idea is to independently
subsample elements of the ground set, and then run the greedy algorithm once on the
subsample. This subsampling approach runs in expected time O(n + nr/k), where r is
the rank of the k-extendible system, and attains an approximation ratio of (k + 1)2/k in
expectation. The main downside to this approach is that the approximation guarantee holds
only in expectation, and thus, repetition is necessary to achieve a good approximation ratio

5

Feldman, Harshaw, and Karbasi

with a high probability. The authors also show that even a very small number of repetitions
suffices in practice. Nevertheless, the inherent uncertainty in the approximation quality of
the returned solution may be undesirable in certain scenarios.

The class of k-extendible systems includes in its turn other subclasses of interest, includ-
ing the class of k-exchange systems introduced by Feldman et al. (2011) and the well known
class of k-intersection, which includes constraints that can be represented as the intersec-
tion of k matroids. Naturally, the above mentioned subsampling technique of Feldman et al.
(2017) for k-extendible systems applies also to constraints from these two subclasses, and is
arguably the best approximation ratio that can be achieved for these classes using practical
techniques. However, local search approaches have been used to achieve improved approxi-
mation ratios for both these subclasses whose time complexity is exponential in both k and
some error parameter ε > 0—which makes these improved approximation ratios mostly of
theoretical interest (except maybe when k is very small). Specifically, for the intersection
of k ≥ 2 matroids, Lee et al. (2010a) proved an approximation ratio of k + 2 + 1/k + ε,
which was later improved to k + 1 + 1/(k + 1) + ε by Lee et al. (2010b). The last approxi-
mation ratio was later extended also to k-exchange systems by Feldman et al. (2011). The
case of k = 1, in which all the above classes reduce to be the class of matroids, was also
studied extensively, and the currently best approximation ratios for this case is roughly
(0.385)−1 ≈ 2.60 (Buchbinder and Feldman, 2018b). For an in-depth discussion of these
algorithmic techniques, we refer readers to the survey of Buchbinder and Feldman (2018a).

The run time of greedy methods is typically quadratic, as each iteration requires exam-
ining all the remaining elements in the ground set. A heuristic often used to reduce this
time complexity is the so-called “lazy greedy” approach, which uses the submodularity of
the objective to avoid examining elements that cannot have the maximal marginal gain in
a given iteration (Minoux, 1978). While this method typically yields a substantial improve-
ment in practice, it does not improve the worst-case time complexity. However, inspired by
the lazy greedy approach, Badanidiyuru and Vondrák (2014) proposed a technique known
as “marginal gain thresholding”, which reduces the run time of the greedy algorithm to
O(n/ε · log(n/ε)), while incurring only a small additive ε factor in the approximation ratio.
Later on, Mirzasoleiman et al. (2015) proposed a stochastic approach which further reduces
the run time of the greedy algorithm to O(n log(1/ε)), but applies only in the context of
the simple cardinality constraint. Additional fast algorithms for submodular maximization
were suggested by Badanidiyuru and Vondrák (2014); Buchbinder et al. (2017); Ene and
Nguyen (2019a,b). It is also worth mentioning that most of the above algorithms can be
further improved, in practice, using a lazy greedy like approach.

Our simultaneous greedy technique is most closely related to a recent work of Kuhnle
(2019), where a similar “interlaced greedy” approach is proposed to obtain a 1/4−ε approx-
imation for maximizing a non-monotone submodular function subject to a cardinality con-
straint. The proposed idea is similar: simultaneously run the greedy algorithm to construct
two disjoint solutions. In addition to extending to more general settings and subsuming
these approximation results, the current work also demonstrates a tighter analysis even for
the cardinality constraint presented in Kuhnle (2019). Namely, our analysis shows that
only one run of the simultaneous greedy technique is required to obtain the 1/4− ε approx-
imation, whereas the analysis of Kuhnle (2019) requires the algorithm to be run twice in
order to obtain this approximation. After an initial preprint of this work appeared online,

6

Greedy: Simultaneous or Repeated?

Han et al. (2021) demonstrated that combining the simultaneous greedy approach with the
subsampling approach yields improvements in the running time and the low order terms of
the approximation guarantees.

2. Preliminaries

In this section, we introduce several preliminary definitions required for the problem we
investigate. In Section 2.1, we define submodular set functions, which are the class of
objective functions we consider. In Section 2.2, we discuss the independence systems that
act as constraints in our problem. Finally, Section 2.3 formally defines our problem.

2.1 Submodular Functions

Let N be a finite set of size n which we refer to as the ground set. A real valued set function
f : 2N → R is submodular if for all sets X,Y ⊆ N ,

f(X ∪ Y) + f(X ∩ Y) ≤ f(X) + f(Y) .

Given a set S and element e, we use the shorthand S + u to denote the union S ∪ {u}.
Additionally, we define f(u | S) = f(S + u)− f(S), i.e., f(u | S) is the marginal gain with
respect to f of adding e to the set S.2 An equivalent definition of submodularity is that a
function f is submodular if for all subsets A ⊆ B ⊆ N and element u /∈ B,

f(u | A) ≥ f(u | B) . (1)

Inequality (1) is referred to as the diminishing returns property. Indeed, if f is interpreted
as a utility function, then Inequality (1) states that the marginal gain of adding an element
e to a subset decreases as the subset grows. Throughout the paper, we restrict our attention
to non-negative submodular functions, i.e., functions whose value is non-negative for every
set. The non-negativity is a necessary condition for obtaining multiplicative approximation
guarantees.

A set function f is modular (or linear) if Inequality (1) always holds for it with equality.
Any modular function can be represented using the form

f(S) =
∑
u∈S

cu + b

for an appropriate choice of a real number cu ∈ R for every element u ∈ N and a fixed
bias b ∈ R. Finally, a set function f is monotone if adding more elements only increases its
value; that is, f(A) ≤ f(B) for all subsets A ⊆ B ⊆ N .

2.2 Independence Systems

The feasible sets in the optimization problems that we consider are described by an inde-
pendence system. For I ⊆ 2N , the pair (I,N) is an independence system if I is non-empty
and satisfies the down-closure property, i.e., if A ⊆ B and B ∈ I then A ∈ I. For notational

2. More generally, we define f(X | Y) = f(X ∪ Y)− f(Y) for all sets X,Y ⊆ N .

7

Feldman, Harshaw, and Karbasi

simplicity, we occasionally refer to the independence system as I when the ground set N
is clear from context. A set A ⊆ N is called independent in the independence system I if
A ∈ I. Furthermore, if A is maximal independent set with respect to inclusion among all
the subsets of a given set B ⊆ N , then A is called a base of B. A base of the ground set N
is also called a base of the independence system. The cardinality of the largest independent
set of a given independence system I is known as the rank of the independence system, and
we use r to denote it when the independence system is clear from the context.

There is a wide variety of independence systems which have been studied in the litera-
ture, and we review some of them here. An independence system (I,N) is a k-system if for
every set B ⊆ N the ratio between the sizes of any two bases of B is at most k. Any inde-
pendence system is a k-system for some k ≤ n; however, we are most interested in settings
where k is a constant or otherwise small with respect to the number n of elements in the
ground set. A subclass of independence systems are the k-extendible systems. Intuitively,
a k-extendible system is an independence system in which adding an element u to any in-
dependent set requires removing at most k elements to maintain independence. Formally,
this means that an independence system is k-extendible if for every pair of independent sets
A ⊆ B ∈ I and element u /∈ B such that A+ u ∈ I, there exists a set Y ⊆ B \A of size at
most k such that (B \ Y)∪ {u} is independent. It is known that every k-extendible system
is also a k-system (Călinescu et al., 2011), that the intersection of a k1-extendible system
and a k2-extendible system is a (k1 + k2)-extendible system and that the intersection of a
k1-system and a k2-system is a (k1 + k2)-system (Haba et al., 2020). These observations
provide a way to build more complex independence systems from simpler ones, allowing for
a flexible framework for constraints in the optimization problems we consider.

One of the most well-studied examples of a k-extendible systems are the 1-extendible sys-
tems, which are also known as matroids.3 Matroids capture a wide variety of set constraints,
including independent sets of vectors, cardinality-constrained partitions, spanning forests,
graph matchings, and the simple cardinality constraint. The intersection of k-matroids is
a k-extendible system, but the converse is generally not true for k ≥ 2. Indeed, the class
of k-extendible systems includes systems which are not expressible as the intersection of
a few matroids, including the class of b-matchings in graphs (which are 2-extendible) and
asymmetric TSP (which is 3-extendible), as well as certain scheduling formulations (Mestre,
2006). Although the class of k-systems is strictly larger than the class of k-extendible sys-
tems, the majority of interesting examples are k-extendible systems. There are, however,
a few exceptions such as the collection of all subsets of edges of a graph which induce a
planar subgraph, which is 3-system (Haba et al., 2020). The taxonomy of the independence
systems discussed above is depicted below, and all the containments are known to be strict
for k ≥ 2:

cardinality constraint ⊂ matroid ⊂ intersection of k matroids ⊂ k-extendible system ⊂ k-system .

Knapsack constraints are another popular family of constraints that can be represented
as independence systems. Formally, an independence system capturing a knapsack con-
straint is defined as the collection of sets S ⊆ N obeying c(S) ≤ 1 for some non-negative

3. See Mestre (2006) for a proof of the equivalence of a 1-extendible system with the traditional definition
of matroids.

8

Greedy: Simultaneous or Repeated?

modular function c(S) =
∑

u∈S cu. We are often interested below in the intersection of m
knapsack constraints, and denote the corresponding modular functions by c1, c2, . . . , cm.
In this work, and more broadly in the literature, knapsack constraints are considered
separately from the main independence system constraint. Technically, this is not com-
pletely necessary because the intersection of m knapsacks is a k-extendible system for some
k. However, this k might be as large as m · (cmax/cmin), where cmax and cmin are the
largest and smallest knapsack coefficients, respectively (i.e., cmax = maxu∈N ,i∈[m] ci(u) and
cmin = minu∈N ,i∈[m] ci(u)). In contrast, treating the knapsack constraints as separate from
the underlying independence system allows us to aim for approximation ratios that depend
only on m, and is thus preferable.

2.3 Problem Statement

In this paper we study the problem of maximizing a non-negative submodular function
subject to an independence system and the intersection of m knapsack constraints. More
precisely, we aim to solve the following optimization problem

max
S⊆N

f(S) subject to S ∈ I and ci(S) ≤ 1 ∀ i = 1 . . .m , (2)

where f is non-negative and submodular and I is an independence system which is either
a k-system or a k-extendible system. For simplicity, we assume throughout the work that
the singleton {u} is a feasible solution for the above problem for every element u ∈ N .
Clearly, any element violating this assumption can be removed from the ground set without
affecting the set of feasible solutions. We also denote by OPT an optimal solution to the
program.

We evaluate our algorithms by their running times and approximation ratios. As is
standard in the literature, our algorithms access the objective function and the independence
system constraint only through value and independence oracles, respectively. The value
oracle takes as input a set S ⊆ N and returns f(S)—the evaluation of f at S. Similarly,
the independence oracle takes as input a set S and indicates whether or not S ∈ I. The
computational efficiency of algorithms in this model is often judged based on the number
of oracle queries they make, and we follow this convention.

3. Simultaneous Greedys

In this section we present an algorithm named SimultaneousGreedys for solving Prob-
lem (2) in the special case of m = 0, i.e., the case in which there are no knapsack constraints.
The main idea behind SimultaneousGreedys is to greedily and simultaneously construct
ℓ disjoint solutions by iteratively adding elements to the solutions in a way that maximizes
the momentary marginal gain. Formally, the algorithm begins by initializing ℓ solutions
S(1), S(2), . . . , S(ℓ) to be empty sets. At each iteration, the algorithm considers all the pairs
of element u and solution S(j) such that (1) u does not yet belong to any of the solutions,
(2) u can be added to S(j) without violating independence, and (3) the addition of u to
S(j) increases the objective value of S(j). The set of such pairs is denoted by A in the
pseudocode of the algorithm. Among all the considered pairs, the algorithm picks the one
for which f(u | S(j)) is maximal (i.e., the pair for which the addition of u to S(j) yields the

9

Feldman, Harshaw, and Karbasi

maximal increase in the value of the solution), and then adds u to S(j). The algorithm ter-
minates when no further pairs with all the above properties can be found. The pseudocode
of SimultaneousGreedys appears below as Algorithm 1.

Algorithm 1: SimultaneousGreedys (N , f, I, ℓ)

1 Initialize ℓ solutions, S
(j)
0 ← ∅ for j = 1, . . . ℓ.

2 Initialize available ground set N0 ← N , and iteration counter i← 1.
3 Initialize feasible element-solution pairs
A1 = {(u, j) : {u} ∈ I, f(u | ∅) > 0, j ∈ [ℓ]}.

4 while Ai is nonempty do

5 Let (ui, ji)← max(u,j)∈Ai
f(u | S(j)

i−1) be a feasible element-solution pair
maximizing the marginal gain.

6 Update the solutions as S
(j)
i ←

{
S
(ji)
i−1 + ui if j = ji

S
(j)
i−1 if j ̸= ji

7 Update the available ground set Ni ← Ni−1 − ui.
8 Update the feasible element-solution pairs,

Ai+1 = {(u, j) : u ∈ Ni, S
(j)
i + u ∈ I, f(u | S(j)

i) > 0}.
9 Update iteration counter i← i+ 1.

10 return the set S maximizing f among the sets {S(j)
i }ℓj=1.

We begin our analysis of SimultaneousGreedys by providing a bound on the number
of oracle calls used by the algorithm.

Observation 1 SimultaneousGreedys requires at most O(ℓ2rn) calls to the value and
independence oracles.

Proof In every single iteration, the algorithm examines the possibility of adding each of
the n elements to each of the ℓ solutions, requiring O(ℓn) calls to the value and indepen-
dence oracles. Since exactly one element is added to some solution at every iteration, the
number of iterations is the sum of the cardinalities of the produced solutions, which is at
most ℓr because all the solutions are feasible. Combining the two above observations, i.e.,
that there are at most ℓr iterations, each requiring O(ℓn) oracle calls, we get that the total
number of oracle calls required by SimultaneousGreedys is O(ℓ2rn).

We now present theorems proving approximation guarantees for SimultaneousGreedys
when I is guaranteed to be either a k-system or a k-extendible system. To get the tightest
approximation guarantees from these theorems, one has to set the number ℓ of constructed
solutions differently for the two classes of constraints.

Theorem 2 Suppose that (N , I) is a k-extendible system and that the number of solutions
is set to ℓ = k + 1. Then, SimultaneousGreedys requires O(k2rn) oracle calls and
produces a solution whose approximation ratio is at most (k+1)2/k = k+O(1). Moreover,
when f is non-negative monotone submodular, then the approximation ratio improves to
k + 1.

10

Greedy: Simultaneous or Repeated?

Theorem 3 Suppose that (N , I) is k-system and that the number of solutions is set to
ℓ = ⌊2+

√
k + 2⌋. Then, SimultaneousGreedys requires O(krn) oracle calls and produces

a solution whose approximation ratio is at most (1 +
√
k + 2)2 = k + O(

√
k). Moreover,

when f is non-negative monotone submodular and the number of solutions is set to ℓ = 1,
then the approximation ratio improves to k + 1.

Note that the improved approximation for k-extendible systems comes at the higher
computational cost of an extra O(k) factor in the running time. Moreover, the gain in
approximation is only for the non-monotone setting, as the two approximation guarantees
are the same for monotone objectives. In both Theorems 2 and 3, the bound on the required
number of oracle calls is a direct application of Observation 1 and the choice of ℓ, the
number of constructed solutions. The proof of the approximation ratios is more involved.
In Section 3.1, we provide a unified meta-proof for analyzing SimultaneousGreedys
given a constraint obeying some kinds of parametrized properties. Then, in Sections 3.2
and 3.3 we show that k-extendible systems and k-systems have these properties for a proper
choice of the parameters, respectively, yielding the the different approximation guarantees
of Theorems 2 and 3.

The second part of Theorem 3 considers ℓ = 1, which recovers the greedy algorithm.
Although it was previously known that the greedy algorithm achieves (k+1)-approximation
for monotone submodular objectives under a k-system, we remark that this result for this
special setting is cleanly obtained by our unified analysis. We also remark that, for monotone
objectives, the result of Theorem 2 holds for any number of solutions ℓ ≤ k+1; which further
demonstrates that the analysis of the greedy algorithm is handled by our meta-analysis. The
details for the case of ℓ ≤ k + 1 are covered in the proof of Theorem 2.

Algorithm 2: SampleGreedy (N , f, I, k)
1 Let N ′ ← ∅ and S ← ∅.
2 for each u ∈ N do
3 with probability (k + 1)−1 do
4 Add u to N ′.

5 while there exists u ∈ N ′ such that S + u ∈ I and f(u | S) > 0 do
6 Let u ∈ N ′ be the element of this kind maximizing f(u | S).
7 Add u to S.

8 return S.

As mentioned in Section 1, one may interpret SimultaneousGreedys as a de-randomization
of SampleGreedy, the subsampling algorithm of Feldman et al. (2017) presented here as
Algorithm 2. SampleGreedy creates a subsample of the ground set by sampling each
element independently with probability p and then running the vanilla greedy algorithm.
Feldman et al. (2017) show that, for k-extendible systems, setting the sampling probability
to p = (k + 1)−1 yields an approximation ratio of (k+1)2/k, which improves to k + 1 for
monotone objectives (i.e., the same approximation guarantees of SimultaneousGreedys
for these cases). One of the key step in the analysis of SampleGreedy is an averaging
argument over the distribution of solutions it may produce, whose support might be of
exponential size. This means that näıvly trying to de-randomize SampleGreedy requires
keeping all the states which it might take, and therefore, yields an exponential algorithm.

11

Feldman, Harshaw, and Karbasi

In the analysis of SimultaneousGreedys we bypass this hurdle by managing to make the
above averaging argument work for a much smaller distribution whose support consists only
of the ℓ solutions maintained by the algorithm. We note that this idea of de-randomizing a
randomized algorithm by coming up with a polynomial size distribution mimicking the be-
havior of an exponential size distribution was originally used in the context of submodular
maximization by Buchbinder and Feldman (2018b), albeit using very different techniques
based on linear programming. Finally, unlike SampleGreedy, SimultaneousGreedys
has the additional benefit of producing approximation guarantees for the more general class
of k-systems.

3.1 Meta-analysis for Approximation Guarantees

In this section, we present a unified analysis for obtaining approximation guarantees for Si-
multaneousGreedys under general independence system constraints. Specifically, Propo-
sition 4 reduces the conditions for approximation to simple combinatorial statements relat-
ing the constructed solutions to OPT . These combinatorial statements are shown to hold
for k-extendible systems and k-systems in Sections 3.2 and 3.3, respectively.

The main idea of the unified analysis is to keep track of the elements of OPT which
could have been—but were not—added to each of the ℓ solutions by the algorithm. At the
beginning of the algorithm, all solutions are initialized to the empty set and so each element
of OPT could be added to each solution in the first iteration. However, every time that the
algorithm adds an element to one of the solutions, it means that certain elements of OPT
are now no longer able to be added to that solution, due to the independence constraint.
In this sense, these elements of OPT are “thrown away” from the set of possible elements
to be added to the solution. The main technical requirement of the unified approximation
analysis is that only a few elements of OPT are thrown away in this sense at each iteration.
These conditions are more precisely stated in the hypothesis of Proposition 4.

In the proposition below, we let T be the number of iterations performed by Simul-

taneousGreedys, and let U
(j)
i be the singleton set {ui} if j = ji and the empty set

otherwise.

Proposition 4 Let us define O
(j)
0 = OPT for every solution 1 ≤ j ≤ ℓ. If there exist a

value p and sets O
(j)
i for every iteration 1 ≤ i ≤ T and solution 1 ≤ j ≤ ℓ such that

• S
(j)
i + u is independent for each iteration 0 ≤ i ≤ T , solution 1 ≤ j ≤ ℓ, and element

u ∈ O
(j)
i .

• O
(j)
i ⊆ O

(j)
i−1 ∩Ni for each iteration 1 ≤ i ≤ T and solution 1 ≤ j ≤ ℓ.

• (S
(j)
T \ S

(j)
i) ∩OPT ⊆ O

(j)
i for each iteration 0 ≤ i ≤ T and solution 1 ≤ j ≤ ℓ.

•
∑ℓ

j=1 |O
(j)
i−1 \ (O

(j)
i ∪ U

(j)
i)| ≤ p for each iteration 1 ≤ i ≤ T .

Then, the solution S produced by SimultaneousGreedys is a p+1
1−ℓ−1 -approximation solu-

tion. Moreover, this approximation ratio improves to p+ 1 when f is monotone.

Before proceeding, we would like to provide some intuition for the conditions appearing

in Proposition 4. Intuitively, the set O
(j)
i contains elements of OPT which have not already

been added to a solution and can still be added to the j-th solution at iteration i. Condition

12

Greedy: Simultaneous or Repeated?

1 formally states this ability to add the elements of O
(j)
i to the j-th solution, and Condition

2 formally states that the elements in O
(j)
i do not already appear in a solution. Condition 3

requires O
(j)
i to include all the elements of OPT which are eventually (but not yet) included

in one of the final solutions. Finally, Condition 4 is a bound on the number of elements
which are removed from these sets at each iteration. Together, these conditions are strong
enough to provide a general approximation guarantee.

The following lemma is the first step towards proving Proposition 4. Intuitively, this

lemma shows that as the iteration i increases, the decrease in the value of f(O
(j)
i | S

(j)
i) is

transferred, at least to some extent, to S
(j)
i .

Lemma 5 Given the conditions of Proposition 4, for every iteration 0 ≤ i ≤ T ,

(p+ 1) ·
ℓ∑

j=1

f(S
(j)
i) +

ℓ∑
j=1

f(O
(j)
i | S

(j)
i) ≥

ℓ∑
j=1

f(OPT ∪ S
(j)
i) .

Proof We prove the lemma by induction on the iterations i = 0, 1, . . . , T . The base case
is the case of i = 0, corresponding to the initialization of the algorithm. Recall that the

solutions are initialized to be empty, i.e., S
(j)
0 = ∅ for every j ∈ [ℓ]. This, together with

non-negativity of f , implies

ℓ∑
j=1

f(OPT ∪ S
(j)
0) =

ℓ∑
j=1

f(OPT ∪∅) (by the initialization S
(j)
0 = ∅)

=

ℓ∑
j=1

f(∅) +

ℓ∑
j=1

f(OPT | ∅) (rearranging terms)

= (p+ 1) ·
ℓ∑

j=1

f(∅) +

ℓ∑
j=1

f(OPT | ∅) (f(∅) ≥ 0 by the non-negativity)

≤ (p+ 1) ·
ℓ∑

j=1

f(S
(j)
0) +

ℓ∑
j=1

f(O
(j)
0 | S

(j)
0) . (by the initialization S

(j)
0 = ∅)

Assume now that the lemma holds for all iterations between 0 to i− 1, and let us prove

it for iteration i. Recall that only the solution S
(ji)
i is modified during iteration i. Thus, we

have that the change in iteration i in the first sum in the guarantee of the lemma is

(p+ 1) ·
ℓ∑

j=1

f(S
(j)
i)− (p+ 1) ·

ℓ∑
j=1

f(S
(j)
i−1) = (p+ 1) · f(ui | S(ji)

i−1) . (3)

13

Feldman, Harshaw, and Karbasi

Bounding the change in the second sum in the guarantee is more involved, and is done
in two steps. The first step is the following inequality.

ℓ∑
j=1

f(O
(j)
i−1 | S

(j)
i−1)−

ℓ∑
j=1

f(O
(j)
i−1 | S

(j)
i) (4)

= f(O
(ji)
i−1 | S

(ji)
i−1)− f(O

(ji)
i−1 | S

(ji)
i) (only S

(ji)
i is modified)

= f(ui | S(ji)
i−1)− f(ui | O(ji)

i−1 ∪ S
(ji)
i−1) (rearranging terms)

≤ f(ui | S(ji)
i−1)− f(ui | OPT ∪ S

(ji)
i−1) ,

where the inequality may be proved by considering two cases. First, suppose that ui ∈
O

(ji)
i−1 ∪ S

(ji)
i−1. In this case, the inequality holds with equality, because O

(ji)
i−1 ⊆ OPT by

assumption. Consider now the case in which ui ̸∈ O
(ji)
i−1 ∪S

(ji)
i−1. In this case, our assumption

that (S
(ji)
T \ S(ji)

i−1) ∩ OPT ⊆ O
(ji)
i−1 implies ui ̸∈ (S

(ji)
T \ S(ji)

i−1) ∩ OPT , which implies in its

turn ui ̸∈ OPT since ui ∈ S
(ji)
i ⊆ S

(ji)
T and ui ∈ Ni−1 ⊆ N \S(ji)

i−1. Therefore, we get that in

this case that Inequality (4) holds due to the submodularity of f (recall that O
(ji)
i−1 ⊆ OPT

by our assumption).

For the second step in the proof of the above mentioned bound, we need to observe that,
by the definition of the pair (ui, ji), we have

f(ui | S(ji)
i−1) ≥ f(u | S(j)

i−1) ≥ f(u | S(j)
i),

for any element u ∈ Ni−1 and integer 1 ≤ j ≤ ℓ for which S
(j)
i−1 + u is independent—the

second inequality follows from submodularity when either u ̸= ui or j ̸= ji and from the

non-negativity of f(ui | S(ji)
i−1) when u = ui and j = ji. Since O

(j)
i−1 ⊆ Ni−1 and S

(j)
i−1 + u is

independent for every u ∈ O
(j)
i−1 by our assumption, the last inequality implies

ℓ∑
j=1

f(O
(j)
i−1 | S

(j)
i)

≤
ℓ∑

j=1

f(O
(j)
i | S

(j)
i) +

ℓ∑
j=1

∑
u∈O(j)

i−1\O
(j)
i

f(u | S(j)
i) (submodularity, O

(j)
i ⊆ O

(j)
i−1)

=
ℓ∑

j=1

f(O
(j)
i | S

(j)
i) +

ℓ∑
j=1

∑
u∈O(j)

i−1\(O
(j)
i ∪U(j)

i)

f(u | S(j)
i) (U

(j)
i ⊆ S

(j)
i)

≤
ℓ∑

j=1

f(O
(j)
i | S

(j)
i) +

ℓ∑
j=1

∑
u∈O(j)

i−1\(O
(j)
i ∪U(j)

i)

f(ui | S(ji)
i−1) (greedy selection of ui)

=
ℓ∑

j=1

f(O
(j)
i | S

(j)
i) + f(ui | S(ji)

i−1) ·
ℓ∑

j=1

|O(j)
i−1 \ (O

(j)
i ∪ U

(j)
i)| (rearranging terms)

14

Greedy: Simultaneous or Repeated?

≤
ℓ∑

j=1

f(O
(j)
i | S

(j)
i) + p · f(ui | S(ji)

i−1) , (5)

where the last inequality holds by our assumption that
∑ℓ

j=1 |O
(j)
i−1 \ (O

(j)
i ∪U

(j)
i)| ≤ p and

the non-negativity of f(ui | S(ji)
i−1). Combining Inequalities (3), (4) and (5), we get

(p+ 1) ·
ℓ∑

j=1

f(S
(j)
i) +

ℓ∑
j=1

f(O
(j)
i | S

(j)
i)

≥

(p+ 1) ·
ℓ∑

j=1

f(S
(j)
i−1) + (p+ 1) · f(ui | S(ji)

i−1)

+

 ℓ∑
j=1

f(O
(j)
i−1 | S

(j)
i)− p · f(ui | S(ji)

i−1)


= (p+ 1) ·

ℓ∑
j=1

f(S
(j)
i−1) +

 ℓ∑
j=1

f(O
(j)
i−1 | S

(j)
i) + f(ui | S(ji)

i−1)


≥ (p+ 1) ·

ℓ∑
j=1

f(S
(j)
i−1) +

ℓ∑
j=1

f(O
(j)
i−1 | S

(j)
i−1) + f(ui | OPT ∪ S

(ji)
i−1)

≥
ℓ∑

j=1

f(OPT ∪ S
(j)
i−1) + f(ui | OPT ∪ S

(ji)
i−1)

=

ℓ∑
j=1

f(OPT ∪ S
(j)
i) ,

where the second inequality follows from submodularity and the last inequality follows from
the induction hypothesis.

The following corollary uses the last lemma to prove a lower bound on the sum of the
objective values of the ℓ final solutions in terms of the optimal solution.

Corollary 6 Given the conditions of Proposition 4,

(p+ 1) ·
ℓ∑

j=1

f(S
(j)
T) ≥

ℓ∑
j=1

f(OPT ∪ S
(j)
T) .

Proof The termination condition of SimultaneousGreedys implies that f(u | S(j)
T) ≤ 0

for every element u ∈ NT and integer 1 ≤ j ≤ ℓ such that S
(j)
T + u is independent. Since

O
(j)
T ⊆ NT and S

(j)
T + u is independent for every u ∈ O

(j)
T by our assumption, this implies

f(O
(j)
T | S

(j)
T) ≤

∑
u∈O(j)

T

f(u | S(j)
T) ≤ 0 ,

15

Feldman, Harshaw, and Karbasi

where the first inequality follows from the submodularity of f . Plugging this observation
into the guarantee of Lemma 5 for i = T yields

ℓ∑
j=1

f(OPT ∪ S
(j)
T) ≤ (p+ 1) ·

ℓ∑
j=1

f(S
(j)
T) +

ℓ∑
j=1

f(O
(j)
T | S

(j)
T) ≤ (p+ 1) ·

ℓ∑
j=1

f(S
(j)
T) .

To get an approximation ratio from the guarantee of the last corollary, we need to relate

the sum
∑ℓ

j=1 f(OPT ∪ S
(j)
T) to f(OPT). We do this using the following known lemma.

Lemma 7 (Lemma 2.2 of Buchbinder et al. (2014)) Let g : 2N → R+ be non-negative
and submodular, and let S a random subset of N in which each element appears with prob-
ability at most p (not necessarily independently). Then, E[g(S)] ≥ (1− p) · g(∅).

We are now ready to prove Proposition 4.
Proof (Proof of Proposition 4): Recall that the set S returned by SimultaneousGreedys
is the one having the largest objective value amongst all of the ℓ solutions. Thus, by a simple
averaging argument together with Corollary 6, we obtain the following lower bound on its
objective value,

f(S) = max
j=1...ℓ

f(S
(j)
T) ≥ 1

ℓ
·

ℓ∑
j=1

f(S
(ℓ)
T) ≥ 1

p+ 1

1
ℓ
·

ℓ∑
j=1

f(OPT ∪ S
(ℓ)
T)

 . (6)

Consider now a random set S̄ chosen uniformly at random from the ℓ constructed solutions

S
(1)
T , S

(2)
T , . . . , S

(ℓ)
T . Since the solutions are disjoint by construction, an element can belong

to S̄ with probability at most ℓ−1. Hence, by applying Lemma 7 to the submodular function
g(S) = f(OPT ∪ S), we get

1

ℓ
·

ℓ∑
j=1

f(OPT ∪S(ℓ)
T) = E[f(OPT ∪ S̄)] = E[g(S̄)] ≥ (1− ℓ−1) · g(∅) = (1− ℓ−1) · f(OPT) .

Together with Inequality (6), this shows that the returned solution S is a (p+1)/(1− ℓ−1)-
approximation, as desired. We remark also that if f is monotone, then for each solution

1 ≤ j ≤ ℓ we have that f(OPT ∪ S
(ℓ)
T) ≥ f(OPT). Applying this directly to Inequality (6)

yields that the returned set S is a (p+ 1)-approximation when f is monotone.

3.2 Analysis for k-Extendible Systems

In this section we use Proposition 4 to prove Theorem 2. Throughout this section we assume
that (N , I) is a k-extendible system. We demonstrate that for any number of solutions ℓ, the
conditions of Proposition 4 hold with the value p = max(k, ℓ− 1). The proof of Theorem 2
follows by setting ℓ = k + 1.

In order to show that the conditions of Proposition 4 hold, we need to construct a

set O
(j)
i for every iteration 0 ≤ i ≤ T and solution 1 ≤ j ≤ ℓ. Thus, we begin the

16

Greedy: Simultaneous or Repeated?

section by explaining how to construct these sets. The construction is done in a recursive
way, and with the knowledge of the algorithm’s execution path. For i = 0, we define

O
(j)
0 = OPT for every 1 ≤ j ≤ ℓ, as is required by Proposition 4. Assume now that the

sets O
(1)
i−1, O

(2)
i−1, . . . , O

(ℓ)
i−1 have already been constructed for some iteration i > 0, then we

construct the sets O
(1)
i , O

(2)
i , . . . , O

(ℓ)
i as follows:

• For every solution 1 ≤ j ≤ ℓ other than ji, O
(j)
i = O

(j)
i−1 − ui.

• If ui ∈ O
(ji)
i−1, then O

(ji)
i = O

(ji)
i−1 − ui, else O

(ji)
i is any maximal subset of O

(ji)
i−1 such

that O
(ji)
i ∪ S

(ji)
i is independent and (S

(ji)
T \ S(ji)

i) ∩ OPT ⊆ O
(ji)
i . To see that such

a subset must exist, note that the set (S
(ji)
T \ S(ji)

i) ∩ OPT has all the necessary

properties because [(S
(ji)
T \ S(ji)

i) ∩ OPT] ∪ S
(ji)
i ⊆ S

(ji)
T is an independent set, and

(S
(ji)
T \ S(ji)

i) ∩OPT ⊆ (S
(ji)
T \ S(ji)

i−1) ∩OPT ⊆ O
(ji)
i−1.

Proposition 8 If (I,N) is a k-extendible system, then the sets O
(j)
i constructed above

satisfy the conditions of Proposition 4 with p = max(k, ℓ− 1).

The next four lemmata together prove Proposition 8 by verifying each of the conditions
in Proposition 4. The most technical lemma, which uses the k-extendible assumption, is
Lemma 12.

Lemma 9 For every iteration 0 ≤ i ≤ T and solution 1 ≤ j ≤ ℓ, O
(j)
i ∪S

(j)
i is independent,

and thus, S
(j)
i + u is independent for every u ∈ O

(j)
i .

Proof We prove the lemma by induction on the iteration i. For i = 0, the lemma holds
since

O
(j)
i ∪ S

(j)
i = OPT ∪∅ = OPT.

Assume now that the lemma holds for all iterations up to and including i− 1 ≥ 0, and let
us prove it for iteration i. For solutions which were not updated at this iteration (that is,
j ̸= ji), the lemma follows from the induction hypothesis since

O
(j)
i ∪ S

(j)
i = [O

(j)
i−1 − ui] ∪ S

(j)
i−1 ⊆ O

(j)
i−1 ∪ S

(j)
i−1 .

It remains to prove the lemma for the solution j = ji which was updated. If ui ̸∈ O
(ji)
i−1,

then O
(j)
i ∪ S

(j)
i is independent by the construction of O

(j)
i . Otherwise, O

(j)
i ∪ S

(j)
i is

independent by the induction hypothesis since

O
(j)
i ∪ S

(j)
i = [O

(j)
i−1 − ui] ∪ [S

(j)
i−1 + ui] = O

(j)
i−1 ∪ S

(j)
i−1 .

Lemma 10 For every iteration 1 ≤ i ≤ T and solution 0 ≤ j ≤ ℓ, O
(j)
i ⊆ O

(j)
i−1 ∩ Ni.

Moreover, for i = 0 we have O
(j)
i ⊆ Ni for every solution 1 ≤ j ≤ ℓ.

17

Feldman, Harshaw, and Karbasi

Proof We prove the lemma by induction on iterations i. For i = 0, the lemma trivially
holds since N0 = N . Assume now that the lemma holds for iterations up to and including

i − 1 ≥ 0, and let us prove it for iteration i. By the construction of O
(j)
i , it is a subset of

O
(j)
i−1, an thus, to prove the lemma it suffices to show that O

(j)
i ⊆ Ni = Ni−1 − ui.

The last inclusion follows from combining the next two observations: By the induc-

tion hypothesis, O
(j)
i−1 is a subset of Ni−1, and therefore, so must be O

(j)
i . If ui ̸∈ O

(j)
i−1,

then ui cannot belong to O
(j)
i because the last set is a subset of O

(j)
i−1. Otherwise, we get

by construction O
(j)
i = O

(j)
i−1−ui, which guarantees again that ui does not belong to O

(j)
i .

Lemma 11 For every iteration 0 ≤ i ≤ T and solution 1 ≤ j ≤ ℓ, (S
(j)
T \ S

(j)
i) ∩ OPT ⊆

O
(j)
i .

Proof We prove the lemma by induction on the iterations i. For i = 0, the lemma holds
since

(S
(j)
T \ S

(j)
i) ∩OPT ⊆ OPT = O

(j)
i .

Assume now that the lemma holds for all iterations up to and including i− 1 ≥ 0, and let

us prove it for iteration i. There are two cases to consider. If O
(j)
i = O

(j)
i−1 − ui, then by

the induction hypothesis, since ui is the sole element of S
(j)
i that does not appear in S

(j)
i−1

(if there is such an element at all),

(S
(j)
T \ S

(j)
i) ∩OPT = (S

(j)
T \ S

(j)
i−1) ∩OPT − ui ⊆ O

(j)
i−1 − ui = O

(j)
i .

It remains to consider the case in which O
(j)
i ̸= O

(j)
i−1 − ui. However, there is only one

case in the construction of O
(j)
i in which this might happen, and in this case O

(j)
i is chosen

as a set including (S
(j)
T \ S

(j)
i) ∩OPT , so there is nothing to prove.

Lemma 12 For every iteration 1 ≤ i ≤ T ,
∑ℓ

j=1 |O
(j)
i−1 \ (O

(j)
i ∪ U

(j)
i)| ≤ max(k, ℓ− 1).

Proof There are two cases to consider. If ui ∈ OPT , then Lemma 11 guarantees that O
(ji)
i−1

contains ui, and thus, by construction, O
(j)
i = O

(j)
i−1−ui for every solution 1 ≤ j ≤ ℓ. Thus,

ℓ∑
i=1

|O(j)
i−1 \ (O

(j)
i ∪ U

(j)
i)| ≤

ℓ∑
i=1

|{ui} \ U (j)
i | = ℓ− 1 ,

where the equality holds since, by definition, U
(j)
i is equal to {ui} for j = ji and to ∅ for

every other j.

Consider now the case of ui ̸∈ OPT . In this case ui does not belong to O
(j)
i−1 for any j

because a repeated application of Lemma 10 can show that O
(j)
i−1 is a subset of OPT . Since

O
(j)
i = O

(j)
i−1 − ui for every solution j ̸= ji, we get for every such solution j,

O
(j)
i−1 \ (O

(j)
i ∪ U

(j)
i) = ∅ .

18

Greedy: Simultaneous or Repeated?

To understand the set O
(ji)
i−1 \ (O

(ji)
i ∪U (ji)

i), we need to make a few observations. First, we

recall that by Lemma 9, O
(ji)
i−1 ∪ S

(ji)
i−1 is independent. Second,

(S
(ji)
T \ S(ji)

i) ∩OPT ⊆ O
(ji)
i ⊆ O

(ji)
i−1

by Lemmata 10 and 11, and finally,

S
(ji)
i−1 ∪ [(S

(ji)
T \ S(ji)

i) ∩OPT] + ui ⊆ S
(ji)
T

is also independent. Since (N , I) is k-extendible, these three observations imply together

that there must exist a set Y of size at most k such that (O
(ji)
i−1 \ Y) ∪ S

(ji)
i is independent,

and Y does not include elements of (S
(ji)
T \S(ji)

i)∩OPT . One can now observe that O
(ji)
i−1\Y

obeys all the conditions to be O
(ji)
i according to the construction of this set in the case of

ui ̸∈ O
(ji)
i−1, and thus, since the construction selects a maximal set obeying these conditions

as O
(ji)
i , we get

|O(ji)
i | ≥ |O

(ji)
i−1 \ Y | ≥ |O

(ji)
i−1| − |Y | ≥ |O

(ji)
i−1| − k .

Since O
(ji)
i is a subset of O

(ji)
i−1, this implies

|O(ji)
i−1 \ (O

(ji)
i ∪ U

(ji)
i)| ≤ |O(ji)

i−1 \O
(ji)
i | = |O

(ji)
i−1| − |O

(ji)
i | ≤ k .

Combining everything that we have proved for the case of ui ̸∈ OPT , we get that in this
case

ℓ∑
i=1

|O(j)
i−1 \ (O

(j)
i ∪ U

(j)
i)| = (ℓ− 1) · |∅|+ |O(ji)

i−1 \ (O
(ji)
i ∪ U

(ji)
i)| ≤ k .

The two cases together yields that the sum in question is at most p = max(k, ℓ− 1).

We are now ready to prove Theorem 2.
Proof (Proof of Theorem 2): Lemmata 9, 10, 11 and 12 together prove Proposition 8,
which states that the sets we have constructed obey the conditions of Proposition 4 for
p = max(k, ℓ − 1). This implies that the approximation ratio of SimultaneousGreedys
for k-extendible systems is at most

p+ 1

1− ℓ−1
=

max(k, ℓ− 1) + 1

1− ℓ−1
=

max(k + 1, ℓ)

1− ℓ−1

Choosing the number of solutions to be ℓ = k + 1 optimizes this approximation factor and
yields

max(k + 1, ℓ)

1− ℓ−1
=

k + 1

1− (k + 1)−1
=

(k + 1)2

(k + 1)− 1
=

(k + 1)2

k
.

Now further suppose that f is monotone in addition to being submodular and non-negative.
In this case, Proposition 4 guarantees an approximation factor of at most

p+ 1 = max(k, ℓ− 1) + 1 = max(k + 1, ℓ) ,

which demonstrates that the approximation factor improves to k + 1 for any number of
solutions ℓ ≤ k + 1.

19

Feldman, Harshaw, and Karbasi

3.3 Analysis for k-Systems

In this section we use Proposition 4 to prove Theorem 3. Throughout this section we
assume that (N , I) is a k-system. We demonstrate that for any number of solutions ℓ, the
conditions of Proposition 4 hold with the value p = k + ℓ − 1. Then, to prove Theorem 3,
we choose ℓ = ⌊2 +

√
k + 2⌋.

To use Proposition 4, we need to construct a set O
(j)
i for every iteration 0 ≤ i ≤ T

and solution 1 ≤ j ≤ ℓ. As in Section 3.2, these sets are constructed recursively and
with knowledge of the deterministic algorithm’s execution path; however, for the case of
k-systems, the construction of these sets starts at the final iteration and works backwards to

the first iteration. We begin by constructing related sets Õ
(j)
i using the following recursive

rule.

• For the final iteration i = T , Õ
(j)
i contains all the elements of OPT \ S(j)

i that

can be added to S
(j)
i without violating independence. In other words, Õ

(j)
i = {u ∈

OPT \ S(j)
i | S

(j)
i + u ∈ I}.

• For earlier iterations i < T , if the solution j is unaffected at this iteration (that

is, j ̸= ji+1) then we simply set Õ
(j)
i = Õ

(j)
i+1. Otherwise, let B

(ji+1)
i be the set of

elements of OPT \ (S(ji+1)
i+1 ∪ Õ

(ji+1)
i+1) that can be added to S

(ji+1)
i without violating

independence. In other words,

B
(ji+1)
i = {u ∈ OPT \ (S(ji+1)

i+1 ∪ Õ
(ji+1)
i+1) | S(ji+1)

i + u ∈ I}.

We also denote by B̃
(ji+1)
i an arbitrary subset of B

(ji+1)
i of size min{|B(ji+1)

i |, k}. Using
this notation, we can now define

Õ
(ji+1)
i = Õ

(ji+1)
i+1 ∪ B̃

(ji+1)
i ∪ (OPT ∩ {ui+1}).

Using the sets Õ
(j)
i defined by the above recursive rule, we can now define the sets O

(j)
i

using the following formula. For every iteration 0 ≤ i ≤ r and solution 1 ≤ j ≤ ℓ, let

O
(j)
i = Õ

(j)
i ∩Ni.

Proposition 13 If (I,N) is a k-system, then the sets O
(j)
i constructed above satisfy the

conditions of Proposition 4 with p = k + ℓ− 1.

The following lemmata together prove Proposition 13 by verifying each of the conditions
of Proposition 4. Unlike the case in Section 3.2, here it is not clear from the construction

that O
(j)
0 = OPT for each of the solutions 1 ≤ j ≤ ℓ. The next lemma proves that this is

indeed the case.

Lemma 14 For every solution 1 ≤ j ≤ ℓ, Õ
(j)
0 = OPT , and thus, O

(j)
0 = Õ

(j)
0 ∩N0 = OPT

because N0 = N .

Proof By reverse induction over the iterations, we prove the stronger claim: that for every
iteration 0 ≤ i ≤ T and solution 1 ≤ j ≤ ℓ,

|OPT \ (Õ(j)
i ∪ S

(j)
i)| ≤ k · |S(j)

i |.

20

Greedy: Simultaneous or Repeated?

Notice that this claim indeed implies the lemma since Õ
(j)
i contains only elements of OPT

and S
(j)
0 = ∅.

We begin the proof by induction by showing that the claim holds for at the final iteration

i = T . By the definition of Õ
(j)
T , no element of OPT \ (Õ(j)

T ∪ S
(j)
T) can be added to S

(j)
T

without violating independence, and thus, S
(j)
T is a base of (OPT \ Õ(j)

T)∪S(j)
T . In contrast,

OPT \ (Õ(j)
T ∪ S

(j)
T) is an independent subset of (OPT \ Õ(j)

T) ∪ S
(j)
T because it is also a

subset of the independent set OPT . Thus, since (N , I) is a k-system,

|OPT \ (Õ(j)
T ∪ S

(j)
T)| ≤ k · |S(j)

T | ,

which is the claim that we wanted to prove.

Assume now that the claim holds for all iterations i+1, i+2, . . . , T , and let us prove it
for iteration i. There are three cases to consider. If the solution j was not updated during

iteration i + 1 (i.e., j ̸= ji+1), then Õ
(j)
i = Õ

(j)
i+1 and S

(j)
i = S

(j)
i+1, and therefore, by the

induction hypothesis,

|OPT \ (Õ(j)
i ∪ S

(j)
i)| = |OPT \ (Õ(j)

i+1 ∪ S
(j)
i+1)| ≤ k · |S(j)

i+1| = k · |S(j)
i | .

The second case is when j = ji+1 and |B̃(j)
i | = k. In this case,

|OPT \ (Õ(j)
i ∪ S

(j)
i)| = |OPT \ (Õ(j)

i+1 ∪ S
(j)
i+1)| − |B̃

(j)
i |

= |OPT \ (Õ(j)
i+1 ∪ S

(j)
i+1)| − k ≤ k · |S(j)

i+1| − k = k · |S(j)
i | ,

where the inequality holds by the induction hypothesis, and the first equality holds since

Õ
(j)
i \ Õ

(j)
i+1 = B̃

(j)
i ∪ (OPT ∩ {ui+1}), the elements of B̃

(j)
i belong to OPT \ S(j)

i+1 and the
element ui+1 does not belong to this set.

The last case we need to consider is when j = ji+1 and |B̃(j)
i | < k. In this case

B̃
(j)
i = B

(j)
i , which implies that no element of OPT \ (Õ(j)

i ∪ S
(j)
i) can be added to S

(j)
i

without violating independence, and thus, S
(j)
i is a base of (OPT \ Õ(j)

i)∪S(j)
i . This allows

us to prove the claim in the same way in which this is done in the base case. Specifically,

observe that OPT \ (Õ(j)
i ∪ S

(j)
i) is an independent subset of (OPT \ Õ(j)

i) ∪ S
(j)
i because

it is also a subset of the independent set OPT . Thus, since (N , I) is a k-system,

|OPT \ (Õ(j)
i ∪ S

(j)
i)| ≤ k · |S(j)

i | ,

which is the claim that we wanted to prove.

We now proceed to proving the explicit conditions of Proposition 4. The most technical
condition, which uses the k-system assumption, is Lemma 18.

Lemma 15 For every iteration 0 ≤ i ≤ T and solution 1 ≤ j ≤ ℓ, S
(j)
i + u is independent

for every u ∈ O
(j)
i .

21

Feldman, Harshaw, and Karbasi

Proof We prove by a reverse induction the stronger claim that for every iteration 0 ≤ i ≤ T

and solution 1 ≤ j ≤ ℓ, the set S
(j)
i + u is independent for every u ∈ Õ

(j)
i . Note that this

claim implies the lemma because O
(j)
i is a subset of Õ

(j)
i .

At the last iteration i = T , the claim is an immediate consequence of the definition of

Õ
(j)
r . Assume now that the claim holds for iterations i + 1, i + 2, . . . T , and let us prove it

for iteration i. If the solution j was not updated at iteration i + 1 (i.e., j ̸= ji+1), then

S
(j)
i = S

(j)
i+1 and Õ

(j)
i = Õ

(j)
i+1, and so the claims follows immediately from the induction

hypothesis. Thus, it remains to consider only the solution that is updated, i.e., j = ji+1.
In this case,

Õ
(j)
i = Õ

(j)
i+1 ∪ B̃

(j)
i ∪ (OPT ∩ {ui+1}).

For every u ∈ Õ
(j)
i+1, we have that S

(j)
i + u is independent by the induction hypothesis since

S
(j)
i is a subset of S

(j)
i+1. For every u ∈ B̃

(j)
i , we have that S

(j)
i + u is independent by the

definition of B
(j)
i . Finally, for u = ui+1, we have S

(j)
i + u = S

(j)
i+1 ∈ I.

Lemma 16 For every iteration 1 ≤ i ≤ T and solution 1 ≤ j ≤ ℓ, O
(j)
i ⊆ O

(j)
i−1 ∩Ni.

Proof We first observe that Õ
(j)
i ⊆ Õ

(j)
i−1 by construction, and Ni = Ni−1 − ui ⊆ Ni−1.

Thus,

O
(j)
i = Õ

(j)
i ∩Ni ⊆ Õ

(j)
i−1 ∩Ni−1 = O

(j)
i−1 .

Lemma 17 For every iteration 0 ≤ i ≤ T and solution 1 ≤ j ≤ ℓ, (S
(j)
T \ S

(j)
i) ∩ OPT ⊆

O
(j)
i .

Proof We prove the lemma by reverse induction on the iterations. At the final iteration

i = T , the claim that we need to prove is trivial since S
(j)
T \ S

(j)
i = ∅. Assume now that

the lemma holds for iterations i + 1, i + 2, . . . T , and let us prove it for iteration i. If the

solution set is not updated at iteration i+1 (i.e., j ̸= ji+1), then S
(j)
i = S

(j)
i+1, which implies

(S
(j)
T \ S

(j)
i) ∩OPT = (S

(j)
T \ S

(j)
i+1) ∩OPT ⊆ O

(j)
i+1 ⊆ O

(j)
i ,

where the first inclusion holds by the induction hypothesis, and second inclusion by Lemma 16.
Thus, it remains to consider only the solution for which j = ji+1.

In this case

[(S
(j)
T \ S

(j)
i) ∩OPT] \ [(S(j)

T \ S
(j)
i+1) ∩OPT] = OPT ∩ {ui+1} ⊆ Õ

(j)
i ∩Ni = O

(j)
i ,

where the inclusion follows from the definition of Õ
(j)
i and the fact that ui+1 is chosen as

an element from Ni. Using the induction hypothesis, we now get

(S
(j)
T \ S

(j)
i) ∩OPT = [(S

(j)
T \ S

(j)
i+1) ∩OPT] ∪ [OPT ∩ {ui+1}] ⊆ O

(j)
i+1 ∪O

(j)
i = O

(j)
i ,

where the final equality follows again from Lemma 16.

22

Greedy: Simultaneous or Repeated?

Lemma 18 For every iteration 1 ≤ i ≤ T ,
∑ℓ

j=1 |O
(j)
i−1 \ (O

(j)
i ∪ U

(j)
i)| ≤ k + ℓ− 1.

Proof For every solution 1 ≤ j ≤ ℓ other than ji, we have by definition U
(j)
i = ∅ and

O
(j)
i−1 = Õ

(j)
i−1 ∩Ni−1 = Õ

(j)
i ∩ (Ni + ui) ⊆ Õ

(j)
i ∩Ni + ui = O

(j)
i + ui .

Therefore,

|O(j)
i−1 \ (O

(j)
i ∪ U

(j)
i)| ≤ 1 .

Additionally,

Õ
(ji)
i−1 = Õ

(ji)
i ∪ B̃

(ji)
i−1 ∪ (OPT ∩ {ui}) = Õ

(ji)
i ∪ B̃

(ji)
i−1 ∪ (OPT ∩ U

(j)
i) ⊆ Õ

(ji)
i ∪ B̃

(ji)
i−1 ∪ U

(j)
i ,

and
Ni−1 = Ni + ui = Ni ∪ U

(j)
i .

These two observations imply together

O
(ji)
i−1 = Õ

(ji)
i−1 ∩Ni−1

⊆ [Õ
(ji)
i ∪ B̃

(ji)
i−1 ∪ U

(j)
i] ∩ [Ni ∪ U

(j)
i]

⊆ [Õ
(ji)
i ∩Ni] ∪ B̃

(ji)
i−1 ∪ U

(j)
i

= O
(ji)
i ∪ B̃

(ji)
i−1 ∪ U

(j)
i ,

and therefore, also

|O(ji)
i−1 \ (O

(ji)
i ∪ U

(ji)
i)| ≤ |B̃(ji)

i−1| ≤ k ,

where the last inequality follows from the definition of B̃
(ji)
i−1.

Combining all the above results, we get

ℓ∑
j=1

|O(j)
i−1 \ (O

(j)
i ∪ U

(j)
i)| ≤ (ℓ− 1) · 1 + k = k + ℓ− 1 .

We are now ready to prove Theorem 3.
Proof (Proof of Theorem 3): Lemmata 15, 16, 17 and 18 prove together Proposition 13,
which states that the sets we have constructed obey the conditions of Proposition 4 with
p = k+ ℓ− 1. Thus, the last proposition implies that the approximation ratio of Simulta-
neousGreedys for k-systems and ℓ = ⌊2 +

√
k + 2⌋ is at most

p+ 1

1− ℓ−1
=

k + ℓ

1− ℓ−1
=

k + ⌊2 +
√
k + 2⌋

1− 1/⌊2 +
√
k + 2⌋

≤ k + 2 +
√
k + 2

1− 1/(1 +
√
k + 2)

.

To simplify some calculations, let α = k + 2. By substituting α, rearranging terms, and
re-substituting α we obtain that the right hand side of the last inequality may be expressed
as

α+
√
α

1− 1/(1 +
√
α)

=
(1 +

√
α) · (α+

√
α)√

α
= (1+

√
α)(1+

√
α) = (1+

√
α)2 = (1+

√
k + 2)2 .

23

Feldman, Harshaw, and Karbasi

Thus, the approximation ratio is at most (1 +
√
k + 2)2. Suppose that f is monotone so

that Proposition 4 guarantees the returned solution is a (p + 1)-approximation. Setting
the number of solutions to ℓ = 1 yields p = k + ℓ − 1 = k, so that the returned set is a
(k+1)-approximation. This demonstrates that our unified analysis recovers the guarantees
of the greedy algorithm for monotone submodular objectives under a k-system constraint.

4. A Nearly Linear Time Implementation

In this section, we present FastSGS, a nearly linear-time variant of Simultaneous-
Greedys. Recall that SimultaneousGreedys greedily constructs ℓ candidate solutions
in a simultaneous fashion. Because the algorithm uses an exact greedy search for the fea-
sible element-solution pair with the largest marginal gain, the overall runtime is O(ℓ2rn).
Although we consider ℓ to be a constant (as it scales with k), the size of the largest base
r could be as large as O(n). This means that, like other exact greedy approaches, Simul-
taneousGreedys has a quadratic runtime. In this section, we show that Simultaneous-
Greedys may be modified to run in nearly linear time by using the thresholding technique
of Badanidiyuru and Vondrák (2014) for faster approximate greedy search.

The key idea of FastSGS is to replace the exact greedy search with an approximate
greedy search via the use of a marginal gain acceptance threshold: if an element-solution
pair is feasible and has a marginal gain which exceeds the threshold, then the update is
made without considering other possible pairs. By appropriately initializing and iteratively
lowering this marginal gain threshold, we can ensure that the algorithm runs much quicker
at the cost of only a small loss in the approximation. The allowed loss in approximation is
given as an input parameter ε ∈ (0, 1/2) to the algorithm. A formal description of FastSGS

appears as Algorithm 3. It begins by initializing the ℓ solutions S
(1)
0 , S

(2)
0 , . . . , S

(ℓ)
0 to be

empty sets; and the acceptance threshold, denoted by τ , is initially set to be the largest
objective value of any element. During each iteration of the while loop, the algorithm
iterates once through the set of feasible element-solution pairs. If a feasible element-solution
pair is found whose gain exceeds the threshold, then the element is added to that solution.
After the completion of each iteration through all the feasible element-solution pairs, the
acceptance threshold is reduced by a multiplicative factor of 1 − ε, and the algorithm
terminates when this threshold becomes sufficiently low.

24

Greedy: Simultaneous or Repeated?

Algorithm 3: FastSGS (N , f, I, ℓ, ε)

1 Initialize ℓ solutions, S
(j)
0 ← ∅ for every j = 1, . . . , ℓ.

2 Initialize ground set N0 ← N , and iteration counter i← 1.
3 Let ∆f = maxu∈N f(u), and initialize threshold τ = ∆f .
4 while τ > (ε/n) ·∆f do
5 for every element-solution pairs (u, j) with u ∈ Ni−1 and 1 ≤ j ≤ ℓ do

6 if S
(j)
i−1 + u ∈ I and f(u | S(j)

i−1) ≥ τ then
7 Let ui ← u and ji ← j.

8 Update the solutions as S
(j)
i ←

{
S
(ji)
i−1 + ui if j = ji ,

S
(j)
i−1 if j ̸= ji .

9 Update the available ground set Ni ← Ni−1 − ui.
10 Update the iteration counter i← i+ 1.

11 Update the marginal gain τ ← (1− ε) · τ .

12 return the set S maximizing f among the sets {S(j)
i }ℓj=1.

We note that the iteration counter i of FastSGS is used to index the state of the
solutions, and does not necessarily correspond to the iterations of any specific loop. We
begin our analysis of FastSGS by proving that the number of oracle queries it uses is
nearly linear in the number of elements in the ground set.

Observation 19 FastSGS requires at most Õ(ℓn/ε) calls to the value and independence
oracles.

Proof In every iteration of the while loop, each element-solution pair is considered once,
requiring one value query and one independence query. Thus, O(ℓn) oracle queries are
made at each iteration of the while loop. Next, we seek to bound the number of iterations
of the while loop. Note that the threshold is initially set to τ = ∆f , and is decreased by
a multiplicative factor of 1 − ε at each iteration of the while loop. Since the while loop
ends once the threshold is below (ε/n) · ∆f , the number of iteration of the while loop is
the smallest integer a such that (1− ε)a ·∆f ≤ (ε/n) ·∆f . Dividing by ∆f and taking the
log1−ε of both sides, we get that a is the smallest integer such that

a ≥ log1−ε(ε/n) =
log(ε/n)

log(1− ε)
=

log(n/ε)

− log(1− ε)
≥ 1− ε

ε
log(n/ε) ≥ 1

2ε
log(n/ε) ,

where the penultimate inequality uses −ε/(1−ε) ≤ log(1−ε) < 0, which holds for ε ∈ (0, 1),
and the last inequality follows from our assumption that ε < 1/2. Thus, the number of
iterations of the while loops is O(1/ε · log(n/ε)) so that the total number of oracle queries
is O(ℓn/ε · log (n/ε)). Using the Õ notation that suppresses log factors, the total number
of oracle queries becomes Õ(ℓn/ε).

Now, we turn to the approximation guarantees of FastSGS. The two theorems be-
low show that FastSGS achieves the same approximation guarantees as Simultaneous-
Greedys, but with a multiplicative increase that depends on the error term ε. In this

25

Feldman, Harshaw, and Karbasi

sense, the parameter ε controls the trade-off between the computational cost of the oracle
queries and the approximation guarantee.

Theorem 20 Suppose that (N , I) is a k-extendible system and that the number of solutions
is set to ℓ = k+1. Then, FastSGS requires Õ(k2n/ε) oracle calls and produces a solution
whose approximation ratio is at most (1 − 2ε)−2 · (k + 1)2/k. Moreover, when f is non-
negative monotone submodular and the number of solutions is chosen so ℓ ≤ k+1, then the
approximation ratio improves to (1− ε)−2 · (k + 1).

Theorem 21 Suppose that (N , I) is k-system and that the number of solutions is set to
ℓ = ⌊2 +

√
k + 2⌋. Then, FastSGS requires Õ(kn/ε) oracle calls and produces a solution

whose approximation ratio is at most (1 − 2ε)−2 · (1 +
√
k + 2)2. Moreover, when f is

non-negative monotone submodular and the number of solutions is set to ℓ = 1, then the
approximation ratio improves to (1− ε)−2 · (k + 1).

The proofs of Theorems 20 and 21 are very similar to their counterparts in Section 3. In
particular, the same style of unified meta-proof may be used for analyzing FastSGS. There
are, however, two key differences in the analysis when we use the thresholding technique
rather than an exact greedy search. The first difference is that rather than a feasible
element-solution pair whose marginal gain is maximal, we choose in each iteration a feasible
element-solution pair whose marginal gain is within a (1 − ε) multiplicative factor of the
largest marginal gain. This (1 − ε) factor carries throughout the analysis. The second
difference is that, at the end of the algorithm, there may be elements which are feasible to
add to solutions and have positive marginal gain; however, by the termination conditions,
the marginal gain of each of these elements is at most (ε/n) · ∆f . Using submodularity,
we can ensure that leaving these elements behind does not incur a significant loss in the
objective value. Formally, one can prove Theorems 20 and 21 by observing that they follow
from Proposition 23 (that appears in the next section) by plugging in m = ρ = 0 in the
same way that Theorems 25 and 26 follow from Proposition 24.

5. Incorporating Knapsack Constraints

In this section, we consider the general form of Problem (2), where the constraint is
the intersection of an independence system I with m knapsack constraints. We present
KnapsackSGS, an algorithm which extends the simultaneous greedy technique (Section 3)
and the faster thresholding variant (Section 4) to handle knapsack constraints by incorpo-
rating a density threshold technique. The density threshold technique we consider was
first introduced by Mirzasoleiman et al. (2016) in the context of a repeated-greedy style
algorithm for maximizing a submodular function over the intersection of a k-system and m
knapsack constraints. By incorporating this density threshold technique into the Simulta-
neousGreedys framework, we obtain a nearly linear time algorithm which improves both
the approximation guarantees and the runtimes of previous methods.

The main idea behind the density threshold technique is to consider adding an element
u to a solution S only if the marginal gain is larger than a fixed multiple ρ of the sum of its
knapsack weights, i.e., f(u | S) ≥ ρ ·

∑m
r=1 cr(u). Here, the quantity f(u | S)/

∑m
r=1 cr(u)

is referred to as the density of an element u with respect to a set S. The density threshold

26

Greedy: Simultaneous or Repeated?

technique received its name because it only adds an element to a solution if the density of
the element is larger than the threshold ρ. For convenience, given a set S, an element u is
said to have high density if its density is larger than (or equal to) ρ and low density if its
density is less than ρ.

The algorithm KnapsackSGS is presented below as Algorithm 4. As before, the algo-

rithm begins by initializing ℓ solutions S
(1)
0 , S

(2)
0 , . . . , S

(ℓ)
0 to be empty sets. Furthermore, a

fast approximate greedy search is again achieved by using a marginal threshold τ which is
initially set to ∆f and then iteratively decreased by a multiplicative factor of (1 − ϵ). The
key difference here, compared to FastSGS, is that in order to add an element u to a set

S
(j)
i−1, we additionally require that the density ratio f(u | S)/

∑m
r=1 cr(u) is larger than a

fixed threshold ρ and also that the updated set that we are considering, S
(j)
i−1 + u, satisfies

all the knapsack constraints. For the purposes of analysis, we break these two conditions
into separate lines, where the knapsack feasibility condition is checked on its own in Line 7.

Algorithm 4: KnapsackSGS (N , f, I, ℓ, ρ, ε)

1 Initialize ℓ solutions, S
(j)
0 ← ∅ for every j = 1, . . . , ℓ.

2 Initialize ground set N0 ← N , and iteration counter i← 1.
3 Let ∆f = maxu∈N f(u), and initialize threshold τ = ∆f .
4 while τ > (ε/n) ·∆f do
5 for every element-solution pairs (u, j) with u ∈ Ni−1 and 1 ≤ j ≤ ℓ do

6 if S
(j)
i−1 + u ∈ I and f(u | S(j)

i−1) ≥ max (τ, ρ ·
∑m

r=1 cr(u)) then

7 if cr(S
(j)
i−1 + u) ≤ 1 for all 1 ≤ r ≤ m then

8 Let ui ← u and ji ← j.

9 Update the solutions as S
(j)
i ←

{
S
(ji)
i−1 + ui if j = ji ,

S
(j)
i−1 if j ̸= ji .

10 Update the available ground set Ni ← Ni−1 − ui.
11 Update the iteration counter i← i+ 1.

12 Update marginal gain τ ← (1− ε) · τ .

13 return the set S maximizing f among the sets {S(j)
i }ℓj=1 and the singletons

{u}u∈N .

We begin the study of KnapsackSGS by analyzing its running time. In addition to
analyzing the number of calls made to the value and independence oracles, we also analyze
the number of arithmetic operations required by KnapsackSGS that arise when working
with the knapsack constraints. In many practical scenarios, however, the computational
burden of even a few calls to the value oracle is much greater than the total cost of all
arithmetic operations required by the knapsack constraints; and thus, the bound on the
number of such operations is of less significance.

Observation 22 KnapsackSGS requires at most Õ(ℓn/ε) calls to the value and indepen-
dence oracles and Õ(mℓn/ε) arithmetic operations.

Proof As shown in Observation 19, there are Õ(1/ε) iterations of the while loop. At each
iteration of the while loop, each of the O(ℓn) element-solution pairs are considered and

27

Feldman, Harshaw, and Karbasi

checking feasibility of each pair requires a single call to the value and independence oracles.
Thus, the number of oracle calls is Õ(ℓn/ε).

The arithmetic operations are required for handling the knapsack constraints. Note
that for each element u ∈ N , the term ρ ·

∑m
r=1 cr(u) can be computed at the beginning

of the algorithm using m additions and 1 multiplication. Thus, each of the n terms may
be computed using O(mn) arithmetic operations. If each of the knapsack values cr(S

(i))
are maintained for each of the m knapsacks and ℓ solutions, then checking the condition
in Line 7 requires O(m) arithmetic operations. Since this condition is checked for possibly
every element-solution pair, this means O(mℓn) arithmetic operations per iteration of the
while loop. Moreover, since the number of iterations of the while loop is Õ(1/ε), we have
that a total number of Õ(mℓn/ε) arithmetic operations is required.

Next, we present a unified analysis of KnapsackSGS which yields approximation guar-
antees for k-systems and k-extendible systems. At a high level, the analysis is similar to
that of Proposition 4. That is, we analyze the elements of the optimal solution OPT which
must be thrown away as each new element is added. The key difference here is that we
must factor into our analysis the knapsack constraints—which arise via the density thresh-
old criteria in Line 6 and the new feasibility condition in Line 7. It will be beneficial to
break up our analysis into two cases based on whether KnapsackSGS returns false on any
instance of Line 7 in its execution. Towards this goal, let us introduce some new notation.
Let E be an indicator variable for the event that the knapsack check in Line 7 evaluates
to false at any point in the algorithm. That is, if E = 0 then the “if statement” in Line 7
always evaluates to true; otherwise, E = 1 means that it returned false at some point.

Proposition 23 Suppose that there exists sets O
(j)
i for every iteration 0 ≤ i ≤ T and

solution 1 ≤ j ≤ ℓ and a value p which satisfy the following properties:

• O
(j)
0 = OPT for every solution 1 ≤ j ≤ ℓ.

• S
(j)
i + u ∈ I for every iteration 0 ≤ i ≤ T , solution 1 ≤ j ≤ ℓ, and element u ∈ O

(j)
i .

• O
(j)
i ⊆ O

(j)
i−1 ∩Ni for every iteration 1 ≤ i ≤ T and solution 1 ≤ j ≤ ℓ.

• (S
(j)
T \ S

(j)
i) ∩OPT ⊆ O

(j)
i for every iteration 0 ≤ i ≤ T and solution 1 ≤ j ≤ ℓ.

•
∑ℓ

j=1 |O
(j)
i−1 \ (O

(j)
i ∪ U

(j)
i)| ≤ p for every iteration 1 ≤ i ≤ T .

Then, the solution S produced by KnapsackSGS satisfies the following approximation
guarantees:

f(S) ≥

{
1
2ρ if E = 1 ,
1−ϵ
p+1 ·

((
1− ℓ−1 − ε

)
f(OPT)−mρ

)
if E = 0 .

(7)

Moreover, when f is monotone, these approximation guarantees improve to

f(S) ≥

{
1
2ρ if E = 1 ,
1−ϵ
p+1 ·

(
(1− ε) f(OPT)−mρ

)
if E = 0 .

(8)

Proposition 23 provides a guarantee on the solution produced by KnapsackSGS, which
depends on the input density threshold ρ and also on the question whether Line 7 ever

28

Greedy: Simultaneous or Repeated?

evaluates to false during the algorithm’s execution. The conditions of Proposition 23 are
identical to those in Proposition 4 in Section 3, and hence, the previous constructions of

these sets O
(j)
i for k-systems and k-extendible systems can be used here as well. Note

that when ρ = 0, then every element has high density and we are back in the setting of
SimultaneousGreedys.

The analysis is very similar in spirit to Proposition 4, except that it features the marginal
gain threshold technique for faster approximate greedy search and the density ratio thresh-
old technique for knapsack constraints. Because the main proof ideas involving the simul-
taneous greedy technique are presented in Section 3 and the marginal gain threshold and
density ratio threshold techniques already appear in existing works, we defer the proof of
Proposition 23 to Appendix A.

Now we address the remaining question, which is how to choose a density threshold ρ
which yields a good approximation. Note that we always have either E = 0 or E = 1, and
hence, by taking the minimum of the two lower bounds for the two cases, we obtain the
approximation guarantee

f(S) ≥ min

{
1

2
ρ, (1− ε)

(
1− ℓ−1 − ε

p+ 1

)
f(OPT)−

(
m

p+ 1

)
ρ

}
. (9)

To maximize this lower bound, we would like to set the density ratio threshold to

ρ∗ = 2(1− ε)

(
1− ℓ−1 − ε

p+ 1 + 2m

)
f(OPT) ,

which would yield an approximation guarantee of

f(S) ≥ (1− ε)

(
1− ℓ−1 − ε

p+ 1 + 2m

)
f(OPT) .

Unfortunately, we cannot efficiently calculate this optimal choice for density ratio threshold
ρ∗ because it involves f(OPT). Nevertheless, by the submodularity and non-negativity of
the objective, we know that the optimal value lies within the range

∆f ≤ f(OPT) ≤ r ·∆f ,

where we recall that r is the size of the largest independent set. This interval, which is
guaranteed to contain f(OPT), can be transformed into an interval containing the optimal
density threshold ρ∗. In particular, we get

ρ∗ = 2(1− ε)

(
1− ℓ−1 − ε

p+ 1 + 2m

)
∆f · α ,

for some α ∈ [1, r]. When r is not known exactly, an upper bound may be used here. One
upper bound we can use is that for any base B ∈ I, r is at most k · |B|, which follows by
the definition of a k-system. Such a base B may be known beforehand or constructed in a
greedy fashion using O(n) calls to the independence oracle. However, for simplicity, we use
the somewhat weaker upper bound of r ≤ n. Using the above mentioned stronger upper
bound, or an instance specific upper bound, will reduce the interval in question, and thus,

29

Feldman, Harshaw, and Karbasi

also the runtime. However, the improvement will only be in the logarithmic component of
the runtime.

The high level idea is to design an algorithm which calls KnapsackSGS several times
as a subroutine using various density ratio thresholds in this range and to return the best
solution. Mirzasoleiman et al. (2016) propose using a multiplicative grid search over this
interval, running the algorithm on each point in the interval. The multiplicative grid search
guarantees that the subroutine algorithm is run with an input density threshold ρ which
is close to the optimal ρ∗ in the sense that (1 − δ)ρ∗ ≤ ρ ≤ ρ∗ (for some error parameter
δ ∈ (0, 1/2)). One may verify that by using this “approximately-optimal” density threshold,
the approximation ratio obtained by the lower bound (9) is at most a factor (1 − δ)−1

larger than if the optimal threshold ρ∗ were used. This multiplicative grid search approach
requires running the subroutine on every point in the multiplicative grid, which translates
to O(1/δ · log(n)) calls to the subroutine. Thus, this “brute force” multiplicative grid search
adds an additional Õ(1/δ) factor to the running time, which is undesirable, especially for
higher accuracy applications where a smaller δ is preferred.

We propose a binary search method which achieves the same approximation guaran-
tee using exponentially fewer calls to KnapsackSGS as a subroutine. The key to our
binary search method is a careful use of the case analysis in Proposition 23. The algo-
rithm DensitySearchSGS is stated formally below as Algorithm 5. We consider points
on a multiplicatively spaced grid of the interval [1, n], which is given by αk = (1 + δ)k for
k = 0, 1, . . . ,

⌈
1
δ log n

⌉
, where δ is an input parameter that specifies the granularity of the

grid. Another input to the algorithm is β, which specifies the relation between the points in
the grid [1, n] and the density thresholds which are used. Let us consider the non-monotone
case for now, in which case we should set

β = 2(1− ε)

(
1− ℓ−1 − ε

p+ 1 + 2m

)
.

In this case, note that each point αk in the [1, n] grid corresponds to the choice of density
threshold

ρk = β ·∆f · αk = 2(1− ε)

(
1− ℓ−1 − ε

p+ 1 + 2m

)
∆f · αk.

The algorithm tries to zoom in on the optimal density threshold using binary search, while
using the value of the indicator E for each call to KnapsackSGS to make the decision in
each iteration of the search (we denote by Ei the value of this indicator for call number i).
While this indicator does not necessarily indicate the relationship between the the current
density threshold and ρ∗, it does give enough of a signal around which we may construct
a binary search. In particular, if Ei = 0, then we get a good approximation as long as our
current density threshold is an overestimate of ρ∗, and thus, in the future we only need to
consider higher density thresholds. Likewise, if Ei = 1, then we get a good approximation
as long as our current density threshold is an underestimate of ρ∗, and thus, in the future
we only need to consider lower density thresholds.

30

Greedy: Simultaneous or Repeated?

Algorithm 5: DensitySearchSGS (N , f, I, ℓ, δ, ε, β)
1 Initialize upper and lower bounds kℓ = 1, ku = ⌈1δ log n⌉.
2 Let ∆f = maxu∈N f(u), and initialize iteration counter i← 1.
3 while |ku − kℓ| > 1 do

4 Set middle bound ki =
⌈
kℓ+ku

2

⌉
.

5 Set density ratio ρi ← β ·∆f (1 + δ)ki .
6 Obtain set Si ← KnapsackSGS(N , f, I, ℓ, ρi, ε).
7 if Ei = 0 then
8 Increase lower bound kℓ ← ki.
9 else

10 Decrease upper bound ku ← ki.

11 Update iteration counter i← i+ 1.

12 Set density ratio ρi ← β ·∆f (1 + δ)kℓ .
13 Obtain set Si ← KnapsackSGS(N , f, I, ℓ, ρi, ε).
14 return the set S maximizing f among the sets {Sj}ij=1.

The following proposition bounds the number of calls made to KnapsackSGS and
provides an approximation guarantee.

Proposition 24 DensitySearchSGS makes Õ(1) calls to KnapsackSGS. Additionally
assume that the independence system satisfies the conditions in Proposition 23 for every

execution of KnapsackSGS. If β = 2(1 − ε)
(
1−ℓ−1−ε
p+1+2m

)
, then the solution S returned by

DensitySearchSGS satisfies

f(S) ≥ (1− δ)(1− ε)

(
1− ℓ−1 − ε

p+ 1 + 2m

)
f(OPT) ≥ (1− δ)(1− 2ε)2

(
1− ℓ−1

p+ 1 + 2m

)
f(OPT)

when the number of solutions ℓ is at least 2. Moreover, if f is monotone and β = 2(1 −
ε)
(

1−ε
p+1+2m

)
then this lower bound further improves to

f(S) ≥ (1− δ)(1− ε)2
(

1

p+ 1 + 2m

)
f(OPT)

for any number of solutions ℓ.

Remark: Observe that Proposition 24 requires a different value for β in the cases of
monotone and non-monotone functions. This is necessary because the ρ∗ corresponding
to these two cases are different, and the value of β is used to adjust the range in which
Algorithm 5 searches for a density approximating ρ∗ so that this range is guarantee to
include ρ∗. One can avoid this by slightly increasing the range in which Algorithm 5
searches so that it is guaranteed to include both possible values for ρ∗. Since the ratio
between the values of ρ∗ corresponding to the two cases is only a constant as long as the
sum ℓ−1 + ε is bounded away from 1, such an expansion of the search range will have an
insignificant effect on the time complexity of the algorithm in most regimes of interest.

31

Feldman, Harshaw, and Karbasi

Proof (Proof of Proposition 24): We begin by bounding the number of calls that Den-
sitySearchSGS makes to KnapsackSGS. Recall that the number of points in the δ-
multiplicative discretization is O(1/δ · log n). At each iteration of the binary search,
KnapsackSGS is called once. It is well known that binary search requires only loga-
rithmically many iterations to terminate. Thus, the number of calls to KnapsackSGS is
O(log (1/δ · log n)) = O(log (1/δ) + log log n) = Õ(1) calls to KnapsackSGS.

Now we prove the approximation guarantee of DensitySearchSGS using the approx-
imation guarantees of KnapsackSGS. Let us first consider the general non-monotone case

when β = 2(1 − ε)
(
1−ℓ−1−ε
p+1+2m

)
. We proceed by a case analysis. For the first case, suppose

that at some iteration i of DensitySearchSGS, it called KnapsackSGS with a den-
sity threshold ρi such that ρi ≤ ρ∗ and the indicator Ei ended up with the value 0. By
Proposition 23, we get in this case

f(S) ≥ f(Si)

≥ 1− ε

p+ 1
·
((

1− ℓ−1 − ε
)
f(OPT)−mρi

)
≥ 1− ε

p+ 1
·
((

1− ℓ−1 − ε
)
f(OPT)−mρ∗

)
= (1− ε)

(
1− ℓ−1 − ε

p+ 1 + 2m

)
f(OPT) .

The second case is that at some iteration i of DensitySearchSGS, it called Knap-
sackSGS with a density threshold ρi such that ρi ≥ ρ∗ and the indicator Ei ended up
with the value 1. By Proposition 23, we get in this case

f(S) ≥ f(Si) ≥
1

2
ρi ≥

1

2
ρ∗ = (1− ε)

(
1− ℓ−1 − ε

p+ 1 + 2m

)
f(OPT) .

The last case we need to consider is the case that neither of the above cases happens in
any iteration. One can observe that in this case the binary search of DensitySearchSGS
chooses in each iteration the half of its current range that includes ρ∗. Thus, we have

2(1− ε)

(
1− ℓ−1 − ε

p+ 1 + 2m

)
∆f (1 + δ)kℓ ≤ ρ∗ ≤ 2(1− ε)

(
1− ℓ−1 − ε

p+ 1 + 2m

)
∆f (1 + δ)ku .

Let us now denote the final value of i by ı̂. Since the leftmost side of the last inequality is
equal to ρı̂ and the rightmost side is larger than the leftmost side by at most a factor 1 + δ
(since ku− kℓ ≤ 1 when DensitySearchSGS terminates), we get ρı̂ ≤ ρ∗ ≤ (1 + δ)ρı̂, and

32

Greedy: Simultaneous or Repeated?

by Proposition 23,

f(S) ≥ f(Sı̂)

≥ min

{
1

2
ρı̂,

1− ϵ

p+ 1
·
((

1− ℓ−1 − ε
)
f(OPT)−mρı̂

)}
≥ min

{
1

2

ρ∗

1 + δ
,
1− ϵ

p+ 1
·
((

1− ℓ−1 − ε
)
f(OPT)−mρ∗

)}
≥ (1− δ)min

{
1

2
ρ∗,

1− ϵ

p+ 1
·
((

1− ℓ−1 − ε
)
f(OPT)−mρ∗

)}
= (1− δ)(1− ε)

(
1− ℓ−1 − ε

p+ 1 + 2m

)
f(OPT) ,

which establishes the first inequality in the statement of the proposition. We establish the
second inequality by observing that for ℓ ≥ 2, the quantity −ε+ 2εℓ−1 is non-positive; and
thus,

1− ℓ−1 − ε ≥ 1− ℓ−1 − 2ε+ 2εℓ−1 = (1− ℓ−1)(1− 2ε) ,

which establishes the proposition for non-monotone objectives. The analysis for monotone
objectives follows in an analogous manner.

We are now ready to present the main approximation results for DensitySearchSGS
when the independence system is either a k-system or a k-extendible system.

Theorem 25 Suppose that (N , I) is a k-extendible system, the number of solutions is set
to ℓ = M +1—where M = max

(
⌈
√
1 + 2m⌉, k

)
, and the two error terms are set to be equal

(i.e., ε = δ ∈ (0, 1/2)). Then, DensitySearchSGS requires Õ(Mn/ε) oracle calls as well
as Õ(Mmn/ε) arithmetic operations and produces a solution whose approximation ratio is
at most

(1− 2ε)−3

[
max

{
k +

2m+ 1

k
, 1 + 2

√
2m+ 1

}
+ 2m+ 2

]
.

Moreover, when f is non-negative monotone submodular and the number of solutions is
chosen so that ℓ ≤ k+1, then the approximation ratio improves to (1− ε)−3 · (k+2m+1).

Theorem 26 Suppose that (N , I) is k-system, the number of solutions is ℓ = ⌊2+
√
k + 2m+ 2⌋,

and the two error terms are set equal as ε = δ ∈ (0, 1/2). Then, DensitySearchSGS re-
quires Õ(n

√
k +m/ε) oracle calls as well as Õ(mn

√
k +m/ε) arithmetic operations and

produces a solution whose approximation ratio is at most (1− 2ε)−3 · (1 +
√
k + 2m+ 2)2.

Moreover, when f is non-negative monotone submodular and the number of solutions is set
to ℓ = 1, then the approximation ratio improves to (1− ε)−3 · (k + 2m+ 1).

As for the previous algorithms, the approximation ratio guaranteed by DensitySearchSGS
is improved for the subclass of k-extendible systems, at the cost of a slightly larger running
time. The algorithm guarantees the same approximation factor for monotone objectives for
both k-extendible and k-systems. In both cases, the best choice of the number of solutions ℓ
depends on the number of knapsack constraints m. Moreover, we remark that in the absence

33

Feldman, Harshaw, and Karbasi

of any additional knapsack constraints (that is, m = 0), the approximation guarantees of
Theorems 25 and 26 recover the guarantees of the slower SimultaneousGreedys, up to
the (1 − ε)−3 error terms. However, unlike SimultaneousGreedys, the running time of
DensitySearchSGS is nearly-linear in the size of the ground set.

The (1 − 2ε)−3 multiplicative error terms may seem somewhat non-intuitive at first
glance, but it turns out that they can be replaced with 1+O(ε). In particular, for ε ∈ (0, 1/4)
the multiplicative error term (1 − 2ε)−3 is at most 1 + 28ε. This follows by the convexity
of the function y(t) = (1 − 2t)−3 within the range [0, 1/2). More specifically, by setting
λ = 4ε ∈ (0, 1), we get

(1− 2ε)−3 = y(ε) = y ((1− λ) · 0 + λ · 1/4) ≤ (1− λ) · y(0) + λ · y(1/4)

= (1− 4ε) + 4ε

(
1− 2 · 1

4

)−3

= (1− 4ε) + 4ε · 8 = 1 + 28ε .

Similarly, one can also show that for all ε ∈ (0, 1/4), the error term (1− ε)−3, which appears
in the approximation for monotone submodular objectives, is at most (1+6ε). Furthermore,
by scaling ε one may transfer the constant in front of ε to the running time, which remains
Õ(n/ε). This way, one may consider the multiplicative error term in the approximation
factor of the algorithm to be a clean 1 + ε.

The proofs of Theorems 25 and 26 follow from the unified meta-analysis of Proposition 24
in the same way that the Theorems 2 and 3 follow from the meta-analysis of Proposition 4.

Namely, the constructions of the sets O
(j)
i in Sections 3.2 and 3.3 demonstrate that the

conditions of Proposition 24 hold with p = max(k, ℓ − 1) for k-extendible systems and
p = k+ ℓ−1 for general k-systems. The final step is then to choose the number of solutions
ℓ to optimize the resulting approximation ratios. Although these steps are conceptually
similar to the choice of ℓ in the analysis of SimultaneousGreedys, they are somewhat
involve, and so we reproduce them here.

Proof (Proof of Theorem 25): The construction of sets O
(j)
i in Proposition 8 demonstrates

that the conditions of Proposition 23 are satisfied with with p = max(k, ℓ − 1). Thus,
Proposition 24 implies that the approximation ratio of DensitySearchSGS with ℓ = M+1
is at most (1− 2ε)−3 times the quantity,

p+ 1 + 2m

1− ℓ−1
=

max(k, ℓ− 1) + 1 + 2m

1− ℓ−1
.

Trying to optimize this quantity, we may set ℓ = M + 1, where M = max
(
⌈
√
1 + 2m⌉, k

)
.

Note that M is at least k and so max(k, ℓ − 1) = max(k,M) = M . Thus, by the above,
we have that the approximation ratio of DensitySearchSGS with ℓ = M + 1 is at most

34

Greedy: Simultaneous or Repeated?

(1− 2ε)−3 times the quantity

M + 1 + 2m

1− 1
M+1

=
(M + 1) (M + 1 + 2m)

M

=
(M + 1)2

M
+

(
M + 1

M

)
2m

≤ max

{
k + 2m+ 2 +

2m+ 1

k
, 2m+ 3 + 2

√
2m+ 1

}
= 2m+ 2 +max

{
k +

2m+ 1

k
, 1 + 2

√
2m+ 1

}
.

For monotone submodular objectives, Proposition 24 implies that for all number of solutions
ℓ ≤ k + 1, the approximation ratio is at most (1 − ε)−3 times the quantity

p+ 1 + 2m ≤ max(k, ℓ− 1) + 1 + 2m ≤ k + 1 + 2m .

Proof (Proof of Theorem 26): The construction of sets O
(j)
i in Proposition 13 demon-

strates that the conditions of Proposition 23 are satisfied with with p = k + ℓ − 1. Thus,
Proposition 24 implies that the approximation ratio of DensitySearchSGS with ℓ =
⌊2 +

√
k + 2m+ 2⌋ is at most (1− 2ε)−3 times the quantity,

p+ 1 + 2m

1− ℓ−1
=

k + ℓ+ 2m

1− ℓ−1
=

k + 2m+ ⌊2 +
√
k + 2m+ 2⌋

1− 1/⌊2 +
√
k + 2m+ 2⌋

≤ k + 2m+ 2 +
√
k + 2m+ 2

1− 1/(1 +
√
k + 2m+ 2)

.

To simplify some calculations, let α = k+2m+2. By substituting α and rearranging terms,
we obtain that the right hand side may be expressed as

α+
√
α

1− 1/(1 +
√
α)

=
(1 +

√
α) · (α+

√
α)√

α
= (1 +

√
α)(1 +

√
α) = (1 +

√
α)2 .

Substituting back the value of α = k + 2m + 2, we have that the approximation ratio is
at most (1 − 2ε)−3 · (1 +

√
k + 2m+ 2)2. Finally, suppose that f is monotone and ℓ = 1.

Then, by Proposition 24, the approximation factor is at most

(1− ε)−3 · (p+ 2m+ 1) = (1− ε)−3 · (k + ℓ− 1 + 2m+ 1) = (1− ε)−3 · (k + 2m+ 1) .

6. Repeated Greedy

In this section, we present and analyze the RepeatedGreedy algorithm for maximizing a
submodular function f subject to a k-system constraint (N , I). As discussed in Section 1,
RepeatedGreedy was first proposed by Gupta et al. (2010), who showed that O(k) re-
peated iterations of the greedy procedure suffice to achieve a 3k approximation guarantee.

35

Feldman, Harshaw, and Karbasi

This approximation guarantee was improved to 2k by Mirzasoleiman et al. (2016). In this
section, we demonstrate that O(

√
k) iterations of the RepeatedGreedy algorithm suffice

to achieve a k + O(
√
k) approximation guarantee, which improves both the runtime and

approximation guarantees.

RepeatedGreedy iteratively executes the following three operations: first, the greedy
algorithm is called as a subroutine to produce a feasible set Si, then a subroutine for
unconstrained submodular maximization produces a set S′

i ⊂ Si with large objective value,
and elements of Si are removed from the remaining ground set. After the algorithm makes
ℓ iterations of this kind, the algorithm terminates and outputs the best set among all the
sets constructed during its iterations. The choice of ℓ will be determined later to yield
the best approximation ratio. A more formal description of RepeatedGreedy is given as
Algorithm 7.

Algorithm 6: Greedy (N , f, I)
1 S ← ∅
2 while there exists u ∈ N ′ such that S + u ∈ I and f(u | S) > 0 do
3 Let u ∈ N ′ be the element of this kind maximizing f(u | S).
4 Add u to S.

5 return S.

Algorithm 7: Repeated Greedy(N , f, I, ℓ)
1 Let N1 ← N .
2 for i = 1 to ℓ do
3 Run greedy procedure Si ← Greedy(Ni, f, I)
4 Filter the greedy solution S′

i ← USM(Si, f)
5 Update ground set Ni+1 ← Ni \ Si.

6 return the set S maximizing f among the sets {Si, S
′
i}ℓi=1.

RepeatedGreedy calls a subroutine USM for unconstrained submodular maximiza-
tion. Formally, the subroutine USM(A, f) takes as input a set A and a non-negative
submodular function f defined on subsets of A and returns a set X ⊂ A such that
f(X) ≥ 1

αf(B) for all B ⊂ A. There are several known algorithms for USM (Feige et al.,
2007; Gharan and Vondrak, 2011; Buchbinder et al., 2015). Feige et al. (2007) showed that
no algorithm using only polynomially many oracle queries can achieve an approximation ra-
tio smaller than α = 2. For the sake of generality, we remain agnostic to the specific USM
subroutine that is being used and derive an approximation ratio for RepeatedGreedy
that depends on α; however, in order to obtain nearly-linear time algorithms, we restrict
our attention to USM subroutines which require at most O(n) oracle calls. In the spirit
of proposing deterministic algorithms, we further restrict our attention to deterministic
USM subroutines, although a randomized subroutine may be used here as well, with ap-
propriate probabilistic caveats in the approximation ratio. At the time of this writing, it is
most natural to use the deterministic algorithm of Buchbinder et al. (2015), which yields

36

Greedy: Simultaneous or Repeated?

an approximation ratio of α = 3 and runs in linear time. We remark there that it is an
interesting open problem to construct a deterministic linear time algorithm for USM which
achieves the optimal α = 2 approximation, although Buchbinder and Feldman (2018b) come
close to achieving this goal. Specifically, they designed an algorithm for USM achieving
(2 + ε)-approximation using O(n/ε) time.

Observation 27 RepeatedGreedy requires O(ℓrn) oracle calls and its output S is in-
dependent.

Proof We begin the proof by bounding the number of oracle calls used by Repeated-
Greedy. Observe that Greedy has at most |S| ≤ r iterations, during which at most
n calls to the value and independence oracle calls are made. This means that a single
execution of Greedy requires O(rn) oracle calls. As discussed above, we only consider
implementations of USM which require O(n) oracle calls, which is negligible compared to
the computational requirements of Greedy. Finally, because ℓ solutions are produced by
RepeatedGreedy (and thus, the algorithm makes only ℓ iterations), the total number of
oracle calls is O(ℓrn).

Next, we prove that the output S is independent. For every 1 ≤ i ≤ ℓ, the set Si is ini-
tialized as independent because the greedy algorithm returns an independent set. Moreover,
the output S′

i of USM satisfies S′
i ⊆ Si, and thus, S′

i is independent by the down-closed
property of k-systems. The observation now follows since the output S of Repeated-
Greedy is chosen as either Si or S

′
i for one of such i.

We now present the main runtime and approximation guarantees for RepeatedGreedy.

Theorem 28 Suppose that (N , I) is k-system and that the number of solutions is set to
ℓ = ⌊1 +

√
2(k + 1)/α⌋. Then, RepeatedGreedy requires O(

√
krn) oracle calls and

produces a solution whose approximation ratio is at most k+
(√

2α
)√

k+(α+1)+O(
√

α3/k).
Moreover, when f is a non-negative monotone submodular function and the number of
solutions is set to ℓ = 1, then the approximation ratio of RepeatedGreedy improves to
k + 1.

Observe that compared to the prior line of work by Gupta et al. (2010) and Mirza-
soleiman et al. (2016) which demonstrated that RepeatedGreedy achieves 2k-approximation
after producing ℓ = k solutions, Theorem 28 improves upon both the runtime and the ap-
proximation guaranatees. In particular, only ℓ = O(

√
k) solutions are required, and the

approximation guarantee is improved to k + O(
√
k). Interestingly, we show in Section 6.1

that this analysis is tight even for the class of k-extendible systems. This stands in sharp
contrast to SimultaneousGreedys, which is able to achieve an improved k + O(1) ap-
proximation for the subclass of k-extendible systems.

Furthermore, although both SimultaneousGreedys and RepeatedGreedy achieve
similar asymptotic approximation factors of k +O(

√
k) for the class of k-systems, the low

order terms in the approximation factor of RepeatedGreedy are larger. More precisely,
RepeatedGreedy achieves an approximation of k + (

√
2α)
√
k + (1 + α) + O(

√
α3/k)

while SimultaneousGreedys achieves an approximation of (1 +
√
k + 2)2 = k + 2

√
k +

37

Feldman, Harshaw, and Karbasi

3 + O(
√
1/k). While both algorithms have the same coefficient for the leading k term,

RepeatedGreedy has larger coefficients in the low order terms. In particular, the lower
order terms of RepeatedGreedy depend on α, the approximation ratio for USM, which
will be at least 2 by the hardness result of Feige et al. (2007). Moreover, even the smallest
O(
√

α3/k) term is larger for RepeatedGreedy. While this term goes to zero as k grows,
it may be non-negligible for very small k values. An explicit form for this term is derived in
the proof of Theorem 28. After the proof, we analyze this term more carefully, showing that
for α = 3 and k = 1 it is ≈ 20.4 and for k = 10 the term is ≈ 2.1. On the other hand, the
O(
√

1/k) term in the approximation ratio of SimultaneousGreedys is at most 2/
√
k.

We now begin the analysis of the approximation ratio of RepeatedGreedy for k-
systems. As before, we write OPT to denote an independent set of (N , I) maximizing f .
At a high level, our analysis proceeds by showing that (1) by properties of the Greedy
and USM procedures, the value of the output of RepeatedGreedy is proportional to the
average value of the union between a set from {S}ℓi=1 and OPT , and then (2) because the
sets {S}ℓi=1 are disjoint, this aforementioned average cannot be considerably smaller than
the value of OPT . More concretely, our analysis is based on three lemmata. The first of
these lemmata, presented below, gives lower bounds on the objective values of the two sets
Si and S′

i produced at each iteration.

Lemma 29 For every 1 ≤ i ≤ ℓ, f(Si) ≥ 1
k+1f(Si ∪ (OPT ∩ Ni)) and f(S′

i) ≥ 1
αf(Si ∩

OPT).

Proof The first inequality is a direct application of Lemma 3.2 of Gupta et al. (2010),
which states that a set S obtained by running greedy with a k-system constraint must obey
f(S) ≥ 1

k+1f(S ∪ C) for all independent sets C. Notice that the set Si is the output of
the greedy algorithm when executed on the k-system obtained by restricting (N , I) to the
ground set Ni and that C = OPT ∩ Ni is an independent set of this restricted k-system.
This yields that f(Si) ≥ 1

k+1f(Si ∪ (OPT ∩Ni)).
Let us now explain why the second inequality of the lemma holds. Observe that Si∩OPT

is a subset of Si. Thus, by the approximation guarantees of USM, f(S′
i) ≥ 1

αf(Si∩OPT).

The second lemma we need is the following basic fact about submodular functions.

Lemma 30 Suppose f is a non-negative submodular function over ground set N . For every
three sets A,B,C ⊆ N , f(A ∪ (B ∩ C)) + f(B \ C) ≥ f(A ∪B).

Proof Observe that

f(A ∪ (B ∩ C)) + f(B \ C) ≥ f(A ∪ (B ∩ C) ∪ (B \ C)) + f((A ∪ (B ∩ C)) ∩ (B \ C))

≥ f(A ∪ (B ∩ C) ∪ (B \ C))

=f(A ∪B) ,

where the first inequality follows from the submodularity of f , and the second inequality
follows from its non-negativity.

38

Greedy: Simultaneous or Repeated?

The third lemma we need is Lemma 7 [Lemma 2.2 of Buchbinder et al. (2014)] which
allows us to relate the average value of f(Si∪OPT) to the optimal value f(OPT). Together,
these allow us to prove Proposition 31, which is a general approximation guarantee for
RepeatedGreedy that holds for any number of iterations ℓ ≥ 1.

Proposition 31 If (N , I) is a k-system, then the solution returned by RepeatedGreedy

has an approximation ratio of at most
k+1+α

2
(ℓ−1)

1−1/ℓ . Moreover, this approximation improves

to k + 1 + α
2 (ℓ− 1) for monotone submodular objectives.

Proof Observe that, for every 1 ≤ i ≤ ℓ, we have

OPT \ Ni = OPT ∩ (N \Ni) = OPT ∩
(
∪i−1
j=1Si

)
= ∪i−1

j=1 (OPT ∩ Sj) (10)

where the first equality holds because OPT ⊆ N , and the second equality follows from
the removal of Si from the ground set in each iteration of RepeatedGreedy. Using the
previous lemmata and this observation, we can obtain a lower bound on the objective value
of the returned solution S in terms of the average value of f(Si ∪OPT) as

1

ℓ

ℓ∑
i=1

f(Si ∪OPT) ≤ 1

ℓ

ℓ∑
i=1

f(Si ∪ (OPT ∩Ni)) +
1

ℓ

ℓ∑
i=1

f(OPT \ Ni) (Lemma 30)

=
1

ℓ

ℓ∑
i=1

f(Si ∪ (OPT ∩Ni)) +
1

ℓ

ℓ∑
i=1

f
(
∪i−1
j=1(OPT ∩ Sj)

)
(Equality (10))

≤ 1

ℓ

ℓ∑
i=1

f(Si ∪ (OPT ∩Ni)) +
1

ℓ

ℓ∑
i=1

i−1∑
j=1

f(OPT ∩ Sj) (submodularity)

≤ k + 1

ℓ

ℓ∑
i=1

f(Si) +
α

ℓ

ℓ∑
i=1

i−1∑
j=1

f(S′
j) (Lemma 29)

≤ k + 1

ℓ

ℓ∑
i=1

f(S) +
α

ℓ

ℓ∑
i=1

i−1∑
j=1

f(S) (definition of S)

= [k + 1 + α(ℓ− 1)/2] f(S) .

Rearranging this inequality yields the following lower bound on the value of the returned
solution.

f(S) ≥ 1

k + 1 + α
2 (ℓ− 1)

· 1
ℓ

ℓ∑
i=1

f(Si ∪OPT) . (11)

In order to remove the dependence of the right hand side on the solutions Si, we again
use Lemma 7 [Lemma 2.2 of Buchbinder et al. (2014)]. In particular, consider a set S̄
chosen uniformly at random from the ℓ constructed solutions S1, S2, . . . Sℓ. Because these
solutions are disjoint by construction, an element can belong to S̄ with probability at most
ℓ−1. Hence, applying Lemma 7 to the submodular function g(S) = f(OPT ∪ S), we get

1

ℓ

ℓ∑
i=1

f(Si∪OPT) = E[f(OPT∪S̄)] = E[g(S̄)] ≥ (1−ℓ−1)·g(∅) = (1−ℓ−1)·f(OPT) . (12)

39

Feldman, Harshaw, and Karbasi

Substituting (12) into the lower bound of (11) yields the desired approximation.

When f is monotone submodular, we may obtain an improved approximation ratio by
applying monotonicity directly to the lower bound (11). In particular, applying monotonic-
ity yields

1

ℓ

ℓ∑
i=1

f(Si ∪OPT) ≥ 1

ℓ

ℓ∑
i=1

f(OPT) = f(OPT) ,

which yields the desired approximation in the monotone setting.

Note that the approximation factor derived in Proposition 31 is not a monotone function
of the number of iterations ℓ in RepeatedGreedy. In this sense, we can optimize this
derived approximation factor by choosing some appropriate value of ℓ. On the other hand,
the true approximation factor of RepeatedGreedy can only increase as the number of
iterations increases, as more solutions are produced. Thus, the non-monotonicity of our
derived approximation factor in ℓ should be regarded as an artifact of our analysis and not
as the actual behavior of RepeatedGreedy.

Nevertheless, we may derive bounds on the approximation factor of RepeatedGreedy
for k-systems when the number of iterations is set as ℓ = O(

√
k). In particular, setting ℓ

to minimize the approximation factor presented in Proposition 31 yields the approximation
guarantee of Theorem 28.

Proof (Proof of Theorem 28): First, we show that the number of oracle calls is at most
O(
√
krn). By Observation 27, the number of oracle calls is at most O(ℓrn) and so the

result follows from our choice of the number of solutions, ℓ = ⌊1+
√
2(k + 1)/α⌋ = O(

√
k).

Next, we show that setting the number of solutions to ℓ = ⌊1 +
√

2(k + 1)/α⌋ yields an
approximation factor of at most k +

(√
2α
)√

k + (α+ 1) + o(1). We begin by substituting
this value of ℓ into the approximation guarantee of Proposition 31. This gives us that the
approximation factor is

k + 1 + α
2 (ℓ− 1)

1− 1/ℓ
=

k + 1 + α
2 (⌊1 +

√
2(k + 1)/α⌋ − 1)

1− 1

⌊1+
√

2(k+1)/α⌋

≤
k + 1 + α

2 (1 +
√
2(k + 1)/α− 1)

1− 1√
2(k+1)/α

=
α

2

2(k + 1)/α+
√

2(k + 1)/α

1− 1√
2(k+1)/α

 .

By defining γ = 2(k+1)/α, we can simplify the term inside the parenthesis, and write it as

γ +
√
γ

1− 1/
√
γ
= (1 +

√
γ)2 + 1 +

4

γ − 1
+

2

1 +
√
γ

.

40

Greedy: Simultaneous or Repeated?

Substituting this back into the calculation above, we have that the approximation factor is
at most

α

2

(1 +√ 2

α
(k + 1)

)2

+ 1 +
4

2
α(k + 1)− 1

+
2

1 +
√

2
α(k + 1)


=

α

2

 2

α
(k + 1) + 2

√
2

α
(k + 1) + 2 +

4
2
α(k + 1)− 1

+
2

1 +
√

2
α(k + 1)


= k + 1 +

√
2α(k + 1) + α+

α√
2
α(k + 1)− 1

= k +
(√

2α
)√

k + (α+ 1) + η ,

where the term η = O(
√

α3/k) decreases gradually with k and is given explicitly as

η =
√
2α
(√

k + 1−
√
k
)
+

α√
2
α(k + 1)− 1

.

Finally, we demonstrate the our analysis obtains the improved approximation ratio of
k+1 for monotone submodular functions when running the greedy algorithm. For monotone
submodular functions, Proposition 31 yields an approximation factor of k + 1 + α

2 (ℓ − 1).
In this case, constructing a single solution (ℓ = 1) yields the approximation factor k + 1 in
the monotone case.

Although the term η goes to zero for large k, it may be non-negligible for very small k.
The magnitude of this η term also depends on the USM approximation ratio, α. Roughly
speaking, η = O(

√
α3/k) so that a decrease in α can yield a significant decrease in this

sub-constant term. For example, for α = 3 and k = 1, we have that η ≈ 20.4, and if k
increases to 10 then η ≈ 2.1. On the other hand, if α = 2 and k = 1, then we have that
η ≈ 5.7, while when k increases to 10, we get η ≈ 1.2.

6.1 Tight Approximation Analysis for k-Extendible Systems

Earlier in Section 6, we proved that RepeatedGreedy achieves a k+O(
√
k) approximation

under a k-system if allowed to run for O(
√
k) iterations. A natural question is whether, like

SimultaneousGreedys, the approximation factor of RepeatedGreedy may improve for
the subclass of k-extendible systems. In this section, we answer this question in the negative
by showing that RepeatedGreedy achieves an approximation factor of k+Ω(

√
k) for the

subclass of k-extendible systems. In particular, we prove the following theorem:

Theorem 32 The approximation ratio of RepeatedGreedy for the problem of maximiz-
ing a non-negative submodular function subject to a k-extendible constraint is k + Ω(

√
k)

regardless of the number of iterations used by the algorithm.

We remark that the proof of Theorem 32 works even when the constraint is restricted
to be a k-matchoid, which is a special case of a k-extendible constraint.

41

Feldman, Harshaw, and Karbasi

To prove Theorem 32, we construct a family of instances on which RepeatedGreedy
performs poorly. Specifically, we construct a bad instance, denoted by Ik, for every integer
k ≥ 1 such that

√
k is also an integer. We begin the construction by defining for every

integer 1 ≤ i ≤
√
k the sets

Oi = {oi,j | 1 ≤ j ≤ 1 +
√
k} , Bi = {bi} , and Di = {di,j | 1 ≤ j ≤

√
k} .

Then, the ground set of the instance Ik is the set Nk =
⋃√

k
i=1(Oi ∪Di ∪Bi). The objective

function fk : 2
Nk → R+ of Ik is defined for every set S ⊆ Nk by fk(S) =

∑√
k

i=1 gi(S ∩
(Oi ∪ Di ∪ Bi)), where gi is an auxiliary function gi : 2

Oi∪Di∪Bi → R+ given for every set
S ⊆ Oi ∪Di ∪Bi by

gi(S) =

|{j | S ∩ {oi,j , di,j} ̸= ∅}|+ 2|S∩Di|+|S∩Oi|
4
√
k

if bi ̸∈ S ,

3+4
√
k+|S∩{oi,1+√

k}|−|S∩(Oi∪Di−oi,1+
√
k)|

4
√
k

if bi ∈ S .

Intuitively, the elements of Oi belong to the optimal solution, and the elements of Di are
decoy elements. To understand the roles of these elements, let us first ignore the elements
bi and oi,1+

√
k. Once these elements are dropped, we get that every element oi,j ∈ Oi has

a matching decoy element di,j ∈ Di such that oi,j and di,j contribute roughly the same
value to gi (i.e., once one of them is added, the other does not contribute much more).
The basic plan is to choose a constraint that makes every decoy element di,j exclude all
the optimal elements except for oi,j , which will make RepeatedGreedy produce in each
iteration a solution of the type {di,j , oi,j}. However, since every di,j elements can exclude
only k elements, this basic plan can (on its own) only result in an approximation ratio of
k + 1 (this is perhaps not surprising since the omission of bi makes gi monotone).

To improve over the above basic plan, we use also the elements bi and oi,1+
√
k. Notice

that once bi is selected, the marginal contributions of all the elements of Oi become in-
significant (this is possible because gi is non-monotone). To use this property, we choose
below a constraint that allows bi to exclude the elements of Oi′ for every i′ ̸= i. Thus,
RepeatedGreedy is forced to combine bi with O1+

√
k in a solution, and once this is done

for every 1 ≤ i ≤
√
k, enough value of the optimal solution is lost to allow the above basic

plan to prove Theorem 32.

We now formalize the above arguments, and we begin by proving some properties of the
function gi.

Observation 33 For every integer 1 ≤ i ≤
√
k, the function gi is non-negative and sub-

modular.

Proof The non-negativity of gi follows immediately from its definition since the size of the
set Oi ∪Di − oi,k+1 is 2

√
k. Therefore, we focus on proving that gi is submodular. Recall

that the function gi is defined on the ground set Oi ∪ Di ∪ Bi. Thus, gi is submodular
if gi(u | S) is a down-monotone function of S for every element u ∈ Oi ∪ Di ∪ Bi, where
S ⊆ Oi ∪Di ∪ Bi \ {u}. We do that by considering a few cases. Consider first the case in

42

Greedy: Simultaneous or Repeated?

which u = bi. In this case

gi(bi | S) =
3 + 4

√
k + |S ∩ {oi,1+√

k}| − |S ∩ (Oi ∪Di − oi,1+
√
k)|

4
√
k

− |{j | S ∩ {oi,j , di,j} ̸= ∅}| − 2|S ∩Di|+ |S ∩Oi|
4
√
k

=
3 + 4

√
k − (4

√
k − 1) · |S ∩ {oi,1+√

k}| − |S ∩ (Oi ∪Di − oi,1+
√
k)|

4
√
k

− |{j | S ∩ {oi,j , di,j} ̸= ∅, j ̸= 1 +
√
k}| − 2|S ∩Di|+ |S ∩Oi|

4
√
k

,

which is clearly a down-monotone function of S (the second equality holds since di,k+1 does
not belong to the ground set Nk, and therefore, cannot appear in S). Consider now the
case in which u = oi,j for some integer 1 ≤ j ≤

√
k. In this case

gi(oi,j | S) =

{
1

4
√
k
+ 1− |S ∩ {di,j}| if bi ̸∈ S ,

− 1
4
√
k

if bi ∈ S ,

which is a down-monotone function of S since the expression for the case bi ̸∈ S is always
non-negative. The next case is when u = oi,1+

√
k, which yields

gi(oi,1+
√
k | S) =

{
1 + 1

4
√
k

if bi ̸∈ S ,
1

4
√
k

if bi ∈ S ,

which is down-monotone. The last case to consider is the case of u = di,j for some integer
1 ≤ j ≤

√
k. In this case

gi(di,j | S) =

{
1

2
√
k
+ 1− |S ∩ {oi,j}| if bi ̸∈ S ,

− 1
4
√
k

if bi ∈ S ,

which is down-monotone since the expression for the case bi ̸∈ S is again always non-
negative.

One can note that fk is non-negative and submodular since it is the sum of
√
k functions

having these properties. To complete the description of the instance Ik, we still need to
define its constraint. To do that, let us associate each element of Ik with up to k colors from
the list {⊥} ∪ {(i, j) | 1 ≤ i ≤

√
k, 1 ≤ j ≤ 1 +

√
k}. A set is feasible under our constraint

if no two elements in it share a color (this constraint is a k-extendible set system because
it can be represented as a k-matchoid by having one matroid for each color whose role is to
allow at most a single element with that color in a feasible set). The colors of the different
elements are as follows.

• An element oi,j ∈ Nk has (i, j) as its single color.

• An element di,j ∈ Nk has all the colors in {⊥} ∪ {(i′, j′) | 1 ≤ i′ ≤
√
k, 1 ≤ j′ ≤√

k} \ {(i, j)}, which is 1 + (k − 1) = k different colors.

43

Feldman, Harshaw, and Karbasi

• An element bi ∈ Nk has all the colors in {⊥} ∪ {(i′, j′) | 1 ≤ i′ ≤
√
k, i′ ̸= i, 1 ≤ j′ ≤

1 +
√
k}, which is 1 + (

√
k − 1)(1 +

√
k) = k different colors.

The following observation shows that the optimal solution for the instance Ik has a lot
of value.

Observation 34 The value of the optimal solution for Ik is at least k + 5
√
k

4 .

Proof Note that the set
⋃√

k
i=1Oi is a feasible solution. The value of this set according to

fk is

fk

√
k⋃

i=1

Oi

 =

√
k∑

i=1

gi(Oi) =

√
k∑

i=1

(
1 +

1

4
√
k

)
· |Oi| =

√
k ·
(
1 +

1

4
√
k

)
·(1+

√
k) ≥ k+

5
√
k

4
.

Our next objective is to analyze the performance of RepeatedGreedy given the input
Ik. We do that using the following two lemmata.

Lemma 35 Let L be a strict subset of {1, 2, . . . ,
√
k}, and assume that the greedy algorithm

is applied to the instance Ik restricted to the ground set Nk \ {bi, oi,1+√
k | i ∈ L}. Then, it

outputs the set {bi, oi,1+√
k} for some i ̸∈ L.

Proof We begin the proof by considering the marginal contribution of every element of
Nk with respect to ∅.

• For every two integers 1 ≤ i ≤
√
k and 1 ≤ j ≤ 1 +

√
k, fk(oi,j | ∅) = 1 + 1

4
√
k
.

• For every two integers 1 ≤ i ≤
√
k and 1 ≤ j ≤

√
k, fk(di,j | ∅) = 1 + 2

4
√
k
.

• For every integer 1 ≤ i ≤
√
k, fk(bi | ∅) = 3+4

√
k

4
√
k

= 1 + 3
4
√
k
.

One can observe that the marginal contribution calculated above for the bi elements is
larger than the marginal contributions calculated for the other elements (and is positive),
and therefore, the first element that the greedy algorithm will add to its solution will be
one such element that is available in the ground set.

Assume therefore that the greedy algorithm has picked so far into its solution only the
element bi for some i ̸∈ L. Due to the constraint, the only elements that can still be added
to the solution once bi is in it are the elements of Oi. Their marginal contribution with
respect to {bi} is

• For every integer 1 ≤ j ≤
√
k, fk(oi,j | {bi}) = − 1

4
√
k
.

• fk(oi,1+
√
k | {bi}) =

1
4
√
k
.

Since the marginal contribution calculated for oi,1+
√
k is the largest (and is positive), the

greedy algorithm picks oi,1+
√
k as the next element to add to its solution. Furthermore,

since the marginal contributions of the remaining elements of Oi are already negative at

44

Greedy: Simultaneous or Repeated?

this stage (and hence, will be negative in the future as well), the greedy algorithm does not
pick any of them. Thus, its output set is {bi, oi,1+√

k}, as promised.

Lemma 36 Let L be a strict subset of {(i, j) | 1 ≤ i, j ≤
√
k}, and assume that the greedy

algorithm is applied to the instance Ik restricted to the ground set Nk \ ({oi,j , di,j | (i, j) ∈
L} ∪ {bi, oi,1+√

k | 1 ≤ i ≤
√
k}. Then, it outputs the set {oi,j , di,j} for some (i, j) ̸∈ L.

Proof We begin the proof by considering the marginal contribution of every element of
Nk \ {bi, oi,1+√

k | 1 ≤ i ≤
√
k} with respect to ∅.

• For every two integers 1 ≤ i ≤
√
k and 1 ≤ j ≤

√
k, fk(oi,j | ∅) = 1 + 1

4
√
k
.

• For every two integers 1 ≤ i ≤
√
k and 1 ≤ j ≤

√
k, fk(di,j | ∅) = 1 + 2

4
√
k
.

One can observe that the marginal contribution calculated above for the di,j elements is
larger than the marginal contribution calculated for the other elements (and is positive),
and therefore, the first element that the greedy algorithm adds to its solution is one such
element that is available in the ground set.

Assume therefore that the greedy algorithm has picked so far into its solution only the
element di,j for some (i, j) ̸∈ L. Due to the constraint, the only element that can still
be added to the solution once di,j is in it is oi,j , whose marginal with respect to {di,j} is
fk(oi,j | {di,j}) = 1/

√
4k, which is positive. Hence, the greedy algorithm selects at this

point oi,j , and outputs the set {oi,j , di,j}, as promised.

Combining the two last lemmata, we get the following corollary.

Corollary 37 Regardless of number of iterations of RepeatedGreedy used, the only sets
it can output are either subsets of {bi, oi,1+√

k} for some integer 1 ≤ i ≤
√
k or subsets of

{oi,j , di,j} for some integers 1 ≤ i, j ≤
√
k.

We can now upper bound the value of the output of RepeatedGreedy.

Lemma 38 The value of the output set of RepeatedGreedy given Ik is at most 1+ 1√
k
.

Proof To prove the lemma, we need to show that every set that RepeatedGreedy might
output according to Corollary 37 has a value of at most 1+ 1√

k
. We do that by considering

every possible type of such sets.

• fk(∅) = 0.

• For every integer 1 ≤ i ≤
√
k, fk({bi}) = 1 + 3

4
√
k
< 1 + 1√

k
.

• For every integer 1 ≤ i ≤
√
k, fk({bi, oi,1+√

k}) = 1 + 4
4
√
k
= 1 + 1√

k
.

• For every two integers 1 ≤ i ≤
√
k and 1 ≤ j ≤ 1+

√
k, fk({oi,j}) = 1+ 1

4
√
k
< 1+ 1√

k
.

45

Feldman, Harshaw, and Karbasi

• For every two integers 1 ≤ i, j ≤
√
k, fk({di,j}) = 1 + 2

4
√
k
< 1 + 1√

k
.

• For every two integers 1 ≤ i, j ≤
√
k, fk({oi,j , di,j}) = 1 + 3

4
√
k
< 1 + 1√

k
.

To complete the proof of Theorem 32, it remains to observe that the ratio between the
value of the optimal solution of Ik (lower bounded by Observation 34) and the maximum
value of a set that RepeatedGreedy can output (upper bounded by Lemma 38) is at least

k + 5
√
k

4

1 + 1√
k

=
4k
√
k + 5k

4
√
k + 4

= k +
k

4
√
k + 4

= k +Ω(
√
k) .

6.2 Nearly Linear Time with Knapsack Constraints

In this section, we demonstrate how RepeatedGreedy may be modified to run in nearly
linear time and achieve approximations for the more general problem (2), where there are m
additional knapsack constraints. As before, we use the marginal gain thresholding technique
of Badanidiyuru and Vondrák (2014) to ensure a nearly linear run time at the cost of an
(arbitrarily) small multiplicative increase in the approximation factor. To handle knapsack
constraints, we use the density threshold technique of Mirzasoleiman et al. (2016) with our
improved binary search analysis. These modification techniques are identical to those used
in Sections 4 and 5, and so our discussion of them in this section is considerably shorter.

These modifications are made primarily in the greedy subroutine, which we present
below as ModifiedGreedy. ModifiedGreedy is similar to Greedy, but differs in two
respects: rather than iteratively searching over all elements to find the one with largest
marginal gain, the ModifiedGreedy iteratively decreases marginal gain thresholds and
accepts any element whose marginal gain is above the threshold and whose density is
above the density threshold. The formal details of the implementation are given below
as Algorithm 8.

TheModifiedRepeatedGreedy algorithm iteratively callsModifiedGreedy to pro-
duce a solution Si, runs an unconstrained submodular maximization (USM) subroutine on
Si to obtain S′

i, and then removes Si from the ground set. Finally, ModifiedRepeated-
Greedy returns the best solution among the sequence S1, S

′
1, . . . Sℓ, S

′
ℓ produced. Note that

this is similar to RepeatedGreedy, the only difference being that ModifiedRepeated-
Greedy calls ModifiedGreedy rather than the vanilla greedy algorithm. We present
ModifiedRepeatedGreedy formally below as Algorithm 7.

Algorithm 9: ModifiedRepeatedGreedy (N , f, I, ℓ, ρ, ε)
1 Let N1 ← N .
2 for i = 1 to ℓ do
3 Run modified greedy procedure Si ←ModifiedGreedy(Ni, f, I, ρ, ε)
4 Filter the greedy solution S′

i ← USM(Si)
5 Update ground set Ni+1 ← Ni \ Si.

6 return the set S maximizing f among the sets {Si, S
′
i}ℓi=1.

46

Greedy: Simultaneous or Repeated?

Algorithm 8: ModifiedGreedy (N , f, I, ρ, ε)
1 Initialize solution S0 ← ∅ and iteration counter i← 1.
2 Let ∆f = maxu∈N f(u), and initialize threshold τ = ∆f .
3 while τ > (ε/n) ·∆f do
4 for every element u with u ∈ N such that Si−1 + u ∈ I do
5 if f(u | Si−1) ≥ max (τ, ρ ·

∑m
r=1 cr(u)) then

6 if cr(Si−1 + u) ≤ 1 for all 1 ≤ r ≤ m then
7 Let ui ← u .
8 Update the solution as Si ← Si−1 + u.
9 Update the iteration counter i← i+ 1.

10 Update marginal gain τ ← (1− ε) · τ .
11 Let u∗ ← argmaxu∈N f(u).
12 return the set S maximizing f among the sets Si and {u∗}.

In the following observation, we bound the running time of ModifiedRepeated-
Greedy and prove feasibility of the returned solution.

Observation 39 ModifiedRepeatedGreedy requires O(ℓn/ε) oracle calls, O(ℓnm/ε)
arithmetic operations, and its output S is independent in I and satisfies the knapsack con-
straints.

Proof These statements follow largely from analysis of ModifiedGreedy. Note that
each iteration of the while loop of ModifiedGreedy examines each element only once so
that O(n) oracle calls and O(mn) arithmetic operations are required during each iteration.
As discussed in the proof of Observation 19, there are at most Õ(1/ε) iterations of the
while loop when the input error term satisfying ε < 1/2. Thus, ModifiedGreedy requires
a total of Õ(n/ε) oracle queries and Õ(nm/ε) arithmetic operations. Moreover, by the
acceptance criteria, the solution returned by ModifiedGreedy is independent in I and
satisfies the knapsack constraints.

ModifiedRepeatedGreedy makes ℓ calls to ModifiedGreedy and to the USM
subroutine, which is assumed to run in linear time. Thus, the algorithm requires Õ(ℓn/ε)
oracle calls and Õ(ℓnm/ε) arithmetic operations. Finally, the solution returned by Modi-
fiedRepeatedGreedy is feasible with respect to independence and knapsack constraints
because all the outputs of ModifiedGreedy and USM have this property.

The following proposition provides an approximation guarantee for the solution returned
by ModifiedRepeatedGreedy. As in Section 5, we define E to be an indicator variable
which takes the value 1 if the knapsack check in Line 6 of ModifiedGreedy evaluates to
false at any point in the execution of ModifiedRepeatedGreedy and 0 otherwise.

47

Feldman, Harshaw, and Karbasi

Proposition 40 If (N , I) is a k-system, then the solution S returned by ModifiedRepeat-
edGreedy satisfies the following approximation guarantees.

f(S) ≥

{
1
2ρ if E = 1 ,(

1−ε
k+1+α(ℓ−1)/2

)(
(1− 1/ℓ− ε)f(OPT)− ρm

)
if E = 0 .

(13)

Moreover, when f is monotone, these approximation guarantees improve to

f(S) ≥

{
1
2ρ if E = 1 ,(

(1−ε)
k+1+α(ℓ−1)/2

)(
(1− ε)f(OPT)− ρm

)
if E = 0 .

(14)

The proof of Proposition 40 is similar to that of Proposition 31, except that we cannot
use the analysis of Gupta et al. (2010) for the approximation ratio of Greedy subject to a
k-system. Instead, we must use an analysis which takes into account the marginal gain and
density thresholding techniques. Because the main proof ideas involving the repeated greedy
technique are presented in Section 6 and the marginal gain threshold and density ratio
threshold techniques already appear in existing works, we defer the proof of Proposition 40
to Appendix B.

We would like to choose a density parameter ρ to maximize the lower bound on the
returned objective value in Proposition 40. As in Section 5, we propose a binary search
approach on the density parameter ρ using the knapsack rejection indicator E. We sketch
this idea again here for completeness.

Suppose that the f is a general non-monotone submodular function—the monotone case

may be handled similarly. Choosing the density parameter ρ∗ = 2(1−ε)
(

1−1/ℓ−ε
k+2m+1+α(ℓ−1)/2

)
≜

β · f(OPT) approximately maximizes the lower bound (13) presented in Proposition 40,
which yields an approximation guarantee of

f(S) ≥ (1− ε)

(
1− 1/ℓ− ε

k + 2m+ 1 + α(ℓ− 1)/2

)
f(OPT) .

Although the term β is known, we do not know the optimal objective value f(OPT) and so
there is no way for us to know the value of the (approximately) optimal density parameter
ρ∗. However, the submodularity of f implies that the optimal objective value lies within
the interval ∆f ≤ f(OPT) ≤ r · ∆f , and thus, the optimal density parameter ρ∗ lies in
the interval β · ∆f ≤ ρ∗ ≤ β · (r · ∆f). Mirzasoleiman et al. (2016) proposed running a
multiplicative grid search over this interval, where the repeated greedy algorithm is run
with each ρ in this grid. This grid search technique yields an approximation factor which
is only (1 + δ) times larger than if we had used the optimal ρ∗ and requires O(1/δ) calls
to the repeated greedy algorithm. As in Section 5, we improve upon this technique by
proposing a binary search method which uses the knapsack rejection indicator E. The same
approximation factor is achieved, but only Õ(1) calls to the repeated greedy algorithm are
required, which is an exponential decrease compared to the “brute-force” grid search.

We refer to this binary search routine for calling ModifiedRepeatedGreedy with
different values of the density parameter as DensitySearchRG. This is formally outlined
below as Algorithm 10.

48

Greedy: Simultaneous or Repeated?

Algorithm 10: DensitySearchRG (N , f, I, ℓ, δ, ε, β)
1 Initialize upper and lower bounds kℓ = 1, ku = ⌈1δ log n⌉.
2 Let ∆f = maxu∈N f(u), and initialize iteration counter i← 1.
3 while |ku − kℓ| > 1 do

4 Set middle bound ki =
⌈
kℓ+ku

2

⌉
.

5 Set density ratio ρi ← β ·∆f (1 + δ)ki .
6 Obtain set Si ←ModifiedRepeatedGreedy(N , f, I, ℓ, ρi, ε).
7 if Ei = 0 then
8 Increase lower bound kℓ ← ki.
9 else

10 Decrease upper bound ku ← ki.

11 Update iteration counter i← i+ 1.

12 Set density ratio ρi ← β ·∆f (1 + δ)kℓ .
13 Obtain set Si ←ModifiedRepeatedGreedy(N , f, I, ℓ, ρi, ε).
14 return the set S maximizing f among the sets {S1, . . . ST }.

The approximation guarantees of DensitySearchRG are given below in Proposi-
tion 41. The proof is omitted because it is nearly identical to that of Proposition 24.
In particular, the proof of Proposition 41 uses Proposition 40 in the same way that Propo-
sition 23 is used in the proof of Proposition 24.

Proposition 41 DensitySearchRG makes Õ(1) calls to ModifiedRepeatedGreedy.

If (N , I) is a k-system and β = 2(1 − ε)
(

1−1/ℓ−ε
k+2m+1+α(ℓ−1)/2

)
, then the solution S returned

by DensitySearchRG satisfies

f(S) ≥ (1− δ)(1− ε)

(
1− 1/ℓ− ε

k + 2m+ 1 + α(ℓ− 1)/2

)
f(OPT)

≥ (1− δ)(1− 2ε)2
(

1− 1/ℓ

k + 2m+ 1 + α(ℓ− 1)/2

)
f(OPT)

when the number of iterations ℓ is at least 2. Moreover, if f is monotone and β =
2(1−ε)2

k+2m+1+α(ℓ−1)/2 then this lower bound improves to

f(S) ≥ (1− δ)(1− ε)2
(

1

k + 2m+ 1 + α(ℓ− 1)/2

)
f(OPT)

for any number of iterations ℓ.

By setting the number of solutions ℓ to maximize the lower bounds in Proposition 41,
we may obtain the following result.

Theorem 42 Suppose that (N , I) is a k-system, the number of iterations is set to ℓ =
⌊1+

√
2(k + 2m+ 1)/α⌋, and the two error terms are set to be equal (i.e., ε = δ ∈ (0, 1/2)).

Then, DensitySearchRG requires Õ(
√
k +m · n/ε) oracle calls and Õ(

√
k +m ·mn/ε)

arithmetic operations and produces a solution whose approximation ratio is at most

(1− 2ε)−3
[
k + 2m+ (

√
2α)
√
k + 2m+ (α+ 1) + o(1)

]
.

49

Feldman, Harshaw, and Karbasi

Moreover, when f is non-negative monotone submodular and the number of iterations is set
to ℓ = 1, then the approximation ratio improves to (1− ε)−3 (k + 2m+ 1).

As discussed in Section 5, the (1−2ε)−1 multiplicative factor can always be made into a
(1+ε′) approximation factor by setting ε′ = c ·ε for some constant c < 1. We omit the proof
of Theorem 42, as the analysis is essentially the same as in the proof of Theorem 28, except
that k is replaced now by k+ 2m. Indeed, one of the interpretations of Theorem 42 is that
the ModifiedRepeatedGreedy algorithm achieves approximation guarantees similar to
RepeatedGreedy, except that the independence parameter k is replaced with k + 2m to
account for the additional knapsack constraints, while running in nearly linear time.

7. Hardness Results

In this section, we present hardness results which complement our algorithmic contribu-
tions. In particular, we study the hardness of maximizing linear functions and monotone
submodular functions over k-extendible systems. These hardness results demonstrate that
the approximation guarantees of SimultaneousGreedys for submodular maximization
over k-extendible systems are nearly optimal (up to low order terms) amongst all polyno-
mial time algorithms. We emphasize here that the following hardness results are information
theoretic, and thus, independent of computational complexity hypotheses such as P ̸= NP .
The first hardness result regards the approximability of maximizing a linear function over
a k-extendible system.

Theorem 43 There is no polynomial time algorithm for maximizing a linear function over
a k-extendible system that achieves an approximation ratio of k− ε for any constant ε > 0.

The second hardness result regards the approximability of maximizing a monotone sub-
modular function over a k-extendible system.

Theorem 44 There is no polynomial time algorithm for maximizing a non-negative mono-
tone submodular function over a k-extendible system that achieves an approximation ratio
of (1− e−1/k)−1 − ε for any constant ε > 0.

Recall that SimultaneousGreedys achieves an approximation ratio of (k+1)2/k =
k + 2+ 1/k for maximizing a submodular function over a k-extendible system and that this
approximation ratio improves to k+1 when the objective is monotone. The hardness result
of Theorem 44 shows that achieving an approximation ratio better than (1−e−1/k)−1−ε ≥
k + 1/2 − ε for monotone objectives requires exponentially many queries to the value and
independence oracles. Hence, the gap between the achieves approximation ratio and the
hardness result is a small constant. In this sense, the approximation achieved by Simulta-
neousGreedys and its variants for maximizing over a k-extendible system is near-optimal
amongst all algorithms which query the oracles polynomially many times.

SimultaneousGreedys has an approximation guarantee of k + O(
√
k) for the more

general class of k-systems, and so it is natural to wonder whether this approximation is
also near-optimal amongst polynomial time algorithms. Since k-extendible systems are a
subclass of k-systems, the hardness results presented here also apply to k-systems; however,

50

Greedy: Simultaneous or Repeated?

the gap between the k+O(
√
k) approximation and the k+ 1/2− ε hardness is larger in this

case. Indeed, it is an open question whether the additive O(
√
k) term is necessary for any

polynomial time algorithm which maximizes a non-monotone submodular objective over a
k-system or whether this factor may be improved.

The proof of Theorems 43 and 44 consists of two steps which are organized into two
respective sections. In Section 7.1, we define two k-extendible systems which are indis-
tinguishable in polynomial time. The inapproximability result for linear objectives follows
from the indistinguishability of these systems and the fact that the sizes of their maximal
sets are very different. In Section 7.2, we define monotone submodular objective functions
for the two k-extendible systems. Using the symmetry gap technique of Vondrák (2013),
we will show that these objective functions are also indistinguishable, despite being differ-
ent. Then, we will use the differences between the objective functions to prove the slightly
stronger inapproximability result for monotone submodular objectives.

7.1 Hardness for Linear Functions Over k-Extendible Systems

In this section, we construct two k-extendible systems which, after a random permutation is
applied to the ground set, are indistinguishable using polynomially many queries with high
probability. Moreover, the size of the largest base is significantly different between these
two systems.

First, we construct a k-extendible system M(k, h,m) = (Nk,h,m, Ik,h,m), which is pa-
rameterized by three positive integers k, h and m such that h is an integer multiple of 2k.
The ground set of the system consists of h groups of elements, each of size km. More for-
mally, the ground set is Nk,h,m = ∪hi=1Hi(k,m), where Hi(k,m) = {ui,j | 1 ≤ j ≤ km}. A
set S ⊆ Nk,h,m is independent if and only if it obeys the following inequality:

g(|S ∩H1(k,m)|) + |S \H1(k,m)| ≤ m ,

where the function g is a piece-wise linear function defined by

g(x) = min

{
x,

2km

h

}
+max

{
x− 2km/h

k
, 0

}
=

{
x if x ≤ 2km/h
x
k + (1− 1

k)
2km
h if x ≥ 2km/h

.

Intuitively, a set is independent if its elements do not take too many “resources”, where
most elements requires a unit of resources, but elements of H1(k,m) take only 1/k unit of
resources each once there are enough of them. Consequently, the only way to get a large
independent set is to pack many H1(k,m) elements.

For notational clarity, we drop the reference to the underlying parameters k, h, and m
in the definition of the set systems throughout the rest of the section. That is, we writeM
and Hi instead of the more burdensomeM(k, h,m) and Hi(k,m).

Lemma 45 For every choice of h and m,M is a k-extendible system.

Proof First, observe that g(x) is a monotone function, and therefore, a subset of an
independent set of M is also independent. Also, g(0) = 0, and therefore, ∅ ∈ I. This
proves thatM is an independence system. In the rest of the proof we show that it is also
k-extendible.

51

Feldman, Harshaw, and Karbasi

Consider an arbitrary independent set C ∈ I, an independent extension D of C and an
element u ̸∈ D for which C + u ∈ I. We need to find a subset Y ⊆ D \ C of size at most
k such that D \ Y + u ∈ I. If |D \ C| ≤ k, then we can simply pick Y = D \ C. Thus, we
can assume from now on that |D \ C| > k. Let

Σ(S) = g(|S ∩H1) + |S \H1|.

By definition, Σ(D) ≤ m because D ∈ I. Observe that g(x) has the property that for every
x ≥ 0,

k−1 ≤ g(x+ 1)− g(x) ≤ 1.

Thus, Σ(S) increases by at most 1 every time that we add an element to S, but decreases
by at least 1/k every time that we remove an element from S. Hence, if we let Y be an
arbitrary subset of D \ C of size k, then

Σ(D \ Y + u) ≤ Σ(D)− |Y |
k

+ 1 = Σ(D) ≤ m ,

which implies that D \ Y + u ∈ I.

Let us now show thatM contains a large independent set.

Observation 46 M contains an independent set whose size is k(m− 2km/h) + 2km/h ≥
mk(1− 2k/h). Moreover, there is such set in which all elements belong to H1.

Proof Let s = k(m− 2km/h) + 2km/h, and consider the set S = {u1,j | 1 ≤ j ≤ s}. This
is a subset of H1 ⊆ N since s ≤ km. Also,

g(|S|) = g(s)

= min

{
s,

2km

h

}
+max

{
s− 2km/h

k
, 0

}
≤ 2km

h
+max

{
[k(m− 2km/h) + 2km/h]− 2km/h

k
, 0

}
=

2km

h
+max

{
m− 2km

h
, 0

}
= m .

Since S contains only elements of H1, its independence follows from the above inequality.

Let us now define our second k-extendible systemM′ = (N , I ′). The ground set of this
system is the same as the ground set of M, but a set S ⊆ N is considered independent in
this independence system if and only if its size is at most m. Clearly, this is a k-extendible
system (in fact, it is a uniform matroid). Moreover, note that the ratio between the sizes
of the maximal sets inM andM′ is at least

mk(1− 2k/h)

m
= k(1− 2k/h) .

52

Greedy: Simultaneous or Repeated?

Our plan is to show that it takes exponential time to distinguish between the systems M
andM′, and thus, no polynomial time algorithm can provide an approximation ratio better
than this ratio for the problem of maximizing the cardinality function (i.e., the function
f(S) = |S|) subject to a k-extendible system constraint.

Consider a polynomial time deterministic algorithm that gets either M or M′ after
a random permutation was applied to the ground set. We prove below that with high
probability the algorithm fails to distinguish between the two possible inputs. Notice that
by Yao’s lemma (Yao, 1977; Borodin and El-Yaniv, 1998), this implies that for every random
algorithm there exists a permutation for which the algorithms fails with high probability to
distinguish between the inputs.

Assuming our deterministic algorithm gets M′, it checks the independence of a poly-
nomial collection of sets. Observe that the sets in this collection do not depend on the
permutation because the independence of a set in M′ depends only on its size, and thus,
the algorithm will take the same execution path given every permutation. If the same algo-
rithm now getsM instead, it will start checking the independence of the same sets until it
will either get a different answer for one of the checks (different than what is expected for
M′) or it will finish all the checks. Note that in the later case the algorithm must return
the same answer that it would have returned had it been given M′. Thus, it is enough to
upper bound the probability that any given check made by the algorithm will result in a
different answer given the inputsM andM′.

Lemma 47 Following the application of the random ground set permutation, the probability

that a set S is independent in M but not inM′, or vice versa, is at most e−
2km
h2 .

Proof Observe that as long as we consider a single set, applying the permutation to the
ground set is equivalent to replacing S with a random set of the same size. So, we are
interested in the independence inM andM′ of a random set of size |S|. If |S| > km, then
the set is never independent in either M or M′, and if |S| ≤ m, then the set is always
independent in bothM andM′. Thus, the interesting case is when m < |S| ≤ km.

Let X = |S ∩H1|. Notice that X has a hypergeometric distribution, and E[X] = |S|/h.
Thus, using bounds given in (Skala, 2013) (these bounds are based on results of (Chvátal,
1979; Hoeffding, 1963)), we get

Pr

[
X ≥ 2km

h

]
≤ Pr

[
X ≥ E[|X|] + km

h

]
≤ e

−2
(

km/h
|S|

)2
·|S|

= e
− 2k2m2

h2·|S| ≤ e−
2km
h2 .

The lemma now follows by observing that X ≤ 2km/h implies that S is a dependent set
under bothM andM′.

We now think of m as going to infinity and of h and k as constants. Notice that given
this point of view the size of the ground set N is n = mkh = O(m). Thus, the last lemma
implies, via the union bound, that with high probability an algorithm making a polynomial
number (in the size of the ground set) of independence checks will not be able to distinguish
between the cases in which it gets as inputM orM′.

Using the above results, we are now ready to prove Theorem 43.

53

Feldman, Harshaw, and Karbasi

Proof (Proof of Theorem 43): Consider an algorithm that needs to maximize the cardinality
function over the k-extendible system M after the random permutation was applied, and
let T be its output set. Notice that T must be independent in M, and thus, its size is
always upper bounded by mk. Moreover, since the algorithm fails, with high probability,
to distinguish betweenM andM′, T is with high probability also independent inM′, and
thus, has a size of at most m. Therefore, the expected size of T cannot be larger than
m + o(1) (formally, this o(1) terms represents an expression that goes to 0 as m increases
for any given choice of k and h).

On the other hand, Lemma 46 shows that M contains an independent set of size at
least mk(1− 2k/h). Thus, the approximation ratio of the algorithm is no better than

mk(1− 2k/h)

m+ o(1)
≥ mk(1− 2k/h)

m
− k

m
o(1) = k − 2k2/h− o(1) .

Choosing a large enough h (compared to k), we can make this approximation ratio larger
than k − ε for any constant ε > 0.

7.2 Hardness for Submodular Functions Over k-Extendible Systems

In this section, we prove Theorem 44, which is a stronger inapproximability result for
maximizing monotone submodular functions over k-extendible systems. As in the previous
section, we construct two problem instances which have different optimal values but—after a
permutation of the ground set—are indistinguishable using only polynomially many oracle
queries. We use again the two k-extendible systems M and M′, parametrized by h, m
and k, defined in the last section. The additional technical construction of this section is
two submodular functions f and g which take very different optimal values over the two
extendible systems. To construct these two submodular functions, we use the symmetry
gap technique developed by Vondrák (2013).

The symmetry gap technique is a general method for constructing hard instances for
submodular optimization; however, we present a relatively self-contained version of this
technique, appealing only to the main technical construction from Vondrák (2013). The rest
of this paragraph is a high level roadmap for the construction of the submodular functions
f and g based on the symmetry gap technique. Recall that the common ground set N of
our independence systems is the union of h disjoint sets of elements, i.e., N = ∪hi=1Hi. We
begin the construction of f and g by defining an initial function q : 2[h] → R+, which assigns
a non-negative value to each subset X of [h]. A key aspect of this initial function is that it
has a desired symmetry property. In our context, that means that the value of q depends
only on the cardinality of its input, i.e., |X|. Next, we consider the multilinear extension of
the initial function, which is denoted by Q : [0, 1]h → R+ and is defined as

Q(x) =
∑

X⊆[h]

q(X)
∏
i∈X

xi
∏
i/∈X

(1− xi) .

Note that Q is a function on vectors of the hypercube [0, 1]h. The next step is to apply a well-
chosen perturbation to this multilinear extension Q to obtain a function F : [0, 1]h → R+

54

Greedy: Simultaneous or Repeated?

q : 2[h] → R+

initial function

Q : [0, 1]h → R+

relaxation

F : [0, 1]h → R+

perturbation

G : [0, 1]h → R+

symmetrization

f : 2N → R+

hardness construction

g : 2N → R+

hardness construction

Figure 1: Construction of the objective functions f and g.

and then symmetrize F to obtain a second function G : [0, 1]h → R+. At this point, we
construct the desired set functions f and g on the original ground set N by mapping sets
S ∈ N to vectors x ∈ [0, 1]h. This mapping depends on the number of elements of S that
are in each of the partitions H1 . . . Hh of the ground set. Specifically, we define the mapping
as

x(S) =

(
|S ∩H1|
|H1|

,
|S ∩H2|
|H2|

, . . .
|S ∩Hh|
|Hh|

)
,

and the set functions f and g are defined as f(S) = F (x(S)) and g(S) = G(x(S)), respec-
tively. A diagram that summarizes this construction appears in Figure 1. The key technical
lemma of Vondrák (2013) shows that, by picking an appropriate perturbation and sym-
metrization method, we can guarantee that the set functions f and g are both monotone
submodular, g depends only on the cardinality of its input, and yet the two functions have
similar values on most inputs.

Now with the roadmap complete, we begin our construction of the functions f and g.
We define the initial function q : 2[h] → R+ as

q(X) = min{|X|, 1} .

Let Q : [0, 1]h → R+ be the mutlilinear extension of q. One can observe that Q(x) =
1 −

∏
i∈[h](1 − xi) for every vector x ∈ [0, 1]h. Furthermore, for every such vector x, we

define its symmetrization as x̄ = (∥x∥1/h) · 1[h] (1[h] represents here the all ones vector

in [0, 1]h). The next lemma is a direct application of Lemma 3.2 in (Vondrák, 2013), but
simplified for our setting. It follows from the symmetry in the initial function q, namely
that it is invariant under any permutation of the elements of [h].

Lemma 48 For every ε′ > 0 there exists δh > 0 and two functions F,G : [0, 1]h → R+ with
the following properties.

• For all x ∈ [0, 1]h, |F (x)−Q(x)| ≤ ε′.

• For all x ∈ [0, 1]h: G(x) = F (x̄).

• Whenever ∥x− x̄∥22 ≤ δh, F (x) = G(x).

• The first partial derivatives of F and G are absolutely continuous, ∂F
∂xu

, ∂G
∂xu
≥ 0 ev-

erywhere for every u ∈ [h], and ∂2F
∂xu∂xv

, ∂2G
∂xu∂xv

≤ 0 almost everywhere for every pair
u, v ∈ [h].

55

Feldman, Harshaw, and Karbasi

The first property formally states the sense in which F is a perturbation of Q; namely, that
their values differ only by an ε′ amount for all vectors in the unit cube. The second property
formally states the sense in which the function G is a symmetrization of F ; namely, that
evaluation ofG at x is obtained by evaluating F at the symmetrization x̄. The third property
states that the two functions are equal on input vectors which are nearly symmetrized. The
final property is used below to show the monotonicity and submodularity of the set functions
f and g (which are more formally constructed below).

Recall that the mapping from sets S ⊆ N to vectors x ∈ [0, 1]h is defined using the
partition of N into the sets H1, H2, . . . Hh as

x(S) =

(
|S ∩H1|
|H1|

,
|S ∩H2|
|H2|

, . . .
|S ∩Hh|
|Hh|

)
.

The set functions are defined as f(S) = F (x(S)) and g(S) = G(x(S)). The next lemma uses
the final property of Lemma 48 to argue that f and g are both monotone and submodular.
Its proof is essentially identical to the proof of Lemma 3.1 of (Vondrák, 2013). Nevertheless,
we include it here for completeness.

Lemma 49 The set functions f and g defined as above are monotone and submodular.

Proof We only show that f is monotone submodular, as the proof that g is monotone
submodular is identical. We begin by showing the monotonicity of f . To this end, the main
technical condition on F that we need is:

F (w) ≤ F (y) for all w, y ∈ [0, 1]h satisfying w ⪯ y , (15)

where ⪯ denotes the component-wise partial ordering. To see that this condition holds,
consider the line segment between w and y, given by v(t) = (1− t) ·w+ t · y, where t ∈ [0, 1]
is a parametrization of the line segment. Since w ⪯ y, we have that the coordinates of
y − w are all non-negative. Additionally, by Lemma 48, we have that F is differentiable
everywhere and ∂F

∂xu
≥ 0 everywhere for every u ∈ [h]. This means that each coordinate of

the gradient ∇F (v(t)) is non-negative for each t ∈ [0, 1]. Thus, the following inner product
is non-negative:

⟨∇F (v(t)), y − w⟩ ≥ 0 for all t ∈ [0, 1] .

Using this and the fundamental theorem of calculus, we obtain

F (y)− F (w) =

∫ 1

t=0
⟨∇F (v(t)), y − w⟩dt ≥ 0 .

Monotonicity of f now follows by observing that for sets A ⊆ B, the corresponding vectors
satisfy x(A) ⪯ x(B), and hence, using (15), we have

f(A) = F (x(A)) ≤ F (x(B)) = f(B) .

Next, we show that f is submodular. To this end, the main technical condition that we
need on F is that for all w, y ∈ [0, 1]h and z ⪰ 0 satisfying w ⪯ y and w+ z, y + z ∈ [0, 1]h,

F (w + z)− F (w) ≥ F (y + z)− F (y) . (16)

56

Greedy: Simultaneous or Repeated?

To see that this technical condition holds, consider the line segment between w and w + z,
which is given by w(t) = w+ t · z, where t ∈ [0, 1] is a parameterization of this line segment.
Similarly, y(t) = y+ t ·z is the line segment between y and y+z. Since w+z, y+z ∈ [0, 1]h,
all points on these two line segments are also in the unit cube and so the function F , its
gradient ∇F and its Hessian ∇2F are all well-defined on these points. Additionally, note
that for each t, w(t) ⪯ y(t) so that the vector y(t) − w(t) has non-negative coordinates.

Additionally, Lemma 48 states that ∂2F
∂xu∂xv

≤ 0 almost everywhere for every pair u, v ∈ [h].

This means that the Hessian matrix ∇2F has non-positive entries, and thus,

(y(t)− w(t))T
[
∇2F (v)

]
(y(t)− w(t)) ≤ 0

for almost all t ∈ [0, 1]. Define now

vt(s) = (1− s) · w(t) + s · y(t)

to be the line segment between w(t) and y(t), and for notation convenience, define the
function H(v) = ⟨∇F (v), z⟩. Using the fundamental theorem of calculus along with the
chain rule and the properties of the Hessian matrix ∇2F above, the above observations
yield

⟨∇F (y(t)), z⟩ − ⟨∇F (w(t)), z⟩ = H(y(t))−H(w(t))

=

∫ 1

s=0
⟨∇H(vt(s)), y(t)− w(t)⟩ds (f.t. of calculus)

=

∫ 1

s=0
(y(t)− w(t))T

[
∇2F (vt(s))

]
(y(t)− w(t))ds (chain rule)

≤ 0 ,

so that ⟨∇F (w(t)), z⟩ ≥ ⟨∇F (y(t)), z⟩ for all t ∈ [0, 1]. To prove (16), it only remains to
combine the last result with the fundamental theorem of calculus and obtain

F (w + z)− F (w) =

∫ 1

t=0
⟨∇F (w(t)), t · z⟩dt ≥

∫ 1

t=0
⟨∇F (y(t)), t · z⟩dt = F (y + z)− F (y) .

Now we can use Inequality (16) to prove submodularity of f . First, observe that for sets
A ⊆ B, the corresponding vectors x(A) and x(B) satisfy x(A) ⪯ x(B). Moreover, for
any element e /∈ B, x(A + e) = x(A) + x(e) and x(B + e) = x(B) = x(e). Thus, setting
w = x(A), y = x(B) and z = x(e), we have that

f(A+ e)− f(A) = F (x(A) + x(e))− F (x(A))

≥ F (x(B) + x(e))− F (x(B))

= f(B + e)− f(B) ,

which establishes the submodularity of f .

To define our problem instances, we associate the monotone submodular objective f
with the k-extendible system M and the monotone submodular objective g with the k-
extendible systemsM′. Let us now bound the maximum values of the resulting submodular
optimization problems.

57

Feldman, Harshaw, and Karbasi

Lemma 50 The maximum value of an independent set in M with respect to the objective
f is at least 1− 2k/h− ε′, and no more than 1 + ε′.

Proof Observation 46 guarantees the existence of an independent set S ⊆ H1 in M of
size s ≥ k(m − 2km/h). Using the first property of Lemma 48 and evaluating Q at the
corresponding vector x(S), we have that the objective value associated with this set is

f(S) = F (x(S)) ≥ Q(x(S))− ε′ =
s

km
− ε′ ≥ k(m− 2km/h)

km
− ε′ = 1− 2k/h− ε′ .

This completes the proof of the first part of the lemma. To see that the second part also
holds, we observe that q (and therefore, also Q) never takes values larger than 1; and thus,
by the first property of Lemma 48, for every set S′ ⊆ N ,

f(S′) = F (x(S′)) ≤ Q(x(S′)) + ε′ ≤ 1 + ε′ .

Lemma 51 The maximum value of a set in M′ with respect to the objective g is at most
1− e−1/k + h−1 + ε′.

Proof The objective g is monotone, and thus, the maximum value set in M′ must be of
size m. Using the second and first properties of Lemma 48 and evaluating Q, we have that
for every set S of size m, we get that

g(S) = G(x(S))

= F (x(S))

= F ((kh)−1 · 1h) ≤ Q((kh)−1 · 1h) + ε′

= 1−
(
1− 1

kh

)h

+ ε′

≤ 1− e−1/k

(
1− 1

k2h

)
+ ε′

≤ 1− e−1/k + h−1 + ε′ ,

where the first inequality holds because the inequality (1 + x/n)n ≥ ex(1 − x2/n) holds
whenever n ≥ 1 and |x| ≤ n (here x = −1/k and n = h), and the last inequality holds
because e−k/k2 ≤ 1 for every k ≥ 1.

As before, our plan is to show that after a random permutation is applied to the ground
set it is difficult to distinguish between the problem instances f with M and g with M′.
This will give us an inapproximability result which is roughly equal to the ratio between
the bounds given by the last two lemmata.

Observe that Lemma 47 holds regardless of the objective function. Thus, M and M′

are still polynomially indistinguishable. Additionally, the next lemma shows that their
associated objective functions are also polynomially indistinguishable.

58

Greedy: Simultaneous or Repeated?

Lemma 52 Following the application of the random ground set permutation, the probability
that any given set S gets two different values under the two possible objective functions is
at most 2h · e−2mkδh/h

2
.

Proof We begin by showing that f(S) = g(S) for all sets S which are made up of roughly
the same number of elements from each of the partitions H1, H2, . . . Hh. More precisely,

define Xi = |S∩Hi(k,m)|. We claim that if a set S satisfies
∣∣∣Xi − |S|

h

∣∣∣ < mk ·
√

δh
h for every

1 ≤ i ≤ h, then f(S) = g(S). Note that under this condition, the norm of the difference
between x(S) and its symmetrization x(S) is at most

∥y(S)− y(S)∥22 =
h∑

i=1

(yi(S)− yi(S))
2 <

h∑
i=1

(√
δh
h

)2

=

h∑
i=1

δh
h

= δh ,

and thus by the third property of Lemma 48, we have that F (x(S)) = G(x(S)), which
implies that f(S) = g(S) by construction of these set functions.

We now show that following the application of a random permutation to the ground set,

any given set S satisfies
∣∣∣Xi − |S|

h

∣∣∣ < mk ·
√

δh
h for every 1 ≤ i ≤ h with high probability,

and thus, f(S) = g(S) with high probability. Recall that, as long as we consider a single set
S, applying the permutation to the ground set is equivalent to replacing S with a random
set of the same size. Hence, we are interested in the value under the two objective functions
of a random set of size |S|. Since Xi has the a hypergeometric distribution, the bound of
(Skala, 2013) gives us

Pr

[
Xi ≥

|S|
h

+mk ·
√

δh
h

]
= Pr

[
Xi ≥ E[Xi] +mk ·

√
δh
h

]

≤ e
−2·

(
mk·

√
δh/h

|S|

)2

·|S|

= e
− 2δh

h
·m

2k2

|S|

≤ e−2mkδh/h
2
.

Similarly, we also get

Pr

[
Xi ≤

|S|
h
−mk ·

√
δh
h

]
≤ e−2mkδh/h

2
.

Combining both inequalities using the union bound now yields

Pr

[∣∣∣∣Xi −
|S|
h

∣∣∣∣ ≥ mk ·
√

δh
h

]
≤ 2e−2mkδh/h

2
.

Using the union bound again, the probability that
∣∣∣Xi − |S|

h

∣∣∣ ≥ mk ·
√

δh
h for any 1 ≤ i ≤ h

is at most 2h · e−2mkδh/h
2
. It follows now from the first part of the proof that f(S) ̸= g(S)

with probability at most 2h · e−2mkδh/h
2
.

59

Feldman, Harshaw, and Karbasi

Consider a polynomial time deterministic algorithm that gets either M with its corre-
sponding objective f orM′ with its corresponding objective g after a random permutation
was applied to the ground set. Consider first the case that the algorithm gets M′ and its
corresponding objective g. In this case, the algorithm checks the independence and value
of a polynomial collection of sets. We may assume, without loss of generality, that the
algorithm checks both the value and independence oracles for every set that it checks. As
before, one can observe that the sets which are queried do not depend on the permutation
because the independence of a set in M′ and its value with respect to g depend only on
the set’s size, which guarantees that the algorithm takes the same execution path given
every permutation. If the same algorithm now gets M instead, it will start checking the
independence and values of the same sets until it will either get a different answer for one
of the oracle queries (different than what is expected forM′) or it will finish all the queries.
Note that in the later case the algorithm must return the same answer that it would have
returned had it been givenM′.

By the union bound, Lemmata 47 and 52 imply that the probability that any of the sets
whose value or independence is checked by the algorithm will result in a different answer for
the two inputs decreases exponentially in m, and thus, with high probability the algorithm
fails to distinguish between the inputs, and returns the same output for both. Moreover,
note that by Yao’s principal (Yao, 1977; Borodin and El-Yaniv, 1998) this observation
extends also to polynomial time randomized algorithms.

Using these ideas, we are now ready to prove Theorem 44.
Proof (Proof of Theorem 44): Consider an algorithm that seeks to maximize f(S) over
the k-extendible system M after the random permutation was applied, and let T be its
output set. Moreover, the algorithm fails, with high probability, to distinguish between M
andM′. Thus, with high probability T is independent inM′ and has the same value under
both objective functions f and g which implies by Lemma 51 that

f(S) = g(S) ≤ 1− e−1/k + h−1 + ε′.

Since Lemma 50 shows that even in the rare case in which the algorithm does mamange to
distinguish between the functions, still f(S) ≤ 1 + ε′, this implies

E[f(T)] ≤ 1− e−1/k + h−1 + ε′ + o(1) ,

where the o(1) term represents a value that goes to zero when m goes to infinity assuming
k and h are kept constant.

On the other hand, Lemma 50 shows that M contains an independent set S whose
objective value f(S) is at least 1−2k/h−ε′. Thus, the approximation ratio of the algorithm
is no better than

1− 2k/h− ε′

1− e−1/k + h−1 + ε′ + o(1)

≥ (1− e−1/k + h−1 + ε′ + o(1))−1 − (1− e−1/k)−1(2k/h+ ε′)

≥ (1− e−1/k)−1 − (1− e−1/k)−2(h−1 + ε′ + o(1))− (1− e−1/k)−1(2k/h+ ε′)

≥ (1− e−1/k)−1 − (k + 1)2(h−1 + ε′ + o(1))− (k + 1)(2k/h+ ε′) ,

60

Greedy: Simultaneous or Repeated?

where the last inequality holds since 1 − e−1/k ≥ (k + 1)−1. Choosing a large enough h
(compared to k) and a small enough ε′ (again, compared to k), we can make this approxi-
mation ratio larger than (1− e−1/k)−1 − ε for any constant ε > 0.

8. Practical Considerations and the SubmodularGreedy.jl package

In this section, we discuss practical considerations for practitioners interested in using Si-
multaneousGreedys, RepeatedGreedy, and their variants. We also present SubmodularGreedy.jl,
an open source Julia package which implements these simultaneous and repeated greedy
techniques, their variants, and practical heuristics.

8.1 Practical Considerations: Simultaneous or Repeated?

In this paper, we have proposed simultaneous and repeated greedy techniques. The most
natural question is: which algorithmic technique is better in practice? Given enough com-
putational resources, executing both algorithms for a variety of parameter settings is most
likely to yield the best solution. Still, it is of practical interest to know which of the two
algorithms will generally perform better. One may be tempted to judge the effectiveness of
these algorithms by comparing the approximation ratios which we derived in the preceding
sections. This line of thinking would suggest that SimultaneousGreedys is clearly the
better choice in practice; however, we caution practitioners against making these judgments
based solely on the approximation ratios as they are based on worst-case analysis and may
not reflect typical problem instances.

We argue that RepeatedGreedy may be more reasonable to use in practice because
it requires less parameter tuning and is guaranteed to return a solution which is at least
as good as the greedy solution. Both SimultaneousGreedys and RepeatedGreedy
require setting the main parameter ℓ, which is roughly the number of candidate solutions
produced in both algorithms. Although our worst-case analysis yields natural choices of
ℓ based on properties of the independence system, it is ultimately a parameter which is
to be set by the user. The set of solutions produced by SimultaneousGreedys will
generally be quite different for varying ℓ and so the resulting approximation performance
of the algorithm really does depend on the choice of ℓ. In contrast, RepeatedGreedy
produces the same sequence of solutions as ℓ increases, and so the approximation can only
improve as ℓ increases. In this sense, ℓ is simpler to tune when using RepeatedGreedy. In
Section 9, we observe that the quality of the solution returned by SimultaneousGreedys
varies non-monotonically with the number of solutions ℓ. One way to address this is to run
SimultaneousGreedys for a sequence of ℓ = 1, 2, . . . , ℓmax, and return the best solution.

Another reason to use RepeatedGreedy in practice is that it is at least as effective as
the greedy algorithm; on the other hand, SimultaneousGreedys may perform worse than
the greedy algorithm if ℓ is set too large. Finally, we conjecture that the approximation ratio
of RepeatedGreedy adapts to the curvature of the submodular objective function for all
values of ℓ, while the approximation ratio of SimultaneousGreedys adapts to curvature
only for a restricted set of ℓ values; however, this is beyond the scope of the current paper.

61

Feldman, Harshaw, and Karbasi

The so-called “lazy greedy” search (Minoux, 1978) is a well-known heuristic for run-
ning iterative greedy searches which dramatically speeds up any greedy-based algorithm
for submodular optimization, including the simultaneous and repeated greedy algorithms
presented here. Rather than computing the marginal gain of each element in the ground
set, the lazy greedy approach for greedy search exploits submodularity by maintaining a
priority queue of each element along with its previously queried marginal gain. Because the
marginal gain of an element is non-increasing as the solution set grows, previously queried
marginal gains are an upper bound for the current marginal gain. In this way, the lazy
greedy approach (typically) results in only a few oracle queries until the element with the
top marginal gain is found. Although the lazy greedy approach does not improve worst-case
runtime, it greatly improves the runtime for many practical instances. Moreover, the lazy
greedy approach may be used together with the marginal gain thresholding technique for
improved performance gains. When using a simultaneous greedy algorithm, the lazy greedy
priority queue should be modified to include element-solution pairs.

8.2 The SubmodularGreedy.jl package

Our final main contribution in this paper is SubmodularGreedy.jl, an open source Julia
package which implements the simultaneous and repeated greedy algorithms described here,
along with their nearly linear time and knapsack variants. We have written the package so
that it is easy to use “out-of-the-box”, requiring little to no knowledge of the algorithmic
variants such as marginal gain thresholding and density ratio thresholding. The package is
available at this URL4 and the installation requires only one line of code using the Julia
package manager. Below, we highlight a few of the design decisions in the package:

• Supported Algorithms: The SubmodularGreedy.jl package supports all algo-
rithms presented in this paper, including SimultaneousGreedys, RepeatedGreedy,
and their nearly linear-time and knapsack variants. Additionally, the SampleGreedy
algorithm of Feldman et al. (2017) is also included.

• Oracle Models: Our implementations run in the oracle model. That is, the user
provides a value oracle which returns f(S) given S and a independence oracle which,
given S, determines whether or not S ∈ I. In this way, faster implementations of
these oracles will result in faster run time of our algorithms.

• Default Parameter Settings: The various parameters of the algorithms are set by
default to values suggested by our worst case analysis. The user may specify whether
the independence system is k-extendible or a k-system and whether the objective is
monotone, and the number of candidate solutions ℓ is set automatically. Additionally,
the β scaling terms used in the binary density search are also set based on the analysis
in this paper. However, the user may override any of these default parameter settings
in favor of their own.

• Lazy Greedy Implementations: All of our implementations feature a lazy greedy
approach (discussed above in Section 8.1) for improved practical performance. More-

4. https://github.com/crharshaw/SubmodularGreedy.jl

62

https://github.com/crharshaw/SubmodularGreedy.jl

Greedy: Simultaneous or Repeated?

over, the simultaneous greedy algorithm features a lazy greedy priority queue whose
keys are element-solution pairs, which is more appropriate for this setting.

The following functions are available in the SubmodularGreedy.jl package. A more
comprehensive description of these functions is contained in the documentation of the pack-
age. Additionally, we have included a tutorial of the package as a Jupyter notebook.

• simultaneous greedys: A fast implementation of SimultaneousGreedys using
approximate greedy search and lazy evaluations. If knapsack constraints are given,
the density threshold technique is used with default parameter settings.

• repeated greedy: A fast implementation of RepeatedGreedy using approximate
greedy search and lazy evaluations. If knapsack constraints are given, the density
threshold technique is used with default parameter settings.

• sample greedy: An implementation of the SampleGreedy algorithm of Feldman
et al. (2017) using lazy evaluations.

• greedy: A fast implementation of the Greedy algorithm using approximate greedy
search and lazy evaluations. If knapsack constraints are given, the density threshold
technique is used with default parameter settings.

• deterministic usm: An implementation of the deterministic linear-time USM algo-
rithm of Buchbinder et al. (2014).

9. Experiments

In this section, we demonstrate the efficacy of our proposed algorithms on two movie rec-
ommendation settings using a real dataset. The SubmodularGreedy.jl package contains
all implementations of algorithms used in this experimental section.

9.1 MovieLens 20M Dataset

In our experiments, we use data from the MovieLens 20M Dataset, which features 20 million
ratings of 27,000 movies by 138,000 users. For each movie, we construct a corresponding
feature vector vi by using a low-rank matrix completion technique on the user reviews, as
proposed by Lindgren et al. (2015). The feature vectors are a low dimensional representation
of the movies, based on the available user reviews. For a pair of movies i and j, we use the
feature vectors to construct a similarity score

si,j = exp
(
−σ2(1− cos(vi, vj))

)
,

where cos(vi, vj) = ⟨vi, vj⟩/(∥vi∥∥vj∥) is the cosine similarity and σ > 0 is a user-defined
bandwidth parameter which controls the decay of this similarity. In this way, the similarity
scores are based on the rating behavior of the users in the MovieLens 20M dataset. We
remark that the similarity scores are in the range [0, 1], where sij = 1 only if vi is a scaled
multiple of vj .

63

Feldman, Harshaw, and Karbasi

The MovieLens dataset also contains, for each movie, a list of genres that the movie
belongs to. There are 17 total genres, including Action, Drama, Comedy, Thriller, Musical,
and Western, to name a few. We emphasize that each movie belongs to at least one genre,
but typically several genres. By scraping the Internet Movie Database (IMDb), metadata
on the movies is collected, including the release year and the average IMDb user rating.
Metadata is collected for n = 10, 473 movies and so this is the size of the ground set.

In both experiments, we use the following non-monotone submodular objective function.

f(S) =
1

n

∑
i∈N

∑
j∈S

si,j − λ ·
∑
i∈S

∑
j∈S

si,j

 ,

where λ ∈ [0, 1] is a user-defined penalty term. The first term captures the extent to
which the set S summarizes the entirety of movies in the ground set, while the second term
penalizes sets S which have a lot of self-similarity. When λ = 1, the objective function
recovers the graph-cut function on the graph in which edges weights are the normalized
similarities, i.e., si,j/n.

9.2 Experiment 1: Movie Recommendation with Genre Limitations

In the first experiment, we aim to provide a user with a movie summarization set in which
no genre appears too frequently. This modeling formulation is most suitable for a user who
wants a diverse selection of movies from the dataset, in terms of both the MovieLens user
ratings and the genres.

Let G denote the set of movie genres. For each movie e ∈ N , let Ge ⊆ G denote the
genres that movie e belongs to. For each genre g ∈ G, let dg be a non-negative integer. We
define the genre-limiting constraint set (I,N), where S ∈ I if

|{e ∈ S : g ∈ Ge}| ≤ dg for each genre g ∈ G.

In other words, the solution set S contains at most dg movies belonging to genre g ∈ G. One
can verify that this constraint set is a k-extendible system, where k = |G|. In particular,
the genre limiting constraint is the intersection of |G| partition matroids.

In this experiment, we consider a sequence of problem instances, defined by a sequence
of constraint sets. For each genre g ∈ G, we define a genre fraction limit qg ∈ [0, 1]. For an
integer t, we define genre limits according to the genre fraction limits by dg = Round(t · qg).
In this way, we define a sequence of growing constraint sets which are indexed by integers
t ∈ N. The choice of genre fraction limits encode a user’s desired fraction of genres in
the summary, while the integer t roughly determines the size of the summary. In our
experiment, we choose the genre fraction limits of most genres to reflect the total fraction
of movies belonging to the genre, i.e., qg = |{e ∈ N : g ∈ Ge}|/n. The exceptions are
Crime, Drama and Thriller which have slightly higher genre fraction limits and Animation,
Children, Romance, and Horror which have slightly lower genre fraction limits. These
modified genre fraction limits may be understood to represent a particular user’s personal
interest. In our experiments, the modified genre fraction limits introduce local minima in
which the greedy algorithm, but not the more sophisticated variants, get stuck.

We compare SimultaneousGreedys, RepeatedGreedy, Greedy, and Sample-
Greedy for the sequence of problem instances in this experiment. We run these algorithms

64

Greedy: Simultaneous or Repeated?

5 10 15 20 25 30
Constraint Index t

0

5

10

15

20

25

30

35

40
f(S

)
Greedy
RG-10
maxSG-10
SampleGreedy

(a)

Greedy RG-10 SG-10 maxSG-10 SampleGreedy
Algorithms

0

20000

40000

60000

80000

100000

120000

140000

Or
ac

le
 C

al
ls

(b)

Figure 2: A comparison of objective value and runtime of Greedy, Sample Greedy, Repeated
Greedy, and Simultaneous Greedys for problem instances in Experiment 1. Linear time
implementations with ε ∈ {0.1, 0.01} were run, but not reported here because the execution
path did not change. Fig 2a plots the objective value attained by the algorithms against
the constraint index. Fig 2b plots the number of oracle calls for index t = 30.

for problem instances with indices t = 2, 3, . . . , 30. For each algorithm, we record the ob-
jective value of the returned solution and the required number of oracle calls for each of the
problem instances. As recommended in Section 8.1, we take the maximum of Simultane-
ousGreedys over setting ℓ = 1, 2, . . . , 10. For comparison, we set the number of solutions
to ℓ = 10 when running RepeatedGreedy. We ran the linear time implementations with
ε ∈ {0.01, 0.1}, but the execution paths of the algorithms remained unchanged (compared
to the non-linear time implementations); this is likely a result of the lazy greedy implemen-
tation. For this reason, the linear time implementations are not included in these results.
We ran SampleGreedy for 20 iterations. Figure 2 contains the results of this experiment.

As we see in Figure 2a, RepeatedGreedy and taking the maximum of ℓ = 1, 2, . . . 10
of SimultaneousGreedys return higher quality solutions than the greedy algorithm. In
fact, RepeatedGreedy and SimultaneousGreedys return solutions with larger value
than the expected value of the solution returned by SampleGreedy. Figure 2b shows
the number of oracle calls made by the various algorithms. SimultaneousGreedys and
RepeatedGreedy require more oracle calls that Greedy and taking the maximum over
ℓ = 1, 2, . . . , 10 increases this cost. On the other hand, the expected cost of SampleGreedy
is considerably lower than the other algorithms.

Figure 3 demonstrates the behavior of SimultaneousGreedys as the number of solu-
tions ℓ is varied. Figure 3a shows the objective value attained by SimultaneousGreedys
while varying the number of solutions ℓ = 1, 2, . . . , 10. For most values of ℓ, the attained
objective value is larger than that of the greedy algorithm; however, we see that there is no
value of ℓ which consistently returns the highest value of the objective function. As we see
in Figure 3b, the number of oracle calls increases with the number of solutions, which is to
be expected.

65

Feldman, Harshaw, and Karbasi

5 10 15 20 25 30
Constraint Index t

0

5

10

15

20

25

30

35

f(S
)

SG-1
SG-2
SG-3
SG-4
SG-5
SG-6
SG-7
SG-8
SG-9
SG-10
Greedy

(a)

2 4 6 8 10
Number of Solutions

12000

14000

16000

18000

20000

Or
ac

le
 C

al
ls

(b)

Figure 3: A comparison of objective value and runtime of Simultaneous Greedys when
the number of solutions ℓ is varied, for problem instances in Experiment 1. Fig 3a plots
the objective values attained by the various Simultaneous Greedys executions against the
constraint index. Fig 3b plots the number of oracle calls for index t = 30 against the number
of solutions ℓ.

9.3 Experiment 2: Movie Recommendations with Release Dates and Rating
Budget

In the second experiment, we aim to provide a user with a movie summarization set in
which movies are far apart in release date and not too many highly rated movies appear.
Our modeling formulation is most suitable for a film watching party based on poorly rated
films or “cult classics’ throughout the years’.

In this experiment, we use release date constraint and a rating budget, defined as follows.
For each movie e ∈ N , let ye denote the release year of the movie. We define the release
date constraint (I,N), where S ∈ I if

|ye − yu| ≥ 1 for all pairs e, u ∈ S .

In other words, no two movies in a feasible solution set may be released in the same year.
This independence set is 2-extendible, as adding a movie e to the current solution requires
the removal of up to 2 other movies that already belong to the set: one that appears up to
a year after ye and one that appears up to a year before ye.

For each movie e ∈ N , we let re denote the rating of the movie, according to the IMDb.
The ratings take real values between 1 and 10. The rating budget constraint is that∑

e∈S
max(re − 5.0, 0) ≤ β ,

where β is a user-defined rating budget. A set S satisfies the rating budget constraint so
long as it does not contain too many highly rated movies; indeed, this constraint does not
penalize movies which have a rating less than 5.0. Observe that the rating budget is a
knapsack constraint with coefficients ce = max(re − 5.0, 0).

66

Greedy: Simultaneous or Repeated?

60 80 100 120 140
Budget Value

45

50

55

60

65

70

75

80
f(S

)
Greedy
FastRG-2(eps=0.01)
FastSG-2(eps=0.01)
FastRG-2(eps=0.1)
FastSG-2(eps=0.1)

(a)

Greedy FastRG-2
(eps=0.01)

FastSG-2
(eps=0.01)

FastRG-2
(eps=0.1)

FastSG-2
(eps=0.1)

Algorithms

0

5000

10000

15000

20000

25000

30000

Nu
m

be
r o

f O
ra

cle
 C

al
ls

(b)

Figure 4: A comparison of objective value and runtime of Greedy, Repeated Greedy, and
Simultaneous Greedys for problem instances in Experiment 2. The linear time and knapsack
variants of Repeated Greedy and Simultaneous Greedys are displayed here. Fig 4a plots
the objective values attained by the algorithms against the budget value. Fig 4b plots the
number of oracle calls for budget value β = 150

We compare DensitySearchSGS, DensitySearchRG, and Greedy for maximizing
the diverse summarization objective over the release date and rating budget constraints.
Recall that DensitySearchSGS and DensitySearchRG incorporate the density thresh-
old and density search techniques for handling the knapsack objective, while Greedy in-
corporates the knapsack constraint into the independence constraint. For both Density-
SearchSGS and DensitySearchRG, we set the number of solutions to ℓ = 2 and we use
values δ = ε ∈ {0.1, 0.01}.

The results of the second experiment are summarized in Figure 4. In Figure 4a, we see
that DensitySearchSGS and DensitySearchRG typically yield solutions with larger
objective value than Greedy. This improvement may be attributed to the density thresh-
olding technique, where an element with high marginal gain may not be chosen if its knap-
sack cost is relatively larger. Interestingly, larger values of the error term ε yields solutions
with larger objective values. This is likely due to increased variability in the execution path
of the algorithm, leading to more diverse solutions being constructed. In Figure 4b, we see
that the density search techniques are more expensive than the greedy algorithm, especially
after the lazy greedy implementation. However, the cost of the density search techniques
decreases as the error term ε increases, due (in part) to fewer calls to the fixed-density
subroutine.

10. Conclusion

In this paper, we have presented SimultaneousGreedys, a new algorithmic technique
for constrained submodular maximization. In addition, we have improved the analysis of
RepeatedGreedy, showing that fewer repeated iterations yield a better approximation
than what was previously known to be possible. We have shown that both greedy-based
techniques can accommodate several variants, including a nearly-linear implementation and

67

Feldman, Harshaw, and Karbasi

the handling of additional knapsack constraints. Perhaps most surprisingly, the simple Si-
multaneousGreedys algorithmic technique provides the tightest known approximation
guarantees across a mix and match of many settings: k-system constraints, k-extendible
constraints, m additional knapsack constraints, non-monotone objectives, and monotone
objectives. We have provided two kinds of negative results: the first is hardness results
demonstrating that, for several of these settings, no efficient algorithm can achieve a sig-
nificantly better approximation ratio. The second is a result which shows that our analysis
of RepeatedGreedy is tight in the sense that it cannot be improved for the subclasses
considered here.

We also provided practical insights, arguing that although SimultaneousGreedys has
better worst-case approximation guarantees, RepeatedGreedy is often better suited for
practical applications. Implementations of all the algorithms considered in this paper appear
in SubmodularGreedy.jl, an open source Julia package which is available for download
at this URL5. We hope that these simple, yet theoretically sound, techniques becomes a
standard in the toolbox of practitioners across a variety of disciplines. In a larger sense, we
hope that this technique may aid the flexibility of the submodular optimization framework
as more exciting applications continue to emerge.

Acknowledgments

We graciously thank Erik Lindgren and Ehsan Kazemi for sharing the feature vectors and
the scraped IMDb meta-data used in our experiments. The work of Moran Feldman was
supported in part by ISF grants no. 1357/16 and 459/20. This work was supported in part
by an NSF Graduate Research Fellowship (DGE1122492) awarded to Christopher Harshaw.
Amin Karbasi is partially supported by NSF (IIS- 1845032), ONR (N00014-19-1-2406), and
TATA Sons Private Limited.

5. https://github.com/crharshaw/SubmodularGreedy.jl

68

https://github.com/crharshaw/SubmodularGreedy.jl

Greedy: Simultaneous or Repeated?

Appendix A. Proof of Proposition 23 (KnapsackSGS)

In this section, we prove Proposition 23, which is the main technical lemma behind the Si-
multaneousGreedys variants FastSGS and KnapsackSGS. The proposition is a meta-
analysis that reduces the conditions of approximation to simple combinatorial statements
relating the constructed solutions to OPT . Furthermore, the proposition and its proof
mirror Proposition 4, which provided a similar meta-analysis for approximation guarantees
of SimultaneousGreedys. We remind the reader that the constructions in Section 3.2
and Section 3.3 demonstrate how these conditions are satisfied for k-extendible systems and
k-systems, respectively.

We begin by restating the proposition.

Proposition 23 Suppose that there exists sets O
(j)
i for every iteration 0 ≤ i ≤ T and

solution 1 ≤ j ≤ ℓ and a value p which satisfy the following properties:

• O
(j)
0 = OPT for every solution 1 ≤ j ≤ ℓ.

• S
(j)
i + u ∈ I for every iteration 0 ≤ i ≤ T , solution 1 ≤ j ≤ ℓ, and element u ∈ O

(j)
i .

• O
(j)
i ⊆ O

(j)
i−1 ∩Ni for every iteration 1 ≤ i ≤ T and solution 1 ≤ j ≤ ℓ.

• (S
(j)
T \ S

(j)
i) ∩OPT ⊆ O

(j)
i for every iteration 0 ≤ i ≤ T and solution 1 ≤ j ≤ ℓ.

•
∑ℓ

j=1 |O
(j)
i−1 \ (O

(j)
i ∪ U

(j)
i)| ≤ p for every iteration 1 ≤ i ≤ T .

Then, the solution S produced by KnapsackSGS satisfies the following approximation
guarantees:

f(S) ≥

{
1
2ρ if E = 1 ,
1−ϵ
p+1 ·

((
1− ℓ−1 − ε

)
f(OPT)−mρ

)
if E = 0 .

(7)

Moreover, when f is monotone, these approximation guarantees improve to

f(S) ≥

{
1
2ρ if E = 1 ,
1−ϵ
p+1 ·

(
(1− ε) f(OPT)−mρ

)
if E = 0 .

(8)

As before, at each iteration 1 ≤ t ≤ T , the set O
(j)
i contains the elements of OPT

which maintain feasbility in the independence system when added to solution S
(j)
i . It

may be the case, however, that some of these elements of O
(j)
i are infeasible to add to

the corresponding solution with respect to the knapsack constraints. We note also that
there are several differences between the proof of Proposition 23 and the proof of the earlier
Proposition 4. The most significant difference is that there is now a case analysis depending
on whether or not Line 7 of KnapsackSGS ever evaluates to false, which is denoted by
the indicator variable E. If E = 1, then a simple argument lower bounds the quality of the
returned solution; and if E = 0, then we obtain an approximation guarantee using similar
techniques to those used in the proof of Proposition 4.

In the case of E = 0, the proof techniques differ in a few ways: first, the elements of

O
(j)
i are typically broken up into two groups: those with high density with respect to the

current solution and those with low density. In the analysis, the two groups of elements
are considered separately. Second, the greedy search is now approximate (up to a factor
(1 − ε)), and so this factor carries through the analysis. Finally, the remaining elements

69

Feldman, Harshaw, and Karbasi

of O
(j)
T after termination may have positive marginal gain when added to the constructed

solution, but the gain is sufficiently small so that it does not greatly decrease the quality of
the constructed solution.

Before continuing, let us set up some notation to split the elements of OPT that we

throw away into high and low density. Recall that at each iteration i, O
(j)
i−1\(O

(j)
i ∪U

(j)
i) are

the elements of OPT which must be removed so that element ui may be added to solution

S
(ji)
i . Of these elements we must throw away, we will distinguish between those with high

density and those with low density. In particular, we will define H(j)
i to be those elements of

high density with respect to solution S
(j)
i and L(j)i to be those elements of low density with

respect to solution S
(j)
i . More formally, for any solution 1 ≤ j ≤ ℓ and iteration 1 ≤ i ≤ T ,

we define the sets

H(j)
i =

{
u ∈ O

(j)
i−1 \ (O

(j)
i ∪ U

(j)
i) : f(u | S(j)

i) ≥ ρ ·
m∑
r=1

cr(u)

}
L(j)i =

[
O

(j)
i−1 \ (O

(j)
i ∪ U

(j)
i)
]
\ H(j)

i .

The following lemma is the first step towards proving Proposition 23. Intuitively, this

lemma shows that as the iteration i increases, the decrease in the value of f(O
(j)
i | S

(j)
i) is

transferred, at least to some extent, to S
(j)
i .

Lemma 53 Given the conditions of Proposition 23, if E = 0, then for every iteration
0 ≤ i ≤ T ,

(p+ 1)

(1− ε)
·

ℓ∑
j=1

f(S
(j)
i) +

ℓ∑
j=1

f(O
(j)
i | S

(j)
i) ≥

ℓ∑
j=1

f(OPT ∪ S
(j)
i)− ρ

i∑
t=1

ℓ∑
j=1

m∑
r=1

cr(L(j)i) .

Proof We prove the lemma by induction on the iterations i = 0, 1, . . . , T . The base case
is the case of i = 0, corresponding to the initialization of the algorithm. Recall that the

solutions are initialized to be empty, i.e., S
(j)
0 = ∅ for every j ∈ [ℓ]. This, together with

non-negativity of f , implies that

ℓ∑
j=1

f(OPT ∪ S
(j)
0) =

ℓ∑
j=1

f(OPT ∪∅) (by the initialization S
(j)
0 = ∅)

=

ℓ∑
j=1

f(∅) +

ℓ∑
j=1

f(OPT | ∅) (rearranging terms)

≤ (p+ 1)

(1− ε)
·

ℓ∑
j=1

f(∅) +
ℓ∑

j=1

f(OPT | ∅) (f(∅) ≥ 0 by the non-negativity)

≤ (p+ 1)

(1− ε)
·

ℓ∑
j=1

f(S
(j)
0) +

ℓ∑
j=1

f(O
(j)
0 | S

(j)
0) . (by the initialization S

(j)
0 = ∅)

This establishes the base case as the right term appearing on the right hand side of the
lemma’s inequality is zero when i = 0.

70

Greedy: Simultaneous or Repeated?

Assume now that the lemma holds for all iterations i − 1 ≥ 0, and let us prove it for

iteration i. Recall that only the solution S
(ji)
i is modified during iteration i. Thus, we have

that the change in iteration i in the first sum in the guarantee of the lemma is

(p+ 1)

(1− ε)
·

ℓ∑
j=1

f(S
(j)
i)− (p+ 1)

(1− ε)
·

ℓ∑
j=1

f(S
(j)
i−1) =

(p+ 1)

(1− ε)
· f(ui | S(ji)

i−1) . (17)

Bounding the change in the second sum in the guarantee is more involved, and is done
in three steps. The first step is the following inequality.

ℓ∑
j=1

f(O
(j)
i−1 | S

(j)
i−1)−

ℓ∑
j=1

f(O
(j)
i−1 | S

(j)
i) (18)

= f(O
(ji)
i−1 | S

(ji)
i−1)− f(O

(ji)
i−1 | S

(ji)
i) (only S

(ji)
i is modified)

= f(ui | S(ji)
i−1)− f(ui | O(ji)

i−1 ∪ S
(ji)
i−1) (rearranging terms)

≤ f(ui | S(ji)
i−1)− f(ui | OPT ∪ S

(ji)
i−1) ,

where the inequality may be proved by considering two cases. First, suppose that ui ∈
O

(ji)
i−1 ∪ S

(ji)
i−1. In this case, the inequality holds with equality, because O

(ji)
i−1 ⊆ OPT by

assumption. Consider now the case in which ui ̸∈ O
(ji)
i−1 ∪S

(ji)
i−1. In this case, our assumption

that (S
(ji)
T \S(ji)

i−1)∩OPT ⊆ O
(ji)
i−1 implies ui ̸∈ (S

(ji)
T \S(ji)

i−1)∩OPT , which implies in its turn

ui ̸∈ OPT since ui ∈ S
(ji)
i ⊆ S

(ji)
T and ui ∈ Ni−1 ⊆ N \ S(ji)

i−1. Therefore, we get that in this

case that Inequality (18) holds due to the submodularity of f (recall that O
(ji)
i−1 ⊆ OPT by

our assumption).
For the second step in the proof of the above mentioned bound, we use submodularity

to bound the marginal gain f(O
(j)
i−1 | S

(j)
i) using sums of marginal gains of single elements.

Observe that

ℓ∑
j=1

f(O
(j)
i−1 | S

(j)
i) ≤

ℓ∑
j=1

f(O
(j)
i | S

(j)
i) +

ℓ∑
j=1

∑
u∈O(j)

i−1\O
(j)
i

f(u | S(j)
i) (submodularity, O

(j)
i ⊆ O

(j)
i−1)

=

ℓ∑
j=1

f(O
(j)
i | S

(j)
i) +

ℓ∑
j=1

∑
u∈O(j)

i−1\(O
(j)
i ∪U(j)

i)

f(u | S(j)
i) . (U

(j)
i ⊆ S

(j)
i)

The third step is to analyze the inner sum above by partitioning the elements u ∈
O

(j)
i−1 \ (O

(j)
i ∪ U

(j)
i) based on their density, i.e. into the two sets H(j)

i and L(j)i (recall that

these two sets are indeed a partition of O
(j)
i−1 \ (O

(j)
i ∪ U

(j)
i)).∑

u∈O(j)
i−1\(O

(j)
i ∪U(j)

i)

f(u | S(j)
i) =

∑
u∈H(j)

i

f(u | S(j)
i) +

∑
u∈L(j)

i

f(u | S(j)
i)

The second sum may be bounded by virtue of the low density of its elements, as∑
u∈L(j)

i

f(u | S(j)
i) ≤

∑
u∈L(j)

i

ρ ·
m∑
r=1

cr(u) = ρ

m∑
r=1

cr(L(j)i) .

71

Feldman, Harshaw, and Karbasi

Recall now that by the approximate greedy search, the element-solution pair (ui, S
(ji)
i) has

the property that f(ui | S(ji)
i) ≥ (1 − ε)f(u | S(j)

i) for all element-solution pairs (u, S
(j)
i)

where S
(j)
i +u is feasible with respect to independence system, and u has high density with

respect to S
(j)
i . In particular, we have that f(ui | S(ji)

i) ≥ (1− ε)f(u | S(j)
i) for all u ∈ H(j)

i .
This yields an upper bound on the first sum,

∑
u∈H(j)

i

f(u | S(j)
i) ≤

∑
u∈H(j)

i

(1− ε)−1f(ui | S(ji)
i) = (1− ε)−1f(ui | S(ji)

i) · |H(j)
i | .

Combining the upper bounds we have obtained on the sums corresponding to L(j)i and H(j)
i

yields

ℓ∑
j=1

∑
u∈O(j)

i−1\(O
(j)
i ∪U(j)

i)

f(u | S(j)
i) ≤ ρ

ℓ∑
j=1

m∑
r=1

cr(L(j)i) +
ℓ∑

j=1

(1− ε)−1f(ui | S(ji)
i) · |H(j)

i |

= ρ
ℓ∑

j=1

m∑
r=1

cr(L(j)i) + (1− ε)−1f(ui | S(ji)
i) ·

ℓ∑
j=1

|H(j)
i | (rearranging)

≤ ρ
ℓ∑

j=1

m∑
r=1

cr(L(j)i) + (1− ε)−1f(ui | S(ji)
i) ·

ℓ∑
j=1

|O(j)
i−1 \ (O

(j)
i ∪ U

(j)
i)|

≤ ρ
ℓ∑

j=1

m∑
r=1

cr(L(j)i) +
p

1− ε
· f(ui | S(ji)

i) ,

where the cardinality bound |H(j)
i | ≤ |O

(j)
i−1 \ (O

(j)
i ∪U

(j)
i)| in second inequality follows from

the containment H(j)
i ⊆ O

(j)
i−1 \ (O

(j)
i ∪ U

(j)
i) and the last inequality follows from the final

condition of the proposition which states that
∑ℓ

j=1 |O
(j)
i−1 \ (O

(j)
i ∪ U

(j)
i)| ≤ p . Together

with the inequality from this second step, this yields

ℓ∑
j=1

f(O
(j)
i−1 | S

(j)
i) ≤

ℓ∑
j=1

f(O
(j)
i | S

(j)
i) + ρ

ℓ∑
j=1

m∑
r=1

cr(L(j)i) +
p

1− ε
· f(ui | S(ji)

i) . (19)

72

Greedy: Simultaneous or Repeated?

The remainder of the proof consists of combining the three inequalities (17), (18) and (19)
with the induction hypothesis, as follows.

(p+ 1)

(1− ε)
·

ℓ∑
j=1

f(S
(j)
i) +

ℓ∑
j=1

f(O
(j)
i | S

(j)
i)

≥

(p+ 1)

(1− ε)
·

ℓ∑
j=1

f(S
(j)
i−1) +

(p+ 1)

(1− ε)
· f(ui | S(ji)

i−1)


+

 ℓ∑
j=1

f(O
(j)
i−1 | S

(j)
i)− p

(1− ε)
· f(ui | S(ji)

i−1)− ρ
ℓ∑

j=1

m∑
r=1

cr(L(j)i)


≥ (p+ 1)

(1− ε)
·

ℓ∑
j=1

f(S
(j)
i−1) +

ℓ∑
j=1

f(O
(j)
i−1 | S

(j)
i) + f(ui | S(ji)

i−1)− ρ
ℓ∑

j=1

m∑
r=1

cr(L(j)i)

≥ (p+ 1)

(1− ε)
·

ℓ∑
j=1

f(S
(j)
i−1) +

ℓ∑
j=1

f(O
(j)
i−1 | S

(j)
i−1) + f(ui | OPT ∪ S

(ji)
i−1)− ρ

ℓ∑
j=1

m∑
r=1

cr(L(j)i)

≥
ℓ∑

j=1

f(OPT ∪ S
(j)
i−1)− ρ

i−1∑
t=1

ℓ∑
j=1

m∑
r=1

cr(L(j)i) + f(ui | OPT ∪ S
(ji)
i−1)− ρ

ℓ∑
j=1

m∑
r=1

cr(L(j)i)

=
ℓ∑

j=1

f(OPT ∪ S
(j)
i−1) + f(ui | OPT ∪ S

(ji)
i−1)− ρ

i∑
t=1

ℓ∑
j=1

m∑
r=1

cr(L(j)i)

=
ℓ∑

j=1

f(OPT ∪ S
(j)
i)− ρ

i∑
t=1

ℓ∑
j=1

m∑
r=1

cr(L(j)i)

where the first inequality follows from (17) and (19), the second inequality holds since

f(ui | S(ji)
i−1) is guaranteed to be non-negative, the third inequality follows from (18), and

the fourth inequality follows by induction.

Corollary 54 Given the conditions of Proposition 23, if E = 0, then the solutions con-
structed by KnapsackSGS satisfy the lower bound

(p+ 1)

(1− ε)

ℓ∑
j=1

f(S
(j)
T) ≥

ℓ∑
j=1

f(OPT ∪ S
(j)
T)− εℓ∆f − ρℓm .

Proof Our first step is to show that f(O
(j)
T | S

(j)
T) is negligable for every solution 1 ≤ j ≤ ℓ.

To this end, consider any fixed solution S
(j)
T for 1 ≤ j ≤ ℓ. By the termination conditions

of KnapsackSGS, each element u ∈ NT satisfies

f(u | S(j)
T) < max

(
(ε/n) ·∆f , ρ ·

m∑
r=1

cr(u)

)
. (20)

73

Feldman, Harshaw, and Karbasi

In particular, this holds for each u ∈ O
(j)
T , as the set O

(j)
T is contained in NT . We now

partition the set O
(j)
T into two groups: the elements with high density and the elements of

low density. More formally, let L(j)T+1 be the elements in O
(j)
T with low density,

L(j)T+1 =

{
u ∈ O

(j)
T : f(u | S(j)

T) < ρ ·
m∑
r=1

cr(u)

}
,

and define H(j)
T+1 = O

(j)
T \ L

(j)
T+1 to be the high density elements. We claim that adding

any high density element in H(j)
T+1 to the solution S

(j)
T has a marginal gain of at most

(ε/n) ·∆f . To see this, observe that because the element u has high density, (20) implies

that f(u | S(j)
T) < (ε/n) ·∆f .

Using the above observations, we can now bound the marginal gain of adding O
(j)
T to

S
(j)
T as follows.

f(O
(j)
T | S

(j)
T) ≤

∑
u∈O(j)

T

f(u | S(j)
T) (submodularity)

=
∑

u∈H(j)
T+1

f(u | S(j)
T) +

∑
u∈L(j)

T+1

f(u | S(j)
T) (partitioning the sum)

≤
∑

u∈H(j)
T+1

ε

n
·∆f +

∑
u∈L(j)

T+1

ρ ·
m∑
r=1

cr(u) (above bound)

=
|H(j)

T+1|
n

· ε∆f + ρ

m∑
r=1

cr(L(j)T+1)

≤ ε∆f + ρ
m∑
r=1

cr(L(j)T+1).

Substituting the above bound into the guarantee of Lemma 53 for the final iteration
i = T implies

(p+ 1)

(1− ε)
·

ℓ∑
j=1

f(S
(j)
T) ≥

ℓ∑
j=1

f(OPT ∪ S
(j)
i)−

ℓ∑
j=1

f(O
(j)
T | S

(j)
T)− ρ

T∑
t=1

ℓ∑
j=1

m∑
r=1

cr(L(j)t)

≥
ℓ∑

j=1

f(OPT ∪ S
(j)
i)−

ℓ∑
j=1

[
ε∆f + ρ

m∑
r=1

cr(L(j)T+1)

]
− ρ

T∑
t=1

ℓ∑
j=1

m∑
r=1

cr(L(j)t)

=

ℓ∑
j=1

f(OPT ∪ S
(j)
i)− εℓ∆f − ρ

T+1∑
t=1

ℓ∑
j=1

m∑
r=1

cr(L(j)t)

To complete the proof of the corollary, we need to show that
∑T+1

t=1

∑ℓ
j=1

∑m
r=1 cr(L

(j)
t) ≤

ℓm. To this end, observe that for each solution 1 ≤ j ≤ ℓ, the sets L(j)1 , . . .L(j)T+1 are disjoint
subsets of OPT . Also observe that OPT is a feasible solution so that it satisfies all knapsack

74

Greedy: Simultaneous or Repeated?

constraints, cr(OPT) ≤ 1 for all 1 ≤ r ≤ m. Using these facts and the modularity of the
knapsack functions, we have that

T+1∑
t=1

ℓ∑
j=1

m∑
r=1

cr(L(j)t) =

ℓ∑
j=1

m∑
r=1

T+1∑
t=1

cr(L(j)t) (rearranging terms)

=

ℓ∑
j=1

m∑
r=1

cr

(
∪T+1
t=1 L

(j)
t

)
(disjointedness, modularity)

≤
ℓ∑

j=1

m∑
r=1

cr (OPT) (∪T+1
t=1 L

(j)
t ⊆ OPT)

≤
ℓ∑

j=1

m∑
r=1

1 (feasibility of OPT)

= ℓm .

Proof (Proof of Proposition 23): The analysis proceeds with two cases, depending on
whether E = 1 or E = 0.

First, suppose that E = 1, which is to say that Line 7 evaluates to false at some
point during the execution of the algorithm. This happens when, at some iteration i there

exists a solution S
(j)
i and a high density element u such that adding the element to this

set is feasible in the independence system, but the knapsack constraint is violated. More

precisely, the set A ≜ S
(j)
i + u is independent (i.e., A ∈ I) but cr(S

(j)
i + u) > 1 for some

knapsack function 1 ≤ r ≤ m. Although A itself is not feasible, we claim that f(A) > ρ.
To this end, let us order the elements of A according to the order in which they were added

to S
(j)
i , with u appearing last, i.e., A = {u1, u2, . . . uk} with uk = u. For 1 ≤ i ≤ k, define

the sets Ai = {u1, u2, . . . ui} and A0 = ∅. Then, we obtain the lower bound

f(A) =

k∑
i=1

f(ui | Ai−1) ≥
k∑

i=1

ρ ·
m∑
r=1

cr(ui) = ρ

m∑
r=1

cr(A) > ρ · 1 = ρ ,

where the first inequality follows from the fact that each of the elements has high density
when it is added to the solution and the second inequality follows from the fact that A
violates at least one of the knapsack constraints.

The next step is to show that between S
(j)
i and {u}, at least one of these has value

larger than ρ/2. In particular, observe that

max
{
f(S

(j)
i), f({u})

}
≥ 1

2

(
f(S

(j)
i) + f({u})

)
≥ 1

2

(
f(S

(j)
i + u) + f(∅)

)
≥ 1

2
f(A) >

ρ

2
,

where the first inequality bounds the maximum by the average, the second inequalities
follows by submodularity, the third inequality follows by non-negativity, and the final in-
equality follows from the bound above.

75

Feldman, Harshaw, and Karbasi

Recall now that the algorithm returns the set S among the sets S
(1)
T , . . . S

(ℓ)
T , and {e} =

argmaxu∈N f(u) which maximizes the objective value. One can note that the final solutions

have larger objective values than the solutions at iteration i (i.e., f(S
(j)
T) ≥ f(S

(j)
i)) because

only elements with positive marginal gains are added to the solutions by the algorithm. We
also note that by construction of e, we have that f({e}) ≥ f({u}) because u is a feasible
element. Together, these facts imply that

f(S) ≥ max
{
S
(1)
T , . . . S

(ℓ)
T , {e}

}
≥ max

{
f(S

(j)
T), f(e)

}
≥ max

{
f(S

(j)
i), f(u)

}
>

ρ

2
,

which completes our proof for the case of E = 1.

Next, we turn our attention to the case of E = 0. Recall that the algorithm returns

the set S among the sets S
(1)
T , . . . S

(ℓ)
T , and {e} = argmaxu∈N f(u) which maximizes the

objective value. Therefore, to lower bound f(S), it suffices to only consider the maximum

over the sets S
(1)
T , . . . S

(ℓ)
T . Applying an averaging argument to the guarantee of Corollary 54

yields

f(S) ≥ max
{
S
(1)
T , . . . S

(ℓ)
T

}
≥ 1

ℓ

ℓ∑
j=1

f(S
(j)
T) ≥ (1− ε)

(p+ 1)

1

ℓ

ℓ∑
j=1

f(OPT ∪ S
(j)
T)− ε∆f − ρm

 .

(21)
Consider now a random set S̄ chosen uniformly at random from the ℓ constructed solutions

S
(1)
T , S

(2)
T , . . . , S

(ℓ)
T . Since these solutions are disjoint by construction, an element can belong

to S̄ with probability at most ℓ−1. Hence, by applying Lemma 7 to the submodular function
g(S) = f(OPT ∪ S), we get

1

ℓ
·

ℓ∑
j=1

f(OPT ∪S(ℓ)
T) = E[f(OPT ∪ S̄)] = E[g(S̄)] ≥ (1− ℓ−1) · g(∅) = (1− ℓ−1) · f(OPT) .

Plugging this inequality into (21), and using the fact that ∆f ≤ OPT , we obtain the lower
bound

f(S) ≥ (1− ε)

(p+ 1)

(
(1− ℓ−1) · f(OPT)− ε∆f − ρm

)
≥ (1− ε)

(p+ 1)

(
(1− ℓ−1) · f(OPT)− εf(OPT)− ρm

)
=

(1− ε)

(p+ 1)

(
(1− ℓ−1 − ε) · f(OPT)− ρm

)
.

Suppose further that f is monotone. In this case, relating f(OPT ∪ S) to f(OPT) is
more straightforward and does not require a loss of approximation. In particular, applying
monotonicity directly to (21), we get

f(S) ≥ (1− ε)

(p+ 1)

1

ℓ

ℓ∑
j=1

f(OPT ∪ S
(j)
T)− ε∆f − ρm

 (Inequality (21))

76

Greedy: Simultaneous or Repeated?

≥ (1− ε)

(p+ 1)

1

ℓ

ℓ∑
j=1

f(OPT)− ε∆f − ρm

 (monotonicity)

=
(1− ε)

(p+ 1)

(
f(OPT)− ε∆f − ρm

)
≥ (1− ε)

(p+ 1)

(
f(OPT)− εf(OPT)− ρm

)
(∆f ≤ f(OPT))

=
(1− ε)

(p+ 1)

(
(1− ε)f(OPT)− ρm

)
.

Appendix B. Proof of Proposition 40 (ModifiedRepeatedGreedy)

In this section, we present a proof of Proposition 40 which provides approximation guaran-
tees for ModifiedRepeatedGreedy when the density parameter ρ is fixed. We begin by
restating the proposition.

Proposition 40 If (N , I) is a k-system, then the solution S returned by ModifiedRepeat-
edGreedy satisfies the following approximation guarantees.

f(S) ≥

{
1
2ρ if E = 1 ,(

1−ε
k+1+α(ℓ−1)/2

)(
(1− 1/ℓ− ε)f(OPT)− ρm

)
if E = 0 .

(13)

Moreover, when f is monotone, these approximation guarantees improve to

f(S) ≥

{
1
2ρ if E = 1 ,(

(1−ε)
k+1+α(ℓ−1)/2

)(
(1− ε)f(OPT)− ρm

)
if E = 0 .

(14)

The main technical aspect is to prove an approximation guarantee for Modified-
Greedy when (N , I) is a k-system. Roughly speaking, this will be similar to the analysis
of the vanilla greedy algorithm for k-systems (Lemma 3.2 of Gupta et al. (2010)), but we
will need to account for the marginal gain thresholding and the knapsack density technique.

In order to analyze ModifiedGreedy, we now introduce the following lemma, which
is a structural result about k-systems. This lemma is implicit in the proof of Lemma 3.2 of
Gupta et al. (2010), but we choose to state it separately since our use of it is slightly more
involved. We remark that a nearly identical construction appears in Section 3.3.

Lemma 55 Consider in an arbitrary X ∈ I and let T be the number of iterations of
ModifiedGreedy. There exists sets C1, C2, . . . CT+1 with the following properties:

• The sets C1, C2, . . . CT+1 form a disjoint partition of X.

• For every integer 1 ≤ t ≤ T , |Ct| ≤ k.

• For every integer 1 ≤ t ≤ T + 1, Ct ⊆ {u | St−1 + u ∈ I}.

77

Feldman, Harshaw, and Karbasi

Proof We construct the sets C1, C2, . . . CT+1 recursively, with knowledge of the algorithm’s
execution path. We begin by defining the last set,

CT+1 = {u ∈ X \ ST | ST + u ∈ I} .

We construct the remaining sets recursively. For an integer 1 ≤ t ≤ T , define the set Bt

to be the elements in X not contained in Ct+1 ∪ · · · ∪ CT+1 which are feasible to add to
solution St−1, i.e.,

Bt = {u ∈ (X \ St−1) \ (∪T+1
s=t+1Cs) | St−1 + u ∈ I} .

We define Ct to be an arbitrary subset of Bt of size max(|Bt|, k). At this point, the second
and third properties in the lemma follow by construction of the sets C1, C2, . . . CT+1. In the
remainder of the proof, we show that the sets C1, C2, . . . , CT+1 satisfy the first property;
that is, they form a disjoint partition of X.

By construction, it is clear that the sets C1, C2, . . . , CT+1 are disjoint and that ∪T+1
t=1 Ct ⊆

X. Thus, we seek to show that X ⊆ ∪T+1
t=1 Ct. To do this, we prove the stronger guarantee

that for each integer 1 ≤ t ≤ T + 1,

|X \ (∪T+1
s=t Cs)| ≤ k · |St−1| .

Note that X ⊆ ∪T+1
t=1 Ct follows as S0 = ∅. We prove this inequality by induction, starting

at t = T + 1 as the base case and working backwards. By definition of CT+1, no element
of X \ (CT+1 ∪ ST) can be added to ST without violating independence, and thus, ST is a
base of (X \CT+1)∪ST . In contrast, X \CT+1 is an independent subset of (X \CT+1)∪ST

because it is a subset of the independent set X. Thus, since (N , I) is a k-system,

|X \ CT+1| ≤ k · |ST | ,

which establishes the claim for t = T + 1. Assume that the claim holds for all integers
t + 1, t + 2, . . . , T + 1, and let us prove it for t. There are two cases to consider. First,
suppose that |Ct| = k. In this case,

|X \ ∪T+1
s=t Cs| = |X \ ∪T+1

s=t+1Cs| − |Ct|
= |X \ ∪T+1

s=t+1Cs| − k

≤ k · |St| − k

= k · |St−1| ,

where the inequality follows by induction hypothesis and the first equality holds because
Ct is disjoint from all Ct+1, . . . , CT+1 and Ct ⊆ X. The second case is that |Ct| < k. In
this case, Ct = Bt and so no element of X \ (∪T+1

s=t Cs ∪ St−1) can be added to St−1 without
violating independence, and thus St−1 is a base of (X \ ∪T+1

s=t Cs) ∪ St−1. This allows us to
prove the claim in the same way as we did for the base case. In particular, observe that
X \ ∪T+1

s=t Cs is an independent subset of (X \ ∪T+1
s=t Cs) ∪ St−1 because it is also a subset of

the independent set X. Thus, because (N , I) is a k-system,

|X \ ∪T+1
s=t Cs| ≤ k · |St−1| ,

78

Greedy: Simultaneous or Repeated?

which completes the proof by induction.

Now we are ready to prove the approximation guarantee of ModifiedGreedy.

Lemma 56 Suppose that I is a k-system and that S is the set returned by Modified-
Greedy. Then,

f(S) ≥

{ (
1−ε
k+1

)
· [f(OPT ∪ S)− ε ·∆f − ρm] if E = 0

ρ/2 if E = 1
.

Proof Let T denote the number of iterations in ModifiedGreedy so that the sequence
of solutions it produces is S0, S1, . . . , ST , where ST = S is the solution that is returned.

In the first case, suppose that E = 1, which is to say that Line 6 evaluates to false at
some point during the execution of the algorithm. This happens when, at some iteration t
there exists a solution St and a high density element u such that adding the element to this
set is feasible in the independence system, but the knapsack constraint is violated. More
precisely, the set A ≜ St + u is independent (i.e., A ∈ I) but cr(A) > 1 for some knapsack
function 1 ≤ r ≤ m. Although A itself is not feasible, we claim that f(A) > ρ. To this
end, let us order the elements of A according to the order in which they were added to St,
with u appearing last, i.e., A = {u1, u2, . . . , uk} with uk = u. For 1 ≤ t ≤ k, define the sets
At = {u1, u2, . . . , ut} and A0 = ∅. Then, we obtain the lower bound

f(A) =
k∑

t=1

f(ut | At−1) ≥
k∑

t=1

ρ ·
m∑
r=1

cr(ut) = ρ
m∑
r=1

cr(A) > ρ · 1 = ρ ,

where the first inequality follows from the fact that each of the elements has high density
when it is added to the solution and the second inequality follows from the fact that A
violates at least one of the knapsack constraints.

The next step is to show that between St and {u}, at least one of these has value larger
than ρ/2. In particular, observe that

max {f(St), f({u})} ≥
1

2
(f(St)) + f({u})) ≥ 1

2
(f(St + u) + f(∅)) ≥ 1

2
f(A) >

ρ

2
,

where the first inequality bounds the maximum by the average, the second inequalities
follows by submodularity, the third inequality follows by non-negativity, and the final in-
equality follows from the bound above.

Recall now that the algorithm returns the set S which has the larger objective value
among ST and {u∗}. One can note that the final solution has larger objective value than the
solution at iteration t (i.e., f(ST) ≥ f(St)) because only elements with positive marginal
gains are added to the solutions by the algorithm. We also note that by construction of u∗,
we have that f({u∗}) ≥ f({u}) because u is a feasible element. Together, these facts imply
that

f(S) ≥ max {f(ST), f(u
∗)} ≥ max {f(St), f(u)} >

ρ

2
,

which completes our proof for the case of E = 1.

79

Feldman, Harshaw, and Karbasi

In the second case, suppose that E = 0 so that the algorithm never considers an element
which might violate the knapsack constraints. We seek to upper bound the marginal gain
of adding OPT to the returned solution ST . To this end, we begin by splitting the elements
of OPT into two sets: those elements with high density with respect to ST and those with
low density. More precisely, define the set of low density elements to be

L =

{
u ∈ OPT | f(u | ST) < ρ ·

m∑
r=1

cr(u)

}
,

and define the set of high density elements to be the remaining elements of OPT,

H = OPT \ L =

{
u ∈ OPT | f(u | ST) ≥ ρ ·

m∑
r=1

cr(u)

}
.

By submodularity of f , we may now bound the marginal gain of adding OPT to ST in
terms of adding the high and low density elements separately as

f(OPT ∪ ST)− f(ST) ≤ f(H | ST) + f(L | ST) . (22)

We now upper bound the marginal gain of adding the low density elements L to the
solution ST . Observe that

f(L | ST) ≤
∑
u∈L

f(u | ST) (by submodularity of f)

≤
∑
u∈L

ρ ·
m∑
r=1

cr(u) (definition of L)

= ρ ·
m∑
r=1

cr(L) (by modularity)

≤ ρ ·
m∑
r=1

cr(OPT) (L ⊂ OPT)

≤ ρm , (23)

where the last line follows because OPT is feasible and so it satisfies the cardinality con-
straints cr(OPT) ≤ 1 for all 1 ≤ r ≤ m.

We now seek to upper bound the marginal gain of adding the high density elements
H to the solution ST . However, this direction is more involved and it is simpler to work
backwards by lower bounding the objective value of the returned solution in terms of the
high density elements of OPT . Taking X = H, define a partition of its elements into sets
C1, . . . , CT , CT+1 as in the statement of Lemma 55. By non-negativity of f and a telescoping

80

Greedy: Simultaneous or Repeated?

sum, we have

k · f(ST) ≥ k · (f(ST)− f(S0)) (non-negativity of f)

= k
T∑
t=1

[f(St)− f(St−1)] (telescoping sum)

=
T∑
t=1

k · f(ut | St−1) (distributing)

≥
T∑
t=1

|Ct| · f(ut | St−1) (by Lemma 55, |Ct| ≤ k)

Note that at each iteration, the chosen element ut is a feasible high density element
which has a marginal gain within a (1 − ε) multiplicative factor of the largest marginal
gain among all such elements. We may now use the greedy selection of the element ut and
submodularity of f to establish the following lower bound:

T∑
t=1

|Ct| · f(ut | St−1) ≥
T∑
t=1

|Ct| · (1− ε)max
u∈Ct

f(u | St−1) (approx. greedy selection)

≥ (1− ε)

T∑
t=1

|Ct| ·
1

|Ct|
∑
u∈Ct

f(u | St−1) (max ≥ average)

≥ (1− ε)
T∑
t=1

f(Ct | St−1) (submodularity of f)

≥ (1− ε)
T∑
t=1

f(Ct | ST) (submodularity of f)

= (1− ε)

[
T+1∑
t=1

f(Ct | ST)− f(CT+1 | ST)

]
(adding and subtracting term)

≥ (1− ε)
[
f(∪T+1

t=1 Ct | ST)− f(CT+1 | ST)
]

(subadditivity of f)

= (1− ε) [f(H | ST)− f(CT+1 | ST)] (Lemma 55) ,

where subadditivity of f follows from submodularity and non-negativity.

Our final goal now is to bound the value f(CT+1 | ST), which is the marginal gain of
all the elements of H that were not added to the final solution ST , but could maintain
feasibility in I if added. Consider an element e ∈ CT+1. Because u /∈ ST and E = 0, it
must be the case that the marginal gain of this element to the final solution is bounded
by f(u | ST) < max (τ, ρ ·

∑m
r=1 cr(e)). However, this element e is in H so it has high

density with respect to the solution ST . Thus, it must be the case that f(u | ST) < τ .
By the termination condition, we have that τ < (ε/n) ·∆f , which implies a bound on the
marginal gain f(u | ST) < (ε/n) · ∆f . This upper bound on the marginal gain, together

81

Feldman, Harshaw, and Karbasi

with submodularity of f and the (trivial) cardinality bound |CT+1| ≤ n, yields

f(CT+1 | ST) ≤
∑

u∈CT+1

f(u | ST) ≤
∑

u∈CT+1

(ε/n) ·∆f ≤ ε ·
(
|CT+1|

n

)
∆f ≤ ε ·∆f .

Using these inequalities together yields an upper bound on the marginal gain of adding the
high density elements to the returned solution,

f(H | ST) ≤
k

1− ε
· f(ST) + ε ·∆f . (24)

Thus, we may now bound the marginal gain of adding OPT to the final solution ST by
combining the above upper bounds on adding the high and low density elements. More
precisely, substituting inequalities (23) and (24) into inequality (22) yields

f(OPT ∪ ST)− f(ST) ≤ f(H | ST) + f(L | ST) ≤
k

1− ϵ
· f(ST) + ε∆f + ρm

Rearranging this inequality and using the inequality 1 ≤ (1− ε)−1, we obtain

f(ST) ≥
1− ε

k + 1

(
f(OPT ∪ ST)− ε∆f − ρm

)
.

We are now ready to prove the approximation guarantees of ModifiedRepeated-
Greedy as stated in Proposition 40. The approximation analysis of ModifiedRepeated-
Greedy is similar to the approximation analysis of RepeatedGreedy in the main paper.
The main difference is that we apply Lemma 56 when considering the ModifiedGreedy
subroutine rather than applying Lemma 3.2 of Gupta et al. (2010), which holds only for
the vanilla greedy algorithm (which is slower than ModifiedGreedy and does not handle
knapsack constraints).
Proof (Proof of Proposition 40): Observe that, for every 1 ≤ i ≤ ℓ, we have

OPT \ Ni = OPT ∩ (N \Ni) = OPT ∩
(
∪i−1
j=1Si

)
= ∪i−1

j=1 (OPT ∩ Sj) (25)

where the first equality holds because OPT ⊆ N , and the second equality follows from the
removal of Si from the ground set in each iteration of ModifiedRepeatedGreedy. Using
the previous lemmata and this observation, we can obtain a lower bound on the objective
value of the returned solution S in terms of the average value of f(Si ∪OPT) as

1

ℓ

ℓ∑
i=1

f(Si ∪OPT) ≤ 1

ℓ

ℓ∑
i=1

f(Si ∪ (OPT ∩Ni)) +
1

ℓ

ℓ∑
i=1

f(OPT \ Ni) (Lemma 30)

=
1

ℓ

ℓ∑
i=1

f(Si ∪ (OPT ∩Ni)) +
1

ℓ

ℓ∑
i=1

f
(
∪i−1
j=1(OPT ∩ Sj)

)
(Equality (25))

≤ 1

ℓ

ℓ∑
i=1

f(Si ∪ (OPT ∩Ni)) +
1

ℓ

ℓ∑
i=1

i−1∑
j=1

f(OPT ∩ Sj) (submodularity)

82

Greedy: Simultaneous or Repeated?

≤ 1

ℓ

ℓ∑
i=1

[
k + 1

1− ε
f(Si) + ε∆f + ρm

]
+

α

ℓ

ℓ∑
i=1

i−1∑
j=1

f(S′
j) (Lemmas 56 and 29)

≤ 1

ℓ

ℓ∑
i=1

[
k + 1

1− ε
f(S) + ε∆f + ρm

]
+

α

ℓ

ℓ∑
i=1

i−1∑
j=1

f(S) (definition of S)

=
k + 1

1− ε
f(S) + ε∆f + ρm+

α(ℓ− 1)

2
f(S)

≤ (1− ε)−1 (k + 1 + α(ℓ− 1)/2) f(S) + εf(OPT) + ρm .

Rearranging this inequality yields the following lower bound on the value of the returned
solution:

f(S) ≥
(

1− ε

k + 1 + α(ℓ− 1)/2

)[
1

ℓ

ℓ∑
i=1

f(Si ∪OPT)− εf(OPT)− ρm

]
. (26)

In order to remove the dependence of the right hand side on the solutions Si, we again use
Lemma 7 [Lemma 2.2 of Buchbinder et al. (2014)]. In particular, consider a set S̄ chosen
uniformly at random from the ℓ constructed solutions S1, S2, . . . Sℓ. Because the solutions
are disjoint by construction, an element can belong to S̄ with probability at most ℓ−1.
Hence, applying Lemma 7 to the submodular function g(S) = f(OPT ∪ S), we get

1

ℓ

ℓ∑
i=1

f(Si∪OPT) = E[f(OPT∪S̄)] = E[g(S̄)] ≥ (1−ℓ−1)·g(∅) = (1−ℓ−1)·f(OPT) . (27)

Substituting (27) into the lower bound of (26) yields the desired result.
When f is monotone submodular, we may obtain an improved approximation ratio by

applying monotonicity directly to the lower bound (26). In particular, applying monotonic-
ity yields

1

ℓ

ℓ∑
i=1

f(Si ∪OPT) ≥ 1

ℓ

ℓ∑
i=1

f(OPT) = f(OPT) ,

which yields the desired approximation in the monotone setting.

83

Feldman, Harshaw, and Karbasi

References

Ayya Alieva, Aiden Aceves, Jialin Song, Stephen Mayo, Yisong Yue, and Yuxin Chen.
Learning to make decisions via submodular regularization. In International Conference
on Learning Representations, 2020.

Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submodular
functions. In SODA, pages 1497–1514, 2014.

Andrew An Bian, Joachim M Buhmann, Andreas Krause, and Sebastian Tschiatschek.
Guarantees for greedy maximization of non-submodular functions with applications. In
International conference on machine learning. PMLR, 2017.

Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, USA, 1998. ISBN 0521563925.

N. Buchbinder, M. Feldman, N.S. Joseph, and R. Schwartz. A tight linear time (1/2)-
approximatoin for unconstrained submodular maximization. SIAM Journal on Comput-
ing, 44:1384–1402, 2015.

Niv Buchbinder and Moran Feldman. Submodular functions maximization problems. In
Teofilo F. Gonzalez, editor, Handbook of Approximation Algorithms and Metaheuristics,
Second Edition, Volume 1: Methologies and Traditional Applications, pages 753–788.
Chapman and Hall/CRC, 2018a.

Niv Buchbinder and Moran Feldman. Deterministic Algorithms for Submodular Maximiza-
tion Problems. ACM Trans. Algorithms, 14(3):32:1–32:20, 2018b.

Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular Maximiza-
tion with Cardinality Constraints. In SODA, pages 1433–1452, 2014.

Niv Buchbinder, Moran Feldman, and Roy Schwartz. Comparing apples and oranges: Query
trade-off in submodular maximization. Math. Oper. Res., 42(2):308–329, 2017.

Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766,
2011.

Yuxin Chen, Shervin Javdani, Amin Karbasi, J Bagnell, Siddhartha Srinivasa, and Andreas
Krause. Submodular surrogates for value of information. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2015.

Vašek Chvátal. The tail of the hypergeometric distribution. Discrete Mathematics, 25(3):
285–287, 1979.

Ethan R. Elenberg, Alexandros G. Dimakis, Moran Feldman, and Amin Karbasi. Streaming
weak submodularity: Interpreting neural networks on the fly. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, 2017.

Alina Ene and Huy L. Nguyen. A nearly-linear time algorithm for submodular maximization
with a knapsack constraint. In ICALP, pages 53:1–53:12, 2019a.

84

Greedy: Simultaneous or Repeated?

Alina Ene and Huy L. Nguyen. Towards nearly-linear time algorithms for submodular
maximization with a matroid constraint. In ICALP, pages 54:1–54:14, 2019b. doi: 10.
4230/LIPIcs.ICALP.2019.54. URL https://doi.org/10.4230/LIPIcs.ICALP.2019.54.

Uriel Feige, Vahab S. Vahab S. Mirrokni, and Jan Vondrak. Maximizing non-monotone
submodular functions. In FOCS, 2007.

Moran Feldman, Joseph Naor, Roy Schwartz, and Justin Ward. Improved approximations
for k-exchange systems - (extended abstract). In ESA, pages 784–798, 2011.

Moran Feldman, Christopher Harshaw, and Amin Karbasi. Greed is good: Near-optimal
submodular maximization via greedy optimization. In COLT, pages 758–784, 2017.

M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis of approximations for
maximizing submodular set functions – II. Mathematical Programming Study, 8:73–87,
1978.

Shayan Oveis Gharan and Jan Vondrak. Submodular maxzimiation by simulated annealing.
In SODA, 2011.

Jennifer Gillenwater, Alex Kulesza, and Ben Taskar. Near-optimal map inference for de-
terminantal point processes. In Advances in Neural Information Processing Systems 25,
pages 2735–2743, 2012.

Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Constrained Non-
monotone Submodular Maximization: Offline and Secretary Algorithms. In WINE, pages
246–257, 2010.

Ran Haba, Ehsan Kazemi, Moran Feldman, and Amin Karbasi. Streaming Submodular
Maximization under a k-Set System Constraint. In ICML, 2020.

Kai Han, Shuang Cui, Tianshuai Zhu, Jing Tang, Benwei Wu, and He Huang. The power of
randomization: Efficient and effective algorithms for constrained submodular maximiza-
tion, 2021.

Chris Harshaw, Moran Feldman, Justin Ward, and Amin Karbasi. Submodular maximiza-
tion beyond non-negativity: Guarantees, fast algorithms, and applications. In Proceed-
ings of the 36th International Conference on Machine Learning, Proceedings of Machine
Learning Research, 2019.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 1963.

David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In international conference on Knowledge discovery and data mining
(KDD), pages 137–146, 2003.

A. Krause and C. Guestrin. Near-optimal Nonmyopic Value of Information in Graphical
Models. In Uncertainty in Artificial Intelligence (UAI), pages 324–331, 2005.

85

https://doi.org/10.4230/LIPIcs.ICALP.2019.54

Feldman, Harshaw, and Karbasi

Alan Kuhnle. Interlaced Greedy Algorithm for Maximization of Submodular Functions in
Nearly Linear Time. In NeurIPS, 2019.

Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Maximizing
nonmonotone submodular functions under matroid or knapsack constraints. SIAM J.
Discrete Math., 23(4):2053–2078, 2010a.

Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular Maximization over Multiple
Matroids via Generalized Exchange Properties. Math. Oper. Res., 35(4):795–806, 2010b.

Hui Lin and Jeff Bilmes. A class of submodular functions for document summarization. In
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, pages 510–520. Association for Computational
Linguistics, 2011.

Erik M Lindgren, Shanshan Wu, and Alexandros G Dimakis. Sparse and greedy: Sparsifying
submodular facility location problems. In NIPS Workshop on Optimization for Machine
Learning, 2015.

Julián Mestre. Greedy in Approximation Algorithms. In European Symposium on Algo-
rithms (ESA), pages 528–539, 2006.

Michel Minoux. Accelerated greedy algorithms for maximizing submodular set functions.
In Optimization Techniques, pages 234–243, 1978.

Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed sub-
modular maximization: Identifying representative elements in massive data. In Advances
in Neural Information Processing Systems, 2013.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and
Andreas Krause. Lazier Than Lazy Greedy. In AAAI Conference on Artificial Intelli-
gence, pages 1812–1818, 2015.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi. Fast Constrained
Submodular Maximization: Personalized Data Summarization. In ICML, pages 1358–
1367, 2016.

Mehraveh Salehi, Amin Karbasi, Dustin Scheinost, and R. Todd Constable. A submodular
approach to create individualized parcellations of the human brain. In Medical Image
Computing and Computer Assisted Intervention, MICCAI 2017, pages 478–485. Springer
International Publishing, 2017.

Adish Singla, Ilija Bogunovic, Gabor Bartok, Amin Karbasi, and Andreas Krause. Near-
optimally teaching the crowd to classify. In Proceedings of the 31st International Confer-
ence on Machine Learning, Proceedings of Machine Learning Research, 2014.

Matthew Skala. Hypergeometric tail inequalities: ending the insanity. CoRR,
abs/1311.5939, 2013.

86

Greedy: Simultaneous or Repeated?

Ehsan Tohidi, Rouhollah Amiri, Mario Coutino, David Gesbert, Geert Leus, and Amin Kar-
basi. Submodularity in action: From machine learning to signal processing applications,
2020.

Jan Vondrák. Symmetry and approximability of submodular maximization problems. SIAM
J. Comput., 42(1):265–304, 2013. doi: 10.1137/110832318. URL https://doi.org/10.

1137/110832318.

Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.
In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977), pages 222–
227, 1977. doi: 10.1109/SFCS.1977.24.

87

https://doi.org/10.1137/110832318
https://doi.org/10.1137/110832318

	Introduction
	Related Work

	Preliminaries
	Submodular Functions
	Independence Systems
	Problem Statement

	Simultaneous Greedys
	Meta-analysis for Approximation Guarantees
	Analysis for k-Extendible Systems
	Analysis for k-Systems

	A Nearly Linear Time Implementation
	Incorporating Knapsack Constraints
	Repeated Greedy
	Tight Approximation Analysis for k-Extendible Systems
	Nearly Linear Time with Knapsack Constraints

	Hardness Results
	Hardness for Linear Functions Over k-Extendible Systems
	Hardness for Submodular Functions Over k-Extendible Systems

	Practical Considerations and the SubmodularGreedy.jl package
	Practical Considerations: Simultaneous or Repeated?
	The SubmodularGreedy.jl package

	Experiments
	MovieLens 20M Dataset
	Experiment 1: Movie Recommendation with Genre Limitations
	Experiment 2: Movie Recommendations with Release Dates and Rating Budget

	Conclusion
	Proof of Proposition 23 (KnapsackSGS)
	Proof of Proposition 40 (ModifiedRepeatedGreedy)

