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Abstract. All known constructions of fully homomorphic encryption
(FHE) schemes from the learning with errors (LWE) assumption require
the encryption schemes to be circular secure. A long-standing open prob-
lem in the study of FHE schemes is to demonstrate evidence for their
circular security. In this work, we systematize the flavors of circular secu-
rity required for a number of FHE constructions, formulate circular secu-
rity conjectures, show search-to-decision reductions for them, and pose
several open problems.

1 Introduction

The celebrated notions of semantic security and indistinguishability of encryp-
tion schemes, first postulated by Goldwasser and Micali [33], assume that the
message to be encrypted cannot depend on the private decryption key. Indeed,
the dangers of encrypting messages that the adversary cannot herself come up
with was already pointed out in their work [33, Section 5.1]. Nearly two decades
later, Black, Rogaway and Shrimpton [8] initiated the formal study of security
of encryption schemes with key-dependent messages, or KDM security, which
requires that encryption schemes remain semantically secure—equivalently, IND-
CPA secure—in the presence of ciphertexts that encrypt functions of the private
decryption key. It is not hard to construct encryption schemes which are secure in
the standard sense of indistinguishability, but completely insecure in the presence
of encryptions of key-dependent messages.1 So, KDM security is certainly a the-
oretically non-trivial notion. Moreover, while KDM security may seem at first an
esoteric concern, it arises both naturally—in the context of full disk encryption
where the private keys on disk may inadvertently get encrypted under them-
selves, and in the symbolic analysis of protocols [1,8,47]—and by design—in the
context of certain anonymous credential systems [18].
1 Indeed, consider a (private-key) encryption scheme where the encryption algorithm

works as normal, except it checks if its input message is the private key, and if so, acts
as the identity function outputting the private key. In the presence of the encryption
of the private key, this scheme is clearly insecure. However, security is maintained
in the absence of any such circular encryption.
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In 2009, circular security2 found a new, prominent application: the con-
struction of Fully Homomorphic Encryption (FHE) schemes, namely, encryption
schemes that allow one to perform arbitrary computations on encrypted data. It
is this latter application, namely circular security in the context of fully homo-
morphic encryption, that is the focus of this paper. While the functional and
security requirements of FHE do not explicitly require circular security, Gen-
try’s bootstrapping procedure (underlying his first candidate FHE proposal [29]
and a long sequence of follow up works, e.g., see [3,10,12,16,17,20,23,25,31,36])
makes essential use of circular security. More specifically, an encryption system
that can support computation of arbitrary polynomial-size circuits, for a fixed
set of encryption parameters, is called a fully homomorphic encryption (FHE)
scheme. In contrast, a weaker type of homomorphic encryption is called leveled
homomorphic if for every depth parameter d (which is polynomial in a security
parameter), there is a set of encryption parameters that support computation
of depth-≤ d circuits. The point is, in leveled homomorphic encryption schemes,
the size of the encryption parameters grow with d, and can only support homo-
morphic evaluation of circuits of depth at most d.

The first candidate construction of an FHE scheme was proposed by Gen-
try [29]. Starting from the work of Brakerski and Vaikuntanathan [16], we have
several leveled HE schemes [3,10,12,17,20,31,36] whose security is based on the
hardness of the learning with errors (LWE) problem, even with a polynomial
modulus [17]. However, to this date, rather frustratingly, the only way we know
to make them fully homomorphic goes via Gentry’s bootstrapping procedure
which requires making public a circular encryption of the private key. Even
the plain semantic security of one of these encryption schemes seems to require
circular-type assumptions [36].

Embarrassingly, more than a decade later, we still do not know how to prove
the circular security of any of these leveled HE schemes short of simply assum-
ing it. Indeed, the only constructions of (pure, or non-leveled) FHE schemes we
know, with the exception of a construction based on indistinguishability obfusca-
tion (IO) (namely, [19], instantiated with the IO candidates of [39,40]), require
assuming circular security. The situation has gotten steadily worse: while cir-
cular security assumptions for all the FHE schemes listed above have a similar
flavor, the technical details are often different due to the different encryption
schemes and/or the different encoding of the private key that each variant of each
scheme demands. Even formulating the exact circular security assumption often
requires first defining the homomorphic encryption scheme, and then express-
ing the assumption in terms of it. This makes the assumptions hard to under-
stand and study, and has had downstream consequences. First, the standard
that one expects with new hardness assumptions in cryptography is that they
are followed with adequate cryptanalysis, including the description of challenge

2 In this work, we will use the terms KDM security and circular security interchange-
ably, although the latter has been used in the literature to refer to encrypting some
representation of the private key itself, whereas the former refers to more complex
functions of the private key.
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instances much like the RSA challenge [41] or the Darmstadt Lattice Crypto
challenge [22]. Unfortunately, such “due diligence” has not been followed for the
various circular security assumptions and indeed, a major bottleneck in doing
so is the lack of even a systematic understanding of what these assumptions
are. Secondly, versions of circular secure LWE were formulated in the context
of building indistinguishability obfuscation [26,58], and claimed to be similar to
FHE assumptions, but then broken shortly after [38]. This again is arguably due
to a lack of systematic understanding of circular security assumptions.

In this paper, we take a first step to remedy this situation. The primary goal
of this paper is to formulate (one or more) LWE circular security assumptions,
just at the level of the LWE problem, and show that known FHE schemes can be
proved secure based on such an assumption. This has the following advantages:

1. It provides a simple, concrete assumption (similar to LWE) that can be under-
stood and investigated without having to fully describe an FHE scheme.

2. Such an effort potentially allows us to reduce the security of multiple FHE
constructions to a single assumption (or a small set of assumptions), possibly
in an efficient manner, relating the concrete security of several FHE schemes
to the concrete security of the assumption.

3. If different assumptions are needed by different schemes, a systematic study
lets us investigate possible reductions between assumptions, allowing to com-
pare the strength of the assumption underlying different encryption schemes.

4. It offer a basis to generate concrete challenges, similar to Darmstadt lattice
challenges (see latticechallenge.org).

5. It allows us to consider simpler, possibly weaker circular security assumptions,
not necessarily enough to build FHE, but perhaps allowing a reduction to
standard LWE or worst-case lattice problems.

Our concrete contributions are as follows.

1. We put forth a circular security conjecture called quadratic circular LWE or,
succinctly, circLWE.

2. We show several properties of circLWE including: the proof of a weaker version,
namely linear circular LWE, under the standard LWE assumption; a search
to decision reduction; and a proof of security of a stronger variant that we
call clique-circLWE where there are k keys each of which is encrypted with all
other keys, under our basic circLWE assumption.

3. We prove the security of several representative FHE schemes [3,10,25,31,36]
under circLWE.

4. We observe that the LWE circular security assumptions underlying the
encryption schemes of [10,31] are essentially the same, namely circLWE (see
Sect. 3 for a precise definition). This is a testament to the robust applicability
of the assumption, and is enabled by an elegant perspective on GSW cipher-
texts (originally developed in a sequence of talks by the first author as well
as in [51]).

5. Even within a single encryption scheme (such as [10]), slightly different ways
of encoding and encrypting the secret key seem to require different assump-
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tions. Nevertheless, we show that circLWE implies the circular security of both
variants, a further testament to the robustness of circLWE.

6. As an interesting direction for future research, we pose the question of whether
one can show a worst-case to average-case reduction for circLWE, possibly
under non-standard worst-case lattice assumptions.

The long-term challenge of this line of research is to prove circLWE from
the standard LWE assumption or even the worst-case hardness of lattice prob-
lems. However, if this problem turns out to be intractable, we advocate making
progress towards it by, e.g. showing a worst-case to average-case reduction start-
ing from potentially new worst-case lattice assumptions.

To conclude, we clarify the non-goals of this paper. The quest to system-
atize the study of circular security of FHE schemes, as initiated in this paper,
is a fundamental theoretical quest, one that will shed light on the security of
essentially all the FHE constructions. Keeping this in mind, we study a subset
of the FHE schemes, the foundational ones, focusing on LWE-based construc-
tions, and, occasionally, making small changes to the schemes as required by our
proofs.3 We note that our results are not directly applicable to Ring-LWE and
other variants of practical interest. Indeed, extending our results to a wider class
of FHE schemes requires additional research. In particular, it requires not only
adapting the results and proofs presented in this paper to the more challeng-
ing ring setting, but also investigate types of circular security information (e.g.,
automorphisms keys) that are specific to Ring-LWE. Still, these are extensions
that can hopefully be informed by the techniques in our paper, and we leave
them as an open problem.

Related Work: Circular-Secure Encryption Schemes. Constructing a circular
secure encryption scheme was open until the work of Boneh, Halevi, Hamburg
and Ostrovsky [9]. Several constructions have appeared since then under essen-
tially all standard cryptographic assumptions [4,6,13,14]. None of these results,
however, seem to imply the sort of circular security needed for FHE schemes.

Related Work: Counterexamples to Circular Security. A separate line of research
has tried to extend the trivial counterexample from the first paragraph of the
introduction to more demanding settings. For example, is there a bit-wise encryp-
tion scheme that is semantically secure yet circular insecure? Is there an encryp-
tion scheme that is insecure in the presence of key cycles of length ≥ 2? Neither
question seems to have an obvious answer, yet we know sophisticated construc-
tions that demonstrate that the answer to both is “yes” [7,34,35,42,43].

Organization of the Paper. The rest of the paper is organized as follows. In
Sect. 2, we provide basic definitions and notation. Next, in Sect. 3, we formu-
late a number of conjectures that capture a circular secure variant of the LWE
3 For example, we may use discrete Gaussian encryption noise with larger parameters

than the original papers, or slightly different error distributions. These should be
interpreted as artifacts of our proof techniques.
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problem, and provide reductions between them. Finally, in Sect. 4, we analyze a
representative set of FHE schemes.

2 Preliminaries

We write Z and R for the sets of integers and real numbers, respectively, and
Zp,Rp for the integer and real numbers modulo p ∈ Z, typically represented as
values in the interval [0, p) or [−p/2, p/2). We write �x� , �x� or �x� for the result
of rounding x ∈ R down, up or to the closest integer, rounding up in case of a
tie. We also define the modulus switching operation

�x�q =
⌊

q
p · x

⌉

which maps any x ∈ Zp (or, more generally x ∈ Rp) to an element of Zq (resp.
Rq). The input modulus p is implicitly defined by the domain of x ∈ Rp, and we
write �x (mod p)�q when p is not clear from the context. We let R

+, resp. Z+,
denote the set of all non-negative reals, resp. integers.

We use bold lowercase letters x,y for (column) vectors, and bold upper-
case X,Y for matrices. The transpose of a matrix X is denoted by Xt. Row
vectors are written using matrix transpose notation xt. We write [X1, . . . ,Xn]
for (horizontal) concatenation of matrices with the same number of rows, and
(X1, . . . ,Xn) = [Xt

1, . . . ,X
t
n]t for (vertical) stacking of matrices. Unless stated

otherwise, the coordinates of a vector are denoted by x = (x1, . . . , xn). Similarly,
X = [x1, . . . ,xn] for the columns of a matrix.

The inner product of two vectors is written either as 〈x,y〉 =
∑

i xiyi, or
using matrix transpose notation xt ·y. The tensor product between two matrices
X ∈ Z

n0×k0 and Y ∈ Z
n1×k1 is the matrix X ⊗ Y ∈ Z

n0n1×k0k1 obtained by
replacing each entry xi,j with a scaled copy xi,j · Y of Y.

We say that x is a short vector in Z
n or R

n if ‖x‖ is small, with respect to
some norm, e.g., ‖x‖2 =

√∑
i x2

i , or ‖x‖∞ = maxi |xi|. All the statements in
this paper can be analyzed using any choice of norm, producing essentially the
same results, with a small difference in the concrete norm bound. By default,
when we use the expression ‖x‖ without further qualifiers, we will mean the
Euclidean norm of x.

The Gaussian Distribution. The Gaussian, or the normal, distribution over R
n,

centered at c ∈ R
n and parameterized by a standard deviation σ ∈ R

+, is defined
by the following probability density function:

∀x ∈ R
n : Nσ(x) =

1
σ

· e−π||x−c||2/σ2

Similarly, the discrete Gaussian distribution χσ is defined as the restriction of
Nσ to Z

n, i.e., the discrete random variable over Z
n that outputs x ∈ Z

n with
probability Nσ(x)/

∑
y∈Zn Nσ(y).
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Cryptographic Primitives. All asymptotic statements are with respect to a secu-
rity parameter λ, which is implicitly given as input to all algorithms and asso-
ciated sets. So, for example, a key generation algorithm Gen is simply defined
as an efficiently samplable distribution over a set of keys K. By this we mean
that Gen(λ) is a probabilistic algorithm that, on input λ, runs in time poly-
nomial in λ, and outputs a key from a set of bit-strings K(λ) which may also
depend on λ. Events (e.g., describing security or correctness properties) are sim-
ilarly parametrized by λ, and the probability of an event defines a function
f(λ) ∈ [0, 1]. A probability (function) f(λ) is negligible if f(λ) < 1/λc for every
constant c and all large enough values of λ. A probability f(λ) is overwhelming
if 1 − f(λ) is negligible.

Definition 1. A private key encryption scheme SKE = (Gen,Enc,Dec) with
message space M, key space K and ciphertext space C, is a triple of (probabilistic
polynomial time) algorithms Gen : K (key generation), Enc : K×M → C (encryp-
tion) and Dec : K × C → M (decryption), such that Deck(Enck(m)) = m for all
messages m ∈ M and keys k ∈ K. The correctness condition Deck(Enck(m)) =
m can be relaxed to hold only with overwhelming probability, over the choice of
the key k and the encryption randomness.

Homomorphic public-key encryption schemes can be constructed generically
from any homomorphic private-key encryption scheme [57]. So, for simplicity, we
focus on the case of secret-key encryption. All definitions and constructions are
easily extended to the public-key setting. Still, we define security of private-key
encryption in the presence of some public information Pub(k) about the secret
key. This is useful to model the evaluation key used by some homomorphic
operations, as well as bootstrapping. It can also be used to model certain forms
of leakage resilience, like circular security. The standard notion of security for
private-key encryption is obtained by letting Pub output nothing.

Definition 2. Let SKE = (Gen,Enc,Dec) be a private-key encryption scheme,
and Pub : K → P a (possibly randomized, efficiently computable) function from
the set of keys K to some set P. The scheme SKE satisfies indistinguishability
under chosen plaintext attack (IND-CPA security for short) in the presence of
public information Pub if any efficient (probabilistic polynomial time) adversary
A can only achieve a negligible advantage in the following game, parametrized
by a bit b ∈ {0, 1}: after generating parameters k ← Gen, p ← Pub(k), the
adversary b′ ← AOb(·,·)(p) is run on input p and with access to a (probabilistic)
oracle Ob(m0,m1) = Enck(mb) that on input a pair of messages m0,m1 ∈ M,
computes the encryption of the message selected by the bit b. Upon termination,
the adversary outputs a bit b′, with the goal of correctly guessing the value of b.
The adversary’s advantage4 is defined as Adv(A) = |Pr{b′ = 1 | b = 0}−Pr{b′ =
1 | b = 1}|.
4 More refined notions of advantage that better capture the quantitative notion of “bit-

security” are proposed in [53]. Here we use the traditional definition of advantage,
which is simpler, and still adequate for our purposes.
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As an important special case, we consider circular-secure (private-key) encryp-
tion schemes, i.e., schemes satisfying security with respect to adversaries that
are given, as auxiliary information, an encryption of the secret key k under
itself. Notice that in order to encrypt a key k, one must first encode k as
a sequence ψ(k) ∈ Mw of elements from the message space. The encryp-
tion function is extended to Mw componentwise, setting Enck(m1, . . . ,mw) =
(Enck(m1), . . . ,Enck(mw)).

Definition 3. Let (Gen,Enc,Dec,Pub) be an encryption scheme with message
space M, key space K and public information Pub, and let ψ : K → Mw be an
(efficiently computable) encoding function. The encryption scheme is ψ-circular
IND-CPA secure in the presence of Pub if it is IND-CPA secure with respect to
the extended public information5 P̂ub(k) = (Pub(k),Enck(ψ(k))).

2.1 The Learning with Errors Problem (with Side Information)

The Learning With Errors (LWE) problem is an injective version of the Short
Integer Solution (SIS) problem [2,52]. Its (average-case) computational hardness
was proved by Regev in [56] based on the conjectured hardness of solving several
standard lattice problems in the worst case, with further improvements in [15,54].

In this paper, we use the following matrix version [30,55] of LWE. The defini-
tion is parametrized by a secret distribution S, which is typically set to either the
uniform distribution over S = Z

n
q , or the same as the error distribution S = χn,

which is equivalent to uniform secrets by the results of [4,46], or to uniformly
random binary vectors S = {0, 1}n. The latter choice is often made for efficiency
reasons, and is theoretically justified by the results of [11,15,32,48].

Definition 4 (Learning With Errors (LWE) Distribution). The LWE dis-
tribution with parameters n, k, w, q, a secret distribution S over Z and an error
distribution χ over Z

w, is given by [A,AS + E] where A ← Z
w×n
q , S ← Sn×k

and E ← χw×k.

In order to study the security of homomorphic encryption schemes, we param-
eterize the LWE hardness assumption by a public information function Pub,
similarly to Definition 2. The standard LWE assumption is given by setting
Pub(S) = ⊥.

Definition 5 Let Pub(S) be any efficiently computable, possibly randomized
function of the LWE secret S. The Decisional LWE problem with public infor-
mation Pub is the computational problem of distinguishing between the following
two distributions:

5 Here we are starting from an encryption scheme that already includes a Pub function
(e.g., to provide a public key or other side information), and extend it to include
an encryption cycle. When starting from a simple private-key encryption scheme,
Pub(k) outputs nothing, and ̂Pub(k) = Enck(ψ(k)) is just a circular encryption of
the key.
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– (Pub(S), [A,AS + E]) where A ← Z
w×n
q , S ← Sn×k and E ← χw×k.

– (Pub(S), [A,B]) where A ← Z
w×n
q , S ← Sn×k and B ← Z

w×k
q .

The decisional LWE assumption postulates that the decisional LWE problem is
hard to solve with non-negligible advantage for any probabilistic polynomial-time
distinguisher.

One may also give a slightly stronger definition which requires the distri-
bution (Pub(S), [A,AS + E]) to be indistinguishable from (P, [A,B]), where
P,A,B are all chosen uniformly at random. Most of the results in this paper
hold also for this stronger definition, but this is not needed for the application
to circular security and fully homomorphic encryption.

Note that when Pub(S) = ⊥ (or, more generally, when Pub provides inde-
pendent public information [Pub(s1), . . . ,Pub(sk)] about each column of S), one
may assume k = 1, and prove the hardness for any k by a standard hybrid
argument [55]. However, the same does not generally hold true in the presence
of global information Pub(S) about the whole secret matrix S.

On the LWE Secret and Noise Distributions. Since LWE is an average-case
problem, its computational hardness depends on the specific distributions S
and χ used in the definition. Still, the hardness of LWE is fairly robust both
with respect to the secret key distribution S (via leakage resilience results [11,
15,32,48]) and the error distribution χ. The main requirement on the noise
distribution χ is that it should output small numbers, and the strength of the
hardness assumption is often quantified by the ratio q/|χ| between the errors
and the ciphertext modulus.

We state below a useful theorem on LWE with binary secrets [48].

Lemma 1 (Hardness of Binary-Secret LWE, adapted from [48]).
Assume the hardness of the decisional LWE problem with modulus6 q, uniform
secrets s ∈ Z

n′
q , n+1 samples, and discrete Gaussian noise χσ is hard, for some

q ≤ 2nO(1)
, σ ≥ ω(

√
log n), and n ≥ 2n′ log2 q. Then, the Decisional LWE prob-

lem with binary secrets s ∈ {0, 1}n, polynomially many samples, and discrete
Gaussian noise χσ·√n′ is also hard.

A common technique to “smooth out” differences between error distributions
is noise flooding, i.e., the addition of random noise r to the LWE matrix B,
so that the error becomes χ + r. If r is random and sufficiently larger than χ,
then χ′ = χ + r becomes essentially independent of χ. Clearly, this technique
(as well as many other methods to reduce between different versions of LWE)
has the side effect of increasing the amount of error. However, one can usually
compensate for the larger error χ′ by using a correspondingly larger modulus q.

6 To be precise, [48] proves this result for odd moduli q, and then explains in [48,
Footnote 2] how to adapt the result to even moduli using modulo switching. Techni-
cally using modulus switching requires a small increase in the LWE modulus q when
going from uniform to binary secrets, but, for simplicity, we ignore this technicality.
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We state a version of the noise-flooding lemma below, adapted from [5] (where
it is stated with respect to the uniform, rather than the Gaussian, distribution).

Lemma 2 (Noise-flooding Lemma, adapted from [5, Lemma 1]). Let n ∈
Z and let E be a set of vectors R

n. Let e ∈ E. Then, the statistical distance
between the distributions Nσ and e+ Nσ is O(||e||/σ). Similarly for the discrete
Gaussian distribution χσ, as long as σ = ω(

√
log n).

2.2 LWE Encryption

The LWE problem can be used to define a family of randomized functions,
parametrized by n, k, w, q and indexed by the keys S ← Sn×k, which, on input a
matrix X ∈ Z

w×k
q , chooses A ← Z

w×n
q and E ← χw×k at random, and outputs

LWES(X;A,E) def= [A,X + E − AS] ∈ Z
w×(n+k)
q . (1)

We write LWES(X) for the output distribution obtained by choosing A and
E at random, and computing LWES(X;A,E). Similarly, one can define an
(approximate) inversion algorithm that, given a key S and a ciphertext [A,B] ∈
Z

w×(n+k)
q , outputs:

LWE−1
S ([A,B]) def= [A,B] ·

[
S
I

]
= AS + B ∈ Z

w×k
q . (2)

Notice that (LWE, LWE−1) is not quite an encryption scheme because it only
satisfies an approximate version of the correctness condition

LWE−1
S (LWES(X)) = AS + B = X + E ≈ X

up to a small additive error E. In order to get a proper encryption scheme, LWE
is combined with an error correcting code, as described next.

For simplicity, we focus on linear codes defined by a single (so-called gadget)
vector g ∈ Z

w
p , where p is a plaintext modulus possibly different from q, as these

are the codes most commonly used in lattice-based cryptography. Using g as
a gadget, a message M ∈ Z

h×k
p is encoded componentwise as M ⊗ g, i.e., by

replacing each entry mi,j by the vector mi,j · g. Sometimes it is convenient to
express the encoding M ⊗ g as a matrix product, rather than a tensor. This is
easily done by letting G = I ⊗ g, and observing that

G · M = (I ⊗ g) · (M ⊗ (1)) = (IM) ⊗ (g · (1)) = M ⊗ g.

(Notice that when using matrix product, the message M is multiplied by G on
the left.)

Gadget vectors g are required to satisfy the primitivity condition gcd(p,g) =
1, so that the encoding function is injective, and mi,j can be recovered from
mi,j ·g. The encoding is rounded to a matrix �M ⊗ g�q in Z

hw×k
q before applying

the LWE function, producing the ciphertext

g-LWEq,S (M;A,E) def= LWES

(
�M ⊗ g�q

)
∈ Z

hw×(n+k)
q . (3)
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For brevity, we omit the ciphertext modulus when q = p and the gadget vector
when g = (1), and simply write g-LWES or LWEq,S, noting that this is consistent
with the notation LWES used for the plain (unencoded) LWE function defined
in Eq. (1). We also write g-LWEq,S (M; E) for the set of g-LWE ciphertexts with
error in the set E (and any matrix A), or an arbitrary element of that set.

We will not be concerned with the decryption algorithm, as it plays no role
in the definition of security.7 For completeness, we only briefly mention that
ciphertexts C = g-LWES(M) can be decrypted by computing the matrix M ∈
Z

h×k
p such that the encoding M ⊗ g is closest to X = p

q · LWE−1
S (C).

Besides encoding, and decoding (as used for encryption and decryption), gad-
get vectors g ∈ Z

w
p have one more inversion algorithm that on input any x ∈ Zp

outputs a short integer (row) vector g−t(x) ∈ Z
1×w such that g−t(x) · g = x

(mod p). More generally, for any M ∈ Z
h×k
p and T ∈ Z

l×h
p , the encoding and

inversion operations satisfy

(g−t(T)) · (M ⊗ g) = TM (mod p)

where, as usual, g−t(·) is extended to vectors and matrices componentwise. Some-
times it is convenient to use the output of g−t(x) in column form, which we write
as g−1(x). More generally, for any matrix X, we have g−1(X) def= (g−t(Xt))t.
Following [3,51], this function is used to define the following homomorphic oper-
ation that plays a fundamental role in our presentation of LWE encryption and
FHE.

Definition 6 For any gadget g (mod p), message M (mod p), cipher-
text C ∈ g-LWEq,S(M) and matrix T ∈ Z

l×h
p , define the gadget product

T � C
def
= g−t(T) · C ∈ LWEq,S(TM) (4)

where the vector g is implicitly specified by the type of ciphertext C.

This operation multiplies a message M encrypted under g-LWE by a matrix
T, producing as a result an unencoded LWE encryption of TM. Products encoded
under any (possibly different) gadget h (mod p) can be computed as

T
h
� C def= (T ⊗ h) � C ∈ LWEq,S((T ⊗ h)M)

= LWEq,S(TM ⊗ h) = h-LWEq,S(TM).

As a special case, we write T � C def= T
g
� C for the operation of applying T

to a g-LWE ciphertext without changing the encoding gadget g, and h ◦ C def=

I
h
� C for the operation of changing the encoding gadget from g to h without

modifying the message.
7 This is for valid encryption schemes, satisfying the standard correctness condition
Decs(Encs(m)) = m. For “approximate” encryption schemes where Decs(Encs(m)) ≈
m, see [44,45]. We only consider valid encryption schemes in this paper.
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2.3 Key Switching

As we show in this section, the gadget product operation � can be used to
define a “functional” key switching procedure that changes the key under which
a ciphertext is encrypted, while at the same time multiplying the message by a
given integer matrix T on the right. (Notice that this is different from the gadget
product T�, which multiplies the message by T on the left.) Plain key switching
is a special case where T = I is the identity function.

Definition 7. For any two keys S ∈ Z
n×k and S̃ ∈ Z

ñ×k̃, gadget g ∈ Z
w
q ,

and matrix T ∈ Z
k̃×k with (small) integer entries, define the switching key

generation algorithm

g-LWES̃→S(T;A,E)
def
= g-LWES

([
S̃
I

]
T;A,E

)
, (5)

and similarly for g-LWES̃→S(T), etc.

We refer to ciphertexts of the form g-LWES̃→S(T) as switching keys, as they
can be used to map encryptions of M under S̃ to encryptions of MT under S as
shown in the next theorem. Indeed, they correspond exactly to switching keys
in [10,12,16].

Theorem 1. For any keys S ∈ Zn×k, S̃ ∈ Zñ×k̃, gadget g ∈ Z
w
q , matrix T ∈

Z
k̃×k with (small) integer entries, switching key

W ∈ g-LWES̃→S(T;F),

possibly different plaintext modulus p, gadget h ∈ Z
w̃
p , message M ∈ Z

h̃×k
p , and

ciphertext C ∈ h-LWEq,S̃(M; E) we have

C � W ∈ h-LWEq,S(MT; E ′),

where E ′ = E · T + g−t(C) F .

Proof. This follows by a simple calculation:

C � W = C � g-LWES

([
S̃
I

]
T;F

)

= LWEq,S

(
C

[
S̃
I

]
T;g−t(C) · F

)

= LWEq,S

(
( q

pM ⊗ h + E)T;g−t(C) · F)

= LWEq,S

(
q
p (MT) ⊗ h; E · T + g−t(C) · F)

= h-LWEq,S(MT; E ′)

where E ′ = E ·T+ g−t(C) · F is small because E , T, g−t(C) and F are all small.
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Using the fact that switching keys are just regular g-LWE ciphertexts (of
carefully crafted, key-dependent messages), it is easy to see that switching keys
can be combined both by pointwise addition and function composition:

g-LWES→S′(T0) + g-LWES→S′(T1) = g-LWES→S′(T0 + T1)

g-LWES′→S′′(T0) � g-LWES→S′(T1) = g-LWES→S′′(T0 · T1)

This turns out to be a very interesting insight: GSW ciphertexts [31] are switch-
ing keys where the transformation T = mI is a scalar matrix representing the
message m, and the observation above shows how to do additive and multiplica-
tive homomorphisms on GSW ciphertexts. For more details, we refer the reader
to Sect. 4.2.

2.4 Gadgets

We conclude this section with a brief discussion of the gadget vectors most
commonly used in lattice cryptography. We will be primarily concerned with the
“power base” gadget

pow(b) def= (1, b, b2, . . . , bw−1) ∈ Z
w
p

for p = bw, possibly equal to the ciphertext modulus q. In fact, both for sim-
plicity and historical reasons, most theoretical papers use the “power-of-two”
gadget pow(2), i.e., the special case where b = 2. Efficient (bounded distance)
decoding algorithms (used for decryption) are given in [50] (for p = bw) and [27]
(for arbitrary p). More relevant for this work is the gadget inversion algorithm
pow(b)−t(x) which outputs the (signed) base b representation of x. Randomized
(subgaussian) inversion algorithms, with somewhat better average error growth,
are given in [3,28].

The power gadget pow(b) is most commonly used with a plaintext modulus
p = q equal to the LWE ciphertext modulus. Another important special case is
when b = p, and g = (1) ∈ Z

1
p is the trivial vector. This is typically used with

a fixed plaintext modulus p much smaller than the ciphertext modulus q. (E.g.,
p = 2 to encrypt single bits m ∈ {0, 1}.) The decoding algorithm for this gadget
is just a simple rounding operation to the closest integer modulo p. Inversion is
just as simple: g−t(x) = x mod p outputs the signed integer representative of x
in [−p/2, . . . , p/2), or a centered binary random variable taking as possible value
the representative(s) of x (mod p) in (−p, . . . , p).

Several other gadgets are often used in practice, to provide better efficiency,
parallelism, or useful tradeoffs between ciphertext size and error growth. These
include power gadgets pow(b) with a large base b ≈ √

p or b ≈ p1/3 (so that
g has only two or three coordinates), and the Residue Number System (RNS)
gadget, which uses a highly composite p =

∏
i pi and represents integers x ∈ Zp

as (x mod p1, . . . , x mod pk) using the Chinese Reminder Theorem. These are
also most commonly used with p = q.
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3 Circular LWE Conjectures

We describe the quadratic circular LWE assumption, called circLWE, using nota-
tion from Sect. 2. Let g be any gadget in dimension w and define the quadratic
function

ψg(s) = g−1(s, 1) ⊗ g−1(s, 1) ∈ Z
((n+1)w)2

q

The vector g is usually the power-of-two gadget pow(2) and w = �log2 q� We
omit the subscript and simply write ψ(s) instead of ψg(s) when g is clear from
the context, or unimportant.

The g-circLWE assumption says that the decisional LWE problem with pub-
lic information Pub(s) = g-LWEs(ψg(s)) (see Definition 5) is computationally
hard. More specifically, parametrizing the definition by the LWE noise distribu-
tions used to compute Pub(s) and the LWE samples, g-circLWE[ξ, Ξ] says that
no probabilistic polynomial-time distinguisher D can distinguish between the
following two distributions with non-negligible advantage, for any 	 = poly(n):

– (g-LWEs(ψ(s);Ξ),g-LWEs(0�; ξ)) where s ← Z
n
q .

– (g-LWEs(ψ(s);Ξ),U) where s ← Z
n
q and U ← Z

�w×(n+1)
q .

We omit ξ and Ξ when they are both equal to the standard LWE error8 (discrete
Gaussian) distribution χ√

n. Naturally, g-circLWE reduces to g-circLWE[χσ, χσ′ ]
for larger σ >

√
n simply by adding more Gaussian noise to both Pub(s) and

the LWE samples.
As above, we will refer to the g-circLWE assumption when g = pow(2) as

simply circLWE. Our main conjecture is that the circLWE assumption is true
under the decisional LWE assumption.

Main Conjecture 1 The circLWE assumption (i.e., Definition 5 with
side information Pub(s) = g-LWEs(ψg(s))) is true assuming that the
decisional LWE assumption (i.e., Definition 5 with Pub(s) = ⊥) is true.

3.1 How About Linear Circular LWE?

One may wonder about a variant of the above assumption that asks to encrypt
only the bits of the secret key. That is, letting

φ(s) := φg(s) = g−1(s) ∈ Z
(n+1)w
q ,

is it the case that LWE with side information Pub(s) = g-LWEs(φ(s)) is hard,
i.e.,

(g-LWEs(φ(s)),g-LWEs(0�)) ≈c (g-LWEs(φ(s)),U)?

8 This is the smallest error for which the LWE problem is known to be as hard as
worst case lattice problems [56].
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We call this the linear circular LWE assumption. We show that the linear circu-
lar LWE assumption is true under the decisional LWE assumption. We remark
that variants of this statement were known when the key is not decomposed
into bits (i.e., when φ(s) = s and Pub(s) = g-LWEs(s)). E.g., [4] shows that
assuming LWE, Regev’s encryption is secure given as auxiliary encryption any
affine function over the secret key. However, our result does not follow from [4]
because the binary decomposition function φg(s) = g−1(s) is not linear (or even
affine) in s. So, to the best of our knowledge, the statement below is new.

Theorem 2. Let q = 2k be a power of 2, and g = (1, 2, 4, . . . , 2k−1) be the
powers-of-two gadget vector. The linear circular LWE assumption (i.e., Defini-
tion 5 with public information Pub(s) = g-LWEs(φg(s))) with secret dimension
n ≥ 2n′ log2 q and discrete Gaussian noise distribution ξ = Ξ = χσ

√
n is true

assuming the hardness of decisional LWE (i.e., Definition 5 with Pub(s) = ⊥)
with secret dimension n′ and discrete Gaussian noise χσ.

Proof. We actually prove a slightly stronger property, showing that

(g-LWEs(φ(s)),g-LWEs(0)) ∈ Z
(kn+kw)×(n+1)
q

is indistinguishable from a uniformly random matrix (U0,U1) modulo q, where
the g-LWE ciphertexts use discrete Gaussian noise χσ

√
n. We proceed in steps,

giving a sequence of reductions, starting from the standard decisional LWE prob-
lem and ending with the linear circular LWE assumption. First, we use Lemma 1
to reduce the standard decisional LWE problem (with a uniformly random secret
s ∈ Z

n′
q and discrete Gaussian noise χσ) to the decisional LWE problem with

a random binary secret s0 ∈ {0, 1}n, modulus q, and kn + kw many samples.
This is the only step of our proof that changes/increases the LWE dimension
and noise. All the remaining steps preserve the error distribution and are very
efficient. So, from this point on, we fix the LWE noise vector e ← χkn+kw

σ
√

n
and

omit it from the notation.
Next, we reduce LWE with binary secret to the problem of distinguishing

[
g-LWEs0(s0)
g-LWEs0(0)

]
= g-LWEs0

([
s0
0

])
= [A′,b] (6)

from the uniform distribution over Zq. Let [A,b] be the input LWE distri-
bution (with binary secret s0 and error e), and map it to [A′,b] = [A,b] +[[

I
O

]
⊗ g,0

]
. This transformation clearly maps the uniform distribution to the

uniform distribution. On the other hand,
[[

I
O

]
⊗ g,0

]
is a noiseless g-LWEs0

encryption of (s0,0). So, if [A,b] is an LWE instance, then [A′,b] is a random
g-LWEs0 encryption of (s0,0), i.e., it is distributed according to (6), with the
same error e.
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Next map s0 to a random key s =
∑

i 2isi ∈ Z
n
q with binary decomposition

si ∈ {0, 1}n. We want to map (6) to

g-LWEs0

([
g−1(s)

0

])
= g-LWEs0

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

s0
s1
...
sk

0

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

= [A′,b′]. (7)

This is done simply by picking s1, . . . , sk ∈ {0, 1}n uniformly at random, and
adding si⊗g to the last column of (6), setting b′ = b+(0, s1, . . . , sk,0)⊗g. This
is correct because [O, si ⊗g] is a noiseless g-LWE encryption of si. Moreover, this
transformation maps the uniform distribution to the uniform distribution. So,
it gives a valid reduction to the problem of distinguishing (7) from the uniform
distribution.

Finally, we need to change the encryption key in (7) from s0 to s. This is done
by subtracting A′ ∑

i≥1 si from b′. Again, this maps the uniform distribution to
itself, and distribution (7) to the target distribution

⎡
⎣A′,b′ − A′ ∑

i≥1

si

⎤
⎦ = g-LWEs

([
φ(s)
0

])
.

��
To be clear, the linear circular LWE assumption does not have any impli-

cations to constructing non-leveled fully homomorphic encryption as far as we
know. Nevertheless, we view the fact that Theorem 2 is true as a positive sign
for the resolution of Conjecture 1. Note also that a quadratic circular encryption
contains a linear circular encryption as a subset. So, circLWE is at least as strong
as the linear LWE assumption.

3.2 Search to Decision Reduction

The search-circLWE assumption states that given

(g-LWEs(ψ(s)), [A,As + e])

where A ← Z
w×n
q , s ← Z

n
q and e ← χw, it is hard for probabilistic polynomial-

time algorithms to recover s except with negligible probability. It is trivial to
see that circLWE implies search-circLWE. The goal of this section is to show the
converse.

First, we need the following lemma which says that breaking the circLWE
assumption for random secrets gives us a way to break circLWE for any secret.
Such a worst-case to average-case reduction for LWE is elementary; however, it
does not seem to be so for the circular LWE assumption.
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Lemma 3. There is an efficiently computable map that transforms the circLWE
distribution [g-LWEs(ψ(s);χσ),g-LWEs(0;χ)] for any (fixed) secret s, to the
distribution [g-LWEs′(ψ(s′);χσ′),g-LWEs′(0);χ] with random secret s′ = s +
r mod q where σ′ = σ · 2ω(log λ).

Moreover, the map transforms [g-LWEs(ψ(s);χσ),U] with a uniformly ran-
dom U to [g-LWEs′(ψ(s′);χσ′),U].

Proof. Recall that g-LWE encryption is key-homomorphic, in the sense that there
is an efficiently computable transformation that on input a ciphertext [A,b] =
g-LWEs(m) and an arbitrary vector r, outputs a ciphertext

hr([A,b]) = [A,b − Ar] (8)

in g-LWEs+r(m). This transformation preserves the encryption error. So, if the
input is a fresh g-LWEs(m) ciphertext, the output is also distributed as a fresh
encryption of m under the modified key s + r mod q.

We also use the fact that using auxiliary information P = g-LWEs(ψ(s)) as an
evaluation key, it is possible to perform arbitrary homomorphic computations on
g-LWEs ciphertexts. More specifically, there is an efficiently computable function
Eval that on input any function f and ciphertext C = g-LWEs(m), outputs a
ciphertext

Eval(P, f,C) ∈ g-LWEs(f(m)).

(Such an evaluation algorithm follows from the GSW encryption scheme, e.g.
as presented in Sect. 4.2.) This transformation modifies the encryption noise,
but the output distribution can be made statistically close to a fresh g-LWE
encryption with larger noise parameters using the noise-flooding lemma; see
Lemma 2.

Now, for any vector r, consider the function

fr(ψ(x)) = ψ(x + r).

Notice that this function maps binary vectors to binary vectors, and can be
represented as an arithmetic circuit. It follows that

hr(Eval(P, fr,C)) = hr(Eval(P, fr,g-LWEs(ψ(s))))
= hr(g-LWEs(fr(ψ(s))))
= g-LWEs+r(ψ(s + r)).

This allows to map the first component of the distribution [g-LWEs(ψ(s);χσ),W]
to g-LWEs+r(ψ(s + r);χ′) for some noise distribution χ′ to be determined. For
the second component W = g-LWEs(0;χ) (or uniformly random W = U) we
simply output hr(W), which preserves the error distribution χ.

It remains to analyze the noise-growth χ′ resulting from the homomorphic
computation. First, we note that the function fr essentially performs addition
(in parallel on its coordinates) by a constant vector r with entries in Zq followed
by a single multiplication. This can be implemented with a circuit of depth
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O(log log q). By [17,31], homomorphic evaluation of fr increases the noise mag-
nitude from σ

√
λ to at most σ

√
λ · 2O(log log q) · poly(λ) = σ · poly(λ, log q). Since

log q = poly(λ), the noise flooding lemma using a Gaussian with standard devi-
ation σ′ = σ · poly(λ, log q) · 2ω(log λ) makes this into a Gaussian with standard
deviation σ′ = σ · 2ω(log λ). ��

The following corollary follows immediately from Lemma 3.

Corollary 1. If there is a probabilistic polynomial-time distinguisher for
circLWE that works for a non-negligible fraction of secrets s ← Z

n
q , then there is

a probabilistic polynomial-time distinguisher that, for all secrets s ∈ Z
n
q , outputs

1 with overwhelming probability given (g-LWEs(ψ(s)),g-LWEs(0�)) and 0 with
overwhelming probability given (g-LWEs(ψ(s)),U).

Finally, we state and prove our search to decision reduction for circLWE.

Theorem 3. Let λ be a security parameter. If search-circLWE with parame-
ters n, q and discrete Gaussian error distribution χσ is true, so is circLWE
with parameters n, q and discrete Gaussian error distribution χσ′ where σ′ =
σ · 2ω(log λ).

Proof. The proof goes along the same lines as the simple (non-sample-preserving)
search to decision reduction for LWE [56, Section 4], with the only non-triviality
being that the reduction needs to re-randomize the secret. This is handled by
our Lemma 3. Details follow.

Let [g-LWEs(ψ(s)),g-LWEs(0)] be the input to the search-circLWE problem.
The goal is to recover s. This is done by recovering s one coordinate si at a
time, with the help of the (decisional) circLWE oracle. For any coordinate i,
and guess v ∈ Zq for the value of si, select some rows [A,b] from g-LWEs(0),
choose a uniformly at random, and compute [A′,b′] = [A + a · et

i,b + a · v].
Note that A′ is always uniformly random. Moreover, if si = v, then b′ follows
that g-LWEs(0) distribution. On the other hand, if si �= v, then b′ is uniformly
random and independent of A′. Applying Lemma 3 to (P, [A′,b′]) (where P =
g-LWEs(ψ(s))) we can randomize the secret s′, and use the (decision) circLWE
oracle to determine if si = v was the correct guess.

Trying all possible guesses v (mod q) takes time polynomial in q. For larger
moduli, assume q =

∏
i pi factors into a product of small primes, and determine

the value of v (mod pi) for each pi separately. A reduction for arbitrary modulus
q is obtained using modulus switching. ��

It is natural to ask if there is a tighter reduction from search to decision,
along the lines of the sample-preserving search-to-decision reduction for LWE
from the work of Micciancio and Mol [49]. We conjecture that this is possible.

Conjecture 2. There is a sample-preserving reduction from search-circLWE to
(decisional) circLWE.
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3.3 Key Cliques

A natural question to ask is whether circLWE implies security of LWE when
given multiple key cycles. For example, given

(
g-LWEsi(ψ(sj)) : i, j ∈ [k]

)

for some k > 1, one could conjecture that the collection of [Ai,Aisi + ei] for all
i ∈ [k] are indistinguishable from random numbers [Ai,bi]. We call this the k-
circLWE assumption, which turns out to be equivalent to the circLWE assumption.
We provide an informal statement as well as a sketch of the proof below.

Theorem 4 (Informal). circLWE implies k-circLWE (i.e., Definition 5 with
Pub(S) = {g-LWEsi(ψ(sj))}i,j) for any k = poly(n).

Proof (sketch). The reduction gets g-LWEs(ψ(s)), and computes
(
g-LWEsi(ψ(sj)) : i, j ∈ [k]

)

The reduction defines sj implicitly to be s+ rj where the reduction chooses and
knows rj ← Z

n
q . This can be done exactly as in the proof of Lemma 3: first,

starting from g-LWEs(ψ(s)), compute g-LWEs(ψ(s + rj)) using homomorphic
computation, and then change the secret using the function hr from Eq. 8 to get
g-LWEs+ri(ψ(s + rj)). ��

3.4 Other Gadgets

In this paper, we focus on the use of the power of two gadget pow(2), as this
is the most commonly used in theoretical papers. Still, one may consider the
circLWE assumption with respect to a different gadget vectors h, i.e., given the
encryption Pubh(s) = h-LWEs(ψh(s)) instead of Pubg(s) = g-LWEs(ψg(s)). So,
one may ask, how does the choice of the gadget g affect the circLWE assumption?
Is there a way to map Pubg(s) to Pubh(s)?

It is easy to map C = g-LWEs(ψg(s)) to h-LWEs(ψg(s)) simply by computing
h ◦C = (I⊗h) �C. However, changing ψg into ψh inside the encryption seems
harder. A natural approach is to use the homomorphic properties of the encryp-
tion scheme to change ψg into ψh by means of a homomorphic computation. We
conjecture that this is possible (up to some parameter growth) and pose it as a
problem to be addressed in future work.

4 Homomorphic Encryption Schemes

We describe a number of widely used fully homomorphic encryption (FHE)
schemes along with their associated Pub functions. Our goal is not to be compre-
hensive, but rather to describe a set of representative examples of FHE schemes
together with the circular security assumptions they rely on. For each scheme,
we will describe the key generation and encryption algorithms, focusing on the
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Pub function that captures the auxiliary information about the secret key that is
revealed by the scheme. We do not describe the decryption function, the homo-
morphic operations or the bootstrapping procedure as they are not necessary for
the purposes of analyzing security. For these algorithms, we point the reader to
the original papers.

4.1 BV 2011, BGV 2012 and Brakerski 2012

We begin with the Brakerski-Vaikuntanathan scheme [16], the first leveled FHE
scheme whose security was based on LWE. This was followed shortly after by
Brakerki, Gentry and Vaikuntanathan [12] which improved one of the key tech-
niques in [16], namely modulus switching. In a nutshell, rather than perform
modulus switching once at the end of a homomorphic computation, [12] did mod-
ulus reduction at every step, resulting in a large efficiency gain. We focus here on
a scheme by Brakerski [10], which further improved on this line of work by doing
implicit modulus switching. A concrete consequence was a simpler scheme that
used the same modulus throughout, whereas BV11 and BGV12 use switching
keys to go between LWE ciphertexts under different moduli. Brakerski [10] also
introduced a different method to homomorphically multiply ciphertexts than
BV/BGV. But the methods are very similar, and, in particular, they use essen-
tially the same evaluation keys. So, everything we say holds for either multipli-
cation method, since it only depends on the value of the evaluation key, and not
the details of the homomorphic multiplication algorithm.

Here we consider the (circular) private-key version from [10, Section 4] with
the following algorithms:

– Parameters: The scheme uses an LWE dimension n and an integer modulus
q, and the plaintext space is integers modulo the plaintext modulus p = 2.
(This can be generalized to other Zq and Zp as long as p is sufficiently smaller
than q.)

– Key Generation: The key generation algorithm Gen outputs a random vec-
tor s ← Z

n
q as the private key.

– The Pub Function: PubB12(s) outputs

g-LWEq,s

(
g−1(s, 1) ⊗ g−1(s, 1)

) ∈ Z
((n+1)2w3)×(n+1)
q

where g = pow(2) ∈ Z
w
q is the power-of-two gadget and w = �log2 q� is the

gadget dimension.
– Encryption: A message m ∈ Z2 is encrypted using the trivial gadget g :=

(1) ∈ Z2 as
Encs(m) = g-LWEq,s(m) .

Theorem 5. Under the circLWE[ξ, Ξ] assumption, the Brakerski (private key,
fully homomorphic) encryption scheme [10, Section 4] with encryption noise ξ
and auxiliary input function PubB12[Ξ] is IND-CPA-secure.
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Proof. Let A be an adversary that breaks the IND-CPA security of the encryp-
tion scheme with auxiliary input function PubB12, and notice that PubB12(s;Ξ)
equals precisely g-LWEs(ψg(s);Ξ), the auxiliary information of our circular LWE
assumption. We use A to break the circLWE problem. Recall that A has access
to an encryption oracle Ob(m0,m1) that on input a pair of messages m0,m1

returns a ciphertext LWEs(mb) = (at,ats + e + �mb�q), for a fixed, randomly
chosen b ∈ {0, 1}. The goal of the adversary is to guess the bit b. We use A to
break the circLWE assumption as follows. Let (C, [A,b]) be the circLWE input
distribution, where [A,b] has a sufficiently high number of row9 and follows
either the uniform or LWE distribution with noise e ← ξ. Pick x ← {0, 1} uni-
formly at random, run A(C) and every time A makes a call to the encryption
oracle O(m0,m1) reply with (at

i, bi + �mx�q) using one of the rows of [A,b].
When A terminates with output y ∈ {0, 1}, the circLWE distinguisher outputs
x+y (mod 2). Notice that if b = As+e, then O(m0,m1) = LWEs(mx; e) and A
will correctly guess the random bit x with some non-negligible advantage. On the
other hand, if b is chosen uniformly at random, then the output of O(m0,m1)
is statistically independent of x, and A will output x with probability exactly
1/2. So, the circLWE distinguisher has essentially the same running time and
distinguishing advantage (up to a factor 2) as A. ��

An Optimization. It is possible to reduce the size of the switching key by
letting

PubB12opt(s) := g-LWEq,s(g−1((s, 1) ⊗ (s, 1))) ∈ Z
((n+1)2w2)×(n+1)
q ,

i.e., taking the binary decomposition after tensoring the key, rather than before.
This reduces the size of the switching key by a factor of w = �log2 q� and is an
optimization employed in most subsequent papers that build on [10], e.g., the
Fan-Vercauteren ring variant [24]. If s ∈ {0, 1}n is binary, the two Pub functions
coincide. However, they are different for general secrets s ∈ Z

n
q .

It is clear that the one can prove the security of the resulting scheme just as in
Theorem 5, using a variant of our circLWE assumption where the function ψ(s) =
g−1(s, 1)⊗g−1(s, 1) is replaced by ψ′(s) = g−1((s, 1) ⊗ (s, 1)). It is also tempting
to assume that one can compute PubB12opt(s) = g-LWEs(ψ′(s)) from PubB12(s) =
g-LWEs(ψ(s)), and, thereby, establish the security of the optimized scheme under
the standard circLWE assumption, possibly at the cost of using larger parameters.
The idea is to express the products u · v in (s, 1) ⊗ (s, 1) where u, v are elements
of (s, 1) as a binary circuit that takes as input the bits of v =

∑
i vi2i and u =∑

i ui2i. Then, evaluate the circuit homomorphically on the encryptions of ui, vi

(which are available from PubB12(s)) using the (leveled) homomorphic operations
of the encryption scheme, producing as a result the encryption of the bits of
u · v, and concatenate them together to form PubB12opt(s). The problem is that
this approach produces encryptions of the bits in ψ′(s) under the BV/BGV/B12
LWE encryption scheme with trivial gadget g = (1) and plaintext modulus p = 2,

9 The number of rows may be fixed using a public key version of the encryption scheme.
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while PubB12opt(s) requires the output to be encrypted under g = pow(2) and
modulus p = q. So, it is unclear how to compute PubB12opt(s) from PubB12(s),
and at this point the optimized scheme seems to require a different (and possibly
stronger) assumption than circLWE.

4.2 GSW 2013 and BV 2014

We next consider a different family of LWE-based encryption schemes that stem
from the work of Gentry, Sahai and Waters [31]. Their work does not describe
an explicit bootstrapping algorithm, rather it mentions that the scheme can be
bootstrapped using general techniques, leading to an FHE scheme with quasi-
polynomial modulus q. Brakerski and Vaikuntanathan [17] describe a new boot-
strapping algorithm for the GSW scheme, leading to the first leveled FHE with
a polynomial modulus q. This has been further simplified and optimized by
Alperin-Sheriff and Peikert [3].

The Key-Switching Lens on GSW 2013 Ciphertexts. Focusing on the
encryption scheme in [31, Section 3], we present a very different, but completely
equivalent, view on GSW ciphertexts as switching keys in the Regev encryption
scheme. We describe our version of GSW 2013 below, and go on to show that
the ciphertexts thus generated are computationally equivalent to the ciphertexts
in [31, Section 3].

– Parameters: The scheme uses an LWE dimension n and an integer (cipher-
text) modulus q, and the plaintext space is M = {0, 1} ⊂ Zq.

– Key Generation: The key generation algorithm Gen outputs a random vec-
tor s ← Z

n
q as the private key.

– Encryption: The scheme uses the power gadget g = pow(2) ∈ Z
w
q in dimen-

sion w = �log2 q�.10 A message m ∈ M is encrypted as

Encs(m) = g-LWEs→s(m) ∈ Z
(n+1)w×(n+1)
q

so ciphertexts are matrices.11

Before proceeding any further, we observe that these ciphertexts can be added
and multiplied using the switching keys composition properties described at
the end of Sect. 2.3. We leave it to the reader to verify that the properties are
operationally identical to the homomorphic addition and multiplication of the
GSW encryption scheme.

10 [31] also mentions the possibility of using g = pow(b) for some other basis b, or a
CRT gadget g = crt(p), though the scheme is only presented and analyzed for the
specific case of g = pow(2).

11 The original GSW 2013 encryption scheme outputs a bit-decomposition of the mod-q
matrix as the ciphertext. Here, we use an equivalent variant from [3] which outputs
the mod-q matrix as-is.
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We now show that these ciphertexts are exactly GSW 2013 ciphertexts. Let
us first rewrite the ciphertext in the language of LWE.

Encs(m) = g-LWEs→s(m) = g-LWEs

( [
s
1

]
m

)
= LWEs

( [
s
1

]
m ⊗ g

)

=
[
A,−As + e +

[
ms ⊗ g

mg

] ]

Now, writing ms ⊗ g as

ms ⊗ g = (mIn ⊗ g)(s ⊗ 1) = (mIn ⊗ g)s ,

we can write the ciphertext as
[
A,−As + e +

[
ms ⊗ g

mg

] ]
=

[
A1, −(A1 − mIn ⊗ g)s + e1
A2, −A2s + e2 + mg

]

=
[
A′

1 + mIn ⊗ g, −A′
1s + e1

A2, −A2s + e2 + mg

]

=
[
A′

1, −A′
1s + e1

A2, −A2s + e2

]
+ mIn+1 ⊗ g

= [A,−As + e] + mIn+1 ⊗ g

The latter expression is exactly a GSW 2013 ciphertext, except that (follow-
ing [3]) it is written as a mod-q matrix whereas GSW 2013 further do bit-
decomposition to turn it into a 0-1 matrix.

The Pub Function for GSW. The PubGSW13 function encrypts the bits of each
coordinate of the secret key s under the GSW encryption algorithm:

PubGSW13(s) = g-LWEs→s(g−1(s)).

We recall that the GSW encryption scheme has message space {0, 1}. So, the
above expression should be interpreted as the concatenation of wn g-LWEs→s

ciphertexts, each encrypting one of the elements of g−1(s) ∈ {0, 1}wn indepen-
dently.

Theorem 6. Under the circLWE[ξ, χσ] assumption, the GSW (private key, fully
homomorphic) encryption scheme [31, Section 3] with encryption noise ξ and
auxiliary input function PubGSW13[χσ′ ] is IND-CPA-secure, where σ′ =

√
w · σ.

Proof. By definition

PubGSW13(s) = g-LWEs→s(g−1(s)) = g-LWEs

(
g−1(s) ⊗

[
s
1

] )
.

This can be generated from

PubB12(s;Ξ) = g-LWEs

(
g−1(s, 1) ⊗ g−1(s, 1) ;Ξ

)
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via additive homomorphisms with noise growth O(
√

log q). More specifically, one
can compute

PubGSW13(s) = G � PubB12(s;Ξ) where G = [I,O] ⊗ (I ⊗ gt)

which, by the mixed product property of ⊗ and the definition of �, is a g-LWEs

encryption of

(
[I,O] ⊗ (I ⊗ gt)

) ·
(
g−1

([
s
1

])
⊗ g−1

([
s
1

]))

=
(

[I,O] · g−1

([
s
1

]))
⊗

(
(I ⊗ gt) · g−1

([
s
1

]))

= g−1(s) ⊗
[
s
1

]
.

This proves that PubGSW13)(s) encrypts the correct message. As for the encryp-
tion noise distribution, notice that if PubB12(s) has discrete gaussian noise dis-
tribution Ξ then PubGSW13(s) has noise distribution g−t(G) · Ξ. But, for any
gadget g, the gadget decompositions of the coordinates of the gadget vector
are (trivially) the unit vectors g−t(gi) = et

i = [0, . . . , 1, . . . , 0] ∈ {0, 1}w with
the 1 at position i. It follows that g−t(G) = [I ⊗ g−t(gt) ,O] is a binary matrix
with orthogonal rows of weight w. So, if Ξ follows the gaussian distribution χσ,
then each coordinate of g−t(G) Ξ is the sum of w independent gaussians χσ. So,
g−t(G) Ξ is also gaussian χσ′ with parameter σ′ =

√
w · σ.

This is not enough to show that the IND-CPA security of GSW follows from
the security of B12 because the encryption function is also different. Still, we can
proceed similarly to the proof of Theorem 5 as follows. Let A be an adversary
breaking the IND-CPA security of GSW, and let (PubB12(s),C) the input for the
circLWE problem. Here C ∈ Z

∗×(n+1)
q is a matrix with sufficiently many rows,

and it is broken into chunks Ci ∈ Z
(n+1)w×(n+1)
q , one for each encryption query

to be made by A. The goal is to determine if C follows the LWE or the uniformly
random distribution. First we compute PubGSW13(s) from PubB12(s) as described
above, and pick a bit x ∈ {0, 1} uniformly at random. Next, we run A on input
PubGSW13(s), and every time A makes an encryption query (m0,m1) we reply
with Ci + mxI⊗ g, where i is a counter which is incremented after every query.
If C is follows the LWE distribution (with secret s), Ci + mxI ⊗ g is a GSW
encryption of mx, and A will have some advantage in guessing the value of the
bit x. On the other hand, if Ci is uniformly random, A has no information about
x and will guess it with probability exactly 1/2. So, we can determine if C is
LWE or uniform by checking if A outputs x. ��

4.3 AP14 and GINX16

The work of Alperin-Sheriff and Peikert [3] builds on GSW 2013 and BV 2014,
but uses a different bootstrapping procedure requiring a different encoding of
the secret key. Several encoding methods are described in [3]. In the simplest
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(but least efficient) method each coordinate si ∈ Zq of the secret key is encoded
as a permutation matrix Πi ∈ {0, 1}q×q such that Πix rotates the vector x by
si positions. Then, the entries of Πi (for each i) are encrypted using the GSW
encryption function. Then a number of optimizations are considered. First, since
each row of Πi is a rotation of the previous row, there is no need to encrypt all
q × q entries: it is enough to provide encryptions of the first row πi, producing
just q ciphertexts for each i. (For the other rows one can use rotations of those
q ciphertexts.) Even more substantial savings can be obtained when q =

∏
j qj

is a product of small primes. Then, one can use the isomorphism between Zq

and
∏

j Zqj , map the secret key to a collection of values si,j = si (mod qj),
and then encode each si,j ∈ Zqj as before as (the first row of) a permutation
matrix in dimension qj . Our proof and security analysis holds for all different
variants of the encoding functions, as it operates on each vector individually.
For concreteness, we consider the direct encoding of x ∈ Zq as a q-dimensional
binary vector. But the proof is immediately adapted to the case of composite
q =

∏
j qj , breaking Zq into the product of smaller cycles.

In summary, the PubAP14 function encrypts a one-hot encoding of each coor-
dinate si ∈ Zq (or si,j ∈ Zqj ) of the secret key. For a number x ∈ Zq, let
ex ∈ {0, 1}q denote the vector with 1 in the xth coordinate and 0 everywhere
else. Extending the notation to vectors, for s ∈ Z

n
q , let es ∈ {0, 1}nq denote the

vertical concatenation of the esi
for all i.

PubAP14(s) = g-LWEs→s(es)

Theorem 7. Under the circLWE[ξ, χσ] assumption, the AP14 (private key, fully
homomorphic) encryption scheme [3, Section 5] with encryption noise ξ and aux-
iliary input function PubAP14[Ξ] is IND-CPA-secure for some efficiently sam-
plable distribution Ξ with subgaussian parameter |Ξ| ≤ w2

√
n + 1 · σ.

Proof. Since AP14 and GSW use the same encryption function, it is enough to
show how to generate PubAP14(s) from PubGSW13(s). Then, security follows from
the proof of Theorem 6. Recall that PubGSW13(s) = g-LWEs→s(xt) where xt =
g−t(s) is the bit decomposition of the secret key s. Moreover, Theorem 6 shows
that (starting from the circLWE[ξ, χσ] auxiliary information) these ciphertexts
can be computed with gaussian encryption noise χσ′ for σ′ =

√
wσ. Consider

the function φ(x1, . . . , xw) that takes the bits xi ∈ {0, 1} of a number x ∈ Zq

and outputs its one-hot encoding ex. For any y =
∑

i 2iyi (with yi ∈ {0, 1}),
the yth element of the one-hot encoding ex[y] can be written as ex[y] =

∏w
i=0 zi

where

zi = (yi · xi + (1 − yi) · (1 − xi))

= ((2yi − 1)xi + 1 − yi) =
{

1 if xi = yi

0 otherwise

Notice that (2yi − 1) = ±1, and it is a known constant. So, the product (2yi −
1)xi can be evaluated homomorphically on the encryption of xi (provided by
PubGSW13(s)) while preserving the error distribution ±χσ′ = χσ′ . Moreover,
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all factors zi in the product evaluate to either 0 or 1. So, the product can be
evaluated using AP14 homomorphic multiplications. More specifically, if Ci =
g-LWEs→s(zi;χσ′) are the encryptions of the secret bits zi computed as above,
then an encryption of ex[y] =

∏w
i=1 zi can be computed as the product

C1 � C2 � · · · � Cw.

By Theorem 1, evaluating this products left-to-right gives an encryption of ex[y]
with an error which is the sum of at most w terms for the form g−t(C′

i) · χσ′ ,
where C′

i = C1�· · ·�Ci−1 are the ciphertexts corresponding to the intermediate
partial products. Since the rows of g−t(C′

i) ∈ {0, 1}(n+1)w×(n+1)w have norm at
most

√
w(n + 1), each error component has gaussian distribution of parameter

(at most)
√

w(n + 1)σ′ = w
√

n + 1σ. Adding up the errors for all (at most w)
terms, we see that ex[y] is encrypted with gaussian noise χσ′′ of parameter at
most σ′′ ≤ w2

√
n + 1σ. We remark that while each ex[y] is encrypted using

gaussian noise, these error distributions (for different indexes y) are not totally
independent because they are obtained by taking different linear combinations
of the same g-LWEs→s(xt;χσ′). Independence (and a slightly better bound) can
be achieved by evaluating the � products using the subgaussian decomposition
technique of [3]. ��

We remark that the fact that auxiliary information noise Ξ in Theorem 7 is
not a Gaussian is just an artifact of the proof, and using discrete gaussian noise
χσ′′ with the same parameter σ′′ = w2σ

√
n + 1 is only expected to improve the

security of the scheme. Alternatively, a formal statement can be obtained by
using noise flooding to map the error distribution Ξ resulting from the homo-
morphic evaluation process into a discrete gaussian, at the cost of substantially
increasing the noise level.

Gama et al. [25, Section 7] give yet another bootstrapping procedure,12 simi-
lar to AP14, but offering some advantages when the secret key has binary entries
s ∈ {0, 1}n. Arbitrary keys are mapped to binary ones by taking their binary
decomposition. (See [51] for a comparison of the two methods and their relation
to ring versions of the same schemes [21,23].) Since the bootstrapping key con-
sists of the GSW encryption of the bits of the secret key s, the Pub function is
precisely the same as in the GSW scheme

PubGINX16(s) = PubGSW13(s).

So, it immediately follows from Theorem 6 that the scheme is secure under the
circLWE assumption.

Theorem 8. Under the circLWE[ξ, χσ] assumption, the (private key, fully homo-
morphic) GINX encryption scheme [25, Section 7] with encryption noise ξ and
auxiliary input function PubGINX16[χ√

wσ]. is IND-CPA-secure.

12 Gama et al. also present an abstract generalization of GSW, and present the scheme
using a rather nonstandard notation. But the scheme is essentially the same as GSW.
So, for simplicity we present it using standard LWE notation.
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4.4 HAO15

Hiromasa, Abe and Okamoto [37, Section 3] proposed a homomorphic encryp-
tion scheme called MatrixGSW, a variant of GSW 2013 which encrypts matrices
directly. The private key version of the scheme is defined as follows:

– Parameters: The scheme uses an LWE dimension n, an integer cipher-
text modulus q, and the an integer k which defines the message space
M = {0, 1}k×k ⊂ Z

k×k
q .

– Key Generation: The secret key generation algorithm Gen outputs a ran-
dom n × k integer matrix with small entries S ← Z

n×k
q .

– Encryption: The encryption of a message M is

EncS(M) = g-LWES→S(M)

where g = pow(2).

Interestingly, even without bootstrapping, the IND-CPA security of
MatrixGSW does not seem to follow from the standard LWE assumption.13
The security of (the public key version of) the scheme is claimed [37, Lemma 4]
under an unspecified “circular security” assumption. Here we provide a sketch of
the proof that the private-key encryption scheme is secure under the key clique
assumption from Sect. 3.3.

Theorem 9 (Informal). Under the key clique assumption from Sect. 3.3, the
HAO15 encryption scheme [37] is IND-CPA secure.

Proof (Sketch). Expanding the definition of EncS we see that

EncS(M) = g-LWES→S(M) = g-LWES

([
S
I

]
M

)

=
[
g-LWES(SM)
g-LWES(M)

]

The bottom part is just a g-LWE encryption of the matrix M under S =
[s1, . . . , sk], and its security follows from the standard LWE assumption using
a standard hybrid argument. For the top part, we show how to compute
C = g-LWES(SM) from the key clique Qi,j = g-LWEsj (si). Let mi,j be the
entries of the message M. Then, the jth column of C can be written as

g-LWEsj

(∑
i

si · mi,j

)
=

∑
i

mi,j

g
� g-LWEsj (si) =

∑
i

mi,j

g
� Qi,j .

13 [37] claims that the private key (but not the public key) version of the encryption
scheme is secure under the standard decisional LWE assumption, but without giv-
ing a proof. However, the claim is probably incorrect as private key homomorphic
encryption schemes can be generically transformed into public key homomorphic
schemes without additional security assumptions.
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In fact, if M is a matrix with binary entries, then one can use a simple product
mi,j ·Qi,j instead of

g
�. This expression produces an encryption of SM, but with

a different error distribution than the standard encryption function. Still, one
can guarantee IND-CPA security under the key clique assumption by adding a
random encryption of 0 with flooding noise, and using the noise flooding lemma
(Lemma 2). ��

Combining this with Theorem 4 we get security under our circLWE assump-
tion.

Corollary 2. Under the circLWE assumption, the HAO15 encryption scheme
[37] is IND-CPA secure.
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