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Abstract. Amortized bootstrapping offers a way to simultaneously
refresh many ciphertexts of a fully homomorphic encryption scheme, at
a total cost comparable to that of refreshing a single ciphertext. An
amortization method for FHEW-style cryptosystems was first proposed
by (Micciancio and Sorrell, ICALP 2018), who showed that the amor-
tized cost of bootstrapping n FHEW-style ciphertexts can be reduced
from Õ(n) basic cryptographic operations to just Õ(nε), for any constant
ε > 0. However, despite the promising asymptotic saving, the algorithm
was rather impractical due to a large constant (exponential in 1/ε) hidden
in the asymptotic notation. In this work, we propose an alternative amor-
tized bootstrapping method with much smaller overhead, still achieving
O(nε) asymptotic amortized cost, but with a hidden constant that is only
linear in 1/ε, and with reduced noise growth. This is achieved following
the general strategy of (Micciancio and Sorrell), but replacing their use
of the Nussbaumer transform, with a much more practical Number The-
oretic Transform, with multiplication by twiddle factors implemented
using ring automorphisms. A key technical ingredient to do this is a new
“scheme switching” technique proposed in this paper which may be of
independent interest.

Keywords: Fully homomorphic encryption · Ring LWE · amortized
bootstrapping

1 Introduction

Fully Homomorphic Encryption (FHE) schemes support the evaluation of arbi-
trary programs on encrypted data. Since a first solution to the problem was
proposed in [8], FHE has become both a central tool in the theory of cryptog-
raphy, and an attractive cryptographic primitive to be used to secure privacy
sensitive applications. Still, improving the efficiency of these schemes is a major
obstacle to the use of FHE in practice, and a very active area of research.

All reasonably efficient currently known constructions of FHE are based on
the “Ring Learning With Errors” (RingLWE) problem [19,22]. There are two
main approaches to design FHE schemes based on Ring LWE: the one pioneered
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by the BGV cryptosystem and its variants (e.g., see [4,9,10]) and the one put
forward by the FHEW cryptosystem and follow up work (e.g., see [3,5,7].) In
BGV, ring operations are directly used to implement (componentwise) addition
and multiplication of ciphertexts encrypting vectors of values. The ability to
simultaneously work on all the components of a vector (at the cost of a sin-
gle cryptographic operation) makes these schemes very powerful. The downside
is that they also require fairly large parameters, leading to stronger security
assumptions (namely, the hardness of approximating lattice problems within
superpolynomial factors), a very slow bootstrapping procedure, and complex pro-
gramming model. By constrast, in FHEW, ciphertexts are simple LWE encryp-
tions (which offer native support only for homomorphic addition,) while Ring
LWE is used only internally, to implement a special “functional bootstrapping”
procedure that, given an encryption of m, produces a (bootstrapped) encryp-
tion of f(m), for a given function f . The combination of linearly homomorphic
LWE addition and functional bootstrapping still allows to perform arbitrary
computations: for example, as originally done in [7], one can represent bits
x, y ∈ {0, 1} as integers modulo 4, and then implement a (universal) NAND
boolean gate as an addition followed by a (functional bootstrapping) rounding
operation �(x + y + 2 mod 4)/2�. The FHEW approach has several attractive
features: (1) since bootstrapping is performed after every operation, gates can
be arbitrarily composed, leading to a very simple and easy to use programming
model; (2) since we only need to bootstrap basic LWE ciphertexts supporting a
single homomorphic addition, the scheme can be instantiated with much smaller
parameters; (3) in turn, this leads to weaker security assumptions (hardness
of approximating lattice problems within polynomial factors), and substantially
simpler and faster bootstrapping, orders of magnitude faster than BGV.

However, the lower speeds of BGV bootstrapping are largely compensated
by its ability to encrypt and operate on many values (encrypted as a vector) at
the same time, allowing, for example, to simultaneously bootstrap thousands of
ciphertexts. This drastically reduces the amortized cost of BGV bootstrapping,
making it preferable to FHEW in terms of overall performance in many settings.

In an effort to bridge the gap between the two approaches, a method to
amortize FHEW bootstrapping was proposed in [21]. The suggested method
consists in combining several (say n) FHEW/LWE input ciphertexts into a sin-
gle RingLWE ciphertext, and then perform FHEW-style bootstrapping on a
single RingLWE ciphertext. This results in a major asymptotic performance
improvement, reducing the amortized cost of FHEW bootstrapping from O(n)
homomorphic multiplications to just O(nε), for any fixed constant ε > 0. Unfor-
tunately, the method of [21] is rather far from being practical, due in large part
to a large constant 2O(1/ε) hidden in the asymptotic notation.

Challenges, Results and Techniques. In this paper we propose a variant of
the bootstrapping procedure of [21] with similar asymptotics, but substantially
smaller multiplicative overhead. In particular, we reduce the amortized cost of
FHEW bootstrapping from 2O(1/ε) · nε to just (1/ε) · nε. In other words, we
achieve a similar asymptotic cost O(nε) (for any constant ε > 0), but with an
exponentially smaller constant hidden in the asymptotic notation.
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The main challenge faced by [21] was the use of RingGSW registers to imple-
ment the homomorphic fourier transform required to bootstrap a RingLWE
ciphertext. These registers, introduced in [7], encrypt messages in the exponent
as Xm. This allows to implement homomorphic addition using some form of
ciphertext multiplication Xm0 · Xm1 = Xm0+m1 , but other homomorphic oper-
ations required by FFT/NTT algorithms (like subtraction and constant mul-
tiplication by so-called “twiddle factors”) are much harder, seemingly requiring
homomorphic division and exponentiation on ciphertexts. This is addressed in
[21] by using the Nussbaumer transform, a variant of the FFT/NTT algorithm
that does not require multiplication by twiddle factors. Unfortunately, the use of
the Nussbaumer transform in [21] also introduces a 2O(1/ε) factor in the running
time, making the algorithm impractical.

Methods to perform homomorphic multiplication in the exponent (i.e., expo-
nentiation by a constant) are known, using automorphisms, and have been used
in connection to the bootstrapping of FHEW-like cryptosystems [3,15], but they
only work for RingLWE ciphertexts, making them inapplicable to the RingGSW
ciphertexts required by [21]. In this paper we introduce three technical innova-
tions that allow to overcome these issues:

We introduce a new RingLWE-to-RingGSW “scheme switching” procedure,
which allows us to transform RingLWE ciphertexts into equivalent RingGSW
ones. The method is of independent interest and may find applications elsewhere.
Note that a similar technique also appears in [14].

We design a new variant of the amortized FHEW bootstrapping of [21] that
operates on RingLWE registers, rather than RingGSW. This allow us to imple-
ment multiplication by arbitrary twiddle factors using the automorphism tech-
niques of [3,15], and instantiate the amortized FHEW bootstrapping framework
with a standard (homomorphic) FFT/NTT computation, which carries a much
smaller overhead. Then, when RingGSW registers are required, we resort to our
scheme switching procedure to convert RingLWE to RingGSW on the fly.

We replace the power-of-two cyclotomic rings [7,15,21] and circulant rings
[3] used by previous FHEW bootstrapping algorithms, with prime cyclotomics.
This requires a new error analysis for prime cyclotomics, which we describe
in this paper. (Error analysis for power-of-two cyclotomic and circulant rings
is comparatively much easier.) This speeds up and simplifies various steps of
our bootstrapping procedure, e.g., by supporting a standard radix 2 FFT (as
opposed to the radix 3 Nussbaumer transform of [21]), and completely bypassing
the problem that automorphisms only exists for invertible exponents [15].

One important problem that still remains open is that of reducing the noise
growth in amortized FHEW bootstrapping. Just as in previous work [21], the
ciphertext noise of our bootstrapping procedure increases multiplicatively at
every level of the FFT/NTT computation. In order to keep the RingLWE noise
(and underlying lattice inapproximability factors) polynomial, this requires to
limit the recursive depth of the FFT/NTT algorithms to a constant. This is the
reason why both [21] and our work only achieve O(nε) amortized complexity,
rather than the O(log n) one would expect from a full (O(log n)-depth) FFT
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algorithm. In practice, this limits the recursive depth to a small constant, typi-
cally just two levels or so. Further improving amortized FHEW bootstrapping,
allowing the execution of a homomorphic FFT with O(log n) levels is left as an
open problem.

Related and Concurrent Work: Ring automorphisms have been used in many
other works aimed at improving the efficiency of lattice cryptography based on
the RingLWE problem, most notably the evaluation of linear functions in HElib
[13] and algebraic trace computations [2]. Our use of automorphisms is most
closely related to [15], which recently used them to improve the performance of
FHEW (sequential, non-amortized) bootstrapping. In a concurrent and indepen-
dent work [11], an algorithm very similar to ours is presented. The algorithm
achieves essentially the same results, improving the cost of amortized FHEW
bootstrapping from 2O(1/ε) ·n1/ε to (1/ε) ·n1/ε. The overall structure of the algo-
rithm is very similar, using automorphisms to replace the Nussbaumer transform
in [21] with a standard FFT. However, the algorithms differ in some technical
details. For example, while [11] uses the circular rings [3], we use prime cyclo-
tomics, which results in marginally smaller ciphertexts. Another difference is that
while [11] extends the automorphism multiplication technique to work directly
on RingGSW ciphertexts, we center our FFT algorithm aroung RingLWE reg-
isters (which are smaller than RingGSW by a factor 2) and convert them to
RingGSW only when necessary using our new scheme switching technique. This
allows us to exploit RLWE’-RGSW multiplications instead of RGSW-RGSW
multiplications during the homomorphic inverse FFT, which gives a 2x perfor-
mance improvement compared to RGSW key-switching as used in [11].

At Eurocrypt 2023, Liu and Wang introduced a new algebraic framework
for batch homomorphic computation based on the tensoring of three rings [16].
Their new framework is also used in the context of bootstrapping algorithms [17]
to improve the efficiency of the amortized bootstrapping algorithm following
the Nussbaumer technique from [21], achieving an amortized bootstrapping cost
of Õ(1) FHE multiplications within a polynomial modulus. We compare our
algorithm to theirs in Sect. 5.4.

More recently still, another line a work from Liu and Wang [18] (Asiacrypt
2023) obtained the asymptotic results of [16,17] while also achieving concrete
efficiency by exploiting both BFV and LWE ciphertexts. Asymptotically, [18]
requires a super-polynomial modulus whereas our work considers only polyno-
mial modulus. Considering a super-polynomial modulus would allow to increase
the recursive depth in our work but would unlikely be effective in practice.

2 Preliminaries

2.1 Cyclotomic Rings and Embeddings

Given a positive integer N , the N th cyclotomic polynomial is defined as ΦN (X) =∏
i∈Z

∗
N
(X − ωi

N ) for ωN = e2πi/N ∈ C the complex N th principal root of unity.
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The N th cyclotomic ring is defined as RN = Z[X]/(ΦN (X)). In this work, we will
consider the dth cyclotomic ring modulo q, for d a power-of-2, defined as Rd =
Zq[X]/Φd(X) � Z

φ(d)
q . Each element of this ring corresponds to a polynomial

a ∈ Rd of degree less than φ(d) and with coefficients taken modulo q. There exist
various ways of representing a ring element. One can first map the polynomial
a(X) =

∑
i≤φ(d) ai · Xi to its vector of coefficients (a1, a2 · · · , aφ(d)) ∈ Z

φ(d)
q .

This is known as the coefficient embedding. The norm of any ring element then
refers to the �2 norm of the corresponding vector in the coefficient embedding.

Another representation of a ring element is with its canonical embedding
σ : K → C

n which endows K, the dth cyclotomic number field, with a geome-
try. Note that the ring of integers of K corresponds to the dth cyclotomic ring
Z[X]/Φd(X). We know that K has exactly φ(d) ring homomorphisms, also called
embeddings, σi : K → C. The canonical embedding is then defined as the map
σ(a) = (σi(a))i∈Z

∗
d

for a ∈ K. The norm usually considered when using the
canonical embedding is the �∞ norm ||σ(a)||∞ = maxi |σi(a)|. More generally,
for any a ∈ K and any p ∈ [1,∞], the �p norm is defined as ||a||p = ||σ(p)||p.
Since the σi are ring homomorphisms, we then have for any a, b ∈ K the inequal-
ity ||a · b||p ≤ ||a||∞ · ||b||p.

Working with prime cyclotomics, or more generally with non-power-of-two
cyclotomics can be rather cumbersome, in particular, when considering the
canonical embedding and not just the coefficient embedding. We know that any
two embeddings are related to each other by a fixed linear transformation on
R

d. For power-of-2 cyclotomics, the transformation is even an isometry and thus
the coefficient and canonical embeddings are equivalent up to a

√
d factor. In

this work, we will be working with both Rd, the dth cyclotomic ring modulo q
for which we will use the notation Rin and the qth cyclotomic modulo Q for a
prime q and a positive integer Q > 0, which we will denote Rreg. The latter is a
prime cyclotomic ring where the two embeddings cannot be easily interchanged.
This will affect the error growth analysis as we later explain in Sect. 3.2.

2.2 Encryption Schemes and Operations

We recall definitions and notations for the standard LWE encryption scheme
used in the bootstrapping algorithm. We also extend our description to the ring
version of LWE and introduce two related schemes, GadgetRLWE and RGSW,
both used in our algorithm.

LWE: Consider some positive integers n and q. Let sk ← χ be a secret key
sampled from a distribution χ and m ∈ Z a message. The LWE encryption of
the message m under the secret key sk is given by

LWEq,sk(m) = [aT , b] ∈ Z
1×(n+1)
q ,

where a ← Z
n
q , b = −a · sk+ e + m ∈ Zq and e ← χ′ is the error, sampled from

a distribution χ′, and ciphertexts are represented as row vectors.
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RLWE: The ring version of LWE considers the ring Rq. Let sk ← χ be a
secret key sampled from a distribution χ and m ∈ Rq a message. The RLWE
encryption of the message m under the secret key sk is given by

RLWEq,sk(m) = [a,b] ∈ Rq
1×2,

where a ← Rq and b = −a · sk+ e+m and ei ← χ′ for each coefficent ei of the
error. If context is clear, we do not specify the modulus q or the secret key sk.

Gadget RLWE or RLWE’. Consider a gadget vector v = (v0, v1, · · · , vk−1).
Gadget RLWE or equivalently refered to as RLWE’ is expressed as a vector of
RLWE ciphertexts of the form

RLWE′
sk
(m) = (RLWEsk(v0 · m),RLWEsk(v1 · m), · · · ,RLWEsk(vk−1 · m)) ∈ Rk×2

q

i.e., matrices with k rows, each representing a basic RLWE ciphertext. We remark
that RLWE ciphertext can be regarded as a special case of RLWE′ instantiated
with a trivial gadget 	v = (1). So, anything we say about RLWE′ applies to
RLWE as well.

RingGSW. Given a message m ∈ Rq, we define

RGSWsk(m) = (RLWE′
sk(sk · m),RLWE′

sk(m)) ∈ Rq
2k×2.

We now summarize the operations that can be done with the different
schemes presented above and focus in particular on the operations used in our
algorithm. The main operation in our algorithm that serves as a building block
for other operations is the scalar multiplication by arbitrary ring elements.
In order to compute this multiplication, one uses RLWE’ with gadget vector
v = (v0, v1, · · · , vk−1). The scalar multiplication is denoted as R � RLWE′ and
corresponds to � : R × RLWE′ → RLWE defined as

t � RLWE′
sk(m) :=

k−1∑

i=0

ti · RLWEsk(vi · m)

= RLWEsk

(
k−1∑

i=0

vi · ti · m
)

= RLWEsk(t · m)

where
∑

i viti = t is the gadget decomposion of t into “short” vectors ti, for
an appropriate notion of “short” depending on the gadget v. Each operation
performed with ciphertexts increases the error. When performing many of these
operations, as in our bootstrapping algorithm, it is crucial to keep track of the
error growth. More details will be given in Sect. 3.2. For now, we simply state
that each error ei in RLWEsk(vi · m), after the scalar multiplication, becomes
∑k−1

i=0 ti · ei.
The RLWE and RLWE′ schemes only support multiplication by constant

values. In order to obtain multiplication by ciphertexts, we need to consider the
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RGSW scheme. Let us now consider the multiplication 
 : RLWE × RGSW →
RLWE defined as

RLWEsk(m1) 
 RGSWsk(m2) := a � RLWE′
sk(sk · m2) + b � RLWE′

sk(m2)
= RLWEsk(a · sk · m2 + b · m2)
= RLWEsk(m1 · m2 + e1 · m2)

for RLWE(m1) := (a,b). The output of this multiplication is an RLWE cipher-
text encrypting the message m1 · m2 + e · m2. The error thus additively
increases by e1 · m2. If the error term e1 · m2 is sufficiently small, then this
approximately results in an RLWE encryption of the product of the two mes-
sages. This multiplication can be extended to RLWE′ ciphertext multiplica-
tion 
′ : RLWE′ × RGSW → RLWE′ defined as

RLWE′
sk
(m1) �′ RGSWsk(m2)

:= (RLWEsk(v0 · m1) � RGSWsk(m2), · · · ,RLWEsk(vk−1 · m1) � RGSWsk(m2))

≈ RLWE′
sk
(m1 · m2).

Each component RLWEsk(vi·m1)
RGSWsk(m2) of the result has the same error
growth as a 
 operation in the RLWE 
RGSW case. In particular, it includes an
error term e1,i · m2 that requires the second message m2 to be small.

The 
′ operation corresponds to k times the 
 operations, and thus a total
of 2k � operations.

2.3 Using Ring Automorphisms

Similarly as in [15], we use ring automorphisms to perform scalar multiplication
with registers. Recall that an automorphism is a bijective maps from the ring R
to itself such that for a given t ∈ Z

∗
q , we have a(X) �→ a(Xt).

Automorphism in RLWE and RLWE′: Consider the following RLWE ciphertext
(a(X),b(X)) which encrypts a given message m(X) under a certain key sk,
i.e., (a(X),b(X)) = RLWEsk(m(X)). We also consider a switching key akt =
RLWE′

sk(sk(Xt)), which is used to map ciphertexts [a,b] from key sk(Xt) to
sk. Given an automorphism ψt : R → R such that a(X) �→ a(Xt), we recall the
procedure Evalauto given in [15]:

1. apply ψt to each of the RLWE components. One obtains (a(Xt),b(Xt)) =
RLWEsk(Xt)(m(Xt))

2. apply a key switching function [a,b] �→ a�akt +[0,b] to obtain a ciphertext
RLWEsk(X)(m(Xt))

The same application can be done on RLWE′ ciphertexts. The only difference
comes during the second step where we require k key switching, one for each
RLWE ciphertext. The only R � RLWE′ operation comes from key switching.
Hence, for automorphism on RLWE, we have a single R�RLWE′ operation and
when considering automorphisms on RLWE′ we have k R �RLWE′ operations,
where k is the length of the gadget.
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2.4 Homomorphic Operations on Registers

Following the FHEW framework, we use cryptographic registers that encrypt a
Zq element “in the exponent”. In other words, a register storing m ∈ Zq is an
encryption of Xm ∈ Rreg. In our algorithm, the encryption scheme will some-
times be RLWE′ and sometimes RGSW. Some operations require one scheme or
the other. In order to perform some of these operations, we will need to scheme-
switch from RLWE′ to RGSW. We describe our scheme-switching technique in
Sect. 3.1. In our bootstrapping algorithm, we will primarily use three operations
on registers, i.e., either RLWE′ or RGSW ciphertexts. We have already men-
tioned these operations and recall them now:

– 
′ : RLWE′ ×RGSW → RLWE′ multiplications: this operation allows to
multiply two ciphertexts, which in the exponent acts like and addition.

– Scheme-switching: this operation converts an RLWE′ register into an RGSW
register.

– Automorphisms: this operation allows us to multiply the exponent of a
RLWE′ ciphertext by some (known) value, and correponds to multiplication
by a constant.

Note that automorphisms can only operate on RLWE′ registers, not an RGSW
ones. (This is because RGSW does not directly support the key switching oper-
ation required by the second step of the homomorphic automorphic application
algorithm. See Sect. 3.1 for details.) On the other hand, multiplication requires
one of the two registers to be in RGSW format. The scheme switching operation
is used to combine the two operations, keeping all registers in RLWE′ form, and
convert them to RGSW only when required for multiplication.

In order to analyse the performance and the correctness of our algorithm we
will analyse these three operations in terms of number of R�RLWE′ operations
needed to compute them and the related error growth (see Table 2).

2.5 Standard and Primitive (Inverse) FFT

We only mention in this paper some relevant facts about FFT algorithms that are
useful for our algorithm. Note that when refering to FFT and related algorithms,
we actually refer to the Number Theoretic Transform (NTT) algorithm.

An FFT algorithm can either evaluate a polynomial at all N th roots of unity
for a given N or only the primitive ones. The former case is refered to as a
standard/cyclic FFT whereas the latter case is called a primitive/cyclotomic
FFT. In the case of a standard FFT, the inverse direction reconstructs from
these evaluations a polynomial mod XN −1. When multiplying two polynomials
a(x) and z(x) modulo a cyclotomic polynomial, using a standard FFT (and its
inverse) requires a “final reduction” step to take polynomials modulo (XN −1) to
polynomials modulo ΦN (X). This “final reduction” increases the multiplicative
depth of the circuit and, in our case, prevents some useful optimizations (namely,
using RLWE instead of RLWE′ in the last FFT layer as we will explain in
Sect. 4.2). We can avoid the final reduction step by using a primitive/cyclotomic
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FFT, which we recall only evaluates the polynomials at the primitive N th roots
of unity ωi for i ∈ Z

∗
N . The inverse FFT then reconstructs from these evaluations

a polynomial modulo the N th cyclotomic polynomial ΦN (X). We note however
that, unlike with a standard FFT, the forward and inverse directions are not
interchangeable. We focus the rest of the discussion on the case of power-of-two
cyclotomics (which is the case we will use in this paper) where N = d = 2log2 N ,
and φ(d) = d/2. For the forward direction, let 0 ≤ i < φ(d) = d/2, and ω be a
primitive dth root of unity. Then the Fourier coefficients f̂ := (f̂0, f̂1, ..., f̂d/2) of
a polynomial f(X) =

∑d/2−1
i=0 fi · Xi (mod Xd/2 + 1) are computed as

f̂i :=
d/2−1∑

j=0

fjω
(2i+1)j ,

and the inverse FFT of f̂ can be computed as

ˆ̂
f� :=

2
d

·
d/2−1∑

i=0

f̂iω
−(2i+1)� =

2
d

· ω−�

d/2−1∑

i=0

f̂iω
−2i�

for each 0 ≤ � < d/2 and output ˆ̂
f(X) =

∑d/2−1
i=0

ˆ̂
fi · Xi. It is easy to verify

that these operations are inverses of each other, i.e., ˆ̂
f = f . The FFT also pre-

serves both addition and multiplication, i.e., ̂̂f + ĝ = f + g and ̂̂f ◦ ĝ = f · g
where ◦ denotes the component-wise multiplication of input vectors. Moreover,
one notices that the inverse operation can be computed as a standard/cyclic
length-φ(d) FFT (using ω−2 as the φ(d)th root of unity) followed by a multipli-
cation by a power of ω.

In this work, we mainly focus on homomorphic computation of the inverse
FFT (while the forward FFT is done in cleartext), so the constant multiplication
by 2/d becomes a (minor) computational overhead. We can easily remove this
overhead by moving the constant from the inverse FFT to the forward FFT. If
we move the constant 2/d, we get

FFT(f)i :=
2
d

· f̂i =
2
d

·
d/2−1∑

j=0

fjω
(2i+1)j ,

FFT−1(FFT(f))� :=
d

2
· F̂FT(f)� =

d/2−1∑

i=0

FFT(f)iω−(2i+1)�.

In this case, FFT−1 is still the inverse of FFT and addition is preserved in the
same manner. However, note that there is a slight difference in multiplication:
FFT−1(FFT(f) ◦ ĝ) = FFT−1(FFT(f · g)) = f · g.

In our algorithm, we will consider partial (primitive) FFT, denoted by PFT,
where instead of reducing modulo (X − ζ) (i.e., evaluating the polynomials at
X = ζ, we reduce modulo (Xk − ζ). In this reduction, an Xi term will not
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interact with an Xj term unless i ≡ j mod k. Hence, an equivalent description
of a partial FTT is doing k FFTs in parallel, each with 1/k as many terms. More
precisely, one FFT will operate on the terms which are 0 modulo k, one FFT on
just the terms that are 1 modulo k, and so on. This also applies to the inverse
direction. In our algorithm, we will thus divide by φ(d)/k and not φ(d).

2.6 Summary of Notations

We summarize the notations used throughout the paper in Table 1. For
simplicity of exposition, this paper uses a standard power-of-B gadget
(1, B,B2, . . . , BdB−1). In practice, this can be replaced by a CRT gadget which
typically supports more efficient implementation.

Table 1. Summary of notations used in the paper

Notation Description

Modulus qplain Ciphertext modulus for standard LWE
q Prime ciphertext modulus for input RLWE ciphertext. Plaintext modulus for registers
Q Ciphertext modulus used in RLWE′ /RGSW registers

Rings Rin dth cyclotomic ring (mod q), Zq [x]

Φd(x)
� Z

φ(d)
q

d power-of-2 degree of Rin

Rreg qth prime cyclotomic ring mod Q used by the registers
FFT k degree at which we stop the partial FFT

φ(d) the number of Plain-LWE ciphertexts that are packed into an RLWE ciphertext; the number
of coefficients in an Rin element; the number of coefficients in the input polynomial of the
FFT; the number of registers in any layer of the IFFT; the number of registers output by
the IFFT

N = φ(d)/k the number of degree-(k − 1) polynomials output by the partial FFT
ω ∈ Zq a primitive (d/k)th root of unity in Zq for use in the FFT

ri radix for FFT layer
� number of FFT layers

Secret keys sp ∈ Z
nplain+1
qplain Plain LWE secret key

z ∈ Rin RLWE secret key for the input (packed) RLWE ciphertext
s ∈ Rreg RGSW secret key used for registers

Gadget decomposition B Base for the powers-of-B gadget used in registers
dB �logB(Q)�, the length of the PowersOfB gadget

Error variance σ2
� The (expected) factor by which an Rreg � RLWE′ operation scales up the error variance in

a ciphertext
σ2

�,RGSW The resulting error variance of the � operation on each RLWE′ component of RGSW(m2)

σ2
�,eval_key The resulting error variance of the � operation on the evaluation key with error variance

σ2
eval_key

σ2
�,aut_key The resulting error variance of the � operation on the automorphism key RLWE′

sk
(ψ(sk))

σ2
in The error variance of the input to an operation

3 Novel Techniques

In this section, we introduce some novel techniques related to scheme switching
and error analaysis. We first introduce a new variant of scheme-switching. We
then introduce an error analysis in the context of prime cyclotomics. Indeed, our
algorithm will use a prime cyclotomic for the registers, whereas common FHE
schemes use power-of-2 cyclotomic rings for which the error analysis differs.
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3.1 RLWE′ to RGSW Scheme Switching

When an automorphism is applied to a ciphertext, it modifies both the encrypted
message and the encryption key. (This applies to RLWE, RLWE’ and RGSW
ciphertexts alike.) Therefore, in order to use automorphisms to operate homo-
morphically on ciphertexts, one needs a method to switch back to the original
key. For RLWE and RLWE’ ciphertexts, this is provided by a standard key
switching operation as described in the previous section. However, for RGSW
encryption, this does not quite work. The reason is that a RGSW encryption
can be interpreted as a pair of RLWE’ ciphertexts encrypting m and m · sk.
The first component does not pose any problem, as it can be transformed using
a standard RLWE’ key switching operation. However, key switching cannot be
directly applied to the second component, because it encrypts a key-dependent
message m · sk. So, RGSW key-switching would require not only to modify the
encryption key, but also to change the message from m · sk to m · sk’, where sk’
is the new key. For this reason, key switching (and homomorphic automorphism
evaluation), is directly applicable only to RLWE and RLWE’ ciphertexts. On
the other hand, RGSW ciphertexts are required to perform homomorphic mul-
tiplications when both multiplicands are encrypted. We address this problem by
providing a method to convert RLWE’ ciphertexts to RGSW ones, which we call
scheme switching. Let us now describe how this is done.

Since RGSWsk(m) = (RLWE′
sk(sk · m),RLWE′

sk(m)) and we are given
RLWE′

sk(m), we just need a way to compute RLWE′
sk(sk · m). To do so, we

will use RLWE′
sk(sk

2) given as part of the evaluation key. We will operate in
parallel on each of the RLWEsk(vi·m) ciphertexts that make up the RLWE′

sk(m)
ciphertext, lifting each RLWEsk(vi ·m) to RLWEsk(vi · sk ·m). More precisely,
for each RLWEsk(vi · m) := (a,b), we compute

a � RLWE′
sk(sk

2) + (b, 0).

By regarding (b, 0) as a noiseless RLWE encryption of b ·sk under the secret key
sk, this computation gives RLWEsk(a·sk2+b·sk) = RLWEsk((a·sk+b)·sk) =
RLWEsk((vi ·m+ e) · sk). Hence we do get RLWEsk(vi · sk ·m) as desired, but
with an additional error e · sk scaled up by sk from the input RLWE′ ciphertext
error e. We will choose the secret key sk with small norm (e.g., binary) so that
this multiplicative error growth remains small. More details about the full error
growth for this scheme switching will be given in Sect. 3.2.

When our scheme switching method is used in conjuction with key switching,
it allows a small optimization. Say we are given a RLWE′

sk’(m), and we want
to turn it into a RGSW encryption under sk. This can be done in two steps,
by first performing key-switching to RLWE′

sk(m), and then using the scheme
switching key RLWE′

sk(sk
2) to compute RLWE′

sk(m · sk). The optimization
consists in using a modified scheme switching key RLWE′

sk(sk
′ · sk) to turn the

input ciphertext (encrypted under sk′) directly into RLWE′
sk(m · sk), perform-

ing key switching sk’ → sk and homomorphic multiplication by sk at the same
time. Notice that the running time is about the same as before as we still need
another key switching sk’ → sk to compute the other component of the output
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RGSW ciphertext. However, combining key switching and multiplication in a sin-
gle operation allows to slightly reduce the noise growth. To give a more modular
presentation, we ignore this optimization in the description of our algorithm.

3.2 Error Growth in Prime Cyclotomics

Analysing the error growth in bootstrapping algorithms is crucial for the cor-
rectness of the scheme as it allows to set the proper modulus sizes and show the
implementation can be run with concrete parameters. It is a standard practice
in lattice cryptography to estimate the error growth during homomoprhic oper-
ations under the heuristic assumption that the noise in ciphertexts behaves like
independent gaussian (or subgaussian) random variables, with standard devi-
ation that depends on the computation leading to the ciphertext. In order to
fairly compare our algorithm to previous work, in this paper we use a similar
technique and compute the total error estimation based on the error variance
introduced by a single Rreg � RLWE′ operation. In previous works, where a
power-of-2 cyclotomic is being used, this value is equal to 1

12dBqB2σ2
input where

B is the base for the power-of-B gadget, dB is the length of the gadget and
σ2
input is the error variance of the input RLWE′ ciphertext considered. Because

Rreg is a prime cyclotomic, the analysis of this variance differs in our case as we
do not directly have a bound on the �∞ norm in the canonical embedding of a
ring element for which we know a bound on each coefficient. We thus propose
the following theorem.

Theorem 1. For an odd prime q and a positive integer Q, let Rreg be the qth

cyclotomic ring modulo Q used for registers, and dB be the length of the gadget
decomposition. For an RLWE′ ciphertext defined over Rreg, the error variance
of the result of a single Rreg � RLWE′ operation is bounded by

σ2
� ≤ 2dBqσ2

rσ2
input,

where σ2
input is the error variance of the input RLWE′ ciphertext, and σ2

r is the
variance of the gadget decomposition of the input Rreg ring element.

Proof. We model an element r ∈ Rreg as sampled uniformly at random—this
is a reasonable model because in our algorithm the Rreg elements always either
come from a ciphertext (and hence are uniform) or are simply an integer constant
(leading to even smaller error growth). The gadget decomposition of r ∈ Rreg,
denoted G−1(r), then consists of dB ring elements r1, . . . , rdB

(which we model
as independently distributed). Note that we will use in our algorithm a balanced
base-B digit decomposition but we leave the decomposition unspecified here for
sake of generality. We model the error vector 	eRLWE′ = (e1, . . . , edB

) where each
component is the error of each RLWE ciphertext in the input RLWE′ ciphertext,
as independent random variables with variance σ2

input. The output error can then
be computed as an inner product

eoutput = 〈G−1(r), 	eRLWE′〉 =
dB∑

i=1

ri · ei.
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We will start by considering a single multiplication vi := ri · ei (mod Φq(X)).
Recall that ri and ei are both ring elements of Rreg, i.e., polynomials of degree
q − 2 (as Rreg = ZQ[X]/(Φq(X)) and Φq(X) = 1 + X + · · · + Xq−1). We want
to compute the variance of each coefficient of

vi = (ri,0 + ri,1X + · · ·+ ri,q−2X
q−2) · (ei,0 + ei,1X + · · ·+ ei,q−2X

q−2) (mod Φq(X)).

For simplicity of notation in the formulas below, we will consider ri and ei to
be polynomials of degree q − 1 (instead of q − 2) with leading coefficients 0,
i.e., the trivial terms ri,q−1 = ei,q−1 := 0. By computing ri · ei (mod Xq − 1)
first and then taking the result modulo Φq(X), we can easily obtain the �th

coefficient of vi, which we denote v
(�)
i , for 0 ≤ � ≤ q − 2. First, note that the

�th coefficient of v′
i := ri · ei (mod Xq − 1) is given by v

′(�)
i =

∑q−1
j=0 ri,j · ei,�−j ,

where the subscripts of e are defined modulo q, i.e., ei,�−j := ei,q+�−j if � < j.
Then, since Xq−1 = −Xq−2−· · ·−1 mod Φq(X), the �th coefficient of vi modulo
Φq(X) is computed as v

(�)
i = v

′(�)
i − v

′(q−1)
i =

∑q−1
j=0 ri,j · (ei,�−j − ei,q−j−1). Let

X
(�)
i,j := ri,j · (ei,�−j − ei,q−j−1) for 0 ≤ j ≤ q − 1 and hence v

(�)
i =

∑q−1
j=0 X

(�)
i,j .

Since ri,q−1 = 0 is a constant value, we trivially have that var(X(�)
i,q−1) = 0. When

0 ≤ j ≤ q − 2, the variance of each X
(�)
i,j equals to

var(X(�)
i,j ) = var(ri,j) · var(ei,�−j − ei,q−j−1) =

{
σ2

rσ2
input if j = 0 or � + 1

2σ2
rσ2

input else
.

The first variance corresponds to the case where var(ei,�−j − ei,q−j−1) =
var(ei,�−j) as ei,q−j−1 = 0 when j = 0 or when var(ei,�−j − ei,q−j−1) =

var(ei,q−j−1) as var(ei,�−j) = 0 when j = � + 1. Since var
(∑q−1

j=0 X�
i,j

)
=

∑q−1
j=0 var(X

(�)
i,j ) + 2

∑
0≤j<k<q cov(X

(�)
i,j ,X

(�)
i,k ), it now suffices to compute the

covariance of each pair. We will first consider the special case where k = j+�+1
as it is the only case where common terms appear between X

(�)
i,j and X

(�)
i,k . Indeed,

we have that for k = j + � + 1,

X
(�)
i,k = ri,j+�+1 · (ei,−j−1 − ei,q−j−�−2),

where ei,−j−1 = ei,q−j−1 also appears in X
(�)
i,j . However, due to the distributive

property of covariance, it holds that1

cov(X(�)
i,j ,X

(�)
i,k ) = −cov(ri,j · ei,q−j−1, ri,j+�+1 · ei,q−j−1) = 0.

In all other cases we trivially have cov(X�
i,j ,X

(�)
i,k ) = 0 since X�

i,j and X�
i,k

are independent. Note that there exist two j indices (j = 0, � + 1) satisfying

1 In general, it holds that cov(XY, XZ) = E(X2)E(Y )E(Z) − E(X)2E(Y )E(Z)
for any random variables X, Y and Z. Therefore, if E(Y ) = E(Z) = 0, then
cov(XY, XZ) = 0.
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var(X(�)
i,j ) = σ2

rσ2
input when 0 ≤ � < q − 2, while there exists only one such j

index (j = 0) when � = q − 2. As a result, we obtain the variance of v
(�)
i as

var(v(�)
i ) =

q−1∑

j=0

var(X(�)
i,j ) =

{
(2q − 4)σ2

rσ2
input if 0 ≤ � < q − 2

(2q − 3)σ2
rσ2

input if � = q − 2
.

Finally, the variance of each coefficient of eoutput denoted by σ2
� is bounded

by 2dBqσ2
rσ2

input. ��

Corollary 1. For an odd prime q and a positivie integer Q, let Rreg be the qth

cyclotomic ring modulo Q used for registers, and dB be the length of a balanced
base-B gadget decomposition with uniform coefficients in [−B/2, B/2). For an
RLWE′ ciphertext defined over Rreg, the error variance of the result of a single
Rreg � RLWE′ operation is bounded by

σ2
� ≤ B2

6
dBqσ2

input.,

where σ2
input is the error variance of the input RLWE′ ciphertext.

Proof. If one considers a balanced base-B digit decomposition of r ∈ Rreg which
consists of dB ring elements r1, . . . , rdB

whose coefficients are each uniform in
[−B/2, B/2), then the variance of the gadget decomposition of the input Rreg

ring element satisfies σ2
r = B2/12. By replacing this value in the upper bound

for σ2
� given in Theorem 1, we get σ2

� ≤ B2

6 dBqσ2
input. ��

Remark 1. Note that the variance σ2
� considered for error analysis in power-of-2

cyclotomic is σ2
� = B2

12 dBNσ2
input, (see [15, Section 4.2]), where N is a power of

two and the 2N th cyclotomic ring is considered. Interestingly, our analysis for
prime cyclotomic rings only shows a difference by a factor 2.

Error Growth in Previous Operations. We now describe the error growth
for the main operations used in our algorithm as a function of σ2

�.

RGSW×RLWE′ Multiplication: Recall that a multiplication between
RLWE′

sk(m1) and RGSWsk(m2) = (RLWE′
sk(m2),RLWE′

sk(sk · m2)) is com-
puted as a�RLWE′

sk(sk ·m2) + b�RLWE′
sk(m2) for each RLWE component

(a,b) of RLWE′
sk(m1). From this description, we easily see that two � computa-

tions are performed to which should be added the error coming from the RGSW
ciphertext itself multiplicatively. Finally, as already mentioned when describing
the operation, the error also additively increases by eRLWE′ · m2. Since m2 is a
monomial, we simply add σ2

RLWE′ . Therefore, the total error variance is equal
to 2σ2

�,RGSW + σ2
RLWE′ where σ2

�,RGSW denotes the resulting error variance of
the � operation on each RLWE′ component of RGSW(m2).
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RLWE’-to-RGSW Scheme Switching: Recall that the operation can be described
as (b, 0) + a � RLWE′

sk(sk
2) for each RLWE component (a,b) of the input

RLWE′ ciphertext. There are two sources of error. Firstly, an additive error
growth comes from the � operation in a � RLWE′

sk(sk
2). Since RLWE′

sk(sk
2)

is a fresh encryption that comes from the evaluation key, the error variance is
relatively small. We thus have an additive error growth with variance σ2

�,eval_key

which denotes the resulting error variance of the � operation on the evaluation
key with error variance σ2

eval_key.
Secondly, a multiplicative error growth comes from the fact that the existing

error in the RLWE′ ciphertext gets scaled by sk. The secret key sk is not a
scalar but rather a ring element and recall we work in a prime cyclotomic. We
know the error variance scales by a factor of no more than �1(sk), where the
norm is with respect to the canonical embedding for sk.

Combining these two sources of error under the assumption that each
coefficient of sk is binary/ternary, then the error variance of the output is
�1(sk) · σ2

RLWE′ + σ2
�,eval_key.

RLWE’ Automorphism: Applying an automorphism ψ itself does not change
the error. The following key-switching operation however introduces an additive
error growth with variance σ2

�,aut_key which denotes the resulting error variance
of the � operation on the automorphism key RLWE′

sk(ψ(sk)).

We summarize these error growth in Table 2.

Table 2. Summary of register operations with R �RLWE′ opcount and error growth.

Operation Computation
(for each RLWE (a,b) of RLWE′)

� ops Error Variance

RLWE′ ×RGSW a�RLWE′
sk
(s ·m2)+b�RLWE′

sk
(m2) 2k 2σ2

�,RGSW + σ2
RLWE′

SchemeSwitch a � RLWE′
sk
(sk2) + (b, 0) k �1(sk) · σ2

RLWE′ +
σ2

�,eval_key

Automorphism ψ(a) � RLWE′
sk
(ψ(sk)) + (0, ψ(b)) k σ2

RLWE′ + σ2
�,aut_key

4 Description of the Algorithm

The overall algorithm, at a high level, can be subdivided into various steps:

– Step 1: a packing step takes as input φ(d) LWE ciphertexts and “combines”
them into a single RLWE ciphertext (a,b) ∈ Rin × Rin.

– Step 2: a homomorphic decryption of the RLWE ciphertext consists in com-
puting (an encryption of) the ring element (a·z+b) ∈ Rin, homomorphically,
given (as a bootstrapping key) an encryption of z.
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– Step 3: an msbExtract step recovers the φ(d) LWE ciphertexts with reduced
noise.

Step 1 and Step 3, except for the use of different rings, are very similar to
previous work [21]. We describe the 3 steps in detail with a particular emphasis
on Step 2 which is the main novelty of this paper.

4.1 Packing

The very first step of bootstrapping procedure consists in taking a set of LWE
ciphertexts and pack them into a single RLWE ciphertext. More precisely, the
packing algorithm takes as input φ(d) LWE ciphertexts encrypting messages
mi ∈ Z as well as an RLWE′ encryption RLWE′(si) of each coefficients of the
plain LWE secret key sp = (s0, s1, · · · , snplain

) ∈ Z
nplain+1
qplain , in the dth cyclotomic

ring with modulus qplain and outputs (a,b) ∈ Rin ×Rin encrypting the message
m(X) =

∑
i miX

i−1. The pseudo-code is given in Algorithm 1.

Algorithm 1. Ring packing
Input: φ(d) plain LWE ciphertexts (
ai, bi) ∈ Z

nplain
qplain × Zqplain , RLWE′(si)

Output: RLWE ciphertext in Rin.
for 0 ≤ i < nplain do

let ri = a0,i + a1,iX + a2,iX
2 + · · · + aφ(d)−1,iX

φ(d)−1 in (Rin)qplain .
end for
r′ = (0, (b0 + b1X + b2X

2 + · · · + bφ(d)−1X
φ(d)−1)) � (Noiseless RLWE′ ciphertext)

ct ← r′ +
∑nplain−1

i=0 ri � RLWE′(si)
return ModSwitchqplain→q(ct)

For simplicity, we first built a ring ciphertext ct modulo qplain (i.e., the
original input modulus) and then switch the modulus to q. Alternatively, one
can directly compute a ring ciphertext modulo q by using a packing key
{RLWE′(si)}i already encrypted under modulus q. The packing key may also
use a different gadget (e.g., the power-of-two gadget, instead of powers-of-B)
than other ciphertexts used later in the algorithm.

Since this part of the algorithm is essentially identical to previous work [21],
we omit these details, and move on to the second step.

4.2 Linear Step

This step of the algorithm takes as input a single RLWE ciphertext (a,b) ∈ Rin
2

and outputs φ(d) RLWE ciphertexts, each encrypting a coefficient of (a · z +
b) ∈ Rin (recall that an element of Rin is a polynomial of degree φ(d)). It
can be further subdivided into two computations: a (homomorphic) polynomial
multiplication between a and (an encryption of) z, where each coefficient of
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the polynomials (describing the key z, all intermediate results, and the final ring
element) is a distinct ciphertext, and the addition of the ring element b. We now
provide a detailed explanation of these computations along with a pseudo-code
of the various steps of the algorithm.

An FFT-Based Polynomial Multiplication. For this step, the algorithm
uses a standard FFT-based method summarized in Fig. 1. More precisely, we
perform the following steps:

Fig. 1. High level description of the linear step of our algorithm. The notation � refers
to pointwise multiplication. The boxed information refers to encrypted data where
homomorphic operations are required. Each step i. is described in detail in the paper.

1. Compute a partial FFT of a ∈ Rin, i.e., PFT(a) in cleartext form. Let
k − 1 be the degree of the polynomials outputted by PFT. Note that a full
(non-partial) FFT would have k = 1 as the algorithm recurses until the
input polynomial is reduced modulo all φ(d) linear factors of Φd(X). When
computing PFT, the algorithm outputs φ(d)/k polynomials of degree k − 1
(and hence does not recurse all the way down to the linear factors). In other
words, this corresponds to evaluating the CRT isomorphism

Zq[X]
(
Xd/2 + 1

) �
(

Zq[X]
(Xk − ζ0)

)

× · · · ×
(

Zq[X]
(
Xk − ζφ(d)/k−1

)

)

where the ζi are the solutions to (ζk)φ(d) = −1, namely the primitive (d/k)−th
roots of unity modulo q. This step thus outputs a list of φ(d)/k polynomials
{ãi}0≤i<φ(d)/k, where each ãi = a mod (Xk − ζi) is a polynomial with k
coefficients. Note that this computation is done in the clear, and thus no
homomorphic operations are needed.
Recall that when computing an inverse PFT, one must divide the polynomials
ãi by φ(d)/k (mod q). In order to be able to compute this division in the clear
rather than homomorphically, this step can be done now (Refer to Sect. 2.5).
Hence the polynomials are updated to ãi ← ãi/(φ(d)/k) (mod q).

2. The evaluation key contains RGSW registers of PFT(z). Similarly as before,
let z̃i = z mod (Xk − ζi), where each z̃i is a polynomial with k coefficients.
Let z̃

(j)
i be the jth coefficient of z̃i. Then the evaluation key contains the list

of RGSW
(
X z̃

(j)
i

)
for 0 ≤ i < φ(d)/k and 0 ≤ j < k.
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3. We now want to homomorphically compute PFT(a · z) from PFT(a) and the
RGSW registers of PFT(z). Note that the polynomial multiplication in Rin

corresponds to component-wise multiplication in PFT representation, i.e.,
PFT(a · z) = (ã0 · z̃0, ã1 · z̃1, ..., ãφ(d)/k−1 · z̃φ(d)/k−1). For ease of notation,
let us fix i (we drop the subscript i) and consider a single multiplication of
ã :=

∑k−1
j=0 ãjX

j and z̃ :=
∑k−1

j=0 z̃jX
j modulo (Xk − ζ). More precisely, we

want to homomorphically compute

(ã0 + ã1X + · · · + ãk−1X
k−1)(z̃0 + z̃1X + · · · + z̃k−1X

k−1) mod (Xk − ζ).

where each coefficient z̃j is encrypted as an RGSW register.

Each coefficient of the resulting product can be computed as follows. For
j = 0, · · · , k − 1, the j-th coefficient of v := ã · z̃ is equal to

vj = z̃0ãj + z̃1ãj−1 + · · · + z̃j−1ã1 + z̃j ã0 + ζ (z̃j+1ãk−1 + z̃j+2ãk−2 + · · · + z̃k−1ãj+1) ,

which corresponds to the inner product taken between the vector of coef-
ficients 	z = (z̃0, · · · , z̃k−1) of the polynomial z̃ and the new vector 	c =
(ãj , ãj−1, . . . , ã0, ζãk−1, . . . , ζãj+1). We emphasize again the fact that the coef-
ficients of 	c are in the clear, whereas the coefficients of 	z are not. So, it is easy
to multiply 	c by ζ.

Without loss of generality, let us assume all the coefficents ci of 	c are nonzero
and thus invertible. (Here we use the fact that q is a prime. So, all nonzero
elements are invertible modulo q and multiplication (in the exponent) can be
implemented using an automorphism of the prime cyclotomic ring.) Then we
can compute the inner product in a telescoping manner as

vj =
((

. . .
((

z̃0c0c
−1
1 + z̃1

)
c1c

−1
2 + z̃2

)
c2c

−1
3 + . . .

)
ck−2c

−1
k−1 + z̃k−1

)
ck−1.

This will end up being the most efficient way to compute this inner product
homomorphically.

Let us now explicit how one coefficient corresponding to a monomial Xj can
be computed homomorphically (this computation will have to be repeated for
all k coefficients of a single product as well as for all φ(d)/k pairs of (ãi, z̃i)
polynomials).

a) Let accum be an RLWE′ register, initialized as RLWE′ (X z̃0
)

from the eval-
uation key.

b) For j′ ∈ [0, . . . , k − 2], update accum as follows:
i. Apply the automorphism that sends X to X

c′
jc−1

j′+1 .
ii. Do an RLWE′ ×RGSW multiplication with RGSW

(
X z̃j′+1

)
from the

evaluation key.
c) Finally apply the automorphism sending X to Xck−1 , yielding RLWE′ (Xvj ).

Since we repeat (a)-(c) for every coefficient of ãi · z̃i for 1 ≤ i ≤ φ(d)/k, the
output of this step consists of φ(d) RLWE′ registers of the form

{
RLWE′

(
Xv(j)

i

)}

0≤i<φ(d)/k,0≤j<k
,
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where v(j)
i denotes the j-th coefficient of vi := ãi · z̃i (mod Xk −ζi). This proce-

dure is illustrated in Fig. 2, and the corresponding pseudo-code for component-
wise multiplication is given in Algorithm 2.

Fig. 2. Homomorphic computation of a Xj coefficient for pointwise multiplication.
A single line corresponds to RLWE’ ciphertexts and a double line to RGSW cipher-
texts. Aut. stands for automorphisms and Mult. for multiplication. Boxed values are
encrypted values.

Algorithm 2. Pointwise multiplication between polynomials ã and z̃.

1: Input: A set of degree-(k−1) polynomials {ãi}0≤i<N , {RGSW(X z̃
(j)
i )}0≤i<N,0≤j<k

for N := φ(d)/k, ω: the 2N -th root of unity mod q
2: Output: φ(d) RLWE′ ciphertexts
3: REG ← [0, . . . , 0]
4: for all 0 ≤ i < N do
5: ζ ← ω2i+1

6: Let 
̃a = (ãi,0, ãi,1, ..., ãi,k−1) � ãi :=
∑k−1

j=0 ãi,jX
j

7: for all 0 ≤ j < k do
8: 
c ← (ãi,j , ãi,j−1, . . . , ãi,0, ζãi,k−1, ζãi,k−2, . . . ζãi,j+1)

9: accum ← RLWE′(X z̃
(0)
i )

10: for j′ ← 0, 1, . . . , k − 2 do
11: accum ← EvalAut(accum, cj′c−1

j′+1)

12: accum ← MulRGSW(RGSW(z̃
(j′+1)
i ), accum)

13: end for
14: accum ← EvalAut(accum, ck−1) � accum = RGSW(X(ãi·z̃i)

(j)
)

15: REG[ik + j] ← accum
16: end for
17: end for
18: output REG � Register of all coefficients of ãi · z̃i for 0 ≤ i < N

4. We now have the encryption of PFT(a · z). It remains to perform the inverse
of PFT, denoted by PFT−1, in order to recover the resulting polynomial
product a · z, more specifically RLWE encryptions of the coefficients of a · z.

Recall from Sect. 2.5 that the inverse of a primitive FFT of length N (using
a 2Nth root of unity ω) can be computed by first taking a standard FFT of
length N using ω−2 as the Nth root of unity, then multiplying the ith term by
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ω−i. Moreover, a partial FFT of length φ(d) that reduces modulo (Xk − ζ) is
equivalent to k full FFTs of length N = φ(d)/k done in parallel, and the same
remains true for the inverse (see Sect. 2.5 for details about the equivalence).
Hence, to homomorphically compute PFT−1, we will

a) Split the φ(d) registers output by the pointwise multiplication step into k
groups of size N : each group corresponds to the coefficients of the monomial
Xj for 0 ≤ j ≤ k − 1 of all φ(d)/k polynomials.

b) Homomorphically perform a standard (not primitive) length-N FFT in the
forward direction on each group of size N , using ω−2 as the Nth root of unity.
Overall, this step corresponds to computing k FFTs. We refer the reader to
Sect. 2.5 for more details on the equivalence between partial FFT modulo
Xk − ζ and k-parallel standard FFT.

c) Multiply (homomorphically, via an automorphism) the ith output register in
each group by ω−i, for all i from 1 to N − 1. More specifically, we apply
the automorphism X �→ Xω−i

, corresponding to multiplication by ω−i in the
exponent, followed by a key switching operation.

The following algorithms provide pseudocodes for the above procedure to
compute the homomorphic PFT−1. More specifically, Algorithm 3 describes step
(a) and then calls Algorithm 4 for each of the groups of registers. Algorithm 4
describes a primitive length-N (inverse) FFT for a single group of size N , con-
sisting of a standard (cyclic) FFT (step (b)) as well as the multiplication by ω−i

(step (c)).

Algorithm 3. IFFT stage of bootstrapping (BootstrapIFFT)
1: Input: a list of φ(d) registers REG, k, N, a list of radices {ri}0≤i<�, and ω
Require: ω a primitive 2Nth root of unity mod q,

∏
0≤i<� ri = N , and kN = φ(d) =

len(REG)
2: for all 0 ≤ j < k do
3: REG[j, k+j, . . . , (N−1)k+j] ← N-IFFT(REG[j, k+j, . . . , (N−1)k+j], {ri}, ω)
4: end for

It remains to describe more precisely what happens in the (cyclic) FFT call,
line 4 of Algorithm 4.

Recall that FFT is a recursive algorithm that follows the structure of a
remainder tree, see the procedure FFT given in Algorithm 6. We will now focus on
what happens in a single layer of the FFT as described in the second procedure
FFT Layer in Algorithm 6.

At a single layer: Let ri be the radix used for the i-th FFT layer for
0 ≤ i < �. Then, for Ri :=

∏
i≤i′<� ri, the inputs to the i-th FFT layer are the

coefficients of N/Ri polynomials modulo (XRi − ω′j) (for varying values of j),



342 G. De Micheli et al.

Algorithm 4. Primitive length-N IFFT for a single group of size N (N-IFFT)

1: Input: List of RLWE′ registers REG = {RLWE′(X(ãi·z̃i)
(j))}0≤i<N for some fixed

0 ≤ j < k, list of radices {ri}0≤i<�, primitive 2Nth root of unity ω modulo q.
2: Output: list of RLWE registers REG = {RLWE(X(ai·zi)

(j)
)}0≤i<N .

3: let ω′ = ω−2

4: REG ← FFT(REG, {ri}0≤i<�, ω
′) � Step 4-(b)

5: for i ← 1, . . . N − 1 do
6: REG[i] ← EvalAut(REG[i], ω−i) � Step 4-(c)
7: end for
8: return REG

each with Ri coefficients.2 Hence this corresponds to a total of N coefficients,
i.e., N registers. The outputs are the coefficients of N/Ri+1 polynomials modulo
(XRi+1 − ω′j′

) ranging over all j′ such that ri · j′ ≡ j mod N . Note that the
total number of coefficients remains the same, i.e., we still have N registers.

Let us now consider a single input polynomial (out of N/Ri), i.e., one of
the nodes in the remainder tree, and describe what computations are needed to
produce the children nodes. This subroutine is described in Algorithm 5, called
FFT Subroutine and is repeated for every node (meaning polynomial) of the
layer, hence N/Ri times. We illustrate the reduction of this polynomial via an
example to better describe the operations needed in this subroutine.

Example 1. We describe in this example the reduction from an input polynomial
to a single child node for the simple radix-2 FFT. Assume we have as input a
polynomial of the form

g0 + g1X + g2X
2 + g3X

3 + g4X
4 + g5X

5 + g6X
6 + g7X

7

and we want to reduce it modulo (X2 − ζ). Similarly as for pointwise multipli-
cation, it is possible to compute the coefficient terms for each monomial Xj . In
our example, we would have constant coefficient g0 + ζg2 + ζ2g4 + ζ3g6 and X
coefficient g1 + ζg3 + ζ2g5 + ζ3g7. In the remainder tree, this operation would
have to be repeated for r different values of ζ, in particular for this example,
four different values.

The homomorphic circuit to perform this reduction is illustrated in Fig. 3. We
recall that the input coefficients gi (both in the example and in Fig. 3) correspond
to registers, in particular RLWE′ ciphertexts. The main operations needed for
a reduction are scheme-switching for most of the coefficients, multiplication by
a power of ζ, which can be done using automorphisms, and addition which
corresponds to RLWE′ ×RGSW multiplications.

Remark 2. The scheme switches at the beginning of the circuit convert RLWE′

ciphertexts to RGSW ciphertexts for all coefficients except the last. As men-
tioned previously, the circuit for the same coefficients is performed for various
2 When i = 0, it starts with a single input polynomial modulo XN − ω0.
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Algorithm 5. FFT Subroutine
1: Input: Radix r which divides R for R | N , index j, and RLWE′ ciphertexts

{cti}0≤i<R storing coefficients of a single polynomial mod (xR − ω′j)
2: Output: r tuples each of which consists of index j′ such that r · j′ ≡ j mod N ,

and R/r RLWE′ ciphertexts
3: for all 0 ≤ i < R − R/r do
4: cti ← SwitchToRGSW (cti)
5: end for
6: if this is the final FFT layer then
7: for all R − R/r ≤ i < R do
8: let S = Q

4
� 4 is the plaintext modulus after bootstrapping

9: cti ← S � cti � cti is now RLWE instead of RLWE′

10: end for
11: end if
12: let {j′

0, ..., j
′
r−1} = the set of all j′’s satisfying rj′ ≡ j mod N

13: for all 0 ≤ v ≤ r − 1 do
14: let ζ = ω′j′

v

15: for all 0 ≤ i < R/r do
16: accum[v][i] ← ctR−R/r+i

17: for κ ← [2, 3, ..., r] do
18: accum[v][i] ← EvalAut(accum, ζ)
19: accum[v][i] ← MulRGSW (ctR−κ·R/r+i, accum)
20: end for
21: end for
22: end for
23: output r tuples (j′

v, accum[v]) for 0 ≤ v < r

Algorithm 6. Full radix-r standard FFT (FFT)
1: procedure FFT({REG}, {ri}0≤i<�, ω′)
2: state ← {(N,REG)} � List of tuples
3: for i in [0, 1, ..., � − 1] do
4: state ← FFT Layer(ri, ω

′, state)
5: end for
6: return REG
7: end procedure

8: procedure FFT Layer(ri, ω′, list of tuples)
9: Input: N/Ri tuples of the form (j, {ctj,0, . . . , ctj,Ri−1}), where each ctj,v is an

RLWE′ ciphertext
10: � ctj,v represents the v-th coefficient of a polynomial mod (XRi − ω′j)
11: Output: N/Ri+1 tuples of the form (j′, {ctj′,0, . . . , ctj′,Ri+1−1}).
12: � Each input j has ri corresponding outputs j′ such that ri · j′ ≡ j mod N .
13: � ctj′,v represents the v-th coefficient of a polynomial mod (xRi+1 − ω′j′

)
14: for all (j, {ctj,0, . . . , ctj,Ri−1}) in input do
15: FFT_Subroutine({ctj,0, . . . , ctj,Ri−1}, ri, j, ω

′)
16: end for
17: end procedure
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values of ζ. For all these cases, the scheme-switching operations need only to be
performed once (as the coefficients do not change) and thus the cost is amortized.

Details of this subroutine are given in Algorithm 5. Algorithm 6 provides the
pseudocode for all φ(d) registers (FFT Layer) as well as the full FFT algorithm
where all layers are considered (FFT).

Fig. 3. One layer of FFT for a single input polynomial. A single line corresponds to
RLWE ciphertexts and a double line to RGSW ciphertexts. SW stands for scheme-
switching, Aut. for automorphisms and Mult for multiplication.

One can note from Algorithm 5 that the case of the last layer of the FFT
slightly differs (see line 6). Indeed, it is possible to optimize the running-time
of the FFT algorithm by modifying the nature of the elements considered in
the very last layer of the FFT. Indeed, one can notice that the outputs of the
IFFT only need to be RLWE ciphertexts, not RLWE′ ciphertexts. Hence, one
can save operations by using RLWE registers instead of RLWE′ registers when
possible. While RLWE cannot be scheme-switched to RGSW without blowing
up the error, we can modify the last IFFT layer to use RLWE instead of RLWE′

for the registers that do not get scheme-switched (this corresponds to accum in
Algorithm 5 or gr in Fig. 3). Concretely, each of the φ(d)/r non-scheme-switched
RLWE′ ciphertexts would be converted to RLWE by an R � RLWE′ operation
with R element �Q/4�, where 4 is the plaintext modulus the msbExtract stage
expects. This concludes the description of the homomorphic computation of
a · z. The output of this multiplicative step is thus φ(d) RLWE registers, each
encrypting a coefficient of a · z ∈ Rin.

Adding b. From the previous step, we have obtained registers encoding the
coefficients of a ·z. We also have the polynomial b in the clear. In order to obtain
registers encoding the coefficients of a · z+ b, we add b via fixed rotations, i.e.,
scaling the ciphertext by a monomial. Concretely, to add a coefficient bi to a
register RLWE(X(a·z)i), we simply scale the RLWE ciphertext by Xbi resulting
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in RLWE(X(a·z+b)i). Since Xbi has norm 1, it does not increases the noise of the
register. We thus now have φ(d) registers encoding the coefficients of a · z + b,
as expected. This concludes the linear step of the algorithm.

4.3 msbExtract

The linear step outputs φ(d) RLWE registers each encrypting Q
4 Xci , where each

ci ∈ Zq is a noisy (un-rounded) decryption of the ith input ciphertext. We
now operate separately on each register (and drop the subscript i) in order to
recover from each register a plain-LWE encryption of f(c), for some function
f that applies rounding and allows for computation. Output ciphertexts have
plaintext modulus 4; to compute NAND gates, it suffices for f(c) to be 1 for
c ∈ [−q/8, 3q/8) and 0 elsewhere (we refer to [20] for more details). Focusing on
a single register (a,b) ∈ Rreg

2, we have

b(X) = −a(X) · s(X) + e(X) +
Q

4
m(X) (mod Q,Φq(X))

where m(X) = Xc. Looking at a single coefficient of these polynomials, the ring
product a(X)·s(X) will become a vector inner product between the coefficients of
s and some permuted coefficients of a. Because we use prime q, these polynomials
have degree ≤ q − 2, and Xq−1 ≡ −1 − X − · · · − Xq−2. Note that, as for
error growth, the fact that we consider prime cyclotomics instead of power-of-2
cyclotomics slightly changes the setting. We get for a single coefficient

bi = −ais0 − ai−1s1 − · · · − a0si − 0 · si+1 − aq−2si+2 − aq−3si+3 − · · · − ai+2sq−2

+ aq−2s1 + aq−3s2 + · · · + a2sq−3 + a1sq−2 +
Q

4
mi + ei

which can be re-written as
Q

4
mi + ei = bi + {(ai, ai−1, . . . , a0, 0, aq−2, aq−1, . . . , ai+2)

− (0, aq−2, aq−1, . . . , a1)} · (s0, s1 . . . , sq−2)

For 0 ≤ i ≤ q − 2, letting 	ai denote the above vector (ai, ai−1 − aq−2, . . . , ai+2 −
a1), we then have that (	ai, bi) is an LWE encryption with noise ei under secret
key sp = (s0, . . . , sq−2) of message mi. Note that mi is 1 if c = i, −1 if c = q −1,
and 0 otherwise. To produce an encryption of f(c), which should be 1 for c ∈
(−q/8, 3q/8) and 0 elsewhere, we simply sum the relevant (	ai, bi):

q−2∑

i=	7q/8

(	ai, bi) +

�3q/8�−1∑

i=0

(	ai, bi)

taking care to ensure the number of summands is 3 mod 4, so that when c = q−1
the sum is 1 mod 4 as desired. (When q ≡ 1 mod 8, this will be the case for the
summation written above.)

This gives us an LWE encryption with plaintext modulus 4 and ciphertext
modulus Q under a key sp ∈ Z

q−1. To conclude bootstrapping, we can keyswitch
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back to the orignal plain LWE secret key, and modulus switch back down to the
original (much smaller than Q) ciphertext modulus.

5 Analysis

To evaluate the performance of our algorithm, we analyse its running-time as
well as the error growth. We will first show that our homomorphic decryption
procedure takes no more than O ((k + r · �)φ(d)dB) homomorphic operations.

5.1 Counting Homomorphic Operations

We will evaluate the efficiency of our algorithm by first measuring the time com-
plexity in terms of the number of R � RLWE′ operations performed. We have
already summarized in Sect. 3.2, Table 2 the number of R � RLWE′ operations
needed for the main operations used in our scheme: scheme switching, automor-
phisms (with key switching) and RGSW×RLWE′. We now describe the number
of R � RLWE′ operations for the various steps of our algorithm.

Pointwise Multiplication. Based on the description given in Sect. 4.2, we have
the following analysis. For a single coefficient Xj in the computation of the inner
product, our algorithm performed k automorphisms and (k−1) RGSW×RLWE′

multiplications. Hence the number of R � RLWE′ operations per register is
(3k − 2)dB . This computation needs to be repeated for all k coefficients of a
single product and for φ(d)/k pairs of (ãi, z̃) polynomials. Thus the total number
of R � RLWE′ operations for the entire pointwise multiplication algorithm is
(3k − 2)φ(d)dB .

Partial Inverse FFT. Based on the description given in Sect. 4.2, considering a
single register and a single radix-r layer of FFT, the algorithm computes (r − 1)
automorphisms, (r − 1) RGSW×RLWE′ multiplications but only amortized
(1 − 1/r) scheme switches as explained in Sect. 4.2. Thus the total number of
operations per layer is

(

(r − 1) + 2(r − 1) +
(

1 − 1
r

))

φ(d)dB =
(

3r − 2 − 1
r

)

φ(d)dB .

Last Layer of IFFT Optimization: Recall that the outputs of the IFFT only
need to be RLWE ciphertexts and not RLWE′ ciphertexts. This allowed us to
optimize the cost of the last layer of the IFFT by using RLWE registers instead of
RLWE′ registers when possible. By using this modification, the multiplications
and automorphisms in this layer will use a factor of dB fewer operations. Thus
the total number of operations for the last layer is only

(

(r − 1) + 2(r − 1) +
1

r
+

(

1 − 1

r

)

dB

)

φ(d) =

(

3r − 3 +
1

r
+ dB

(

1 − 1

r

))

φ(d).
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After the Last Layer: Recall that the very last step of the homomorphic par-
tial IFFT is to multiply the ith output register in each group by ω−i, via an
automorphism that sends X to Xω−i

. Operation-wise, this corresponds to one
automorphism per register. Since with the last-layer optimization the registers
are RLWE instead of RLWE′, this corresponds to φ(d) operations in total.

Adding b. Recall that to add bi to the register RLWE(X(a·z)i), we simply scaled
the RLWE ciphertext by Xbi . No R�RLWE′ operations are involved (Table 3).

Table 3. Summary of R � RLWE′ operation count.

Steps of the algorithm R � RLWE′ operations

Partial FFT of a –
Pointwise multiplication (3k − 2)φ(d)dB

Partial IFFT (per layer) (3r − 2 − 1
r
)φ(d)dB

Last layer of IFFT (3r − 3 + 1
r
+ dB(1 − 1

r
))φ(d)

Last IFFT step φ(d)

Adding b –

5.2 Error Growth

We have already summarized in Table 2 the error growth coming from the scheme
switching, automorphisms (with key switching) and RGSW×RLWE′ opera-
tions. We now describe the error growth resulting from the various steps of
our algorithm based on the error variance for each of these operations and the
operation count described in the previous section.

Pointwise Multiplication. Recall from the description given in Sect. 4.2 that
the algorithm starts with an inital RLWE′ ciphertext, denoted as accum, which
is a “fresh” ciphertext from the evaluation key with error variance σ2

eval_key. Each
automorphism performed during pointwise multiplication adds σ2

�,aut_key error
variance, and each multiplication with a fresh RGSW ciphertext adds 2σ2

�,RGSW

error variance. Hence, the error variance after pointwise multiplication is (3k −
2)(σ2

�,aut_key + 2σ2
�,RGSW) + σ2

eval_key.

Inverse FFT. Again, recall that each automorphism adds σ2
�,aut_key error vari-

ance. The output of schemeswitching has σ2
sw = σ2

�,eval_key+�1(s)σ2
in error vari-

ance. Let σ2
accum be initialized as σ2

in. Each automorphism and RGSW×RLWE′

multiplication (performed a total amount of r − 1 times) updates the vari-
ance as σ2

accum ← σ2
accum + σ2

�,aut_key and σ2
accum ← σ2

accum + 2σ2
�,sw where

σ2
�,sw ≤ B2

6 dBqσ2
sw. Hence, in total, the error variance after a radix-r layer

becomes σ2
in + (r − 1)(σ2

�,aut_key + 2σ2
�,sw) for σ2

�,sw ≤ B2

6 dBqσ2
sw.
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After Last Layer. Multiplying the ith output register in each group by ω−i with
an automorphism increases (additively) the error variance by σ2

�,aut_key.

Adding b. Scaling by a monomial does not increase the error. This result is
summarized in Table 4.

Table 4. Summary of error growth.

Algorithms Error growth

Partial FFT of a –
Pointwise multiplication (3k − 2)(σ2

�,aut_key + 2σ2
�,RGSW) + σ2

eval_key

Partial IFFT (per layer) σ2
in + (r − 1)(σ2

�,aut_key + 2(σ2
�,eval_key + �1(s)σ

2
in))

Last IFFT step σ2
�,aut_key

Adding b –

5.3 Asymptotic Analysis

Let λ = O(n) the be security level considered. We study the performance of our
algorithm as λ increases, i.e., when n tends to infinity. Recall that the other
parameters used in our algorithm are dB = �logB Q� = O(log n), the number of
layers � (i.e., the multiplicative depth) and k = r = φ(d)1/� (k is the degree at
which we stop the partial FFT and r is the radix for an FFT layer).

Theorem 2. Let φ(d) = O(n) be the number of packed ciphertexts and q,Q =
poly(n) the moduli of the rings considered. The total cost of bootstrapping (non-
amortized) then corresponds to O(n1+ 1

� · log n · �) homomorphic operations (in
terms of the number of R � RLWE′ operations).

Proof. The number of � operations in the pointwise multiplication step is
(3k − 2)φ(d)dB which asymptotically corresponds to O(n1+ 1

� log n). Similarly,
the inverse FFT requires (3r − 2− 1

r )φ(d)dB� operations (without including the
last layer modification which asymptotically does not change the result) which
asymptotically gives O(n1+ 1

� · log n · �). ��

Corollary 2. The amortized cost per message is O(n
1
� · log n · �) homomorphic

operations (in terms of the number of R � RLWE′ operations).

Remark 3. Note that we can also reduce the total number of homomorphic oper-
ations in the case that we only need to pack less-than-φ(d) LWE ciphertexts,
which we refer to sparse packing. Please refer to the full version of the paper [6]
for the analysis on computational cost of the sparse packing case.
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5.4 Comparison with Previous and Concurrent Work

Our algorithm can be compared to two lines of work: sequential bootstrapping
algorithms such as FHEW/TFHE [5,7] and the amortized bootstrapping algo-
rithms of [21] and [17] (as our algorithm performs asymptotically better than [16],
we focus on the comparison with the follow-up work [17]). The asymptotic run-
ning times of the algorithms are reported in Table 5, and show that our algo-
rithm is asymptotically much faster than both [5,7] (reducing the dependency
on the main security parameter from linear O(n) to just nε for arbitrary small
ε = 1/�), and [21] (reducing the dependency on � from exponential 3� to linear
O(�).) While [17] is asymptotically faster, we now discuss why our algorithm is
expected to outperform [17] for practical parameters.

Assume optimistically that the complexity of [17] is of the form f(n, �) =
2� · log(n), where � is the recursive depth of the inverse FFT and n the ring
dimension. The 2� term is inherited by the use of the Nussbaumer transform
from [21], and log(n) is the “polylog” overhead. [17, section 7.3] sets � = 5, and,
in fact, due to the use of the SIMD parallelization technique from [16], this is the
smallest possible value of �. On the other hand, the complexity of our algorithm
is g(n, �) = � · n1/�, where � can be set to any constant. To facilitate a more
direct comparison to [17], consider setting � = 5 in our algorithm as well. Since
noise growth of [17] and our algorithm depend in a similar way on the recursive
depth �, using the same value of � should result in similar values of the ciphertext
modulus Q and ring dimension n, for the same security level. So, for a fixed � = 5,
basic operations in [17] and our work can be assumed to have roughly the same
unit cost. The two algorithms can then be compared by checking when f(n, 5) <
g(n, 5). It is easy to check that the crossover point f(n, 5) = g(n, 5) is given by
ring dimension n = 240, which is well beyond any conceivable instantiation of
lattice cryptography. While this is only a rough comparison, it should be clear
that for any reasonable value of the ring dimension n, our algorithm can be
expected to outperform the (asymptotically faster) algorithm of [17]. In other
words, [17] suffers from the very same limitations that made [21] completely
impractical. This is precisely the problem addressed in our work, where the
overhead of [21] is reduced from 2� to just �, making amortization much closer
to practicality. We have already mentioned the work of Liu and Wang [18] who
achieved the same asymptotic complexity as [16,17], but were able to make
their bootstrapping scheme also efficient using BFV ciphertexts. As mentioned
previously, their work differs by using a super-polynomial modulus. We refer
to [18, Section 7] for detailed performance analysis, including timings.

Following previous work, performance in Table 5 is measured as the number
of operations on cryptographic registers, and hides many important parameters
that still have a big impact on the concrete performance of the algorithms in
practice. In order to provide (still preliminary, but) more realistic estimates of the
performance of the algorithm, we also evaluated the number of (integer) arith-
metic operations required for concrete values of the parameters, with a target
security level STD192. Next, we observe that since each NTT operation works on
a q dimensional vector, it requires a number of arithmetic operation proportional
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Table 5. Comparing asymptotic cost of various bootstrapping algorithms in terms
of homomorphic operations, where � corresponds to the recursive depth in each algo-
rithm. For uniformity with previous work, performance is expressed as the number of
RGSW×RGSW products, or equivalent operations. Alternatively, the number of basic
R � RLWE′ products can be obtained by multiplying these figures by O(log n), the
length of the gadget vector.

Scheme Total cost Number of messages Amortized cost

FHEW Õ(n) 1 Õ(n)

TFHE O(n) 1 O(n)

[21] Õ(3� · n1+1/�) O(n) Õ(3� · n1/�)

[17] Õ(n) O(n) Õ(1)

[18] Õ(n) O(n) Õ(1)

our work O(� · n1+1/�) O(n) O(� · n1/�)

to q log q. So, in the before-last column of Table 6 we estimate the total number
of arithmetic operation as NTT × q log q. We used [15, Table 1] for the number
of � operations in FHEW-like schemes and recall that one can easily convert
the number of � products to the number of NTTs as each � product requires
(dB + 1) NTT operations. The reported number of � multiplication for [21]
comes from a non-public report provided to us by the authors. The before-last
column for [21] was obtained using the smallest values of q, dB in the table as
a conservative lower bound. Finally, the last column of Table 6 reports the key
size (number of RLWE’ ciphertexts). The parameters and numbers provided in
Table 6 are tentative, preliminary estimates only meant to provide some intu-
ition about the potential performance of our algorithm. Still, they are enough
to draw some general conclusions: our algorithm clearly outperforms previous
methods for amortized FHEW bootstrapping, improving [21] by two orders of
magnitude. When comparing with sequential bootstrapping methods, our algo-
rithm is practical enough to offer comparable (potentially better) performance.
But the improvement is not yet sufficiently marked to make its implementation
and use attractive in practice.

Table 6. Comparing cost of various bootstrapping algorithm in terms of � operations,
number of NTTs performed and key size. The reported numbers for the amortized
schemes are amortized over the number of packed ciphertexts. The parameter N is the
ring dimension for registers (for us it is the same as q since q is prime in our algorithm).

FHEW-like schemes n q N log2 Q B dB � mult. NTTs NTTs
×q log q

# keys

FHEW-AP [7,20] 1024 1024 2048 54 227 2 3968 11,904 108 126 976
TFHE-GINX [5] 1024 1024 2048 54 227 2 4096 12288 108 4096
FHEW-improved [15] 1024 1024 2048 37 213 3 3074 12,296 108 3073
[21] (amortized) – – 2187 37 – – 47844 – >109 –

Ours (amortized) 1024 7681 7681 143 271 2 101 304 3 × 107 9728



Faster Amortized FHEW Bootstrapping Using Ring Automorphisms 351

6 Conclusion and Future Work

We present a novel amortized bootstrapping algorithm with much smaller over-
head than prior amortized work, in particular smaller than in the algorithm
presented by Micciancio and Sorrell in [21]. We make use of ring automorphisms
to perform the multiplication by twiddle factors and replace the Nussbaumer
transform with the more practical Number Theoretic Transform.

In order to properly evaluate the practicality of our algorithm, and accu-
rately compare it with previous work, we considered implementing it within
some mainstream FHE library, like OpenFHE [1]. However, the preliminary
estimates in Sect. 5.4 and our initial implementation effort suggest that both
the algorithm and the support offered by state-of-the-art FHE libraries may still
not be adequate to deliver concrete improvements in practice. In fact, imple-
menting our algorithm within OpenFHE (or similar libraries) raises a number
of technical challenges. Most FHE libraries (incuding OpenFHE) currently only
support power-of-two cyclotomic rings, which are the most widely used rings in
lattice cryptography. However, our algorithm makes essential use of prime cyclo-
tomics. Some support of cyclotomics other than powers-of-two is offered by the
HElib library [12], as well some undocumented functions within the OpenFHE
codebase. However, in both cases, the implementation is based on Bluestein
FFT, which for technical reasons is limited to ciphertext moduli of size at most
27-bit. As a result, the use of a 143-bit modulus (as in the example parame-
ters in Table 6) would carry at least a ×6 slowdown, compared to sequential
bootstrapping methods which can be directly implemented using standard 64-
bit arithmetics. Still, our theoretical estimates in Sect. 5.4 show that amortized
FHEW bootstrapping has the potential of being practical, and that, with proper
library support and further optimizations, it can offer a practical alternative to
sequential bootstrapping algorithms. We hope our work will provide a motiva-
tion to extend OpenFHE and other libraries with optimized support for prime
(or arbitrary) cyclotomics, and promote further investigation and improvement
of amortized FHEW bootstrapping algorithm.
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