1	
2	
3	
4	
5	Mental time travel in the rat
6	Jonathon D. Crystal ¹
7	¹ Department of Psychological and Brain Sciences, Indiana University,
8	1101 E 10TH ST., Bloomington, IN, 47405-7007, USA.
9	
10	Keywords: Mental time travel, episodic memory, animal model, incidental encoding,
11	unexpected question, episodic-like memory
12	
13	Correspondence: jcrystal@indiana.edu
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

Abstract

I outline the perspective that searching the contents of memory is a form of mental time travel in nonhumans that is relatively tractable because it focuses on the contents of memory. I propose that an animal model of mental time travel requires three elements: (1) the animal remembers multiple events using episodic memory, (2) the order of events in time is included in the representation, and (3) the sequence of events can be searched to find a target that occurred at a particular time. I review experiments suggesting that rats represent multiple items in episodic memory (Element 1) in order of occurrence (Element 2) and engage in memory replay to search representations in episodic memory in sequential order to find information at particular points in the sequence (Element 3). The cognitive building blocks needed for mental time travel may be quite old in the evolutionary timescale.

Introduction

Mental time travel (MTT) is the human capacity to reexperience the past and imagine the future (1-3). Episodic memory involves recalling the past and in humans is described as the phenomenological conscious experience of projecting oneself (autonoesis) in time (chronesthesia) (4, 5). Because there are no agreed upon empirical approaches to investigate subjective experiences in nonhumans, efforts to develop animal models of episodic memory have focused on the contents of episodic memory (6). Although theoretical perspectives about MTT in people focus on autonoetic consciousness (4) and chronesthesia (5), these types of subjective experiences may not be assessed in nonhumans. Therefore, comparative studies of mental time travel

take a behavioral perspective, asking what an animal capable of MTT can do via its behavior (6).

According to the central hypothesis of animal models of episodic memory, at the moment of a memory assessment, the animal remembers back in time to a specific earlier event (7-13). We have conducted a number of tests of this hypothesis and described evidence for what-where-when memory (14), source memory (15), binding of episodic memories (16), memory of multiple items in context (17), replay of episodic memories (18, 19), and answering unexpected questions after incidental encoding (19, 20). These lines of evidence suggest that rats are a suitable model of episodic memory (10).

Here, I outline the perspective that rats are capable of MTT. I review research that demonstrates that rats can search representations in episodic memory to find specific event memories, rules out the use of memory trace strength and working memory in this approach, shows that this ability is hippocampal dependent, and shows that rats replay incidentally encoded episodic memories.

Animal models of episodic memory: Overview

Whether animals can remember back in time to an earlier event or episode is a fundamental question in comparative cognition (21, 22). Thus, the suitability of nonhumans as a model of episodic memory has been investigated and debated for over two decades. Tulving (23) initially defined episodic memory as memory for the spatial and temporal characteristics of an event. Subsequently, Tulving focused on the conscious experience of episodic memory (3-5). The initial definition of episodic memory is suitable for studies in animals because it focuses on the content of episodic

memory (e.g., what, where, when), and avoids the human subjective experiences that cannot be evaluated in animals. Clayton and Dickinson (24) were the first to show that animals retrieve episodic memories. Cases of episodic memory have subsequently been shown in other species, e.g., (25-34).

To validate an animal model of episodic memory, it is necessary to rule out non-episodic hypotheses (29). To establish that an animal remembers a a unique episode, it must be shown that it is not using judgments of familiarity of the event. Episodic memory involves memory of an event and the contextual details surrounding the episode. Familiarity is the impression that an item is known without remembering the contextual details associated with the event (4).

When developing animal models of episodic memory, we do not expect all aspects of human episodic memory to be included in any one model. I favor this terminology because the focus is on developing a model of selected aspects of human cognition. In the sections that follow, I describe our efforts to develop an animal model to document that rats replay a stream of episodic memories. I outline the perspective that this research may be used to develop an animal model of MTT.

An animal model of mental time travel

I outline the development of an animal model of MTT and weigh the constraints, strengths, and weaknesses of such an approach. At the end of this review, I offer suggestions for future research.

A major shift in thinking about mental time travel proposed here is the focus on searching the content of multiple representations in episodic memory. MTT cannot exist in a framework without multiple representations. For example, early work in the

development of animal models of episodic memory focused on the question — does a particular animal have a representation of a single earlier event. It is natural to begin the development of such a model by focusing on a *single* event (35). However, episodic memory in people is characterized by a multitude of episodic memories, and MTT in people necessarily involves remembering a target event amid many temporally nearby event memories. In the early stages of development, it was unknown if the documentation of episodic memory of a single event represented a major limitation of animal models of episodic memory. Clayton and colleagues (25) were the first to document that a nonhuman represented multiple events using episodic memory. Crystal and colleagues (16) initially showed that rats can remember two events with several overlapping features using episodic memory. Subsequently, we showed (17) that rats remember at least 30 events by documenting that rats remember odors and the contexts in which these odors occurred. For a review of the methods used in these studies with rats see (10).

An animal may represent multiple events in episodic memory, but the representations may not preserve the temporal flow of the events. Moreover, an animal may have rudimentary information about the order of events but may be unable to search these representations to find a target that occurred at a specific time. I outline the perspective that an animal model of MTT requires three elements. Element 1: the animal remembers multiple events using episodic memory; Element 2; the order of events in time is included in the representation; and Element 3: the sequence of events can be searched to find a target that occurred at a particular time. I propose that rats represent multiple items in episodic memory (Element 1) in order of occurrence

(Element 2), and they replay their memory by searching their episodic memory to find items at targetted locations in the sequence (Element 3) (10, 18, 19). In the sections that follow, I review experiments that show that rats meet the three criteria outlined above. The theme of the experiments that follow involves ruling out non-episodic solutions to the memory problem.

It is worth emphasizing that the proposed animal model of MTT represents a shift in thinking about MTT. The focus here is on the contents of memory. Namely, do animals use episodic memory to represent multiple events, their order, and are they capable of searching these representations to find a target that occurred at a particular time. The model captures the content of MTT (the events, their order, and searching in time), but the focus on content imposes constraints on inferences about non-content-based processes. Notably, the model does not include subjective experiences. Thus, the model is silent on the role of the self being situated in the flow of events and the feeling of knowing that the events occurred in one's personal experience. Nevertheless, a strength of this approach includes the potential to model the decline in the contents of episodic memory that occurs in human diseases of memory (e.g., Alzheimer's disease) (36). A limitation of this approach includes the absence of information about subjective changes in experiences that may accompany declines in memory content in human diseases of memory.

Replay of episodic memories

People can replay of the flow of past events in sequential order (37-39). In our experiments (18), rats received a list of odors (Figure 1a). Household spices and oils were infused on plastic lids, which covered cups with food at random locations in

distinctive arenas. In list encoding, the length of the list was unpredictable (5-12 items/list); the large number of items in the list satisfies Element 1. When a list ended, the rat was placed in one of two distinctive memory-assessment contexts, where two items from the list were presented (referred to as list memory assessments). In one context, the correct (rewarded) choice was the second to the last item from the earlier list. The correct choice was the fourth from the last item in the other context. The incorrect choice (referred to as a foil) was randomly selected from a different position in the list. Because the list length changed randomly during list encoding, the rat could not know at the time of presentation which items would be the correct or incorrect choices in the subsequent memory assessment. If the rat replayed the sequence of episodic memories (Elements 2 and 3), it would choose the correct item in second- and fourth-last contexts. The rats passed an initial test of episodic memory replay; accuracy was above chance in second- and fourth-last memory assessments (Figure 1d).

Ruling out memory trace strength

An animal model of MTT requires that the animal uses episodic memory to solve the memory problem. Our approach to strengthening the claim that rats rely on episodic memory focuses on showing that other aspects of memory are not sufficient to explain choices in the memory task. When an odor is presented, it produces a memory trace, but the retrievability of that memory decreases as a function of time; this type of account is referred to as *familiarity*. The age of the memory provides a cue that may be used to solve the task without episodic memory (29, 40). For example, items that occur earlier in the list will typically have smaller memory trace strengths at the time of a memory assessment. Because the likelihood of memory retrieval depends on the similarity

between encoding and retrieval contexts (41), small changes in the retrieval context are assumed to occur over time. Accordingly, the probability of retrieving the memory declines as a function of time due to moment-to-moment changes in context (42-44).

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

If the animal remembers multiple events using episodic memory (Element 2), we should be able to dissociated episodic memory replay and non-episodic memory hypotheses (Element 1, Figure 1b). Rats represent multiple items in episodic memory (Element 1) in order of occurrence (Element 2) and engage in memory replay (Element 3) according to the episodic memory replay hypothesis. Accordingly, it is proposed that the rat searches episodic memory to find a target that occurred at a specific time (Element 3). Alternatively, according to a non-episodic memory hypothesis, when an event occurs, it produces a memory trace whose probability of retrieval declines as a function of time. Accordingly, the rat may learn to select the choice item that matches the typical memory trace strength of a second- or fourth-last item in each memoryassessment context. By using memory trace strength, it could identify the second-last (large trace) and the fourth-last (smaller trace) items in the corresponding context; depending on their positions in the list, the incorrect choice would have memory trace strength that is too high or too low relative to that of the second- or fourth-last items. According to this non-episodic memory hypothesis, the rat would choose an item that matches the typical memory strength for the current context while avoiding values above and below the expected level, without replaying episodic memories. Because episodic memory and familiarity are confounded, we developed an approach to dissociate familiarity and episodic memory. The time between list items was doubled (Figure 1b), which impacts the profile of memory trace strengths of items but obviously

does not impact the sequential order of items. To dissociate processes, the incorrect choice (i.e., foil) in the memory assessment had the typical memory strength of a correct item. Consequently, the incorrect choice was attractive because its delay matched that of a second (or fourth) last item; therefore, a rat using memory trace strength would choose the foil (leading to below-chance performance). In contrast, an animal using episodic memory replay would choose the second (or fourth) last item correctly (leading to above-chance performance). We observed above chance accuracy (Figure 1d) in both second- and fourth-last dissociation tests, which rules out memory trace strength; similarly, these data rule out the use of judgments of familiarly, the age of memories, and timed intervals between the event and the memory assessment.

These data are consistent with the hypothesis that rats replay episodic memories.

Ruling out working memory

An animal model of MTT requires that the animal uses episodic memory to solve the memory problem. Working memory is defined as the active maintenance of information despite ongoing information processing or distraction (45). Working memory resources would be required to retain and rapidly update the last items in memory when each new item is presented. It is unlikely that rats relied on working memory in the absence of episodic memory to solve the list task for four reasons (18). First, because episodic memory, but not working memory, is considered long-term memory (46-48), we examined list memory after a 60-minute delay. List memory survived a 60-minute retention-interval challenge (Figure 1d), consistent with episodic memory but not with working memory.

Second, episodic memory is resistant to interference from new information whereas working memory is displaced by new information. We evaluated resistance to interference by presenting odors in a new-old memory task in a distinctive context after encoding a list; rats were trained to select a new odor (not previously presented) while avoiding old odors (recently presented), which documents that they smelled and remembered odors after presentation of the earlier list task. Thus, we showed that list memory withstands interference from memory of other odors (Figure 1c-d). Third, working memory is susceptible to manipulations of memory load (49, 50). We evaluated acquisition and terminal performance when rats searched for second- and fourth-last odors. Although we manipulated memory load, performance did not decline as memory load increased (Figure 1d-e), which is inconsistent with the use of working memory. Fourth, because episodic memory depends on the hippocampus, we showed that replay of episodic memories is hippocampal dependent as described in the next section.

Reliance on hippocampus

Because the hippocampus is critical for episodic memory (51-53), we inhibited neurons in the dorsal hippocampus using DREADDs (Designer Receptor Exclusively Activated by Designer Drug). The selective and reversible impairment of list-memory performance following temporary suppression of hippocampal neurons did not impact other aspects of memory; hippocampal-independent assessments of memory included new-old recognition memory for odors and a simple odor discrimination. These data support the hypothesis that list-memory performance requires episodic memory (Figure 1c,f).

Incidental encoding and an unexpected question

Overview

People remember events even though they were apparently unimportant when they occurred. Although events are not always known to be important when they occur, people may remember details about such incidentally encoded information using episodic memory. In most experiments using animals, information may be explicitly encoded in anticipation of an expected test of memory. Accordingly, an animal may use explicitly encoded information to generate a *planned action* (10, 20, 26). Hence, when the test occurs, the planned action can occur *without remembering back in time to the earlier episode*.

Notably, a powerful solution to this problem is provided by the combination of *incidental encoding* and an *unexpected question* (10, 20, 26, 30-33). To describe information as encoded incidentally is to highlight that it is not yet known that the information is needed for a future test. To describe the test of memory as unexpected is to highlight that predicting the later test is not possible when the information was originally encountered. Consequently, one cannot generate a planned action when an unexpected test occurs after incidental encoding. Thus, the only solution in this situation is to retrieve an episodic memory of the incidentally encoded event. Answering an unexpected question after incidental encoding of a single event has been demonstrated in pigeons (26), rats (20), dogs (30-32), dolphins (33), and Eurasian jays (54). In earlier work, we showed that rats can answer an unexpected question after incidental encoding of a single event (20); for review, see (10).

Replay of incidentally encoded episodic memories

We tested the hypothesis that rats encode multiple pieces of seemingly unimportant information (Element 1) in order of occurrence (Element 2) and later they replayed a series of episodic memories (Element 3) when information was needed to solve an unexpected memory assessment. Rats were initially trained in two tasks (Figure 2a-b). In the list encoding task, rats were trained to select odors that were the third to last item in a list (Figure 2a). Lists consisted of 4-11 odors presented one at a time in a distinctive encoding context; the large number of items in the list satisfies Element 1. Next, in the list memory assessment, the rat was presented with two odors from the list in a distinctive memory-assessment context. The rats were rewarded for choosing the odor that was the third-last item in the list; the rats were not rewarded for choosing the other odor, which was randomly selected from a different ordinal position in the list. Explicit encoding of information for the purpose of taking an expected test of memory cannot be ruled out because the rats were trained in this task.

In the second task, rats foraged for food in a radial maze with eight runways (Figure 2b). Food was covered by *unscented* plastic lids at the end of each arm. Food was initially available in four arms (study phase) followed by food in not-yet visited locations with access to all 8 arms (test phase). When foraging in a study phase, the rat likely anticipates foraging in the subsequent test phase. The contents of memory from foraging are maze locations (55-58).

Our approach in a critical test allowed rats to forage in the radial maze with incidental exposure to scented lids unexpectedly covering food cups. Next, the rats received a memory assessment for odors that were encountered in the maze. However, it is possible that the rats treated odors in the new condition as they had in the earlier

training condition (i.e., stimulus generalization), which provides a non-episodic memory solution. To address this issue, we designed a control condition to determine if rats generalize or fail to generalize in a novel situation. The rationale for the control condition is that it is unlikely that rats generalized in the novel situation in the critical test If they fail to generalize in the control condition. In the control condition (Figure 2c), the rats received a list of odors in the previously trained list encoding context (List 1), a list of odors in a novel context (List 2; yet another arena with distinct features), and a memory assessment where the choice was the third-last odors from Lists 1 and 2. According to stimulus generalization, rats automatically encode odors for the purpose of taking an anticipated memory test and would choose the odor from List 2 (because the third-last odor is literally in List 2). By contrast, a failure of stimulus generalization would occur if rats do not automatically encode odors for the purpose of taking an upcoming memory test. In this situation, the rats may choose the List-1 odor because it occurred in the arena that was used during training of the original list encoding task. This latter option is not possible if rats automatically encode odors for the purpose of taking a test using stimulus generalization because the actual third-last item occurred in List 2. As shown in Figure 2e, all of the rats chose the odor from List 1 and none chose the odor from List 2. These data document a failure of stimulus generalization. Because rats did not automatically encode odors for the purpose of an upcoming test in the control condition, it is unlikely that they automatically encode odors in the critical test.

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

In a critical test, an opportunity for incidental encoding was provided on a single occasion when rats foraged in the radial maze with *scented lids* covering the food cups (Figure 2d). Next, the rats were immediately and unexpectedly provided with a single list

memory assessment with a choice between the third-last odor from the radial maze and another odor from the maze. Prior to the critical test, rats did not encounter scented lids while foraging in the radial maze and did not receive a list memory assessment after foraging in the radial maze. Notably, based on earlier training, the rats could not predict that the odors in the radial maze were important or that they would later be asked about the maze odors. To answer the unexpected question after incidental encoding, the rat would need to use episodic memory to replay the sequence of odors encountered in the maze. In contrast, rats without this ability would choose randomly.

When rats unexpectedly found odors during radial-maze foraging and their memory for the order of these odors was assessed immediately, the rats correctly answered the unexpected question (Figure 2f. Radial maze test). The critical test was conducted once per rat to ensure that the data were obtained before any new learning could occur. These results are consistent with the hypothesis that rats can replay a stream of multiple sequential events (Elements 1 and 2) that were not known to be important when the events occurred and report this information when unexpectedly asked to search episodic memories (Element 3). In a complimentary experiment, when rats found odors during radial-maze foraging and their memory for the order of these odors was assessed after a 15-minute delay, they also correctly answered the unexpected question (Elements 1-3, Figure 2g). These data are consistent with the hypothesis that rats replayed long-term episodic memories after incidental encoding.

Future research on an animal model of mental time travel

As noted above, a theme of the experiments reviewed here involves using experimental techniques to rule out non-episodic memory solutions to the memory

problems. Remembering the order of stimulus presentations alone does not imply that episodic memories are formed and that these memories are replayed. The conclusion that rats search representations in episodic memory to find specific event memories is bolstered by experiments that rule out the use of memory trace strength, working memory, and expectations of a memory test in this approach, and by experiments that show that this ability is hippocampal dependent. Moreover, the focus on the content of memory is devoid of subjective experiences such as re-living the experience, being situated in the flow of events, and other aspects of the full recollective experience.

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

This review highlights evidence that multiple events are represented using episodic memory (Element 1), the order of events are represented (Element 2), and representations are searched to find a target at a particular time (Element 3). However, episodic memory involves memory for items and the contexts in which they occurred (17, 52, 53). People can use MTT to remember events that occurred in different contexts (e.g., I can remember breakfast at home, a conversation in my office, a lecture at the end of the day). Thus, a case for a richer model of MTT would show that the flow of events includes not just the events but the context in which these events occurred in future research. Future research may explore the abilities (or limitations) of replaying a sequence of events that were interleaved across multiple contexts. Another avenue for future research involves parametric exploration of the abilities (or limits) of the replay of episodic memory. For example, although we have used lists of up to 12 items and shown that rats can search for targets 2, 3, or 4 items from the end of the list (18, 19), it is unknown if substantially larger lists and targets may be replayed. Some earlier work suggests we have not reached the limits of memory in our approach. For example, rats

remember at least 30 items-in-context using episodic memory (17). Moreover, memory for odors in rats is remarkably robust. For example, we have shown that rats remember at least 100 odors (59) (see also (60)), although these studies did not evaluate the contributions of episodic memory). A further future direction involves exploring the longevity of episodic replay; we have used relatively long delays (e.g., 15-60 minutes) without substantial declines in performance (17-19). Similarly, we have used relatively modest interference (4 odors) without evidence of performance declines (18, 19). These observations may suggest that the temporal limits may be quite extended in time, which may be explored in future research. Establishing the limits of MTT in animals may provide insights about similarities or differences to MTT in people.

Conclusions

I propose that searching the contents of memory is an animal model of MTT.

Rats incidentally encode multiple pieces of seemingly unimportant information, and later they replayed a stream of episodic memories when that information was needed to solve an unexpected problem. Our findings suggest that the cognitive building blocks needed for MTT (i.e., replaying a stream of episodic memories) is relatively old from an evolutionary perspective. It is widely assumed that fundamental elements of human memory do not occur in non-primates (e.g., (61-63)). Testing this hypothesis requires exploring cognitive processes in non-primates. We have modeled a number of critical aspects of human cognition in rats, such as: what-where-when memory (14), source memory (15), binding of episodic memories (16), memory of many items and the contexts in which they occurred (17), retrieval practice (64), prospective memory (65), and replay of incidentally encoded episodic memories (18, 19). Overall, our research

supports the hypothesis that rats may be used to model key elements of human memory. All of these approaches focus on the contents of memory. In conditions in which non-episodic memory solutions are ruled out, searching the contents of memory is an animal model of MTT that is relatively tractable because it too focuses on the contents of memory.

Acknowledgements

366

367

368

369

370

371

372 Support from National Science Foundation grant NSF/BCS-1946039.

References

374

373

- Tulving E. Episodic memory: From mind to brain. Annu Rev Psychol. 2002;53(1):1-25.
- 376 2. Schacter DL, Addis DR, Buckner RL. Episodic simulation of future events. Ann N Y Acad Sci.
- 377 2008;1124(1):39-60.
- 378 3. Tulving E. Elements of Episodic Memory. Broadbent DE, McGaugh JL, Mackintosh NJ, Posner MI,
- Tulving E, Weiskrantz L, editors. New York: Oxford University Press; 1983.
- 380 4. Tulving E. Memory and consciousness. Can Psychol. 1985;26(1):1-12.
- 381 5. Tulving E. Chronesthesia: Conscious awareness of subjective time. In: Stuss DT, Knight RC,
- editors. The Age of the Frontal Lobes. New York: Oxford University Press; 2001. p. 311-25.
- 383 6. Clayton NS, Bussey TJ, Dickinson A. Can animals recall the past and plan for the future? Nat Rev
- 384 Neurosci. 2003;4(8):685-91.
- 385 7. Crystal JD. Remembering the past and planning for the future in rats. Behav Process.
- 386 2013;93(0):39-49.
- 387 8. Crystal JD. Animal models of source memory. J Exp Anal Behav. 2016;105(1):56-67.
- 388 9. Crystal JD. Animal models of episodic memory. Comp Cogn Behav Rev. 2018;13:105-22.
- 389 10. Crystal JD. Evaluating evidence from animal models of episodic memory. Journal of Experimental
- 390 Psychology: Animal Learning and Cognition. 2021;47(3):337-56.
- 391 11. Crystal JD. Event memory in rats. In: Kaufman A, Call J, Kaufman J, editors. Cambridge Handbook
- of Animal Cognition. Cambridge, UK: Cambridge University Press; 2021. p. 190-209.
- 393 12. Crystal JD. Episodic memory in animals. In: Kruase M, Hollis K, Papini M, editors. Evolution of
- Learning and Memory Mechanisms. Cambridge, UK: Cambridge University Press; 2022. p. 302-16.
- 395 13. Crystal JD. Temporal foundations of episodic memory. Learn Behav. 2024;52:35-50.
- 396 14. Zhou W, Crystal JD. Evidence for remembering when events occurred in a rodent model of
- 397 episodic memory. Proc Natl Acad Sci USA. 2009;106(23):9525-9.
- 398 15. Crystal JD, Alford WT, Zhou W, Hohmann AG. Source memory in the rat. Curr Biol.
- 399 2013;23(5):387-91.
- 400 16. Crystal JD, Smith AE. Binding of episodic memories in the rat. Curr Biol. 2014;24(24):2957-61.
- 401 17. Panoz-Brown DE, Corbin HE, Dalecki SJ, Gentry M, Brotheridge S, Sluka CM, Wu J-E, Crystal JD.
- 402 Rats remember items in context using episodic memory. Curr Biol. 2016;26(20):2821-6.
- 403 18. Panoz-Brown D, Iyer V, Carey LM, Sluka CM, Rajic G, Kestenman J, Gentry M, Brotheridge S,
- Somekh I, Corbin HE, Tucker KG, Almeida B, Hex SB, Garcia KD, Hohmann AG, Crystal JD. Replay of
- 405 episodic memories in the rat. Curr Biol. 2018;28(10):1628-34.e7.
- 406 19. Sheridan CL, Lang S, Knappenberger M, Albers C, Loper R, Tillett B, Sanchez J, Wilcox A, Harrison
- 407 T, Panoz-Brown D, Crystal JD. Replay of incidentally encoded episodic memories in the rat. Curr Biol.
- 408 2024;34:641-7.
- 409 20. Zhou W, Hohmann AG, Crystal JD. Rats answer an unexpected question after incidental
- 410 encoding. Curr Biol. 2012;22(12):1149-53.
- 411 21. Gallistel CR. The Organization of Learning. Cambridge, MA: MIT Press; 1990.
- 412 22. Crystal JD, Suddendorf T. Episodic memory in nonhuman animals? Curr Biol. 2019;29(24):R1291-
- 413 R5.
- 414 23. Tulving E. Episodic and semantic memory. In: Tulving E, Donaldson W, editors. Organization of
- 415 Memory. New York: Academic Press; 1972. p. 381-403.
- 416 24. Clayton NS, Dickinson A. Episodic-like memory during cache recovery by scrub jays. Nature.
- 417 1998;395(6699):272-4.

- 418 25. Clayton NS, Yu KS, Dickinson A. Scrub jays (Aphelocoma coerulescens) form integrated
- 419 memories of the multiple features of caching episodes. J Exp Psychol Anim Behav Process.
- 420 2001;27(1):17-29.
- 421 26. Zentall TR, Clement TS, Bhatt RS, Allen J. Episodic-like memory in pigeons. Psychonom Bull Rev.
- 422 2001;8(4):685-90.
- 423 27. Fortin NJ, Wright SP, Eichenbaum H. Recollection-like memory retrieval in rats is dependent on
- 424 the hippocampus. Nature. 2004;431(7005):188-91.
- 425 28. Eacott MJ, Easton A, Zinkivskay A. Recollection in an episodic-like memory task in the rat. Learn
- 426 Mem. 2005;12(3):221-3.
- 427 29. Roberts WA, Feeney MC, MacPherson K, Petter M, McMillan N, Musolino E. Episodic-like
- 428 memory in rats: Is it based on when or how long ago? Science. 2008;320(5872):113-5.
- 429 30. Fugazza C, Pogány Á, Miklósi Á. Recall of Others' Actions after Incidental Encoding Reveals
- 430 Episodic-like Memory in Dogs. Curr Biol. 2016;26(23):3209-13.
- 431 31. Crystal JD. Comparative Cognition: Action Imitation Using Episodic Memory. Curr Biol.
- 432 2016;26(23):R1226-R8.
- 433 32. Fugazza C, Pongrácz P, Pogány Á, Lenkei R, Miklósi Á. Mental representation and episodic-like
- memory of own actions in dogs. Scientific Reports. 2020;10(1):10449.
- 435 33. Davies JR, Garcia-Pelegrin E, Baciadonna L, Pilenga C, Favaro L, Clayton NS. Episodic-like memory
- in common bottlenose dolphins. Curr Biol. 2022;32(15):3436-42.e2.
- 437 34. Zlomuzica A, Dere D, Dere E. The histamine H1 receptor and recollection-based discrimination in
- a temporal order memory task in the mouse. Pharmacology Biochemistry and Behavior. (0).
- 439 35. Crystal JD. Event Memory in Rats. In: Kaufman AB, Kaufman JC, Call J, editors. The Cambridge
- 440 Handbook of Animal Cognition. Cambridge Handbooks in Psychology. Cambridge: Cambridge University
- 441 Press; 2021. p. 190-209.
- 442 36. Crystal JD. Animal models of human cognition. In: Vonk J, Shackelford T, editors. Oxford
- 443 Handbook of Comparative Evolutionary Psychology. Oxford: Oxford University Press; 2012. p. 261-70.
- 444 37. Dede AJO, Frascino JC, Wixted JT, Squire LR. Learning and remembering real-world events after
- medial temporal lobe damage. Proc Natl Acad Sci U S A. 2016;113(47):13480-5.
- 446 38. Kurth-Nelson Z, Economides M, Dolan Raymond J, Dayan P. Fast Sequences of Non-spatial State
- 447 Representations in Humans. Neuron. 2016;91(1):194-204.
- 39. Staresina BP, Alink A, Kriegeskorte N, Henson RN. Awake reactivation predicts memory in
- 449 humans. Proc Natl Acad Sci U S A. 2013;110(52):21159-64.
- 450 40. Ricker TJ, Sandry J, Vergauwe E, Cowan N. Do familiar memory items decay? Journal of
- 451 Experimental Psychology: Learning, Memory, and Cognition. 2020;46(1):60-76.
- 452 41. Tulving E, Thomson DM. Encoding specificity and retrieval processes in episodic memory.
- 453 Psychol Rev. 1973;80(5):352-73.
- 454 42. Raaijmakers JG, Shiffrin RM. Search of associative memory. Psychol Rev. 1981;88(2):93-134.
- 455 43. Howard MW, Kahana MJ. A Distributed Representation of Temporal Context. J Math Psychol.
- 456 2002;46(3):269-99.
- 457 44. Sederberg PB, Howard MW, Kahana MJ. A context-based theory of recency and contiguity in
- 458 free recall. Psychol Rev. 2008;115(4):893-912.
- 459 45. Conway AA, Kane M, Bunting M, Hambrick DZ, Wilhelm O, Engle R. Working memory span tasks:
- 460 A methodological review and user's guide. Psychonom Bull Rev. 2005;12(5):769-86.
- 461 46. Baddeley A. Working Memory. Science. 1992;255(5044):556-9.
- 462 47. Baddeley A, Hitch G. Working memory. In GH Bower (Ed.), The psychology of learning and
- 463 motivation (Vol. 8, pp. 47-90). New York: Academic Press; 1974.
- 464 48. Squire LR, Zola-Morgan S. The Medial Temporal Lobe Memory System. Science.
- 465 1991;253(5026):1380-6.

- 466 49. Braver TS, Cohen JD, Nystrom LE, Jonides J, Smith EE, Noll DC. A Parametric Study of Prefrontal
- 467 Cortex Involvement in Human Working Memory. Neuroimage. 1997;5(1):49-62.
- 468 50. Ragland JD, Turetsky BI, Gur RC, Gunning-Dixon F, Turner T, Schroeder L, Chan R, Gur RE.
- Working memory for complex figures: An fMRI comparison of letter and fractal n-back tasks.
- 470 Neuropsychology. 2002;16:370-9.
- 471 51. Eichenbaum H. A cortical-hippocampal system for declarative memory. Nat Rev Neurosci.
- 472 2000;1(1):41-50.
- 473 52. Eichenbaum H. Prefrontal-hippocampal interactions in episodic memory. Nat Rev Neurosci.
- 474 2017;18(9):547-58.
- 475 53. Eichenbaum H, Yonelinas AP, Ranganath C. The medial temporal lobe and recognition memory.
- 476 Annu Rev Neurosci. 2007;30(1):123-52.
- 477 54. Davies J, Clayton N, Elias G-P. Eurasian jays (Garrulus glandarius) show episodic-like memory
- 478 through the incidental encoding of information. PLoS ONE. in press.
- 479 55. Brown MF, Rish PA, VonCulin JE, Edberg JA. Spatial guidance of choice behavior in the radial-arm
- 480 maze. J Exp Psychol Anim Behav Process. 1993;19:195-214.
- 481 56. Mazmanian DS, Roberts WA. Spatial memory in rats under restricted viewing conditions. Learn
- 482 Motiv. 1983;14(2):123-39.
- 483 57. Olton DS, Collison C. Intramaze cues and odor trails fail to direct choice behavior on an elevated
- 484 maze. Anim Learn Behav. 1979;7(2):221-3.
- 485 58. Suzuki S, Augerinos G, Black AH. Stimulus control of spatial behavior on the eight-arm maze in
- 486 rats. Learn Motiv. 1980;11(1):1-18.
- 487 59. Bratch A, Kann S, Cain JA, Wu J-E, Rivera-Reyes N, Dalecki S, Arman D, Dunn A, Cooper S, Corbin
- 488 HE, Doyle AR, Pizzo MJ, Smith AE, Crystal JD. Working memory systems in the rat. Curr Biol.
- 489 2016;26(3):351-5.
- 490 60. April LB, Bruce K, Galizio M. The magic number 70 (plus or minus 20): Variables determining
- 491 performance in the Rodent Odor Span Task. Learn Motiv. 2013;44(3):143-58.
- 492 61. Premack D, Woodruff G. Does the chimpanzee have a theory of mind? Behav Brain Sci.
- 493 1978;1(04):515-26.
- 494 62. Suddendorf T. Mental time travel: continuities and discontinuities. Trends Cogn Sci.
- 495 2013;17(4):151-2.
- 496 63. Emery NJ, Clayton NS. The Mentality of Crows: Convergent Evolution of Intelligence in Corvids
- 497 and Apes. Science. 2004;306(5703):1903-7.
- 498 64. Crystal JD, Ketzenberger JA, Alford WT. Practicing memory retrieval improves long-term
- 499 retention in rats. Curr Biol. 2013;23(17):R708-9.
- 500 65. Wilson AG, Pizzo MJ, Crystal JD. Event-based prospective memory in the rat. Curr Biol.
- 501 2013;23(12):1089-93.

502

503

504

505

506

507

Figure captions

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

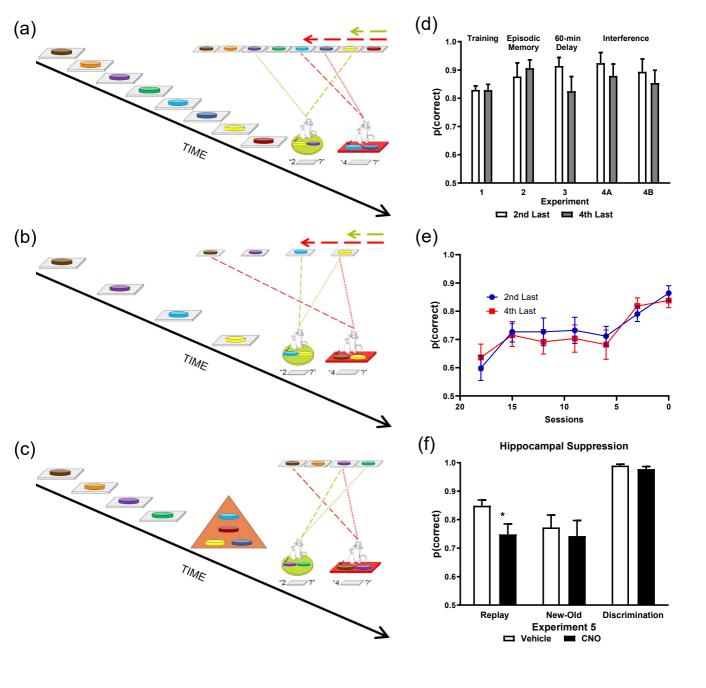
508

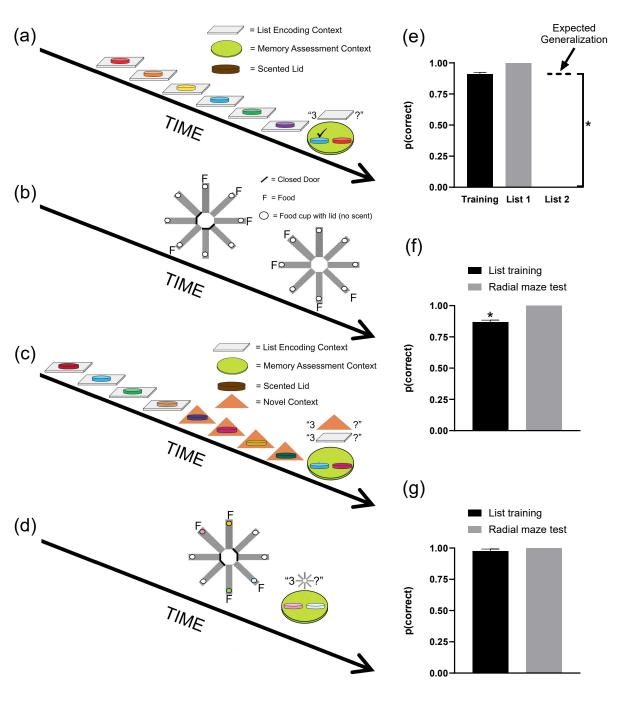
Figure 1. Rats replay a stream of multiple episodic memories. Schematic depiction of (a) list encoding and memory assessments, (b) dissociation of episodic-memory and memory-trace-strength accounts of list-memory performance, and (c) an interference test. Because the same time scale is used in (a) and (b), it may be noted that the second-last item in (b) occurred at the time of the fourth-last item in (a), and the fourthlast item in (b) occurred at the time of the eighth-last item in (a). Data from (18) showing (d) reliance on episodic memory rather than memory trace strength and overall high accuracy in list memory task, including after a 60-min delay and interference, (e) equivalent performance in acquisition under varying memory loads, and (f) list-memory performance is impaired by inhibition of hippocampal neurons while sparing other aspects of memory. (d-f) Error bars represent 1 SEM. Adapted and reproduced with permission from Panoz-Brown, D., Iyer, V., Carey, L.M., Sluka, C.M., Rajic, G., Kestenman, J., Gentry, M., Brotheridge, S., Somekh, I., Corbin, H.E., Tucker, K.G., Almeida, B., Hex, S.B., Garcia, K.D., Hohmann, A.G., & Crystal, J.D. (2018). Replay of episodic memories in the rat. Current Biology, 28(10), 1628-1634.e1627. ©2018

525

526

527


528


529

530

Figure 2. Replay of episodic memories after incidental encoding of multiple events in an unexpected assessment of memory. Schematic depiction of (a) list encoding and memory assessment, (b) foraging for food (encountered below unscented lids on a radial maze), (c) a control condition that pits explicit encoding of an initial list in the trained list-encoding context (List 1) against stimulus generalization in a novel context

(List 2), and (d) a critical test in which rats forage on the radial maze but encounter food below scented lids followed by a memory assessment to prompt replay of episodic memories. Data from (19) showing (e) failure of stimulus generalization (i.e., failure to automatically encode odors for the purpose of an upcoming test in a novel context), and (f-g) high accuracy when rats encountered odors while foraging in the radial maze and their memory for the order of encountered odors was unexpectedly assessed (f) immediately or (g) after a 15-min delay. (e-g) Error bars represent 1 SEM. Adapted and reproduced with permission from Sheridan, C. L., Lang, S., Knappenberger, M., Albers, C., Loper, R., Tillett, B., Sanchez, J., Wilcox, A., Harrison, T., Panoz-Brown, D., & Crystal, J. D. (2024). Replay of incidentally encoded episodic memories in the rat. Current Biology. ©2024

