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A note on the involutive concordance invariants
for certain (1,1)-knots

By Anna Antal and Sarah Pritchard

Abstract. We compute the involutive concordance invariants for the 10- and 11-crossing (1,1)-knots.

1 Introduction

A knot is a smooth embedding of a circle in S3. Knots are interesting because of their

applications to real world problems and in higher-dimensional topology. Knots are

often studied via knot invariants; a knot invariant is a simpler algebraic object (such

as a number or polynomial) which is associated to each knot. In this paper, we give

computations of two relatively new knot invariants for a particular family of knots. We

begin by giving a broad overview of this work, then further exposit knots and the knot

invariants we work with in the background sections to follow.

Heegaard Floer homology is a suite of invariants of 3-manifolds, knots, and links

introduced in the early 2000’s by P. Ozsváth and Z. Szabó [OS04b, OS04a], and in the knot

case independently by J. Rasmussen [Ras03]. In the knot variant, Heegaard Floer homol-

ogy associates to a knot K a Z⊕Z-filtered, Z-graded chain complex over F2[U,U−1] called

CFK∞(K). Many classical knot invariants can be recovered from this chain complex. For

example, CFK∞(K) contains the data of the Alexander polynomial [OS04b], the knot

genus [OS06], and whether a knot is fibred [Ghi08, Ni07].

We work with involutive Heegaard Floer homology, developed by K. Hendricks and

C. Manolescu in 2015 [HM17] as a refinement to Heegaard Floer homology. In the

knot version, involutive Heegaard Floer homology additionally considers a skew-filtered

automorphism

ιK : CFK∞(K) → CFK∞(K),

which is order four up to filtered chain homotopy. Using this supplementary information,

involutive Heegaard Floer homology introduced two new knot concordance invariants,

V0(K) and V0(K), which are variants of an existing concordance invariant V0(K) from

Heegaard Floer homology. The involutive concordance invariants are interesting because

unlike other concordance invariants arising from Heegaard Floer homology such as τ,ϵ,
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2 A note on the involutive concordance invariants for certain (1,1)-knots

and ν, they do not necessarily vanish on knots of finite concordance order such as the

figure-eight knot [HM17]. Hendricks and Manolescu give combinatorial computations

of the involutive concordance invariants for L-space knots (which include the torus

knots) and thin knots (which include alternating and quasi-alternating knots).

Following a similar, but slightly more refined, strategy to Hendricks and Manolescu’s

computation for thin knots [HM17, Section 8], in this note we compute the involutive

concordance invariants V0(K) and V0(K) for all 10 and 11-crossing (1,1)-knots that are

neither L-space nor thin. We also include the values of the ordinary concordance invari-

ant V0(K) for each knot, for easy comparison. Our computations appear in Section 7.

Taken together they confirm the following.

Theorem 1.1. For any 10- or 11-crossing (1,1)-knot K, the skew-filtered chain homotopy

equivalence class of ιK, and therefore the value of the concordance invariants V0(K) and

V0(K), is determined by CFK∞(K).

Organization

This paper is organized as follows. In Section 2, we provide some background on knots

and concordance. In Section 3 we provide necessary background on homological algebra;

in particular, we discuss general chain complexes in Section 3.1, filtered chain complexes

in Section 3.2, bigraded chain complexes in Section 3.3, the Euler characteristic of a

chain complex in Section 3.4, and F2[U,U−1] complexes in Section 3.5. In Section 4 we

briefly introduce Heegaard Floer homology and involutive Heegaard Floer homology;

specifically, in Section 4.1 we review the definition of the chain complex CFK∞(K) and

the concordance invariant V0(K), and in Section 4.2 we summarize the properties of the

map ιK and the definitions of the involutive concordance invariants V0(K) and V0(K).

In Section 5 we discuss parameterizations of (1,1)-knots and Heegaard diagrams. We

provide some example computations of the involutive concordance invariants in Section

6; Section 6.1 outlines the computation for the knot 11n57, and Section 6.2 outlines

the computation for the knot 10161. Then, in Section 7 we provide a list of involutive

concordance invariants for some 10- and 11-crossing (1,1)-knots for which they were

not previously known, along with some amendments to the literature.

2 Knots and Concordance

2.1 Knots

We begin by introducing knots, and going over some useful properties and types of knots.

Definition 2.1. A knot is a smooth embedding K : S1 ,→ S3 up to isotopy.

Knots are represented by knot diagrams, which are defined as follows.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



A. Antal and S. Pritchard 3

Definition 2.2. A knot diagram for a knot K is a projection of K onto R
2 that has finitely

many double points, and has crossing information at each double point.

Some examples of knot diagrams are shown in Figure 1 and 2.

Definition 2.3. The crossing number of a knot K is the minimal number of crossings

appearing in any diagram of K.

The standard enumeration of knots gives them labels referencing their crossing number.

For example, the figure-eight knot 41, shown in Figure 1, has crossing number 4.

Definition 2.4. A knot K is alternating if there exists a diagram of K such that one can

trace along the diagram and pass through alternating over-crossings and under-crossings

until returning to the starting point.

Figure 1: The figure-eight knot 41 is an alternating knot with crossing number 4.

Definition 2.5. The (p, q)-torus knot is a knot Tp,q for coprime p, q that sits on the

surface of the torus as described by a map S1 → S1 ×S1 ⊆ S3 given by z 7→ (zp , zq ).

An example of a torus knot is the trefoil, denoted T(2,3), shown in Figure 2. Later, we

will discuss L-space knots and thin knots, which share some algebraic properties with

torus knots and alternating knots respectively.

We also consider the mirror of a knot, defined as follows.

Definition 2.6. Given a knot K, its mirror is a knot K, which is K with over-crossings

changed to under-crossings and vice versa.

Knots do not naively form a group, but there is an operation on knots; we can take a

connected sum.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



4 A note on the involutive concordance invariants for certain (1,1)-knots

Figure 2: Both the right-handed trefoil knot 31 = T(2,3), shown on the right, and its mirror

the left-handed trefoil on the left are alternating torus knots.

Definition 2.7. Let J,K be two oriented knots. The connected sum of J and K, denoted

J#K, is constructed by removing a trivial arc (that is, untangled in a three ball) from both

J,K and connecting the four endpoints with two new oriented trivial strands in a way

that respects the orientations of J and K.

The connect sum of the right-handed trefoil and its mirror the left-handed trefoil is

shown in Figure 3.

2.2 Concordance

The invariants computed in this note are a type of knot concordance invariant. Concor-

dance is an equivalence relation on knots; its definition is as follows.

Definition 2.8. Two knots K1 and K2 are concordant if they co-bound a smooth, properly

embedded cylinder in S3 × [0,1].

We may consider knots equivalent up to concordance. A knot that is concordant

to the unknot is called slice. Furthermore, the set of knots in S3 modulo concordance

equipped with the operation induced by connected sum is a group.

2.3 (1,1)-Knots

In this paper we will be particularly interested in knots that satisfy a certain simplicity

condition, called being (1,1). The definition of a (1,1)-knot is as follows.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



A. Antal and S. Pritchard 5

Figure 3: The connected sum of the trefoil and its mirror is denoted 31#31.

Definition 2.9. A knot K is a (g ,b) knot for g ,b ∈ Z if it has a diagram on the genus g

orientable surface Σg composed of b trivial arcs called overpasses and b trivial arcs called

underpasses, positioned such that:

1. Overpasses do not intersect each other.

2. Underpasses do not intersect each other.

3. When an overpass meets an underpass, the overpass crosses above the underpass.

A (1,1)-knot is a (g ,b) knot where g = 1 and b = 1. In more detail, a (1,1)-knot is a

union of two trivial arcs in the standard decomposition of S3 into two solid tori, one in

each torus, such that the arcs share a boundary consisting of two points in the torus

S1 ×S1, which is the mutual boundary of the two solid tori. In Section 5, we discuss

algebraic invariants associated to (1,1)-knots in more detail.

3 Homological Algebra

3.1 General chain complexes

In this section we review some concepts from homological algebra. First we introduce

chain complexes and the maps between them.

Definition 3.1. A chain complex over a ring R is a sequence of R-modules (Ci ,∂i ),

· · ·
∂3
−→ C2

∂2
−→ C1

∂1
−→ C0

∂0
−→ C−1

∂−1
−→ ·· ·

with the property that ∂i−1 ◦∂i = 0. We call ∂i the differential map.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



6 A note on the involutive concordance invariants for certain (1,1)-knots

Definition 3.2. The ith homology of a chain complex (Ci ,∂i ) is

Hi (C) = Ker(∂i )/Im(∂i+1),

where Ker(∂i ) denotes the kernel of ∂i , Im(∂i+1) denotes the image of ∂i+1, and C =⊕
i∈Z Ci is the graded module.

Example 3.3. Let F2〈x1, x2, · · · , xn〉 denote the vector space with basis elements xi , for

1 ≤ i ≤ n, over the field F2 = {0,1}. Let C = (Ci ,∂i ) be the following chain complex:

C3 C2 C1 C0 C−1

0 F2〈e, g 〉 F2〈a,b,c〉 F2〈v〉 0
∂3 ∂2 ∂1 ∂0

We take Ci = 0 for i ≥ 3 and i ≤−1. Here, ∂0 and ∂3 are both the zero map. We define the

maps ∂1 and ∂2 on the basis elements of C1 and C2, respectively: ∂1(a) = ∂1(b) = ∂1(c) = 0,

and ∂2(e) = ∂2( f ) = a +b +c. The i th homology of this chain complex for i ∈ {0,1,2} is as

follows.

H0(C) = Ker(∂0)/Im(∂1) = F2〈v〉/{0} = F2〈[v]〉.

H1(C) = Ker(∂1)/Im(∂2) = F2〈a,b,c〉/F2〈a +b + c〉 = F2〈[a], [b]〉.

H2(C) = Ker(∂2)/Im(∂3) = F2〈e + g 〉/{0} = F2〈[e + g ]〉.

For all other values of i , the homology is trivial.

Definition 3.4. Let (Ci ,∂Ci
) and (Di ,∂Di

) be two chain complexes. A (graded) chain map

f is a map of modules f : Ci → Di with the property that f ◦∂Ci
= ∂Di

◦ f .

Definition 3.5. Given chain complexes (Ci ,∂Ci
) and (Di ,∂Di

), two chain maps f , g :

Ci → Di are chain homotopic if there is a map H : Ci → Di+1 with the property that

∂H+H∂= f − g . We write f ∼ g .

Definition 3.6. Two chain complexes (Ci ,∂Ci
) and (Di ,∂Di

) are chain homotopy equiva-

lent if there exist chain maps f : Ci → Di and g : Di → Ci with the property that f ◦g ∼ IdD

and g ◦ f ∼ IdC, where C =
⊕

i∈Z Ci and D =
⊕

i∈Z Di , and IdC and IdD denote the identity

maps on C and D, respectively.

We now state a definition that is necessary for our discussion of involutive concordance

invariants in section 4.2.

Definition 3.7. Let (C,∂C) and (D,∂D) be chain complexes and f : C → D be a (grading-

preserving) chain map. The mapping cone of f is the complex

Cone( f ) =

(
C[−1]⊕D,

(
∂C 0

f ∂D

))
.

The term C[−1] means that we are considering the complex C with the homological

grading of all elements increased by 1.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



A. Antal and S. Pritchard 7

3.2 Filtered chain complexes

To discuss filtered chain complexes we must first define a filtration.

Definition 3.8. A filtration F of an algebraic object S is an indexed family (Si )i∈I of

sub-objects, for I an ordered set, such that if i ≤ j , then Si ⊆ S j , and S =∪i∈ISi .

Now, we have the following restrictions to the definitions above:

Definition 3.9. A filtered chain complex is a chain complex (C,∂), filtered as a vector

space with a filtration F such that ∂(Fi ) ⊆Fi .

Example 3.10. Consider the following complex (C,∂):

0 F2〈a〉 F2〈b,d ,e, f 〉 F2〈c〉
∂ ∂ ∂

Here (and for other filtered chain complexes) we suppress the homological grading of

the basis elements in favor of their filtration level. The homological gradings of the basis

elements are as follows: a,b, f have homological grading 0, and c,d ,e have homological

grading 1. The filtration levels of C are as follows: F−1 = F2〈a〉, F0 = F2〈a,b,d ,e, f 〉,

and F1 = F2〈a,b,c,d ,e, f 〉. For i ≤ −2,Fi = {0}. For i ≥ 2,Fi = F2〈a,b,c,d ,e, f 〉. The

differential map ∂ acts on the basis elements in the following way: ∂(a) = ∂(b) = ∂( f ) = 0,

∂(c) = b, ∂(d) = f , and ∂(e) = a. The homology of the filtered chain complex is: H∗(C) =

Ker(∂)/Im(∂) = F2〈a,b, f 〉/F2〈a,b, f 〉 = {0}.

Definition 3.11. Given a chain complex (C,∂) equipped with a filtration F , the associated

graded complex is a chain complex given by
⊕

i∈ZFi /Fi−1, taking the direct sum of the

quotient complexes together.

Definition 3.12. A chain map of filtered chain complexes (C,∂C) and (D,∂D) with filtration

F is a chain map Ψ : C → D such that Ψ(Fi ) ⊆Fi .

Definition 3.13. A filtered chain homotopy equivalence between filtered chain maps

Ψ,Φ : C → D with filtration F is a map H : C → D such that ∂H + H∂ = Ψ−Φ and

H(Fi ) ⊆Fi .

Definition 3.14. Two filtered chain complexes (Ci ,∂Ci
) and (Di ,∂Di

) are filtered chain

homotopy equivalent if there exist chain maps f : Ci → Di and g : Di → Ci with the

property that f ◦ g ∼ IdD and g ◦ f ∼ IdC, where C =
⊕

i∈Z Ci and D =
⊕

i∈Z Di , and IdC

and IdD denote the identity maps on C and D, respectively.

Definition 3.15. Let (C,∂) and (D,∂) be chain complexes equipped with a (Z⊕Z)-

filtration F , which has a partial order given by (i1, j1) ≤ (i2, j2) if i1 ≤ i2 and j1 ≤ j2.

Then, Ψ : C → D is a skew-filtered chain map if it is a chain map and Ψ(F(i , j )) ⊆F( j ,i ) for

all i , j ∈Z.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



8 A note on the involutive concordance invariants for certain (1,1)-knots

Example 3.16. Let (C,∂) be the following (Z⊕Z)-filtered chain complex.

· · ·

· · ·

i

j

a

b

c

d

e

f

g

h

k

The dots in the picture, for instance the ones labelled by a,b, and c, are basis elements

of the vector space C. The arrows between the basis elements denote the map ∂. For ex-

ample, ∂(b) = c +d . The filtration level F(0,0) consists of everything in the third quadrant

of the complex. Thus, F2〈b,c,d ,e, f , g 〉 ⊂F(0,0). Also note that reflection along the line

i = j is a skew-filtered chain map on the complex.

3.3 Bigraded chain complexes

Definition 3.17. A bigraded chain complex is a complex C =
⊕

i , j∈Z Ci , j with the property

∂i : Ci , j → Ci−1, j . Equivalently, this is a direct sum of chain complexes:

...

· · · C2,2 C1,2 C0,2 C−1,2 C−2,2 · · ·

· · · C2,1 C1,1 C0,1 C−1,1 C−2,1 · · ·

· · · C2,0 C1,0 C0,0 C−1,0 C−2,0 · · ·

...

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023
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Table 1: Hi , j (C)

i = 2 i = 1 i = 0

j = 2 0 0 F2〈[n]〉

j = 1 F2〈[d +e]〉 F2〈[k], [l ]〉 0

j = 0 0 F2〈[a +b]〉 0

Example 3.18. The following complex (C,∂) = (Ci , j ,∂i , j ) is an example of a bigraded

chain complex.

i = 2 i = 1 i = 0 i =−1

j = 2 0 0 F2〈n〉 0

j = 1 F2〈d ,e〉 F2〈k, l ,m〉 0 0

j = 0 0 F2〈a,b〉 F2〈c〉 0

∂ ∂ ∂

∂ ∂ ∂

∂ ∂ ∂

We view the bigraded chain complex as the direct sum of chain complexes, where the

chain complexes are indexed by j , and the vector spaces in each chain complex are

indexed by i . The differential map ∂ is defined as follows: ∂(a) = ∂(b) = c , ∂(c) = ∂(n) = 0,

and ∂(d) = ∂(e) = k + l +m.

We summarize the homology Hi , j (C) of the complex above in Table 1.

3.4 Euler characteristics

Definition 3.19. The Euler characteristic of a chain complex (C,∂) of vector spaces is
∑

i∈Z

(−1)i dim
(
Hi (C)

)
=

∑

i∈Z

(−1)i dim(Ci ).

This number is written χ(C).

Definition 3.20. The Euler characteristic of a bigraded chain complex (C,∂) = (Ci , j ,∂i , j )

is a polynomial

χ(Ci , j ) =
∑

i , j∈Z

(−1)i dim
(
Hi , j (C)

)
T j

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



10 A note on the involutive concordance invariants for certain (1,1)-knots

=
∑

i , j∈Z

(−1)i dim(Ci , j )T j

=
∑

i , j∈Z

χ(Ci , j )T j .

Example 3.21. The Euler characteristic of the complex (Ci , j ,∂i , j ) given in Example 3.18

is as follows:

χ(Ci , j ) =
∑

i , j∈Z

χ(Ci , j )T j
= T2

−T−1.

3.5 F2[U,U−1] complexes

We will be interested in (Z⊕Z)-filtered chain complexes (C,∂) over the ring F2[U,U−1]

which are finitely generated and free. Concretely, this means that as a module C is

generated by some finite number of elements x1, x2, · · · , xm . Any element of the form

Un xi is an element of C for n ∈Z and 1 ≤ i ≤ m. In out complexes, multiplication by U

will lower the homological grading of an element by 2, and decrease each filtration level

of the element by 1. For example, if x ∈ C, x has homological grading a, and x ∈F(i , j ),

then Ux has homological grading a−2, and Ux ∈F(i−1, j−1). Furthermore, the differential

map ∂ is U-equivariant, which means that ∂(Un x) = Un∂x for all n ∈Z. Any chain map

or chain homotopy on F2[U,U−1] complexes is also U-equivariant.

Example 3.22. Let (C,∂) be the following F2[U,U−1] complex:

· · ·

· · ·

i

j

x

Ux

U−1 x

U2 x

U−2 x

The complex has elements of the form Un x for n ∈Z. The differential ∂ is identically 0

on C. The homological grading of x is 0. Thus, the homological grading of Un x is −2n.

Also note that x ∈F(0,0), so Un x ∈F(−n,−n).

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023
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4 Heegaard Floer homology and involutive Heegaard Floer homology

4.1 The chain complex CFK∞(K)

We now introduce the complex CFK∞(K) abstractly; in Section 5 we will go over its

construction in a special case. To a knot K, Heegaard Floer homology [OS04a, OS04b]

associates a (Z⊕Z)-filtered, Z-graded chain complex CFK∞(K) over F2[U,U−1]. (Strictly

speaking, the construction of CFK∞(K) involves some choices which produce chain

complexes which are chain homotopy equivalent via canonical chain homotopies; here

and throughout, we will take some model for this chain homotopy equivalence class.)

For the mirror image K of a knot K, CFK∞(K) = HomF2[U,U−1](CFK∞(K),F2[U,U−1]),

the dual of CFK∞(K) over the field F2[U,U−1]. We can describe the horizontal and vertical

components of ∂ in following way:

Definition 4.1. Decompose the differential ∂ on CFK∞(K) as

∂=
∑

i , j∈N

∂i j ,

where ∂i j lowers the horizontal grading by i and the vertical grading by j . Then the

horizontal and vertical differentials are

∂horz =
∑

i

∂i 0

and

∂vert =
∑

j

∂0 j .

Given S ⊆Z⊕Z, we let C{S} ⊆ CFK∞(K) denote the set of elements with planar gradings

in S; if this is closed under ∂ it is a subcomplex of CFK∞(K). The following complexes

are important examples:

Definition 4.2. The quotient complexes C{i = 0} and C{ j = 0} are

C{i = 0} = C{(i , j ) : i ≤ 0}/C{(i , j ) : i < 0}

and

C{ j = 0} = C{(i , j ) : j ≤ 0}/C{(i , j ) : j < 0}.

Since both C{(i , j ) : i ≤ 0} and C{(i , j ) : i < 0} are subcomplexes of CFK∞(K), their quo-

tient is a chain complex. In the same way, C{ j = 0} is a subcomplex also. The Euler

characteristic of the associated graded of C{i = 0} for a knot K is the Alexander polyno-

mial ∆K(t). Additionally, the homology of the subcomplex C{i = 0} equipped with the

boundary map ∂vert is

H∗

(
C{i = 0},∂vert

)
= F(0).

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



12 A note on the involutive concordance invariants for certain (1,1)-knots

Likewise,

H∗

(
C{ j = 0},∂horz

)
= F(0).

We are furthermore interested in the subcomplex A−
0 , which has the following definition:

Definition 4.3. The subcomplex A−
0 is defined by

A−
0 = C{(i , j ) : i , j ≤ 0}.

Now, we consider some conventions for the properties of elements in CFK∞(K). If

x ∈ CFK∞(K) is in grading (i , j ), then Ux is in grading (i −1, j −1). There are two other

important gradings associated to an element of CFK∞(K).

Definition 4.4. Suppose that CFK∞(K) is normalized such that the elements x = U0x

lie in planar gradings (0, j ), i.e. on the j -axis. Then, the Alexander grading A(x) of an

element x ∈ CFK∞(K) is the j -grading of x.

The homological grading M(x) of an element x ∈ CFK∞(K) is determined by the

following conventions. The element of CFK∞(K) that generates H∗

(
C{i = 0},∂vert

)
has

homological grading 0. The boundary map ∂ lowers the homological grading of an

element by 1. Multiplication by U lowers the homological grading of an element by 2.

There are many concordance invariants that can be derived from CFK∞(K), including

the invariant V0(K), which is defined as follows.

Definition 4.5. The concordance invariant V0(K) for a knot K is given by

V0(K) =−
1

2
max {r : ∃x ∈ Hr (A−

0 ) such that Un x ̸= 0 for all n }.

Here r is the homological grading.

Example 4.6. The complex CFK∞(K), where K is the right-handed trefoil knot 31, is

shown in Figure 4. The associated graded of C{i = 0} has Euler characteristic

χ(C{i = 0)}) =
∑

j∈Z

χ(C0, j )t j
= t−1

−1+ t .

So, the Alexander polynomial of the right handed trefoil is ∆31 (t) = t−1 − 1+ t . The

homology of A−
0 is F2[U]〈[Ua]〉. Thus, V0(31) is −1

2
times the homological grading of Ua,

which yields

V0(31) =−
1

2
(−2) = 1.
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· · ·

· · ·

i

j

a

b

c

Ua

Ub

Uc

U2 a

U−1b

U−1c

Figure 4: The chain complex CFK∞(31) has three generators, which we call a,b, and c.

The arrows in the picture represent the boundary map ∂. The homological grading of a

is 0; b has homological grading -1; and c has homological grading -2.

Example 4.7. We now consider the left-handed trefoil knot, which is the mirror of the

right-handed trefoil knot. CFK∞(31) is shown in Figure 5. The associated graded of

C{i = 0} has Euler characteristic

χ(C{i = 0)}) =
∑

j∈Z

χ(C0, j )t j
= t−1

−1+ t .

So, the Alexander polynomial of the left handed trefoil is ∆31
(t ) = t−1 −1+ t . The homol-

ogy of A−
0 is F2[U]〈[Ua + c]〉. Thus, V0(31) is −1

2
times the homological grading of Ua + c,

which yields

V0(31) =−
1

2
(0) = 0.

Example 4.8. Now we consider CFK∞(K), where K is the figure-eight knot 41, as shown

in Figure 6. The associated graded of C{i = 0} has Euler characteristic

χ(C{i = 0)}) =
∑

j∈Z

χ(C0, j )t j
= t−1

−3+ t .

So, the Alexander polynomial of the figure eight knot is ∆41 (t ) = t−1−3+t . The homology

of A−
0 is F2[U]〈[x]〉∪ [e]. Thus, V0(41) is −

1
2

times the homological grading of x, which

yields

V0(41) =−
1

2
(0) = 0.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



14 A note on the involutive concordance invariants for certain (1,1)-knots

· · ·

· · ·

i

j

a

b

c

Ua

Ub

Uc

U2 a

U2b

U−1c

Figure 5: The chain complex CFK∞(31) has three generators, which we call a,b, and c.

The homological grading of a is 2; b has homological grading 1; and c has homological

grading 0.

Ux
Ua

Ub

U2e
Uc

x
a

b

Ue

c

e

U−1b

U−1c

· · ·

· · ·

j

i

Figure 6: The chain complex CFK∞(41) has five generators, which we call a,b,c,e and

x. The homological gradings of a,e and x are 0; b has homological grading 1; and c has

homological grading -1.
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4.2 The involutive concordance invariants

We now introduce the involutive concordance invariants V0 and V0. We begin by de-

scribing an automorphism ιK : CFK∞(K) → CFK∞(K) for a knot K.

Definition 4.9. For a knot K the Sarkar involution σ : CFK∞(K) → CFK∞(K) is given by

σ= Id+U−1(Φ◦Ψ),

where Id is the identity map on CFK∞(K), and Φ,Ψ : CFK∞(K) → CFK∞(K) are the chain

maps given as follows. Suppose x ∈ CFK∞(K). Then,

Φ(x) =
∑

i odd

∂i 0x

and

Ψ(x) =
∑

j odd

∂0 j x.

The Sarkar involution is filtered, preserves homological degree, and is an involution up

to chain homotopy. We use the Sarkar map to describe the chain map ιK on CFK∞(K) as

follows. For a knot K, the map ιK : CFK∞(K) → CFK∞(K) is an automorphism with the

following additional properties:

1. ιK is a skew-filtered chain map.

2. ιK preserves homological degree.

3. ι2K =σ up to chain homotopy equivalence.

In many nice cases, although certainly not all, these properties are enough to specify ιK
up to skew-equivariant chain homotopy equivalence. Now, we review the definitions of

the involutive concordance invariants.

Definition 4.10. Let AI−0 be the mapping cone Cone(A−
0

Q(ιK+Id)
−−−−−−→ QA−

0 [−1]). Then, the

involutive concordance invariants V0 and V0 are

V0 =−
1

2

(
max {r : ∃x ∈ Hr (AI−0 ) s.t. Un x ̸= 0 and Un x ∉ Im(Q) ∀n}−1

)
,

V0 =−
1

2
max {r : ∃x ∈ Hr (AI−0 ) s.t. Un x ̸= 0 ∀n and ∃m ≥ 0 s.t. Um x ∈ Im(Q)},

where Im(Q) denotes the image of Q.
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b

Ua c Qb

QUaQc

Figure 7: AI−0 for the right-handed trefoil knot consists of all positive U-powers of the

structure shown.

b

Ua + c c Qb

QUa +Qc Qc

Figure 8: AI−0 for the right-handed trefoil knot shown after applying a change of basis to

the structure in Figure 7.

Example 4.11. Recall that CFK∞(31) has three generators which we call a,b, and c. The

boundary map ∂ is given by ∂(a) = ∂(c) = 0 and ∂(b) = Ua + c. The map ιK for K = 31 is a

reflection over the line i = j . Concretely, this means that ι31 (a) = U−1c, ι31 (b) = b, and

ι31 (c) = Ua. Then, the mapping cone

AI−0 = Cone(A−
0

Q(ι31
+Id)

−−−−−−→ QA−
0 [−1])

looks like copies of the structure shown in Figure 7. After a change of basis, AI−0 has the

simplified picture shown in Figure 8. The homology of AI−0 is

F2[U]〈[c +Qb], [Qc]〉.

H∗(AI−0 ) is a module over F2[U,Q]/Q2. So, we can form two towers from the subspaces

that generate the homology as shown in Figure 9. We examine the homological gradings

of the topmost elements of the towers. The element c +Qb has homological grading

-1, while Qc has homological grading -2. Thus, V0(31) = −
1
2

(−1−1) = 1 and V0(31) =

−
1
2

(−2) = 1.

Example 4.12. The involutive concordance invariants for the left-handed trefoil knot

can be calculated in a similar way. Recall that CFK∞(31) has three generators which we

call a,b, and c . The boundary map ∂ is given by ∂(a) = b,∂(b) = 0, and ∂(c) = Ub. As with

the right handed trefoil, ι(31) is a reflection over the line i = j . The mapping cone

AI−0 = Cone(A−
0

Q(ι31
+Id)

−−−−−−→ QA−
0 [−1])
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[c +Qb]

[Uc +QUb]

[U2c +QU2b]

[Qc]

[QUc]

[QU2c]

· · ·

Figure 9: H∗(AI−0 ) for the right-handed trefoil knot can be described by two linked towers.

The tower on the left contains no elements in the image of Q, while the tower on the

right contains only elements that are in the image of Q. Each tower is organized by

increasing powers of U. Curved lines denote multiplication by U, while dashed lines

denote application of Q.

has the form shown in Figure 10. The result of changing the basis is shown in Figure 11.

The homology of AI−0 is

F2[U]〈[Ua + c], [QUa +Qc]〉∪ [b]∪ [Qb].

We can form two towers from the subspaces that generate the homology as shown in

Figure 12. We examine the homological gradings of the topmost elements of the towers.

The element Ua+c has homological grading 1, while b has homological grading 2. Thus,

V0(31) =−
1
2

(1−1) = 0 and V0(31) =−
1
2

(2) =−1.

Example 4.13. We also find the involutive concordance invariants for the figure-eight

knot from Example 4.8. The map ιK for K = 41 is given by ι41 (a) = a+x, ι41 (b) = c, ι41 (c) = b,

b

Ub

c Ua Qb

QUb

Qc QUa

Figure 10: The mapping cone for the left handed trefoil.
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b

Ub

Ua + c Ua Qb

QUb

QcQUa +Qc

Figure 11: The simplified mapping cone for the left handed trefoil.

[Ua + c]

[U2a +Uc]

[U3a +U2c]

[b]

[QUa +Qc]

[QU2a +QUc]

[QU3a +QU2c]

[Qb]

· · ·

Figure 12: H∗(AI−0 ) for the left handed trefoil knot can be described by two linked towers

and the stand-alone subspace [Qb]. Note that QUb is in the image of the differential.
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ae

x

b c

Ue Ux

Qa

Qe
Qx

Qb Qc

QUe

Figure 13: AI−0 for the figure eight knot consists of the structure shown, and all positive

U-translates of the generators a,b,c, x,Ux,Ue,Qa,Qb,Qc,Qx, and QUe.

e

x

a

Ue

b + c c

Ux

Qe
Qx

Qa

QUe

Qb +Qc Qc

Figure 14: AI−0 for the figure eight knot shown after applying a change of basis to the

structure in Figure 13.

ι41 (e) = e, and ι41 (x) = e +x. Then, the mapping cone

AI−0 = Cone(A−
0

Q(ι41
+Id)

−−−−−−→ QA−
0 [−1])

is represented by the structure shown in Figure 13. After a change of basis, AI−0 has the

simplified picture shown in Figure 14. The homology of AI−0 is

F2[U]〈[Ux +Qc], [Qx]〉∪ [e].

Thus, we can form two towers from the subspaces that generate the homology as shown

in Figure 15. We examine the homological gradings of the topmost elements of the

towers. The element Ux +Qc has homological grading -1, while Qx has homological

grading 0. Thus, V0(41) =−
1
2

(−1−1) = 1 and V0(31) =−
1
2

(0) = 0.

5 Heegaard Diagrams for (1,1) Knots

We can compute CFK∞(K) for a (1,1)-knot K using information from a representation

of K on the torus, called a Heegaard diagram. Heegaard diagrams for (1,1)-knots are

uniquely determined by a 4-tuple of integers, described by [Rac15] as follows:
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[e]

[Ux +Qc]

[U2x +QUc]

[U3x +QU2c]

[Qx]

[QUx]

[QU2x]

[QU3x]

· · ·

Figure 15: H∗(AI−0 ) for the figure eight knot can be described by two linked towers and

the stand-alone subspace [e].

Definition 5.1. For a (1,1)-knot, there exists a (nonunique) parameterization (k,r,c, s)

that describes how the knot lies on the torus, where:

1. There are closed curves α and β such that there are 2k +1 intersections between α

and β, labeled x0, x1, ..., xk , x−k , ..., x−1, x0. Visualizing the torus as a rectangle with

identified sides as in Figure 16, β consists of the top, or equivalently the bottom, of

the rectangle, and α is the union of the following arcs. In the following, the words

‘left’ and ‘right’ are with respect to the orientation of the curve.

2. There are r loops connecting xc−i to xc+i on the left side of β, for k − r < i ≤ k. The

centermost loop contains the basepoint w .

3. There are r loops connecting x−(c−i ) to x−(c+i ) on the right side of β, for k−r < i ≤ k.

The centermost loop contains the basepoint z.

4. There are |s| bridges connecting the left side of β at xi and the right side of β at x j ,

where:

• c −k + r ≤ i < c −k + r +|s|,

• −(c −k + r +|s|) < j ≤−(c −k + r ), and

• i − j = 2(c −k + r )+|s|−1.
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Figure 16: The torus can be represented as a rectangle with opposite sides identified.

5. There are t = 2(k − r )+1−|s| bridges connecting the left side of β at xi and the

right side of β at x j where:

• c +k − r − t < i ≤ c +k − r ,

• −(c +k − r ) ≤ j ≤−(c +k − r − t ), and

• i − j = 2(c +k − r )− t +1.

There is also a Rasmussen parameterization for (1,1)-knots which is given by a different

4-tuple [Ras05]. A Heegaard diagram for the right-handed trefoil knot 31 is shown in

Figure 17.

A Heegaard diagram for a (1,1)-knot K determines how K lies on a torus in the

following way. The understrand of K is drawn from w to z without intersecting α. Then,

the overstrand of K is drawn from z to w without intersecting β. Figure 18 depicts the

right-handed trefoil knot on the torus.

We may extract the generators for CFK∞(K) from the Heegaard diagram, and identify

bigons in the diagram, which determine the boundary map. A bigon in the (1,1)-diagram

for a knot K is a disk on the torus Σ whose boundary consists of one segment from each

of the curves α and β such that α and β intersect exactly twice. The disk must be convex

at the intersection points, that is, it must occupy one of the four regions of Σ−α−β which

meet at that corner. Examples of bigons are shown in Figures 19, 31, and 32. Bigons

determine the boundary map on CFK∞(K) in the following way. Given a bigon with

intersection points x and y between the curves α and β, we orient the bigon so that the

part of the curve β on the boundary is on the left. Assume that with this orientation, x is

on the top and y is on the bottom. Suppose the bigon contains m copies of the point

z and n copies of the point w . Then, the bigon corresponds to an appearance of the

element Un x in the boundary of y . Moreover, the difference in Alexander gradings is

A(x)−A(y) = m −n. The difference in homological gradings is M(x)−M(y) = 1−2n. By

taking the sum over all bigons in a Heegaard diagram for a knot K, the differential ∂ on

CFK∞(K) is determined. An example of this process is carried out in Section 6.2.1.
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Figure 17: The Heegaard diagram for the right-handed trefoil knot.

Figure 18: The Heegaard diagram for the right-handed trefoil knot, with the knot shown

in green.
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Figure 19: A bigon of this form corresponds to an appearance of the element x in the

boundary of y . Furthermore, since the bigon contains a single copy of z, A(x)−A(y) = 1

and M(x)−M(y) = 1.

6 Example Computations of the Involutive Concordance Invariants

We computed the involutive concordance invariants for each of the (1,1)-knots included

in Table 2 in Section 7. We chose to consider these 10- and 11-crossing (1,1)-knots based

on the following classification.

The 10-crossing (1,1)-knots were classified by Morimoto, Sakuma, and Yokota in

[MSY96], and the resulting list appears in [GMM05, Table 1]. The knots 10n125, 10n126,

10n127, 10n129, 10n130, 10n131, 10n133, 10n134, 10n135, 10n137, and 10n138 are thin in the

terminology of Heegaard Floer homology. The knot 10n124 is an L-space knot in the

terminology of Heegaard Floer homology. The involutive concordance invariants for

thin knots and L-space knots have already been determined in [HM17, Section 8]. The

remaining knots, 10n128, 10n132, 10n136, 10n139, 10n145, and 10n161, are of interest.

We grouped 11-crossing knots based on whether or not they are Montesinos. Mon-

tesinos knots are knots composed of rational tangles. Racz classified which 11-crossing

non-Montesinos knots are (1,1) in [Rac15, Section 3]. These knots are 11n96, 11n111, and

11n135. These knots are neither thin nor L-space. Klimenko and Sakuma classified which

11-crossing Montesinos knots are (1,1) by showing that they are exactly the 11-crossing

Montesinos knots with tunnel number one [KS98, Corollary C]. Castellano-Macías and

Owad list all 11-crossing knots with tunnel number one in [CMO21, Appendix A]. Only

the non-alternating knots are interesting, since alternating knots are thin. The thin,

non-alternating knots on this list are 11n1, 11n2, 11n3, 11n13, 11n14, 11n15, 11n16, 11n17,

11n18, 11n28, 11n29, 11n30, 11n51, 11n52, 11n53, 11n54, 11n55, 11n56, 11n58, 11n59, 11n60,

11n62, 11n63, and 11n64. There are no L-space knots on the list. The knots 11n143 and

11n145 are non-Montesinos. So, the remaining knots of interest are 11n12, 11n19, 11n20,
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11n38, 11n57, 11n61, 11n70, 11n79, 11n102, and 11n104. Thus, we have the final list of

10- and 11-crossing (1,1)-knots for which we calculated the involutive concordance

invariants.

The first part of calculating the involutive concordance invariants for the selected

(1,1)-knots involved finding a model for CFK∞(K) for each knot K. We used one of two

strategies to complete this step. For the knots

10128,10132,10136,10139,10145,11n12,11n19,11n57,11n70, and 11n79

we used the Heegaard Floer knot homology of each knot given in Section 3 of [BG12] to

find CFK∞(K); in these cases, this was enough information to specify the full complex

up to chain homotopy. For the remaining knots, we used the information in the table in

Section 3.7.3 of [Rac15] to draw the (1,1) Heegaard diagram for each knot K, and use this

diagram to compute CFK∞(K).

6.1 Finding the involutive concordance invariants for 11n57.

As an example of the first strategy, we consider the computation of V0(11n57) and

V0(11n57). The first step is to find CFK∞(11n57) using the Heegaard Floer knot homology

of the knot.

6.1.1 Finding CFK∞(11n57) using Heegaard Floer knot homology. We detail how to

find CFK∞(11n57), which is shown in Figure 25. The Poincaré polynomial of the knot

Floer homology of 11n57 is given by

�HFK (S3,11n57) = q−7t−4
+3q−6t−3

+2q−5t−2
+q−3t−1

+3q−2
+q−1t+2q−1t 2

+3t 3
+qt 4,

where an entry qm t n in the sum denotes a one-dimensional summand in the homology

in homological grading m and Alexander grading n. So, the generators of CFK∞(11n57)

are arranged as in Figure 20.

We next inspect the vertical differential. By Lemma 2.1 in Section 2.3 of [Hom14],

there exists a vertically simplified basis for CFK∞(11n57). This means that we may

assume that the vertical differential ∂vert cancels the basis elements in pairs, except for

the one basis element that generates the vertical homology. Since b,c , and d are the only

basis elements that have homological grading 0, one of them must generate the vertical

homology. Without loss of generality let c be this element. Then, either ∂vert(a) = b or

∂vert(a) = d . We choose the first option. Similarly, we choose

∂vert( j ) = k,∂vert(l ) = n,∂vert(m) = o, and∂vert(p) = q.

This results in the incomplete complex shown in Figure 21.
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j

i

a

b c d

e f

g

h i j

k

l m

n o p

q

Figure 20: Arrangement of generators of CFK∞(11n57). The homological grading of a

is 1; b, c, and d are in homological grading 0; e, g , and g are in homological grading −1;

h, i , and j are in homological grading −2; k is in homological grading −3; l and m are in

homological grading −5; n,o, and p are in homological grading −6; q has homological

grading −7.
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j

i

a

b
c d

e f

g

h i j

k

l m

n o p

q

Figure 21: An incomplete picture for CFK∞(11n57) with part of ∂vert denoted by the

arrows. Here ∂(c) = 0 and the vertical differentials of the remaining unpaired elements

are not yet determined.
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j

iU4 a

U3b

U3c

U3d

U2e

U2 f

Ug h

i

j

U−1k U−2l

U−2m

U−3n

U−3o

U−3 p

U−4 q

Figure 22: The arrangement of the generators of C{ j = 0}. Note that U−3n,U−3o, and

U−3p all have homological grading 0.

Furthermore, we note that by restrictions from the homological grading, we must

have

∂(a) = b,∂(b) = ϵ1Ua and ∂(c) = ϵ2Ua,

where ϵ1,ϵ2 ∈ {0,1}. Then,

∂2(b) = ∂(ϵ1Ua) = ϵ1Ub = 0 and ∂2(c) = ∂(ϵ2Ua) = ϵ2Ub = 0,

which imply that ϵ1 = ϵ2 = 0.

We now consider the horizontal differential ∂horz. The arrangement of the gener-

ators of C{ j = 0} is shown in Figure 22. We know that the homology of C{ j = 0} is

one-dimensional, and is generated by a linear combination of U−3n,U−3o, or U−3p. By

the restrictions on homological grading we must have ∂horz(g ) = 0. Also, U4a must be in

the image of the horizontal differential, which implies that ∂horz(d) = Ua. Then,

∂2(d) = ∂(Ua)+∂(∂vertd) = Ub +∂(∂vertd),

implying that ∂vert(d) = f . Now we can choose ∂vert(e) = h and ∂vert(g ) = i . We can also

choose ∂horz(e) = Uc and ∂horz( f ) = Ub. This is because U3b and U3c must be in the

image of the horizontal differential, so their preimages under this map must be linearly

independent combinations of U2e and U2 f . Up to a change of basis the above choice

is the only possibility. Since Ug must be in the image of ∂horz, we choose ∂horz( j ) = Ug .

Since U−4q does not generate the homology of C{ j = 0}, we choose ∂horz(q) = Un. Given

these calculations, the updated pictures for C{i = 0} and C{ j = 0} are in Figure 23 and

Figure 24, respectively.

We now find the rest of the horizontal differential. First, we have

∂2(e) = ∂(Uc +h) = ∂(h) = 0.

By restrictions on homological gradings,

∂(i ) = ϵ1Ug and ∂( j ) = ϵ2Ug +k,
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j

i

a

b
c d

e f

g

h

i j

k

l m

n o p

q

Figure 23: An updated, and now complete picture of C{i = 0}. All generators are paired up

by the vertical differential, except for c, which generates the homology of the complex.

j

iU4 a

U3b

U3c

U3d

U2 f

U2e

Ug h

i

j

U−1k U−2l

U−2m

U−3n

U−3o

U−3 p

U−4 q

Figure 24: An updated, but incomplete picture for C{ j = 0} with the horizontal differential

of U3d ,U2e,U2 f , j , and U−4q denoted by the arrows.
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where ϵ1,ϵ2 ∈ {0,1}. Then,

∂2(i ) = ∂(ϵ1Ui ) = 0,

which implies that ϵ1 = 0. However, since Ug is in the image of the horizontal, it must be

that ϵ2 = 1. Furthermore,

∂2( j ) = ∂(Ug +k) = Ui +∂(k) = 0,

which implies that ∂(k) = Ui . The images of l ,m,n,o, p, and q under ∂ are as follows.

∂(l ) = n +κ1U2h +κ2U2i +κ3U2 j ∂(n) = γ1Ul +γ2Um

∂(m) = o +λ1U2h +λ2U2i +λ3U2 j ∂(o) = β1Ul +β2Um

∂(q) = ϵ1Un +ϵ2Uo +ϵ3Up ∂(p) = q +α1Ul +α2Um,

where all coefficients are either 0 or 1. Consider

∂2(l ) = ∂(n +κ1U2h +κ2U2i +κ3U2 j ) = γ1Ul +γ2Um +κ3(U3g +Uk) = 0.

Therefore, γ1 = γ2 = κ3 = 0. Similarly,

∂2(m) = ∂(o +λ1U2h +λ2U2i +λ3U2 j ) = β1Ul +β2Um +λ3(U3g +Uk) = 0,

which implies that β1 = β2 = λ3 = 0. So, both ∂(n) and ∂(o) are 0. Thus,

∂2(q) = ∂(ϵ1Un +ϵ2Uo +ϵ3Up) = ϵ3(Uq +α1U2l +α2U2m),

which implies that ϵ3 = 0. Now, since ∂horz(q) must be nonzero we have that ∂(q) = Un,

which is the only option up to relabeling and changing the basis. Lastly we consider

∂2(p) = ∂(q+α1Ul+α2Um) = Un+α1(Un+κ1U3h+κ2U3i )+α2(Uo+λ1U3h+λ2U3i ) = 0.

It follows that α2 = κ1 = κ2 = 0 and α1 = 1. Additionally, λ1 = 1, because h does not

generate the homology of C{ j = 0}. Up to a change of basis we also have ∂(m) = o +U2h.

We have determined the image of all generators of CFK∞(11n57) under the boundary

map. The resulting complex is shown in Figure 25.

6.1.2 Finding the map ιK for 11n57. The complex associated to 11n57 is shown in

Figure 25. All coefficients in the following discussion are either 0 or 1. Since ιK is skew-

filtered and grading-preserving, it must be of the form below.

a 7→ U−4q b 7→ β0U−3p +β1U−3o +β2U−3n

c 7→ δ0U−3p +δ1U−3o +δ2U−3n d 7→ α0U−3p +α1U−3o +α2U−3n
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j

i

Ua

Ub

Uc

d

f

e

g

h
i

U−1 j

U−1k

U−2l

U−2m

U−2n
U−2o

U−3 p

U−3 q

Figure 25: CFK∞(11n57) decomposes as an F2[U,U−1] complex into the direct sum of a

staircase and three boxes.

e 7→ ϵ0U−1k +ϵ1U−2m +ϵ2U−2l f 7→ γ0U−1k +γ1U−2m +γ2U−2l

g 7→ U−1k h 7→ η0 j +η1Ui +η2h

i 7→ψ0h +ψ1i +ψ2 j j 7→ ζ0 j +ζ1Ui +ζ2h

k 7→ Ug l 7→ κ0U2 f +κ1U2e +κ2U2g

m 7→ θ0U2 f +θ1U2e +θ2U2g n 7→ ν0U3d +ν1U3b +ν2U3c

o 7→µ0U3d +µ1U3b +µ2U3c p 7→ λ0U3d +λ1U3b +λ2U3c

q 7→ U4a.

Furthermore, since ιK is a chain map, we can narrow down the options further to

conclude that it has the form of the following map.

a 7→ U−4q b 7→ U−3n

c 7→ ϵ1U−3o +ϵ2U−3n d 7→ U−3p +α1U−3o +α2U−3n

e 7→ ϵ0U−1k +ϵ1U−2m +ϵ2U−2l f 7→ U−2l

g 7→ U−1k h 7→ ϵ0Ui +ϵ1h

i 7→ i j 7→ j +ζ1Ui +ζ2h

k 7→ Ug l 7→ U2 f
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m 7→ θ0U2 f +θ1U2e +θ2U2g n 7→ U3b

o 7→ θ0U3b +θ1U3c p 7→ U3d +λ1U3b +λ2U3c

q 7→ U4a.

Now we consider the requirement that ι2K = σ up to chain homotopy equivalence,

where σ is the Sarkar involution. Since ιK and σ are both filtered, and because the

boundary map ∂ reduces the homological grading by one, any map H : CFK∞(11n57) →

CFK∞(11n57) such that ∂H+H∂ = ι2K +σ must be filtered and increase homological

grading by one where it is nonzero. There is no such map except for the trivial map

H ≡ 0. Thus, we have ι2K =σ. In this case we see that σ is the identity map except at d , j ,

and p. At these points we have σ(d) = d +b,σ( j ) = j + i , and σ(p) = p +n. Applying this

restriction results in a further simplification of the options for ιK, which is shown below.

a 7→ U−4q b 7→ U−3n

c 7→ U−3o +ϵ2U−3n d 7→ U−3p +α1U−3o +α2U−3n

e 7→ U−1k +U−2m +ϵ2U−2l f 7→ U−2l

g 7→ U−1k h 7→ Ui +h

i 7→ i j 7→ j +ζ1Ui +h

k 7→ Ug l 7→ U2 f

m 7→ ϵ2U2 f +U2e +U2g n 7→ U3b

o 7→ ϵ2U3b +U3c p 7→ U3d +λ1U3b +α1U3c

q 7→ U4a.

To simplify the possibilities for ιK we make the following change of basis (and then

immediately drop the primes):

m′
= m +ϵ2l

o′
= o +ϵ2n

p ′
= p +α1o +α2n

j ′ = j +ζ1Ui .

As a result ιK is of the form

a 7→ U−4q b 7→ U−3n

c 7→ U−3o d 7→ U−3p

e 7→ U−1k +U−2m f 7→ U−2l

g 7→ U−1k h 7→ Ui +h
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U3c U2e

U2h

Uh

h

m

o

Figure 26: A−
0 for the staircase subcomplex of CFK∞(11n57) consists of all non-negative

U-translates of the staircase shown, along with the elements h and Uh.

i 7→ i j 7→ j +h

k 7→ Ug l 7→ U2 f

m 7→ U2e +U2g n 7→ U3b

o 7→ U3c p 7→ U3d +U3b

q 7→ U4a.

All other maps that satisfy the necessary properties of ιK are equivalent to this solution

up to a change of basis. We also see that the boxes in the second and fourth quadrants

interact only with each other, and that no other part of the complex interacts with them.

Thus, they need not be considered in the calculation of the concordance invariants,

since they can be removed as an equivariant summand.

6.1.3 Finding V0(11n57) and V0(11n57). Using the map ιK, we may now compute

V0(11n57) and the involutive concordance invariants V0(11n57) and V0(11n57).

To find V0 it is enough to consider the staircase in CFK∞(11n57), since the square in

the first quadrant has trivial homology. The complex A−
0 for the staircase is shown in

Figure 26. The homology of A−
0 is F2[U]〈[h]〉. Thus, V0(11n57) is −1

2
times the homological

grading of h, which yields

V0(11n57) =−
1

2
(−2) = 1.

Now we calculate the involutive concordance invariants V0 and V0. To do so, we need

to examine the homology of the mapping cone

AI−0 = Cone(A−
0

Q(ι11n57
+Id)

−−−−−−−−→ QA−
0 [−1]).

First, we consider A−
0 . The complex A−

0 associated to the subcomplex of CFK∞(11n57)

made up of the staircase and box in quadrant 1 is shown in Figure 27. We also consider

the corresponding complex QA−
0 .
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U3c U2e

U2h

Uh

m

o

U2 g

U2i

U j

Uk

Ug

Ui

j

k

h
i

Figure 27: A−
0 for the subcomplex of CFK∞(11n57) made up of the staircase and box in

the first quadrant consists of all non-negative U-translates of the staircase shown, all

positive U-translates of the box, and the elements i ,h, and Uh.

To simplify the picture and the subsequent calculations we choose the following

change of bases (and immediately drop the primes):

c ′ = c +U−3o Qc ′ = Qc +QU−3o

g ′
= g +U−1k Qg ′

= Qg +QU−1k

e ′
= e +U−2m Qe ′

= Qe +QU−2m.

The resulting complex is shown in Figure 28. Now, we look at the map Q(ι11n57 + Id),

where ι11n57 is given by the map described at the end of Section 6.1.2. After the change of

bases, the restriction of Q(ι11n57 + Id) to the staircase and box in quadrant 1 is given by:

c 7→ 0 e 7→ Qg

g 7→ 0 h 7→ Qi

i 7→ 0 j 7→ Qh

k 7→ QUg m 7→ QU2e +QU2g +QUk

o 7→ QU3c.

Putting all the information together, the complete map on AI−0 is given by:

U3c 7→ 0 QU3c 7→ 0

U2e 7→ U3c +QU2g QU2e 7→ QU3c

Ug 7→ 0 QUg 7→ 0
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U3c U2e

U2h

h i

m

o

U2 g

U2i

U j

Uk

Uh

Ug

Ui

j

k

Figure 28: A−
0 for the subcomplex of CFK∞(11n57) made up of the staircase and box in

the first quadrant after a change of basis.

h 7→ Qi Qh 7→ 0

i 7→ 0 Qi 7→ 0

j 7→ Ug +Qh Q j 7→ QUg

k 7→ Ui +QUg Qk 7→ QUi

m 7→ U2h +o +QU2e +QU2g +QUk Qm 7→ QU2h +Qo

o 7→ QU3c Qo 7→ 0.

Now, we can extract the homology of AI−0 , and form two towers as shown in Figure 29.

We examine the homological gradings of the tops of the two towers. The homological

grading of [Qk] is −3, while the grading of [Qh] is −2. Thus the involutive concordance

invariants are V0 = 2 and V0 = 1.

6.2 Finding the involutive concordance invariants for 10161.

We now provide a second example, in which we extract CFK∞(10161) from a (1,1) Hee-

gaard diagram for the knot, then compute the automorphism ιK and the involutive

concordance invariants.

6.2.1 Finding CFK∞(10161) using a (1,1) Heegaard diagram for 10161.. A (1,1) Hee-

gaard diagram for 10161, computed in [Rac15, Section 3], is shown in Figure 30. We may

compute CFK∞(10161) from Figure 30 by identifying bigons in this Heegaard diagram.

Figure 31 and Figure 32 show examples of bigons. Each bigon determines a component

of the boundary map for CFK∞(10161). For the bigon in Figure 31, the curves α and β

intersect at x3 and x4. When the bigon is oriented such that the segment of β on its

boundary is on the right, x4 is above x3. Furthermore, the bigon contains one copy of
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[i ]

[Uh +Qk]

[U2h +QUk]

[U3h +QU2k]

[Qh]

[QUh]

[QU2h]

[QU3h]

· · ·

Figure 29: H∗(AI−0 ) for the knot 11n57 can be described by two linked towers and the

stand-alone subspace [i ].

Figure 30: The (1,1)-diagram for 10161 has 13 intersection points, labelled by xi for

−6 ≤ i ≤ 6, between the loops α and β.
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Figure 31: The disk highlighted in yellow is a bigon from x4 to x3 containing one copy of

w ; the corresponding arrow in the chain complex runs from x4 to Ux3.

the point w . We conclude that a component of the boundary map for CFK∞(10161) gives

an arrow from x4 to Ux3 in the total differential, as shown in Figure 33.

6.2.2 Finding the map ιK for 10161. Now, we compute the automorphism ιK. We make

the following change of basis, shown in Figure 34.

x ′
1 = x1 +Ux−4

x ′
2 = x2 +Ux−3

x ′
5 = x5 +x0

x ′
−1 = x−1 +x4

x ′
−2 = x−2 +x3

x ′
−5 = x−5 +x0

To reduce the possibilities for ιK, we follow the same procedure as in Section 6.1.2, where

we use that ιK is skew-filtered, grading-preserving, a chain map, and squares to the

Sarkar involution up to filtered chain homotopy. This process yields two possibilities for

ιK. One is the map below, which we will denote ιK.

x0 7→ x0

x ′
1 7→ U−2x ′

−1 x ′
−1 7→ U2x ′

1

x ′
2 7→ U−1x ′

−2 x ′
−2 7→ Ux ′

2

x3 7→ U2x−3 x−3 7→ U−2x3
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Figure 32: The disk highlighted in blue is a bigon from x−5 to x−3 containing two copies

of w ; the corresponding arrow in the chain complex runs from x−5 to U2x−3.

x4 7→ U3x ′
−4 x−4 7→ U−3x4

x ′
5 7→ x ′

−5 x ′
−5 7→ x ′

5

x6 7→ U−1x−6 x−6 7→ Ux6 +x ′
2

The other is the map below, which we will denote ι′K.

x0 7→ x0

x ′
1 7→ U−2x ′

−1 x ′
−1 7→ U2x ′

1

x ′
2 7→ U−1x ′

−2 x ′
−2 7→ Ux ′

2

x3 7→ U2x−3 x−3 7→ U−2x3

x4 7→ U3x ′
−4 x−4 7→ U−3x4

x ′
5 7→ x ′

−5 x ′
−5 7→ x ′

5

x6 7→ U−1x−6 +U−1x3 x−6 7→ Ux6 +x ′
2

The maps ιK and ι′K are equivalent up to a skew-filtered chain homotopy, the map G

below.

x ′
1 7→ U−1x3

xi 7→ 0 for all other generators xi

for which we have

∂G(x ′
1)+G∂(x ′

1) = 0
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U2 x−4

Ux1
x6

U2 x−3 Ux2 x5

x0
U−1 x−6

x−5

x−2

U−1 x−1

x3 U−1 x4

Figure 33: CFK∞(10161) prior to a change of basis.

∂G(x6)+G∂(x6) = G(x ′
1) = U−1x3.

This is exactly the map ιK − ι′K.

Thus, the two maps ιK and ι′K are related by a skew-filtered chain homotopy G, and

we may use either in our computation of the involutive concordance invariants for 10161.

6.2.3 Finding V0(10161) and V0(10161). Now, we compute the involutive concordance

invariants V0 and V0.

As in the computation of the involutive concordance invariants of 11n57 in Section

6.1, we examine the homology of the mapping cone

AI−0 = Cone(A−
0

Q(ι10161
+Id)

−−−−−−−−→ QA−
0 [−1]).

We consider the complex A−
0 associated to the subcomplex in the first quadrant and

the corresponding complex QA−
0 . We extract the homology of AI−0 to form two towers, as

shown in Figure 35, then examine the homological gradings of the tops of the two towers.

We see that the homological grading of [Qx3] is 1, the homological grading of [x3 +Qx0]

is 2, and the homological grading of [Ux0 + x4 +U3x−4] is 1. Thus, V0(10161) =−1 and

V0(10161) = 0.
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U2 x−4

Ux1 +U2 x−4 x6

U2 x−3

Ux2 +U2 x−3

x0

x0 +x5

U−1 x−6
x0 +x−5

x−2 +x3 U−1 x−1

x3 U−1 x4

Figure 34: After the change of basis shown, CFK∞(10161) consists of a staircase and two

boxes.

[Qx3][Ux0 +x4 +U3x−4]

[U2x0 +Ux4 +U4x−4]

[x3 +Qx0]

[QUx0 +Qx4 +QU3x−4]

[QU2x0 +QUx4 +QU4x−4]

· · ·

Figure 35: H∗(AI−0 ) for the knot 10161 can be written as two towers related by the action

of Q and the stand-alone subspace [Qx3].
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7 Results

7.1 Table of Invariants

In Table 2 we show the results of our computations for the involutive concordance

invariants for all 10- and 11-crossing (1,1)-knots that are neither thin nor L-space.

Knot K V0(K) V0(K) V0(K) V0(K) V0(K) V0(K)

10128 1 1 1 0 0 −1

10132 0 0 −1 1 1 1

10136 0 0 0 0 0 0

10139 2 2 1 0 0 −2

10145 0 0 −1 1 1 1

10161 0 0 −1 1 1 1

11n12 1 1 1 0 0 −1

11n19 1 1 1 0 0 −1

11n20 0 0 0 0 0 0

11n38 0 0 −1 1 1 1

11n57 1 2 1 0 0 −1

11n61 1 1 0 0 0 0

11n70 1 1 1 0 0 −1

11n79 0 0 0 0 0 0

11n96 0 0 −2 2 2 2

11n102 0 0 −1 1 1 1

11n104 1 1 1 0 0 −1

11n111 0 0 0 1 1 0

11n135 0 0 −1 1 1 1

Table 2: The involutive concordance invariants V0 and V0 for the 10- and 11-crossing

knots of interest are shown alongside V0 for comparison.

7.2 Amendments to the literature

In the process of studying the Heegaard diagrams for some of the 11-crossing knots

of interest, we discovered a few errors in [Rac15, Section 3.7.3]. In Section 3.7.3, Racz

lists parameterizations for the Heegaard diagrams of non-Montesino (1,1)-knots up to

12 crossings. The entries for the knots 12n404, 12n579, and 12n749 do not produce valid

diagrams. We found a correct parameterization for 12n404 by elimination the possibilities

based on the Alexander polynomial of the knot. The correct result for 12n749 is given in

[Ras05, Section 6.2]. Table 3 summarizes these two corrections.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



A. Antal and S. Pritchard 41

Knot (k , r, c , s)

12n404 (14,7,−7,1)

12n749 (7,3,−3,4)

Table 3: Valid parameterizations for the Heegaard diagrams of 12n404 and 12n749
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