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A note on the involutiyve conc?(rdance invariants
for certain nots

By Anna Antal and Sarah Pritchard

Abstract. We compute the involutive concordance invariants for the 10- and 11-crossing (1,1)-knots.

1 Introduction

A knot is a smooth embedding of a circle in S3. Knots are interesting because of their
applications to real world problems and in higher-dimensional topology. Knots are
often studied via knot invariants; a knot invariant is a simpler algebraic object (such
as a number or polynomial) which is associated to each knot. In this paper, we give
computations of two relatively new knot invariants for a particular family of knots. We
begin by giving a broad overview of this work, then further exposit knots and the knot
invariants we work with in the background sections to follow.

Heegaard Floer homology is a suite of invariants of 3-manifolds, knots, and links
introduced in the early 2000’s by P. Ozsvath and Z. Szab6 [0S04b, OS04a], and in the knot
case independently by J. Rasmussen [Ras03]. In the knot variant, Heegaard Floer homol-
ogy associates to a knot K a Z& Z-filtered, Z-graded chain complex over F»[U, U1 called
CFK*(K). Many classical knot invariants can be recovered from this chain complex. For
example, CFK*°(K) contains the data of the Alexander polynomial [0OS04b], the knot
genus [0S06], and whether a knot is fibred [Ghi08, Ni07].

We work with involutive Heegaard Floer homology, developed by K. Hendricks and
C. Manolescu in 2015 [HM17] as a refinement to Heegaard Floer homology. In the
knot version, involutive Heegaard Floer homology additionally considers a skew-filtered
automorphism

ix : CFK*°(K) — CFK*(K),

which is order four up to filtered chain homotopy. Using this supplementary information,
involutive Heegaard Floer homology introduced two new knot concordance invariants,
V,(K) and \_/0 (K), which are variants of an existing concordance invariant V(K) from
Heegaard Floer homology. The involutive concordance invariants are interesting because
unlike other concordance invariants arising from Heegaard Floer homology such as 1€,
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2 A note on the involutive concordance invariants for certain (1,1)-knots

and v, they do not necessarily vanish on knots of finite concordance order such as the
figure-eight knot [HM17]. Hendricks and Manolescu give combinatorial computations
of the involutive concordance invariants for L-space knots (which include the torus
knots) and thin knots (which include alternating and quasi-alternating knots).

Following a similar, but slightly more refined, strategy to Hendricks and Manolescu’s
computation for thin knots [HM17, Section 8], in this note we compute the involutive
concordance invariants V,, (K) and Vo (K) for all 10 and 11-crossing (1,1)-knots that are
neither L-space nor thin. We also include the values of the ordinary concordance invari-
ant Vi (K) for each knot, for easy comparison. Our computations appear in Section 7.
Taken together they confirm the following.

Theorem 1.1. For any 10- or 11-crossing (1,1)-knot K, the skew-filtered chain homotopy
equivalence class of ig, and therefore the value of the concordance invariants V,,(K) and
Vy(K), is determined by CFK* (K).

Organization

This paper is organized as follows. In Section 2, we provide some background on knots
and concordance. In Section 3 we provide necessary background on homological algebra;
in particular, we discuss general chain complexes in Section 3.1, filtered chain complexes
in Section 3.2, bigraded chain complexes in Section 3.3, the Euler characteristic of a
chain complex in Section 3.4, and F»[U, U complexes in Section 3.5. In Section 4 we
briefly introduce Heegaard Floer homology and involutive Heegaard Floer homology;
specifically, in Section 4.1 we review the definition of the chain complex CFK*°(K) and
the concordance invariant V(K), and in Section 4.2 we summarize the properties of the
map g and the definitions of the involutive concordance invariants V,,(K) and Vo (K).
In Section 5 we discuss parameterizations of (1,1)-knots and Heegaard diagrams. We
provide some example computations of the involutive concordance invariants in Section
6; Section 6.1 outlines the computation for the knot 11757, and Section 6.2 outlines
the computation for the knot 10;61. Then, in Section 7 we provide a list of involutive
concordance invariants for some 10- and 11-crossing (1,1)-knots for which they were
not previously known, along with some amendments to the literature.

2 Knots and Concordance

2.1 Knots
We begin by introducing knots, and going over some useful properties and types of knots.
Definition 2.1. A knot is a smooth embedding K: S' — S3 up to isotopy.

Knots are represented by knot diagrams, which are defined as follows.
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A. Antal and S. Pritchard 3

Definition 2.2. A knot diagram for a knot K is a projection of K onto R? that has finitely
many double points, and has crossing information at each double point.

Some examples of knot diagrams are shown in Figure 1 and 2.

Definition 2.3. The crossing number of a knot K is the minimal number of crossings
appearing in any diagram of K.

The standard enumeration of knots gives them labels referencing their crossing number.
For example, the figure-eight knot 4;, shown in Figure 1, has crossing number 4.

Definition 2.4. A knot K is alternating if there exists a diagram of K such that one can
trace along the diagram and pass through alternating over-crossings and under-crossings
until returning to the starting point.

Figure 1: The figure-eight knot 4, is an alternating knot with crossing number 4.

Definition 2.5. The (p, q)-torus knot is a knot T, ; for coprime p, g that sits on the
surface of the torus as described by amap S' — S! x S! ¢ S3 given by z— (27, z9).

An example of a torus knot is the trefoil, denoted Ty 3), shown in Figure 2. Later, we
will discuss L-space knots and thin knots, which share some algebraic properties with
torus knots and alternating knots respectively.

We also consider the mirror of a knot, defined as follows.

Definition 2.6. Given a knot K, its mirror is a knot K, which is K with over-crossings
changed to under-crossings and vice versa.

Knots do not naively form a group, but there is an operation on knots; we can take a
connected sum.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



4 A note on the involutive concordance invariants for certain (1,1)-knots

O XD

Figure 2: Both the right-handed trefoil knot 3; = T, 3y, shown on the right, and its mirror
the left-handed trefoil on the left are alternating torus knots.

Definition 2.7. Let ], K be two oriented knots. The connected sum of ] and K, denoted
J#K, is constructed by removing a trivial arc (that is, untangled in a three ball) from both
J,K and connecting the four endpoints with two new oriented trivial strands in a way
that respects the orientations of ] and K.

The connect sum of the right-handed trefoil and its mirror the left-handed trefoil is
shown in Figure 3.
2.2 Concordance

The invariants computed in this note are a type of knot concordance invariant. Concor-
dance is an equivalence relation on knots; its definition is as follows.

Definition 2.8. Two knots K; and K are concordant if they co-bound a smooth, properly
embedded cylinder in S3 x [0, 1].

We may consider knots equivalent up to concordance. A knot that is concordant
to the unknot is called slice. Furthermore, the set of knots in S® modulo concordance
equipped with the operation induced by connected sum is a group.

2.3 (1,1)-Knots

In this paper we will be particularly interested in knots that satisfy a certain simplicity
condition, called being (1, 1). The definition of a (1, 1)-knot is as follows.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023
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Figure 3: The connected sum of the trefoil and its mirror is denoted 3.#3,.

Definition 2.9. A knot K is a (g, b) knot for g, b € Z if it has a diagram on the genus g
orientable surface Xz composed of b trivial arcs called overpasses and b trivial arcs called
underpasses, positioned such that:

1. Overpasses do not intersect each other.
2. Underpasses do not intersect each other.

3. When an overpass meets an underpass, the overpass crosses above the underpass.

A (1,1)-knot is a (g, b) knot where g =1 and b = 1. In more detail, a (1,1)-knot is a
union of two trivial arcs in the standard decomposition of S? into two solid tori, one in
each torus, such that the arcs share a boundary consisting of two points in the torus
S! x S, which is the mutual boundary of the two solid tori. In Section 5, we discuss
algebraic invariants associated to (1, 1)-knots in more detail.

3 Homological Algebra

3.1 General chain complexes

In this section we review some concepts from homological algebra. First we introduce
chain complexes and the maps between them.

Definition 3.1. A chain complex over aring R is a sequence of R-modules (C;, 9;),
..&Czﬁ,clﬂ,coﬁ,c_lﬂ...

with the property that 0;_; 09; = 0. We call 0; the differential map.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



6 A note on the involutive concordance invariants for certain (1,1)-knots

Definition 3.2. The i homology of a chain complex (C;,0;) is
H;(C) =Ker(0;)/Im(0;41),

where Ker(0;) denotes the kernel of 0;, Im(9;4+;) denotes the image of 0;;;, and C =
@iz C; is the graded module.

Example3.3. Let Fo(x1,x2, -+, X,) denote the vector space with basis elements x;, for
1 <i < n, over the field F» = {0, 1}. Let C = (C;,0;) be the following chain complex:

CS C2 Cl C() C_1

0 =2 Fale,g) —2% Fola, by c) —=3 Fp(v) —23 0

We take C; =0fori =3 and i < —1. Here, 0y and 03 are both the zero map. We define the
maps 0; and 0, on the basis elements of C; and C,, respectively: 0;(a) = 01(b) =0;(c) =0,
and 02(e) =02(f) =a+b+c. The jth homology of this chain complex for i € {0,1,2} is as
follows.

Ho(C) = Ker(0p) /Im(0;) = F2(v)/{0} = Fo([v]).
H; (C) =Ker(01)/Im(0,) = F»{a, b, c)/Fa{a+ b+ c) =F,{[al, [b]).
H,(C) = Ker(d,)/Im(03) = Fo(e + g)/{0} = F2{[e + g1).

For all other values of i, the homology is trivial.

Definition 3.4. Let (C;,0c;) and (D;,0p,) be two chain complexes. A (graded) chain map
fis amap of modules f : C; — D; with the property that f oc0¢c, =0p, o f.

Definition 3.5. Given chain complexes (C;,0¢;) and (D;,0p,), two chain maps f, g :
C; — D; are chain homotopic if there is a map H : C; — D;; with the property that
OH+HO = f — g. We write f ~ g.

Definition 3.6. Two chain complexes (C;,0¢;) and (D;,0p,) are chain homotopy equiva-
lent if there exist chain maps f : C; — D; and g : D; — C; with the property that fog ~ Idp
and go f ~Idc, where C = @7 C; and D = @,z D;, and Id¢ and Idp denote the identity
maps on C and D, respectively.

We now state a definition that is necessary for our discussion of involutive concordance
invariants in section 4.2.

Definition 3.7. Let (C,0¢) and (D, 0p) be chain complexes and f : C — D be a (grading-
preserving) chain map. The mapping cone of f is the complex

T o)

The term C[-1] means that we are considering the complex C with the homological
grading of all elements increased by 1.

Cone(f) = (C[—l] ®D,

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023
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3.2 Filtered chain complexes
To discuss filtered chain complexes we must first define a filtration.

Definition 3.8. A filtration & of an algebraic object S is an indexed family (S;);c; of
sub-objects, for I an ordered set, such thatif i < j, thenS; ©S;, and S = U;¢1S;.

Now, we have the following restrictions to the definitions above:

Definition 3.9. A filtered chain complex is a chain complex (C,0), filtered as a vector
space with a filtration & such that 0(%;) < ;.

Example 3.10. Consider the following complex (C, 0):

0 <2 Falay <2 Falbd,e, ) <2— Fp(c)

Here (and for other filtered chain complexes) we suppress the homological grading of
the basis elements in favor of their filtration level. The homological gradings of the basis
elements are as follows: a, b, f have homological grading 0, and ¢, d, e have homological
grading 1. The filtration levels of C are as follows: F_; = Fo(a), %y = F2(a,b,d, e, f),
and &, = Fs(a,b,c,d,e, f). Fori < -2,%; ={0}. Fori =2,%; =Fy(a,b,c,d,e, f). The
differential map 0 acts on the basis elements in the following way: 0(a) = 0(b) =9o(f) =0,
0(c) = b, 0(d) = f, and 0(e) = a. The homology of the filtered chain complex is: H, (C) =
Ker(d)/Im(@) = Fx(a, b, ) IF»(a, b, f) = {0}.

Definition 3.11. Given a chain complex (C, 0) equipped with a filtration &, the associated
graded complex is a chain complex given by @ ;.7 %;/%;_1, taking the direct sum of the
quotient complexes together.

Definition 3.12. A chain map of filtered chain complexes (C,0¢) and (D, 0p) with filtration
& is achain map ¥ : C — D such that ¥(%;) € ;.

Definition 3.13. A filtered chain homotopy equivalence between filtered chain maps
VY, ® : C — D with filtration & is a map H : C — D such that 0H+ H0 = ¥ — ® and
H(%;) € %;.

Definition 3.14. Two filtered chain complexes (C;,0¢;) and (D;,0p,) are filtered chain
homotopy equivalent if there exist chain maps f : C; — D; and g : D; — C; with the
property that fog ~Idp and go f ~ Idc, where C=@;c7C; and D = ;7 D;, and Idc
and Idp denote the identity maps on C and D, respectively.

Definition 3.15. Let (C,0) and (D,0) be chain complexes equipped with a (Z & Z)-
filtration %, which has a partial order given by (iy, j1) < (i2, jo) if i1 < i and j; < jo.
Then, ¥ : C — D is a skew-filtered chain map if it is a chain map and ¥ (&; ) € &; ;) for
alli,jeZ.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



8 A note on the involutive concordance invariants for certain (1,1)-knots

Example 3.16. Let (C,0) be the following (Z & Z)-filtered chain complex.

The dots in the picture, for instance the ones labelled by a, b, and c, are basis elements
of the vector space C. The arrows between the basis elements denote the map 0. For ex-
ample, 0(b) = ¢+ d. The filtration level % () consists of everything in the third quadrant
of the complex. Thus, Fa2(b,c,d, e, f, g) < F(0,0)- Also note that reflection along the line
i = j is a skew-filtered chain map on the complex.

3.3 Bigraded chain complexes

Definition 3.17. A bigraded chain complexis a complex C = ; jez C;,j with the property
0;: C;,j — C;-1,j. Equivalently, this is a direct sum of chain complexes:

> Co2 > C1,2 > Cop —> Co12 ——> Cpp —— «+-
> Co1 > C11 > Cop —> Co11 —> Cpp ——> -«
> Co,0 > C1,0 > Coo —> Co10 —> C20 —> -

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023
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Table 1: H; ;(C)

i=2 i=1 i=0

j=2 0 0 Fa(ln)

J=1]|Fa(ld+el) | Fo(lkl, D) 0

j=0 0 Folla+bl) | 0

Example 3.18. The following complex (C,0) = (C; ;,0; ;) is an example of a bigraded
chain complex.

i=2 i=1 i=0 i=-1
j=2 0 —=———0 > Fa(n) —2— 0
j=1 Fold,e) —2 Falk,l,m) —>—3 0 —2 3 0
j=0 0 —>— Fola, by —— Fa(c) —2— 0

We view the bigraded chain complex as the direct sum of chain complexes, where the
chain complexes are indexed by j, and the vector spaces in each chain complex are
indexed by i. The differential map 0 is defined as follows: d(a) = d(b) = ¢, d(c) =0(n) =0,
ando(d)=0(e)=k+ 1+ m.

We summarize the homology H; ;(C) of the complex above in Table 1.

3.4 Euler characteristics

Definition 3.19. The Euler characteristic of a chain complex (C, 0) of vector spaces is

Y (-1)'dim(H;(C)) = }_ (-1)’dim(C)).
ieZ ieZ
This number is written x (C).

Definition 3.20. The Euler characteristic of a bigraded chain complex (C,0) = (C;,,0;,;)
is a polynomial

X(Ci,)= Y (-D'dim(H;;(C)T’
i,jeZ

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



10 A note on the involutive concordance invariants for certain (1,1)-knots

= Y (-1)'dim(C; )T’
i,jeZ

= Z X(Ciyj)Tj.
i,jeZ

Example 3.21. The Euler characteristic of the complex (C;,j,0;,;) given in Example 3.18
is as follows:

X(Cij)= Y X(Ci )T/ =T*-T-1.
i,jeZ

3.5 [F,[U, U] complexes

We will be interested in (Z & Z)-filtered chain complexes (C,0) over the ring F,[U,U™!]
which are finitely generated and free. Concretely, this means that as a module C is
generated by some finite number of elements xj, xz, -+, X;,. Any element of the form
U"x; is an element of C for n € Z and 1 < i < m. In out complexes, multiplication by U
will lower the homological grading of an element by 2, and decrease each filtration level
of the element by 1. For example, if x € C, x has homological grading a, and x € &; j,
then Ux has homological grading a—2, and Ux € %(;_,j-1). Furthermore, the differential
map 0 is U-equivariant, which means that 9(U"x) = U"0x for all n € Z. Any chain map
or chain homotopy on [F,[U, U~!] complexes is also U-equivariant.

Example 3.22. Let (C,0) be the following F»[U, U complex:

UZx

The complex has elements of the form U x for n € Z. The differential d is identically 0
on C. The homological grading of x is 0. Thus, the homological grading of U"x is —2n.
Also note that x € F(,9), so U"x € F(_p,_p).

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023
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4 Heegaard Floer homology and involutive Heegaard Floer homology

4.1 The chain complex CFK*(K)

We now introduce the complex CFK*(K) abstractly; in Section 5 we will go over its
construction in a special case. To a knot K, Heegaard Floer homology [0S04a, OS04b]
associates a (Z & Z)-filtered, Z-graded chain complex CFK* (K) over F,[U,U™}]. (Strictly
speaking, the construction of CFK*°(K) involves some choices which produce chain
complexes which are chain homotopy equivalent via canonical chain homotopies; here
and throughout, we will take some model for this chain homotopy equivalence class.)

For the mirror image K of a knot K, CFK*(K) = Homg, iy y-1; (CFK® (K), F [U, U ™)),
the dual of CFK®(K) over the field F»[U, U ~']. We can describe the horizontal and vertical
components of 0 in following way:

Definition 4.1. Decompose the differential 0 on CFK*°(K) as
d= ) j
i,jeN

where 0;; lowers the horizontal grading by i and the vertical grading by j. Then the
horizontal and vertical differentials are

Ohorz = Z 0j0
i

and
Overt = Zao]'-
J

Given S € Z & Z, we let C{S} < CFK*°(K) denote the set of elements with planar gradings
in S; if this is closed under 0 it is a subcomplex of CFK*°(K). The following complexes
are important examples:

Definition 4.2. The quotient complexes C{i = 0} and C{j = 0} are
Cli=0}=C{(i,j):i<0}/C{(i,j):i <0}

and
C{j =0} =Cl{(i, j): j <0}/C{(i, j): j <O}

Since both C{(i, j) : i =0} and C{(i, j) : i < 0} are subcomplexes of CFK*(K), their quo-
tient is a chain complex. In the same way, C{j = 0} is a subcomplex also. The Euler
characteristic of the associated graded of C{i = 0} for a knot K is the Alexander polyno-
mial Ak (f). Additionally, the homology of the subcomplex C{i = 0} equipped with the
boundary map Oyert is

H, (C{i = 0}, dvert) = F()-

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



12 A note on the involutive concordance invariants for certain (1,1)-knots

Likewise,
H..(C{j = 0},0horz) = F(0)-

We are furthermore interested in the subcomplex A, which has the following definition:

Definition 4.3. The subcomplex A is defined by
Ay =C{(i,j):i,j =<0}

Now, we consider some conventions for the properties of elements in CFK*(K). If
x € CFK*™(K) is in grading (i, j), then Ux is in grading (i — 1, j — 1). There are two other
important gradings associated to an element of CFK*°(K).

Definition 4.4. Suppose that CFK™(K) is normalized such that the elements x = U%x
lie in planar gradings (0, j), i.e. on the j-axis. Then, the Alexander grading A(x) of an
element x € CFK*°(K) is the j-grading of x.

The homological grading M(x) of an element x € CFK*°(K) is determined by the
following conventions. The element of CFK*°(K) that generates H. (C{i =0}, avert) has
homological grading 0. The boundary map 0 lowers the homological grading of an
element by 1. Multiplication by U lowers the homological grading of an element by 2.

There are many concordance invariants that can be derived from CFK* (K), including
the invariant Vy(K), which is defined as follows.

Definition 4.5. The concordance invariant V(K) for a knot K is given by
1
Vo(K) = ~3 max {r:3x € Hy(A;) such that U"x #0 foralln }.

Here r is the homological grading.

Example 4.6. The complex CFK*(K), where K is the right-handed trefoil knot 3, is
shown in Figure 4. The associated graded of C{i = 0} has Euler characteristic

XCli=0h=Y x(CoNt/=t""-1+1.
Jjez

So, the Alexander polynomial of the right handed trefoil is Ag, () = ™1 = 1+ t. The
homology of A is F2[U]{[Ual). Thus, V((31) is —% times the homological grading of Ua,
which yields

1
Vo) =-5(-2)=1.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023
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Figure 4: The chain complex CFK*(3;) has three generators, which we call a, b, and c.
The arrows in the picture represent the boundary map 0. The homological grading of a
is 0; b has homological grading -1; and ¢ has homological grading -2.

Example 4.7. We now consider the left-handed trefoil knot, which is the mirror of the
right-handed trefoil knot. CFK®(3;) is shown in Figure 5. The associated graded of
C{i = 0} has Euler characteristic

XCli=0)=Y x(Copt! =t =1+t
jez
So, the Alexander polynomial of the left handed trefoil is Ag(f) = t~1 =1+ . The homol-
ogy of A, is F2[UJ{[Ua + c]). Thus, Vg (31) is —% times the homological grading of Ua + c,
which yields

— 1
Vo(31) =—§(0) =0.

Example 4.8. Now we consider CFK*°(K), where K is the figure-eight knot 4,, as shown
in Figure 6. The associated graded of C{i = 0} has Euler characteristic

XCli=0h =Y x(Co )t/ =t71-3+1.
Jjez

So, the Alexander polynomial of the figure eight knot is A4, (f) = ™1 =3 + . The homology
of A; is F2[UI([x]) U [e]. Thus, V(41) is —% times the homological grading of x, which
yields

1
Vo(41) 2—5(0) =0.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



14 A note on the involutive concordance invariants for certain (1,1)-knots

Ua b ule i

Figure 5: The chain complex CFK®(3;) has three generators, which we call a, b, and c.
The homological grading of a is 2; b has homological grading 1; and ¢ has homological
grading 0.

Uy o

Ub

Ua

U2e

Figure 6: The chain complex CFK*(4;) has five generators, which we call a, b, ¢, e and
x. The homological gradings of a, e and x are 0; b has homological grading 1; and ¢ has
homological grading -1.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



A. Antal and S. Pritchard 15

4.2 The involutive concordance invariants

We now introduce the involutive concordance invariants V,, and V. We begin by de-
scribing an automorphism 1k : CFK*°(K) — CFK*°(K) for a knot K.

Definition 4.9. For a knot K the Sarkar involution o : CFK*(K) — CFK*°(K) is given by
o=Id+U ' (@oW),

where Id is the identity map on CFK*°(K), and @, ¥ : CFK*°(K) — CFK*°(K) are the chain
maps given as follows. Suppose x € CFK*(K). Then,

d(x)= ) djox
i odd
and
Y(x)= ) 0gjx.
j odd

The Sarkar involution is filtered, preserves homological degree, and is an involution up
to chain homotopy. We use the Sarkar map to describe the chain map 1x on CFK*°(K) as
follows. For a knot K, the map 1 : CFK*°(K) — CFK*°(K) is an automorphism with the
following additional properties:

1. 1k is a skew-filtered chain map.
2. 1k preserves homological degree.
3. 112< = o up to chain homotopy equivalence.

In many nice cases, although certainly not all, these properties are enough to specify 1x
up to skew-equivariant chain homotopy equivalence. Now, we review the definitions of
the involutive concordance invariants.

Qg +Id)

Definition 4.10. Let Al; be the mapping cone Cone(A,
involutive concordance invariants V,, and Vj are

QA; [~1]). Then, the

1
v, = —E(max {r:3x e H,(Aly) s.t. U"x#0and U"x ¢ Im(Q) Vn}— 1),

— 1
Vo = —Emax {r:3xeH,(Aly) s.t. U"x#0 VnandIm=0s.t. U"xeIm(Q)},

where Im(Q) denotes the image of Q.
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16 A note on the involutive concordance invariants for certain (1,1)-knots

SN

Figure 7: Al for the right-handed trefoil knot consists of all positive U-powers of the
structure shown.

b

/

Ua+c

N

QUa+Qc Qc

Figure 8: Al;; for the right-handed trefoil knot shown after applying a change of basis to
the structure in Figure 7.

Example 4.11. Recall that CFK*°(3;) has three generators which we call a, b, and c. The
boundary map 0 is given by d0(a) = 0d(c) =0 and 0(b) = Ua + c. The map 1 for K=3; isa
reflection over the line i = j. Concretely, this means that 13, (a) = U™ !¢, 13, (b) = b, and
t3, (c) = Ua. Then, the mapping cone

Qz, +Id)
Aly = Cone(Ay —2

QAy [-1])

looks like copies of the structure shown in Figure 7. After a change of basis, Al; has the
simplified picture shown in Figure 8. The homology of Al is

F2[UK[c+Qbl, [Qc).

H. (Al;) is a module over [, [U, Q]/ Q?. So, we can form two towers from the subspaces
that generate the homology as shown in Figure 9. We examine the homological gradings
of the topmost elements of the towers. The element ¢ + Qb has homological grading
-1, while Qc has homological grading -2. Thus, V,(3;) = —%(—1 —1)=1and \_/0(31) =
—-1(-2)=1.

Example 4.12. The involutive concordance invariants for the left-handed trefoil knot
can be calculated in a similar way. Recall that CFK™(3,) has three generators which we
call a, b, and c. The boundary map 0 is given by d(a) = b,0(b) =0, and d(c) = Ub. As with
the right handed trefoil, 1(3;) is a reflection over the line i = j. The mapping cone

~ Qg+
Al = Cone(A, QA [-1D)
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M+Qm
Qe
[Uc+QUb]
QU
[U%c+QU?b]
T quie

Figure 9: H. (Al;)) for the right-handed trefoil knot can be described by two linked towers.
The tower on the left contains no elements in the image of Q, while the tower on the
right contains only elements that are in the image of Q. Each tower is organized by
increasing powers of U. Curved lines denote multiplication by U, while dashed lines
denote application of Q.

has the form shown in Figure 10. The result of changing the basis is shown in Figure 11.
The homology of Al; is
F2(UK[Ua+cl, [QUa+Qcl) u [bl U [QD].

We can form two towers from the subspaces that generate the homology as shown in
Figure 12. We examine the homological gradings of the topmost elements of the towers.
The element Ua + ¢ has homological grading 1, while b has homological grading 2. Thus,
Vo@D =-20-1)=0and Vo3 =-1) =-1.

Example 4.13. We also find the involutive concordance invariants for the figure-eight
knot from Example 4.8. The map 1k for K = 4; is given by 14, (a) = a+x, 14, (b) = ¢,14,(c) = b,

Qc QUa
QUb

Figure 10: The mapping cone for the left handed trefoil.
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Ua+c Ua Qb

SN

Ub QUa+Qc Qc

/

QUb

Figure 11: The simplified mapping cone for the left handed trefoil.

(D]
[Ua+cl [Qb]
T [QUa+Qc]
[U%a+Uc]
L QU2a QU
[U%a+U?c]

~
~

4 [QU3a+ QU]

Figure 12: H. (Al})) for the left handed trefoil knot can be described by two linked towers
and the stand-alone subspace [Qb]. Note that QU b is in the image of the differential.
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P Y
\\/\\\T/
\\)‘ /

Figure 13: Al for the figure eight knot consists of the structure shown, and all positive
U-translates of the generators a, b, ¢, x,Ux,Ue, Qa,Qb,Qc,Qx, and QUe.

C/X)
/\/

Qb+Qc Qc

/

QUe

Figure 14: Al for the figure eight knot shown after applying a change of basis to the
structure in Figure 13.

ts, (e) = e, and 14, (x) = e + x. Then, the mapping cone

Qllg, +1d)

Al = Cone(A, QAy [-11)

is represented by the structure shown in Figure 13. After a change of basis, Al has the
simplified picture shown in Figure 14. The homology of Al is

F2[UK[Ux +Qcl, [Qx]) U [e]

Thus, we can form two towers from the subspaces that generate the homology as shown
in Figure 15. We examine the homological gradings of the topmost elements of the
towers. The element Ux + Qc has homological grading -1, while Qx has homological
grading 0. Thus, V,(4;) = ——( 1-1)=1andVy(3y) = ——(O)

5 Heegaard Diagrams for (1,1) Knots

We can compute CFK*°(K) for a (1,1)-knot K using information from a representation
of K on the torus, called a Heegaard diagram. Heegaard diagrams for (1, 1)-knots are
uniquely determined by a 4-tuple of integers, described by [Rac15] as follows:
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[e]

[Qx]

4IQU]

[U%x+QUcl

~
~

QU2x]

[U3x +QU?c]

~
~

QU]

Figure 15: H. (Al)) for the figure eight knot can be described by two linked towers and
the stand-alone subspace [e].

Definition 5.1. For a (1,1)-knot, there exists a (nonunique) parameterization (k, 7, c, s)
that describes how the knot lies on the torus, where:

1. There are closed curves o and {3 such that there are 2k + 1 intersections between «
and p, labeled xy, x1, ..., Xk, X_k, ..., X1, Xp. Visualizing the torus as a rectangle with
identified sides as in Figure 16, p consists of the top, or equivalently the bottom, of
the rectangle, and « is the union of the following arcs. In the following, the words
‘left’ and ‘right’ are with respect to the orientation of the curve.

2. There are r loops connecting x._; to x.4; on the left side of p, for k—r < i < k. The
centermost loop contains the basepoint w.

3. There are r loops connecting x_.—;) to x_(.+;) on the right side of , for k—r <i < k.
The centermost loop contains the basepoint z.

4. There are |s| bridges connecting the left side of § at x; and the right side of  at x;,
where:

e c—k+r<i<c—-k+r+]|s|,
e —(c—k+r+lshD<j=s—-(c—k+r),and

e i—j=2(c—k+r)+|s|-1.
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Figure 16: The torus can be represented as a rectangle with opposite sides identified.

5. There are t = 2(k—r) + 1 —|s| bridges connecting the left side of p at x; and the
right side of  at x; where:

e ct+tk-r—t<isc+k-r,
* —(c+k-r)sj=<-(c+k—-r—-1),and

e i—j=2(c+k-r)—-t+1.

There is also a Rasmussen parameterization for (1,1)-knots which is given by a different
4-tuple [Ras05]. A Heegaard diagram for the right-handed trefoil knot 3, is shown in
Figure 17.

A Heegaard diagram for a (1,1)-knot K determines how K lies on a torus in the
following way. The understrand of K is drawn from w to z without intersecting a. Then,
the overstrand of K is drawn from z to w without intersecting . Figure 18 depicts the
right-handed trefoil knot on the torus.

We may extract the generators for CFK*°(K) from the Heegaard diagram, and identify
bigons in the diagram, which determine the boundary map. A bigonin the (1,1)-diagram
for a knot K is a disk on the torus ~ whose boundary consists of one segment from each
of the curves a and f such that a and f intersect exactly twice. The disk must be convex
at the intersection points, that is, it must occupy one of the four regions of X —a—f which
meet at that corner. Examples of bigons are shown in Figures 19, 31, and 32. Bigons
determine the boundary map on CFK*°(K) in the following way. Given a bigon with
intersection points x and y between the curves a and 3, we orient the bigon so that the
part of the curve § on the boundary is on the left. Assume that with this orientation, x is
on the top and y is on the bottom. Suppose the bigon contains m copies of the point
z and n copies of the point w. Then, the bigon corresponds to an appearance of the
element U”x in the boundary of y. Moreover, the difference in Alexander gradings is
A(x) —A(y) = m— n. The difference in homological gradings is M(x) —M(y) =1—-2n. By
taking the sum over all bigons in a Heegaard diagram for a knot K, the differential 0 on
CFK*°(K) is determined. An example of this process is carried out in Section 6.2.1.
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0 N R z
w
«
<
N z; N z

Figure 17: The Heegaard diagram for the right-handed trefoil knot.

z 0

e 0

o 2 T o

Figure 18: The Heegaard diagram for the right-handed trefoil knot, with the knot shown
in green.
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Figure 19: A bigon of this form corresponds to an appearance of the element x in the
boundary of y. Furthermore, since the bigon contains a single copy of z, A(x) —A(y) =1
and M(x) -M(y) =1.

6 Example Computations of the Involutive Concordance Invariants

We computed the involutive concordance invariants for each of the (1, 1)-knots included
in Table 2 in Section 7. We chose to consider these 10- and 11-crossing (1,1)-knots based
on the following classification.

The 10-crossing (1,1)-knots were classified by Morimoto, Sakuma, and Yokota in
[MSY96], and the resulting list appears in [GMMO05, Table 1]. The knots 107,25, 1072;26,
101’1127, 107’1129, 1071130, 1071131, 1071133, 10”134, 107’1135, 1071137, and 10”138 are thinin the
terminology of Heegaard Floer homology. The knot 107,24 is an L-space knot in the
terminology of Heegaard Floer homology. The involutive concordance invariants for
thin knots and L-space knots have already been determined in [HM17, Section 8]. The
remaining knots, 107,28, 1071132, 10136, 1072139, 10711145, and 10n,4;, are of interest.

We grouped 11-crossing knots based on whether or not they are Montesinos. Mon-
tesinos knots are knots composed of rational tangles. Racz classified which 11-crossing
non-Montesinos knots are (1,1) in [Rac15, Section 3]. These knots are 111796, 11n111, and
11n135. These knots are neither thin nor L-space. Klimenko and Sakuma classified which
11-crossing Montesinos knots are (1,1) by showing that they are exactly the 11-crossing
Montesinos knots with tunnel number one [KS98, Corollary C]. Castellano-Macias and
Owad list all 11-crossing knots with tunnel number one in [CMO21, Appendix A]. Only
the non-alternating knots are interesting, since alternating knots are thin. The thin,
non-alternating knots on this list are 11ny, 11ny, 11n3, 11113, 11114, 11n;5, 11116, 11117,
117’118, 117123, 11?129, 117’130, 11n51, 11n52, 117153, 11n54, 11n55, 117156, 11n53, 117259, 11"60;
11ng2, 11ng3, and 11ng4. There are no L-space knots on the list. The knots 11n;43 and
11n,45 are non-Montesinos. So, the remaining knots of interest are 1172, 11n;9, 1175,
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11nsg, 11ns57, 11ng1, 1107, 11079, 111592, and 11n;94. Thus, we have the final list of
10- and 11-crossing (1,1)-knots for which we calculated the involutive concordance
invariants.

The first part of calculating the involutive concordance invariants for the selected
(1,1)-knots involved finding a model for CFK*°(K) for each knot K. We used one of two
strategies to complete this step. For the knots

10128, 10132,10136, 10139, 10145, 11112,11119, 111157, 111279, and 11779

we used the Heegaard Floer knot homology of each knot given in Section 3 of [BG12] to
find CFK*(K); in these cases, this was enough information to specify the full complex
up to chain homotopy. For the remaining knots, we used the information in the table in
Section 3.7.3 of [Rac15] to draw the (1, 1) Heegaard diagram for each knot K, and use this
diagram to compute CFK*°(K).

6.1 Finding the involutive concordance invariants for 11757.

As an example of the first strategy, we consider the computation of V,(11ns57) and
Vo(11757). The first step is to find CFK*°(11ns57) using the Heegaard Floer knot homology
of the knot.

6.1.1 Finding CFK*(11ns7) using Heegaard Floer knot homology. We detail how to
find CFK*°(11ns7), which is shown in Figure 25. The Poincaré polynomial of the knot
Floer homology of 11757 is given by

HFK(S®, 11ns7) = g~ 17 +3q7 1 427t 2 4 g2 7' 43q 2+ g7 1 +2q7 24308 + g1,

where an entry g”"t" in the sum denotes a one-dimensional summand in the homology
in homological grading m and Alexander grading n. So, the generators of CFK*°(11ns57)
are arranged as in Figure 20.

We next inspect the vertical differential. By Lemma 2.1 in Section 2.3 of [Hom14],
there exists a vertically simplified basis for CFK*°(11ns57). This means that we may
assume that the vertical differential 0,¢;¢ cancels the basis elements in pairs, except for
the one basis element that generates the vertical homology. Since b, ¢, and d are the only
basis elements that have homological grading 0, one of them must generate the vertical
homology. Without loss of generality let ¢ be this element. Then, either 0yer¢(a) = b or
Overt(a) = d. We choose the first option. Similarly, we choose

avert(j) = k, Overt (1) = 1, Oyerc (M) = 0, andavert(p) =(q.

This results in the incomplete complex shown in Figure 21.
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hii i
o00 >

00
no p

Figure 20: Arrangement of generators of CFK*°(11n57). The homological grading of a
is 1; b, ¢, and d are in homological grading 0; e, g, and g are in homological grading —1;
h,i, and j are in homological grading —2; k is in homological grading —3; / and m are in
homological grading —5; n, 0, and p are in homological grading —6; g has homological
grading —7.
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Figure 21: An incomplete picture for CFK*(11ns7) with part of 0¢;¢ denoted by the
arrows. Here 0(c) = 0 and the vertical differentials of the remaining unpaired elements
are not yet determined.
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udp ) , U3n
,1 —.
Uta Ule [ ] U e. Ug h. ulk I.J 1 [ ] U3e U 4(4 i
° 4 i ® ° b4 ° ° >
. ®
e 2 J u2m @ 3
udd U™p

Figure 22: The arrangement of the generators of C{j = 0}. Note that U™3n,U30, and
U~3p all have homological grading 0.

Furthermore, we note that by restrictions from the homological grading, we must
have
0(a) =b,0(b)=€;Ua and 0(c) =€yUa,

where €7, €, € {0,1}. Then,
9%°(b) =0(€;Ua) =€;Ub=0 and 0°(c)=0(e,Ua) =e,Ub=0,

which imply thate; =€, =0.

We now consider the horizontal differential 0y,,. The arrangement of the gener-
ators of C{j = 0} is shown in Figure 22. We know that the homology of C{j = 0} is
one-dimensional, and is generated by a linear combination of U=3n,U 30, or U™3p. By
the restrictions on homological grading we must have 0y, (g) = 0. Also, U*a must be in
the image of the horizontal differential, which implies that Oy, (d) = Ua. Then,

0%(d) = d(Ua) +0(dvertd) = Ub + d(Byercd),

implying that Oyeri(d) = f. Now we can choose Oyert(e) = h and Oyert(g) = i. We can also
choose Opor7(e) = Uc and 0Opor,(f) = Ub. This is because U3b and U3¢ must be in the
image of the horizontal differential, so their preimages under this map must be linearly
independent combinations of U?e and U? f. Up to a change of basis the above choice
is the only possibility. Since Ug must be in the image of 0y,,,, we choose On,(j) = Ug.
Since U_4q does not generate the homology of C{j = 0}, we choose 0y, (q) = Un. Given
these calculations, the updated pictures for C{i = 0} and C{j = 0} are in Figure 23 and
Figure 24, respectively.
We now find the rest of the horizontal differential. First, we have

d*(e) =9(Uc+h) =d(h) =0.
By restrictions on homological gradings,

0(i)=e;Ug and 0(j)=eUg+k,
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e ° e
Rg. »K\.

Figure 23: An updated, and now complete picture of C{i = 0}. All generators are paired up
by the vertical differential, except for ¢, which generates the homology of the complex.

udp ) ) U™n
U -1 -
uta 3, :§ Ugi\hE U. k I.J 1 : U4y i N
i
\. ° 3
U0
UZe 7 U=2m .U_sp

Figure 24: An updated, but incomplete picture for C{j = 0} with the horizontal differential
of U3d,U?%e,U? f, j, and U™*q denoted by the arrows.
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where €7, €, € {0,1}. Then,
0%(i) = 9(e,Ui) =0,

which implies that €; = 0. However, since Ug is in the image of the horizontal, it must be
that e, = 1. Furthermore,

9%(j) =0(Ug+ k) =Ui+d(k) =0,

which implies that 0(k) = Ui. The images of [, m, n, 0, p, and g under 0 are as follows.

o) = n+ K1 U?h+xoU?%i +k3U?j (n) =y, Ul+Yy,Um
o(m) = 0+ M U?h+ A, U%i + A3U? 8(0) =p1Ul+poUm
0(q) =e;Un+eUo+e3Up o(p)=qg+a;Ul+a,Um,

where all coefficients are either 0 or 1. Consider

0%(1) =0(n+Kx1U?h +koU?%i +k3U%j) = yUl + Y. Um + x3(U3g + Uk) = 0.
Therefore, y; = y2 = k3 = 0. Similarly,
02(m) =0(0+ M U?h+ A, U%i + A3U?j) =B UL +PoUm + A3(U3g +Uk) =0,
which implies that 3; = f2 = A3 =0. So, both 0(n) and 0(0) are 0. Thus,
0%(q) =0(e1Un+eUo+e3Up) =e3(Ug + o1 U1 + o, U?m),

which implies that €3 = 0. Now, since 0y, (g) must be nonzero we have that 0(q) = Un,
which is the only option up to relabeling and changing the basis. Lastly we consider

0%(p) =0(q+o Ul+auUm) = Un+o; (Un+x, U h+kU3 1) + 0 (Uo+A U h+A,U%0) = 0.

It follows that ay = k1 = k2 = 0 and «; = 1. Additionally, A; = 1, because h does not
generate the homology of C{j = 0}. Up to a change of basis we also have d(m) = o + U?Hh.
We have determined the image of all generators of CFK*(11ns57) under the boundary
map. The resulting complex is shown in Figure 25.

6.1.2 Finding the map 1k for 11n5;. The complex associated to 11n57 is shown in
Figure 25. All coefficients in the following discussion are either 0 or 1. Since 1 is skew-
filtered and grading-preserving, it must be of the form below.

a—Uq b—PBoUp+piU30+PU3n
c— SOU_gp +6,U30+8,U3n d— aoU_3p +oU20+aU3n
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Ua d

Ub f

Uc 9<——@ e
13 U’lj

Figure 25: CFK*°(11n57) decomposes as an [F»[U, U1 complex into the direct sum of a
staircase and three boxes.

e—eU lk+eU2m+e,U?1 f— YOU_1k+ YlU_Zm + YzU_zl
g—U'k h—noj+mUi+nzh
i—Woh+Wyri+ysj J=Cj+GUi+0h

k—Ug [—koU%f+K1U%e+k,U?g
mH60U2f+91U2e+62U2g n—voU3d +v,U3bh+v,U3¢c
0— woU3d+ 1 Ush+u,Usc p—AU3d+MU3b+A,U3c
qg— Ua.

Furthermore, since ik is a chain map, we can narrow down the options further to
conclude that it has the form of the following map.

a—U%g b—U3n
c—eU30+e,U3n d— U_3p+(x1U_30+(sz_3n
e— €0U_1k+€1U_2m+€2U_2l f»—»U_Zl

gHU_lk h—eUi+erh

i—1 j—Jj+CGUi+{h

k—Ug 1—U*f
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m— 0pU%f +0,U%e+0,U%g n—Ub
0—0U3h+0,U3c p—U3d+MU3b+ A\, U3¢
q— Ua.

Now we consider the requirement that li = o up to chain homotopy equivalence,
where o is the Sarkar involution. Since 1x and o are both filtered, and because the
boundary map 0 reduces the homological grading by one, any map H: CFK*(11ns57) —
CFK*°(11ns57) such that 0H + Ho = 112< + o must be filtered and increase homological
grading by one where it is nonzero. There is no such map except for the trivial map
H =0. Thus, we have li = 0. In this case we see that o is the identity map except at d, j,
and p. At these points we have a(d) =d + b,o(j) = j + i, and o(p) = p + n. Applying this
restriction results in a further simplification of the options for 1k, which is shown below.

a—Uq b—U3n
c—U30+e,U3n d— U_3p+0(1U_30+(X2U_3n
e—Uk+U?m+e,U?] f—U"2]

g— Uk h—Ui+h

i—i j—j+GUi+h

k—Ug [—U%f

m— e U?f +U%e+U?g n—U3b

0—e,U3h+U3c pHU3d+)\1U3b+a1U3c
qg— Ua.

To simplify the possibilities for ix we make the following change of basis (and then
immediately drop the primes):

m' =m+el
o =o0+en

p'=p+ajo+asn

j'=j+qUi.
As a result 1 is of the form
a—Uq b—U3n
c— U0 d—U"3p
e—Uk+U?m f—U"]
g—U 'k h—Ui+h
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udc U2e
o—o °

L]
U2h
0

Figure 26: A; for the staircase subcomplex of CFK*(11ns7) consists of all non-negative
U-translates of the staircase shown, along with the elements & and Uh.

i—i j—Jj+h
k—Ug [—U%f

m— U?e+U’g n—U3b
0o—Uc p—U3d+U%b
qg— U'a.

All other maps that satisfy the necessary properties of ix are equivalent to this solution
up to a change of basis. We also see that the boxes in the second and fourth quadrants
interact only with each other, and that no other part of the complex interacts with them.
Thus, they need not be considered in the calculation of the concordance invariants,
since they can be removed as an equivariant summand.

6.1.3 Finding V(11n57) and \_/0(111157). Using the map 1x, we may now compute
Vo (11n57) and the involutive concordance invariants Vo (11757) and V,(11ns7).

To find Vj it is enough to consider the staircase in CFK*°(11ns57), since the square in
the first quadrant has trivial homology. The complex A, for the staircase is shown in
Figure 26. The homology of A, is F2[UI{[h]). Thus, Vo(11ns7) is —% times the homological
grading of &, which yields

1
Vo(11ns7) = —5(—2) =1.

Now we calculate the involutive concordance invariants V,, and V. To do so, we need
to examine the homology of the mapping cone

_ _ Q(l n +Id)
Al = Cone(A; ——

QAy [-1D).

First, we consider A;. The complex Aj associated to the subcomplex of CFK*(11n57)
made up of the staircase and box in quadrant 1 is shown in Figure 27. We also consider
the corresponding complex QA .
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udc uZe ug h
o—o %o

°
U2h
0
[ ]

Figure 27: A, for the subcomplex of CFK*°(11ns57) made up of the staircase and box in
the first quadrant consists of all non-negative U-translates of the staircase shown, all
positive U-translates of the box, and the elements i,h, and Uh.

To simplify the picture and the subsequent calculations we choose the following
change of bases (and immediately drop the primes):

c=c+U30 Qc' =Qc+QU 30
g'=g+U 'k Qg'=Qg+QU 'k
e=e+U%m Qe =Qe+QU ?m.

The resulting complex is shown in Figure 28. Now, we look at the map Q(t11,,, +1d),
where 11, is given by the map described at the end of Section 6.1.2. After the change of
bases, the restriction of Q(t11,5, +1d) to the staircase and box in quadrant 1 is given by:

c—0 e— Qg

g—0 h— Qi

i—0 j—Qh

k— QUg m— QU?e+QU%g + QUK
OHQUBC.

Putting all the information together, the complete map on Al is given by:

Udc—0 QU3c—0
Uze-—>U30+QU2g QUzeHQUgc
Ug—0 QUg—0
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udc UZe Ug hee!
o—o o—o
Uh Uik
U2g o0
o<—0

uj

v2i Uk
oi——o m

Figure 28: A for the subcomplex of CFK*°(11ns57) made up of the staircase and box in
the first quadrant after a change of basis.

h— Qi Qh—0

i—0 Qi—0
j—Ug+Qh Qj—QUg
k—Ui+QUg Qk— QUi
m—U%h+0+QU?e+QU?g+QUk Qm— QU?h +Qo
0-—>QU36 Qo—0.

Now, we can extract the homology of Al;, and form two towers as shown in Figure 29.
We examine the homological gradings of the tops of the two towers. The homological
grading of [Qk] is —3, while the grading of [Q#] is —2. Thus the involutive concordance
invariants are V,, = 2 and Vo =1.

6.2 Finding the involutive concordance invariants for 10,¢;.

We now provide a second example, in which we extract CFK*°(10;41) from a (1,1) Hee-
gaard diagram for the knot, then compute the automorphism g and the involutive
concordance invariants.

6.2.1 Finding CFK*(10,4;) using a (1,1) Heegaard diagram for 10,4;.. A (1,1) Hee-
gaard diagram for 10,4;, computed in [Racl5, Section 3], is shown in Figure 30. We may
compute CFK*(10,¢;) from Figure 30 by identifying bigons in this Heegaard diagram.
Figure 31 and Figure 32 show examples of bigons. Each bigon determines a component
of the boundary map for CFK*(1014;). For the bigon in Figure 31, the curves a and 3
intersect at x3 and x4. When the bigon is oriented such that the segment of § on its
boundary is on the right, x, is above x3. Furthermore, the bigon contains one copy of
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Q]

[Uh+ QK] >

QU]

[U2h +QUK]

~
~

T4[QU2R)

[U3h +QU?k]

~
~

[QU3A

Figure 29: H. (Al;)) for the knot 11757 can be described by two linked towers and the
stand-alone subspace [i].

Figure 30: The (1,1)-diagram for 10,6 has 13 intersection points, labelled by x; for
—6 < i <6, between the loops a and f.
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o Ty 5 T3 T4 Ts Tg

W

T Y z5 T

Figure 31: The disk highlighted in yellow is a bigon from x4 to x3 containing one copy of
w; the corresponding arrow in the chain complex runs from x, to Uxs.

the point w. We conclude that a component of the boundary map for CFK*°(10,¢;) gives
an arrow from x4 to Uxs in the total differential, as shown in Figure 33.

6.2.2 Finding the map 1k for 10,5;. Now, we compute the automorphism 1. We make
the following change of basis, shown in Figure 34.

x;=x1+Ux_4

x5 =X+ Ux_3

X = X5 + Xo
X =x_1+x
X, =x_2+x3

x s =x_5+Xp

To reduce the possibilities for 1, we follow the same procedure as in Section 6.1.2, where
we use that 1k is skew-filtered, grading-preserving, a chain map, and squares to the
Sarkar involution up to filtered chain homotopy. This process yields two possibilities for
tx. One is the map below, which we will denote 1.

Xo — X0

xy—U2x, x' — U%x]
x—Ux, xl,—Ux;,
X3 — sz_g X_3+— U_2x3
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2N

Figure 32: The disk highlighted in blue is a bigon from x_5 to x_3 containing two copies
of w; the corresponding arrow in the chain complex runs from x_5 to U2?x_3.

x4—U%x,
/ — / . /
X5 = X_g X_5— Xg

X6 — U_lx_s

!

The other is the map below, which we will denote 1.

Xo — X0

X_g— U_3X4

X-¢— Uxg+ X}

37

xp—U2x
/ -1/
X3 — sz_g
x4—U%x,
X5 XL

X6 — U_lx_(; +U_1X3

/ /
x_5 — x5

X_6— Uxg+ X,

The maps 1k and 1 are equivalent up to a skew-filtered chain homotopy, the map G

below.

for which we have

Xy —Uxg
x; — 0 for all other generators x;

0G(x]) +GO(x)) =0
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U2x,4

U g

UZX,3

Figure 33: CFK*(1016;) prior to a change of basis.

9G(xg) + GO(x6) = G(x]) = U™ x3.

This is exactly the map g — 1.
Thus, the two maps 1x and l£< are related by a skew-filtered chain homotopy G, and
we may use either in our computation of the involutive concordance invariants for 10¢;.

6.2.3 FindingV,(10;6;) and \_/0(10161). Now, we compute the involutive concordance
invariants Vo and V-

As in the computation of the involutive concordance invariants of 11757 in Section
6.1, we examine the homology of the mapping cone

Q(110161

_ . +1d) _
Al; = Cone(A; ——— QA, [-1]).

We consider the complex A, associated to the subcomplex in the first quadrant and
the corresponding complex QA . We extract the homology of Al;; to form two towers, as
shown in Figure 35, then examine the homological gradings of the tops of the two towers.
We see that the homological grading of [Qx3] is 1, the homological grading of [x3 + Qxg]
is 2, and the homological grading of [Uxy + x4 + U3x_4] is 1. Thus, Vy(1016) = —1 and
V,(10161) = 0.
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Uxy + U2x_4
U2x_y X6

Uxp +U%x_3 XQ + X5

[ ]
~

S 0 Xp+x_5 U lxg

X_p+X3 ulx

o o
x3 U by

Figure 34: After the change of basis shown, CFK*(1014;) consists of a staircase and two
boxes.

[x3 + Qxo]
[Uxo + X4 + U3x_4] [Qx3]

[QUxo + Qx4 + QU3x_4]

[U2x0+Uxg +Utx_y]

[QU?%xp + QUuxy + QU%x_4]

Figure 35: H. (Al})) for the knot 10,61 can be written as two towers related by the action
of Q and the stand-alone subspace [Qx3].
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7 Results

7.1 Table of Invariants

In Table 2 we show the results of our computations for the involutive concordance
invariants for all 10- and 11-crossing (1,1)-knots that are neither thin nor L-space.

KnotK | Vo(K) | V,(K) | Vo(K) | Vo(K) | V4(K) | Vo(K)
10128 1 1 1 0 0 -1
10132 0 0 -1 1 1 1
10136 0 0 0 0 0 0
10139 2 2 1 0 0 -2
10145 0 0 -1 1 1 1
10161 0 0 -1 1 1 1
1175 1 1 1 0 0 -1
111119 1 1 0 0 -1
11ny9 0 0 0 0 0
1173g 0 0 -1 1 1 1
117157 1 2 1 0 0 -1
1176, 1 1 0 0 0 0
11779 1 1 1 0 0 -1
11179 0 0 0 0 0 0
11n9g 0 0 -2 2 2 2
11n192 0 0 -1 1 1 1
111104 1 1 1 0 0 -1
1171111 0 0 0 1 1 0
11n435 0 0 -1 1 1 1

Table 2: The involutive concordance invariants V,, and V for the 10- and 11-crossing
knots of interest are shown alongside Vj, for comparison.

7.2 Amendments to the literature

In the process of studying the Heegaard diagrams for some of the 11-crossing knots
of interest, we discovered a few errors in [Racl5, Section 3.7.3]. In Section 3.7.3, Racz
lists parameterizations for the Heegaard diagrams of non-Montesino (1,1)-knots up to
12 crossings. The entries for the knots 12n494, 121579, and 121749 do not produce valid
diagrams. We found a correct parameterization for 127494 by elimination the possibilities
based on the Alexander polynomial of the knot. The correct result for 12n749 is given in
[Ras05, Section 6.2]. Table 3 summarizes these two corrections.
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Knot (k,r,c,s)
12”404 (14) 77 _7y ]-)
12n749 | (7,3,-3,4)

Table 3: Valid parameterizations for the Heegaard diagrams of 127404 and 121749

[BG12]

[CMO21]

[Ghi08]

[GMMO5]

[HM17]

[Hom14]

[KS98]

[MSY96]

[Ni07]

[OS04a]

[0S04b]

[OS06]
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