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Abstract

Label differential privacy is a popular branch of e-differential privacy for protecting labels
in training datasets with non-private features. In this paper, we study the generalization
performance of a binary classifier trained on a dataset privatized under the label differential
privacy achieved by the randomized response mechanism. Particularly, we establish minimax
lower bounds for the excess risks of the deep neural network plug-in classifier, theoretically
quantifying how privacy guarantee e affects its generalization performance. Our theoretical
result shows: (1) the randomized response mechanism slows down the convergence of excess
risk by lessening the multiplicative constant term compared with the non-private case (e =
o0); (2) as € decreases, the optimal structure of the neural network should be smaller for
better generalization performance; (3) the convergence of its excess risk is guaranteed even if
€ is adaptive to the size of training sample n at a rate slower than O(n’l/ 2). Our theoretical
results are validated by extensive simulated examples and two real applications.

1 Introduction

In the past decade, differential privacy (DP; Dwork, 2008) has emerged as a standard statistical framework
to protect sensitive data before releasing it to an external party. The rationale behind DP is to ensure that
information obtained by an external party is robust enough to the change of a single record in a dataset.
Generally, the privacy protection via DP inevitably distorts the raw data and hence reduces data utility for
downstream learning tasks (Alvim et al., 2012; Kairouz et al., 2016; Li et al., 2023a). To achieve better
privacy-utility tradeoff, various research efforts have been devoted to analyzing the effect of DP on learning
algorithms in the machine learning community (Ghazi et al., 2021; Bassily et al., 2022; Esfandiari et al.,
2022). Depending on whether the data receiver is trusted or not, differential privacy can be categorized into
two main classes in the literature, including central differential privacy (central DP; Erlingsson et al. 2019;
Girgis et al. 2021; Wang et al. 2023) and local differential privacy (local DP; Wang et al. 2017; Arachchige
et al. 2019). Central DP relies on a trusted curator to protect all data simultaneously, whereas local DP
perturbs data on the users’ side. Local DP becomes a more popular solution to privacy protection due to its


https://openreview.net/forum?id=uKCGOw9bGG

Published in Transactions on Machine Learning Research (10/2023)

successful applications, including Google Chrome browser (Erlingsson et al., 2014) and macOS (Tang et al.,
2017).

An important variant of differential privacy is label differential privacy (Label DP; Chaudhuri & Hsu, 2011),
which is a relaxation of DP for some real-life scenarios where input features are assumed to be publicly
available and labels are highly sensitive and should be protected. Label DP has been gaining increasing at-
tention in recent years due to the emerging demands in some real applications. For example, in recommender
systems, users’ ratings are sensitive for revealing users’ preferences that can be utilized for advertising pur-
poses (McSherry & Mironov, 2009; Xin & Jaakkola, 2014). In online advertising, a user click behavior is
usually treated as a sensitive label whereas the product description for the displayed advertisement is pub-
licly available (McMahan et al., 2013; Chapelle et al., 2014). These real scenarios motivate various research
efforts to develop mechanisms for achieving label differential privacy and understanding the fundamental
tradeoff between data utility and privacy protection. In literature, label DP can be divided into two main
classes depending on whether labels are protected in a local or central manner. In central label DP, privacy
protection is guaranteed by ensuring the output of a randomized learning algorithm is robust to the change
of a single label in the dataset (Chaudhuri & Hsu, 2011; Ghazi et al., 2021; Bassily et al., 2022; Ghazi et al.,
2023). In local label DP, labels are altered at the users’ side before they are released to learning algorithms,
ensuring that it is difficult to infer the true labels based on the released labels (Busa-Fekete et al., 2021;
Cunningham et al., 2022).

In the literature, various efforts has been devoted to developing mechanisms to achieve label DP efficiently
and analyze their essential privacy-utility tradeoffs in downstream learning tasks. The original way to
achieve label DP is via randomized response mechanisms (Warner, 1965), which alters observed labels in
a probabilistic manner. For binary labels, the randomized response mechanism flips labels onto the other
side with a pre-determined probability (Nayak & Adeshiyan, 2009; Wang et al., 2016b; Busa-Fekete et al.,
2021). Originally designed to safeguard individuals’ responses in surveys (Warner, 1965; Blair et al., 2015),
the RR mechanism has found extensive data collection applications (Wang et al., 2016b), such as pairwise
comparisons in ranking data (Li et al., 2023b) and edges in graph data (Hehir et al., 2022; Guo et al., 2023).
Ghazi et al. (2021) proposed a multi-stage training algorithm called randomized response with prior, which
flips training labels via a prior distribution learned by the trained model in the previous stage. Such a
multi-stage training algorithm significantly improves the generalization performance of the trained model
under the same privacy guarantee. Malek Esmaeili et al. (2021) proposed to apply Laplace noise addition to
one-hot encodings of labels and utilized the iterative Bayesian inference to de-noise the outputs of the privacy-
preserving mechanism. Bassily et al. (2022) developed a private learning algorithm under the central label
DP and established a dimension-independent deviation margin bound for the generalization performance
of several differentially private classifiers, showing that the margin guarantees that are independent of the
input dimension. However, their developed learning algorithm relies on the partition of the hypothesis and
is hence computationally inefficient. The current state-of-the-art approach, outlined in Ghazi et al. (2023),
presents a variant of RR that incorporates additional information from the loss function to enhance model
performance. Analyzing this variant can be challenging due to its construction involving the solution of an
optimization problem without a closed-form representation.

A critical challenge in differential privacy is to understand the essential privacy-utility tradeoff that sheds light
on the fundamental utility limit for a specific problem. For example, Wang & Xu (2019) studied the sparse
linear regression problem under local label DP and establish the minimax risk for the estimation error under
label DP. In this paper, we intend to study the generalization performance of binary classifiers satisfying
e-local label DP, aiming to theoretically understand how the generalization performance of differentially
private classifiers are affected by the local label DP under the margin assumption (Tsybakov, 2004). To this
end, we consider the local label DP via the randomized response mechanism due to its remarkable ability to
incurring less utility loss (Wang et al., 2016b). Specifically, Wang et al. (2016b) demonstrated that, while
adhering to the same privacy standard, the RR mechanism exhibits smaller expected mean square errors
between released and actual values compared to the Laplace mechanism. Furthermore, the effectiveness
of the RR mechanism surpasses that of the output perturbation approach, particularly in scenarios where
the sensitivity of output functions is high. This result can be explained from the perspective of statistical
hypothesis testing that the RR mechanism achieves the optimal tradeoff between type I and type II errors
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under e-label DP (Dong et al., 2022). Additionally, the RR mechanism has a succinct representation, which
allows us to develop certain theories related to deep learning.

In literature, few attempts are made to theoretically quantify the generalization performance of classifiers
under local label DP even though binary classification has already become an indispensable part of the
machine learning community. An important characteristic distinguishing binary classification problem is
that the convergence of the generalization performance depends on the behavior of data in the vicinity of
the decision boundary, which is known as the margin assumption (Tsybakov, 2004). Therefore, our first
contribution is that we theoretically quantify how local label DP alters the margin assumption, which allows
us to bridge the connection between the local label DP and the generalization performance. Additionally,
we mainly consider two scenarios for the function class of classifiers in this paper. First, we consider the
large margin classifier with its hypothesis space being a parametric function class and the deep neural
network plug-in classifier. For these two scenarios, we establish their upper bound and the minimax lower
bound for their excess risks, which theoretically quantifies how e affects the generalization performance.
The implications of our theoretical results are three-fold. First, the Bayes classifier stays invariant to the
randomized response mechanism with any small €, which permits the possibility of learning the optimal
classifier from the privatized dataset. Second, the local label DP achieved via the randomized response
mechanism implicitly reduces the information for estimation. Specifically, we theoretically prove that the
convergence rate of excess risk is slowed down with an additional multiplicative constant depending on e.
Third, based on our theoretical results, we show that the excess risk fails to converge when the € is adaptive to
the training sample size n at the order O(nil/ %), which is independent of the margin assumption. To the best
of our knowledge, no existing literature related to classification under DP or corrupted labels (Cannings et al.,
2020; van Rooyen & Williamson, 2018) has investigated the effects of noise on neural network structures.
Our theoretical results are supported by extensive simulations and two real applications.

The rest of this paper is organized as follows. After introducing some necessary notations in Section 1.1,
Section 2 introduces the backgrounds of the binary classification problem, neural network, and the local
label differential privacy. In Section 3, we introduce the framework of the differentially private learning
under the label differential privacy and present theoretical results regarding the asymptotic behavior of the
differentially private classifier. Section 4 quantifies how e affects the generalization performance of the deep
neural network plug-in classifier by establishing a minimax lower bound. Section 5 and Section 6 conduct a
series of simulations and real applications to support our theoretical results. All technical proofs are provided
in the Appendix.

1.1 Notation

For a vector € R?, we denote its {1-norm and lo-norm as ||z|[y = Y0, |z;| and ||lz[l2 = (X7, |xi|2)1/2,

respectively. For a function f : X — R, we denote its L,-norm with respect to the probability measure ;1 as

1 lery = ([ \f(a:)|pdu(a:))1/p. For a real number a, we let |a] denote the largest integer not larger than
a. For a set S, we define N'(£,S,] - ||) as the minimal number of ¢-balls needed to cover S under a generic
metric || - ||. For two given sequences {A,}neny and {B, }nen, we write A, 2 B, if there exists a constant
C > 0 such that A, > CB,, for any n € N. Additionally, we write A, < B, if A, 2 B, and A,, < B,.

2 Preliminaries

2.1 Binary Classification

The goal in binary classification is to learn a discriminant function f, which well characterizes the functional
relationship between the feature vector X € X’ and its associated label Y € {—1,1}. To measure the quality
of f, the 0-1 risk is usually employed,

R(f) =E(I(f(X)Y <0)) = P(sign(f(X)) #Y),

where I(-) denotes the indicator function and the expectation is taken with respect to the joint distribution
of (X,Y).
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In addition to 0-1 loss, the false negative error (FNE) and false positive error (FPE) are frequently used to
assess classifier performance when dealing with highly imbalanced datasets. Specifically, FNE measures the
percentage of positive samples being classified as negative, whereas FPE measures the percentage of negative
samples being classified as positive. For a margin classifier f, the expected false positive error (EFNE) and
false positive error (EFPE) are written as

EFNE(f) = E(I(f(X) <o)y = 1) = P(sign(f(X)) £Y|Y = 1),

EFPE(f) = E(I(f(X) > 0)|y = —1) - P(sign(f(X)) £Y[Y = —1).
Furthermore, the 0-1 risk R(f) can be re-written as a weighted combination of EFNE and EFPE:

R(f) = EENE(f)P(Y = 1) + EFPE(f)P(Y = —1).

Let f* =inf; R(f) denote the minimizer of R(f), which refers to as the Bayes decision rule. Generally, f* is
obtained by minimizing R(f) in a point-wise manner and given as f*(X) = sign (n(X) —1/2) with n(X) =
P(Y = 1/X). The minimal risk R(f*) can be written as R(f*) = Ex (min{n(X),1 —n(X)}). In practice,
the underlying joint distribution on (X,Y’) is unavailable, but a set of i.i.d. realizations D = {(z;,y;)}1

is given. Therefore, it is a common practice to consider the estimation procedure based on minimizing the
sample average of a surrogate loss, which is given as

Ry(f) = = > o(f @i)ws),

S|

where ¢(+) is the surrogate loss function replacing the 0-1 loss since the 0-1 loss is computationally intractable
(Arora et al., 1997).

Let Ry(f) = E(¢(f(X)Y)) denote the ¢-risk. Given that ¢ is classification calibrated, the minimizer
f4 = argming Ry(f) is consistent with the Bayes decision rule (Lin, 2004), i.e., sign(f} (x)) = sign(n(z)—1/2)
for any @ € X. In literature, there are various classification-calibrated loss functions (Zhang, 2004; Bartlett
et al., 2006), such as exponential loss, hinge loss, logistic loss, and -loss (Shen et al., 2003).

2.2 Deep Neural Network and Function Class
Let f(x;0) be an L-layer neural network with Rectified Linear Unit (ReLU) activation function, that is,
f(@;0)=Ari1(hpohp_qo---hi(x)) +bri1,

where o denotes function composition, hi(x) = o(A;xz + b;) denotes the [-th layer, and © =
{(Al,bl)}l:1 L4l denotes all the parameters. Here A; € RPI*Pi-1 ig the weight matrix, b, € R is

the bias term, p; is the number of neurons in the I-th layer, and o(x) = max{0,z} is the ReLU function.
To characterize the network architecture of f, we denote the number of layers in © as Y(0), the maximum
number of nodes as A(©), the number of non-zero parameters as ||0||o, the largest absolute value in © as
|©|oo- For a given n, we denote by FYN(L,,, N,,, P,,, B,,, Vy,) a class of neural networks, which is defined as

1©llo < Py, [1Blloc < Bn, || flloc < Vi, }-

Let 8 > 0 be a degree of smoothness, then the Holder space is defined as
H(B,X) = {f € CH )« [ fllns.a) < o0},

where CL%1(X) the class of | 3] times continuously differentiable functions on the open set X and the Hélder
norm || f|ls,x) is given as

m 0™ f () — 0™ f(y)
= max sup |0 x)| +
Il = i oy SR O @ e S |z — y|| o7
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oMt tm
where (9mf(:1:) = W

(m,...,mp) € N§ is a multi-index with Ng = N U {0}. Further, we let H(5,X,M) = {f € H(B,X) :
Ilfll2(s,20) < M} be a closed ball of radius M in H (8, X).

(x) denotes the partial derivative of order m with respect to @ and m =

The Holder assumption serves as a common assumption for studying the generalization capabilities of neural
networks for approximating functions possessing a certain degree of smoothness or regularity (Audibert &
Tsybakov, 2007; Kim et al., 2021). This assumption is useful in developing a tighter generalization bounds.
However, it is essential to acknowledge that the Holder assumption presupposes a level of smoothness in the
underlying function. In reality, many real-world problems involve functions that deviate from this idealized
smoothness. When the actual smoothness of the function does not align with the assumption, algorithms
reliant on it may fall short of the anticipated generalization performance.

2.3 Local Label Differential Privacy

Label differential privacy (Label DP; Chaudhuri & Hsu, 2011) is proposed as a relaxation of differential
privacy (Dwork, 2008), aiming to protect the privacy of labels in the dataset, whereas training features are
non-sensitive and hence publicly available. An effective approach to label DP is the randomized response
mechanism (Busa-Fekete et al., 2021). As its name suggests, it protects the privacy of labels via some local
randomized response mechanisms under the framework of local differential privacy.

Definition 1. (Label Differential Privacy; Ghazi et al., 2021) A randomized training algorithm A taking as
input a dataset is said to be (e,0)-label differentially private if for any two datasets D and D' that differ in
the label of a single example, and for any subset S of the outputs of A, it is the case that P(A(D) € S) <
eP(A(D') € S) + 9, then A is said to be e-label differentially private (e-label DP).

A direct way to achieve e-Label DP in binary classification is to employ the randomized response mechanism
(Warner, 1965; Nayak & Adeshiyan, 2009; Wang et al., 2016b; Karwa et al., 2017). The main idea of
the binary randomized response mechanism is to flip observed labels indepdently with a fixed probability.
Specifically, let Ay denote the randomized response mechanism parametrized by 6. For an input label Y, we
define

AolY) = {Y, with probability 0,
—Y, with probability 1 — 0,

where 6 > 1/2 denotes the probability that the value of Y stays unchanged. It is straightforward to verify

that the randomized response mechanism satisfies e-label DP with € = log(6/(1 — 6)) (Ghazi et al., 2021;

Busa-Fekete et al., 2021). In this paper, we denote the e-label DP achieved through the randomized response

mechanism as e-local label DP.

3 Differentially Private Learning

3.1 Effect of Locally-Label Differential Privacy

Under the setting of local differential privacy, users do not trust the data curator and hence privatize their
sensitive data via some randomized mechanisms locally before releasing them to central servers. We let
D = {(=;,y:) }_; denote the original dataset containing n i.i.d. realizations of the random pair (X,Y’). As
illustrated in Figure 1, users’ labels are privatized by a locally differentially private protocol Ay, and then
the untrusted curator receives a privatized dataset, which we denote as D = {(x;, )}/ ;-

A natural question is what the quantitative relation between e-label DP and the discrepancy between the
distributions of D and D is. This is useful to analyze how privacy parameter e¢ deteriorates the utility of
data for downstream learning tasks.

Notice that 7;’s are generated locally and independently, therefore the randomized response mechanism only
alters the conditional distribution of Y given X, whereas the marginal distribution of X stays unchanged.
Hence, we can assume D is a set of i.i.d. realizations of (X,Y), and it is straightforward to verify that the
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Figure 1: The framework of local label differential privacy.

conditional distribution of Y’ given X = x can be written as
(@) =P(Y = 1|X = x) = n(x) + (1 — 0)(1 — n(x)).

Clearly, Ay amplifies the uncertainty of the observed labels by shrinking 7j(x ) towards 1/2. Particularly,
7(X) = 1/2 almost surely when 6 = 1/2. In this case, the privatized dataset D conveys no information for
learning the decision function.

The following Lemma quantifies how the randomized response mechanism alters the conditional distribution
of Y and Y given the feature x via the Kullback-Leibler divergence (KL) divergence between these two
Bernoulli distributions. Specifically, the inequalities in (1) explicates how the divergence changes with
privacy guarantee e.

Lemma 1. Suppose the randomized response mechanism'Y = Ag(Y) satisfies e-label DP with 6 = exp(e)/(1+
exp(e)), then for any x € X it holds that

‘C(e (E) < DkL (PY\X a:|]P) ) < Z/l(e,:l:), (1)

Y| X=x

where Dk, (IF’y|X m‘PmX ) denotes the Kullback-Leibler divergence (KL) divergence between PY|X , and
Py x=a, L(e,2) = 2(2n(x) — 1)*(1 4 exp(e)) ™2, and U(e,x) = min{Ui(e, ), Us(e, )} with Uy(e,x) =
2

(2n(x) —1)*n~ (@) (1 —n(x)) "' (1 +exp(e))~? and Us(e,x) = (2n(x) — 1) exp(—¢).

In Lemma 1, the lower bound £L(e,x) and the upper bound U(e, ) share a factor (1 + exp(—e¢))?, indicating

that Dy, (IP’y| X— w|IP’Y‘ X ) decreases exponentially with respect to e.

3.2 Differentially Private Classifier

On the side of the untrusted curator, inference tasks vary according to the purpose of data collector, such
as estimation of population statistics (Joseph et al., 2018; Yan et al., 2019) and supervised learning (Ghazi
et al., 2021; Esfandiari et al., 2022). In this paper, we suppose that the computation based on D implemented
by the untrusted curator is formulated as the following regularized empirical risk minimization task,

in L, - D7) + A 2
min Ly 5«%1}%”2‘75 ©:)3i) + And (f), (2)

where ¢ is a surrogate loss, A, is a tuning parameter, J(-) is a penalty term, and F is a pre-specified
hypothesis space.

We denote by 1:?( f)= E[Sign( (X)) # }N/] the risk with expectation taken with respect to the joint distribu-
tion of (X,Y) and let f* = arg min f R(f) denote the Bayes decision rule under the distribution of (X,Y).
The excess risk of f under the distributions of (X,Y") and (X, Y) is denoted as D(f, f*) = R(f) — R(f*)
and D(f,f )= R(f) — R(f ), respectively.

Lemma 2. IfY = Ag(Y) with 0 > 1/2, then f*(z) = f*(z) for any x € X and D(f, f*) = (20 —1)D(f, )
for any f.
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Lemma 2 shows that the Bayes decision rule stays invariant under the randomized response mechanism. It
is clear to see that D(f, f*) diminishes as 6 gets close to 1/2. Particularly, D(f, f*) is equal to 0 when
6 = 1/2. This is as expected since § = 1/2 implies that 7(X) = 1/2 almost surely, where all classifiers
deteriorates in performance simultaneously. This result demonstrates that the optimal classifiers for the
underlying distributions of D and D are identical. Basically, Lemma 2 reveals an inherent debiasing process
in the development of the generalization performance of the differentially private classifier f. To be more
specific, we can deduce the excess risk of f by the relation R(f)— R(f*) = %(R(f) — R(f*)) under e-local
label DP.

Let f; = argming Rs(f) and f; = argming JN%Q;( f) be the minimizers of ¢-risk under the joint distributions
of (X,Y) and (X,Y), respectively. For illustration, we only consider hinge loss ¢(z) = max{l — z,0} in
this paper, and similar results can be easily obtained for other loss functions by the comparison theorem
(Bartlett et al., 2006; Bartlett & Wegkamp, 2008). With ¢(-) being the hinge loss, we have f} = f; = f* = f~
(Bartlett et al., 2006; Lecué, 2007). With a slight abuse of notation, we use f* to refer to these four functions
simultaneously in the sequel.

3.3 Consistency under the Randomized Response Mechanism

In this section, we establish the asymptotic behavior of the classifier trained on privatized datasets. Specif-
ically, we theoretically quantify how the randomized response mechanism affects the convergence rate of
excess risk under the low-noise assumption (Lecué, 2007).

We suppose that the randomized response mechanism satisfies the e-label DP, which indicates that ¢ =
log(6/(1 — ¢)). Furthermore, we denote that f, = argmin;cz L,(f) and H(f, f*) = Rs(f) — Rs(f*). In
classification problems, H(f, f*) is an important metric that admits the decomposition into the estimation
error and the approximation error (Bartlett et al., 2006),

H(f, f*) = H(f, [F) + H(f7, ["),

where f7 = argming. Ry(f). Here H(f, f3) is the estimation error and H(f%, f*) is the approximation
error. The estimation error depends on the learning algorithm in finding f* based on a dataset with finite
samples, where the searching difficulty is unavoidably affected by the complexity of F as the approximation
error. Generally, the richness of F can be measured by VC dimension (Blumer et al., 1989; Vapnik &
Chervonenkis, 2015), Rademacher complexity (Bartlett & Mendelson, 2002; Smale & Zhou, 2003), and
metric entropy methods (Zhou, 2002; Shalev-Shwartz & Ben-David, 2014).

Assumption 1. (Low-noise assumption) There exists a constant ¢ > 0 and 0 < v < 400 such that
]P’(|277(X) -1 < t) <t for any t € [0,1).

Assumption 1 is known as the low-noise assumption in the binary classification (Lecué, 2007; Shen et al.,
2003; Bartlett et al., 2006), which characterizes the behavior of 2n(x) — 1 around the decision boundary
n(x) = 1/2. Particularly, the case with v = 400 and ¢ = 1 implies that the labels y;’s are deterministic in
that 7(X) takes values in {0,1} almost surely, resulting in the fastest convergence rate of the estimation
€error.

Lemma 3. Denote that k. = (e — 1)/(e“ + 1). Under Assumption 1, for any 6 € (1/2,1], it holds that

(1) P(2i(X) = 1] < t) < w07, for any t € [0,1),

a+1

(2) Bolf) = o) = re(4)™ 7 (E[F(X) = F(X)[]) * for amy f € F,

Lemma 3 presents some insights regarding the influence of the randomized response mechanism on the low-
noise assumption and the margin relation (Lecué, 2007), showing that the low-noise structure and margin
relation are both invariant to the randomized response mechanism in the sense that only the multiplicative
terms are enlarged by the effect of the privacy guarantee e.
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Assumption 2. We assume that F is properly chosen satisfying that ||f||cc <1 for any f € F and
log V(& F, || [|22() =< V1(©) log(1 +£71V2(8)), and VC(Gr) = Vi(O)

where Gr = {{z : sign(f(x)) = 1} : f € F}, VC(Gr) denotes the VC dimension of Gr, u denotes the
marginal distribution of X, © denotes the parameters of f, and V1(0) and Vo(0O) are some functions de-
pending on ©.

Assumption 2 characterizes the complexity of function class F through the metric entropy (Zhou, 2002;
Bousquet et al., 2003; Lei et al., 2016), where V;(0) and V2(0©) are quantities increasing with the size of
©. Assumption 2 generally holds for function classes of parametric models (Wang et al., 2016a; Xu et al.,
2021), most notably for deep neural networks (Bartlett et al., 2019; Schmidt-Hieber, 2020). Additionally,
Assumption 2 also holds for those VC classes with VC dimensions increasing with the size of © (Wellner
et al., 2013; Bartlett et al., 2019; Lee et al., 1994).

Theorem 1. Under Assumptions 1 and 2, for any minimizer ]?n of (2), there exist some positive constants
A; and Ay such that

AQ{(V;S))m i} < sup B[RO — RO < Al{("l(i)/i;g(m)lié ol

where Py be a class of distributions of (X,Y) satisfying Assumption 1, s, = SUPrep, infrer H(f, [*), and
Tn = SUPrep infrer D(f, f*).

Theorem 1 quantifies the asymptotic behavior of ]?n by establishing its upper and lower bounds, which
explicitly demonstrates the quantitative relation between the effect of privacy guarantee € and the excess
risk. The upper bound is proven through a uniform concentration inequality under the framework of empirical
risk minimization analysis. The estimator f,, is derived from a pre-specified function class F that may not
include the true underlying function f*. Consequently, s, represents the approximation error, quantifying
the capability of the optimal function within F to approximate f*. The accuracy of estimating the optimal
function in F for approximating f* depends on the complexity of F (Assumption 2) and the size of the
training set n. A larger F may reduce s, but can increase the estimation error. Thus, achieving the best
convergence rate involves striking the right balance between these two sources of error. The proof of the
lower bound is similar to Theorem 2 in Lecué (2007), mainly applying the Assouad’s lemma (Yu, 1997) to
an analytic subset of P~y. Further details regarding the proof are provided in the Appendix.

It is worth noting that the upper bound matches the lower bound except for a logarithmic factor when the
a4+l
approximation error term s, < (% "™ This shows that the randomized response mechanism slows

down the convergence rate by enlarging the multiplicative constant. Moreover, based on Theorem 1, we
can obtain the optimal convergence rate of the excess risk in classification problem under the low-noise
assumption (Lecué, 2007) by setting e = oo and |F| < co.

Lemma 4. Denote that M = max{EFNE(f) — EFNE(f*), EFPE(f) — EFPE(f*)}. Under Assumption 1,
for any margin classifier f, it holds that

) 1
R - Ry <M< 2min{P(Y = 1),P(Y = —1)}

(2775 (R() = RUTNT +R(F) - R)), 3)

where ¢ and vy are as defined in Assumption 1. Particularly, if Assumption 1 holds with v = oo, for any
margin classifier f, (3) becomes

R =RV =M= o v = 1), Py = =1}

Lemma 4 establishes a crucial relationship between excess risk and the maximum of excess EFNE and EFPE
for any classifier f, which also includes f,, as a special case. This connection enables us to demonstrate
the convergence of EFNE(f,) and EFPE(f,) based on that of the excess risk. Remarkably, this finding
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implies that the differentially private classifier ﬁl will exhibit similar false negative and false positive rates to
those of the Bayes classifier as the sample size n tends to infinity. In addition, increasing the degree of data
imbalance will enlarge the upper bound in (3), indicating that data imbalance slows down the convergence
rates of EFNE(};) and EFPE(ﬂ) Particularly, under the low-noise assumption with v = oo, which implies
that samples are separable, both excess EFNE and EFPE of fn exhibit the same convergence rate as the
excess risk regardless of the degree of class imbalance. Furthermore, this result indicates that the privacy
guarantee € has a similar impact on the excess EFNE and EFPE as it does on the excess risk.

4 Deep Learning with Local Label Differential Privacy

A typical class of models that are popularly considered in the domain of differential privacy is deep neural
network (Ghazi et al., 2021; Yuan et al., 2021) due to its success in various applications in the past decade.
Unlike Section 3.3 considering the estimation and approximation errors separately, we establish theoretical
results regarding the convergence rate of the excess risk of the deep neural network plug-in classifier trained
from D, which is obtained by making a tradeoff between the estimation and approximation errors of deep
neural networks (Schmidt-Hieber, 2020). Our theoretical results not only quantify how the optimal structure
of the deep neural network changes with the privacy parameter €, but also derive the optimal privacy
guarantee we can achieve for the deep neural network classifier.

Remind that D = {(z;,7;)}?, is the privatized dataset with 7; = Ag(y;) and 6 = exp(e)/(1 + exp(e)). The
deep neural network is solved as

Fon = arg min =3 (flai) - 51‘)2, (4)

JEFNN (L N P, B Vi) 4

where zZ; = (7;+1)/2 and FYN(L,,, Ny, Py, By, Vi) is a class of multilayer perceptrons defined in Section 2.2.
The plug-in classifier based on f,, can be obtained as $,, = sign(fn, — 1/2). To quantify the asymptotic

behavior of $,,,, we further assume that the support of @ is [0, 1]?, which is a common assumption for deep
neural networks (Yarotsky, 2017; Nakada & Imaizumi, 2020)

Theorem 2. Let Py g be a class of probability measures on X x {—1,1} satisfying Assumption 1 and
~ 2p

n(X) € H(B,[0,1]P, M). For any minimizer fnn in (4) with L, < log(kn/log(n)), N, < (ken/log(n))2s+r,

B, =1, and P, < N, log(ken/log(n)), we have

log n) AT

nk2 '

1 B(y+1)

(T@)m < sup ]EE[R(’g,m) *R(f*)} < (

TE€EPy .8

(5)

Particularly, sup cp , Ex [R(gnn) — R(f*)} = o(1) given that € > n=1/?*< for any ¢ > 0.
In Theorem 2, we quantify the asymptotic behavior of the excess risk of s,, by providing upper and lower
bounds for sup,cp_, Ex [R(5n5,)—R*]. Similar to Theorem 1, the proof of the lower bound of (5) relies on the
Assouad’s lemma. A significant distinction of the upper bound in (5) from that of Theorem 1 is explicating
the approximation error s,, with respect to the structure of neural network and making the optimal tradeoff
between estimation and approximation errors to achieve the fastest convergence rate. It should be noted
that if € = oo which refers to the non-private case, the upper and lower bounds in (5) match with existing
theoretical results established in Audibert & Tsybakov (2007). Moreover, Theorem 2 goes a step further by
precisely characterizing the impact of € on the convergence of s, to the Bayes decision rule. Additionally,
it specifies how the optimal neural network’s structure contracts as e decreases, crucial for achieving the
fastest convergence rate. Specifically, attaining this rapid convergence necessitates reducing the maximum
number of hidden units at an order of O(ezp/ (2ﬂ+p)) when compared to the non-private case. Furthermore,
we leverage Theorem 2 to derive the fastest adaptive rate of ¢ under the consistency of s,,,. Specifically, we
find that € > n~1/2%< for any ¢ > 0 to achieve this desired consistency rate. This result represents a crucial
step towards understanding the interplay between privacy and performance in our framework.
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5 Simulated Experiments

This section aims to validate our theoretical results through extensive simulated examples. Specifically, we
show that the excess risk of a differentially private classifier converges to 0 for any fixed €, whereas the
convergence is not achievable as long as € is adaptive to the size of the training dataset with some properly
chosen orders as shown in Theorems 1 and 2.

5.1 Support Vector Machine

This simulation experimentally analyzes the effect of label DP on the SVM classifier. The generation of
simulated datasets is as follows. First, we set the regression function in classification as n(x) = 1/ (1 +
exp(—A¢ :c))7 where By € R? and x are both p-dimensional vectors generated via Sy;, z; ~ Unif(—1,1) for
i =1,...,p. For each feature «, its label y is chosen from {1, —1} with probabilities n(z) and 1 — n(x),
respectively. Repeating the above process n times, we obtain a non-private training dataset D = {(x;, v;) } ;.
Subsequently, we apply the randomized response mechanism to generate y; as y; = Ag(y;), where § =
exp(€)/(1 + exp(e)) and € is the privacy guarantee. Therefore, the obtained privatized training dataset
D = {(x, Vi) }7 satisfies e-Label DP. Based on D, we obtain the SVM classifier (Cortes & Vapnik, 1995),

. 1 .
fn= arg;nm - Z(l — 5B xi) 4 + MBI,
i=1

where (z); = max{z,0}. Next, we evaluate the performance of ﬁl in terms of the empirical excess risk and
the classification error,

Ntest

B(fa) = —— > I sign(Fua}) # sign(n(al) — 1/2)) |2n(al) 1],

Ntest i=1

1 Ntest

CE(fu) = —— > 1(sien(Fu(@))) # sign(n(a)) — 1/2)).

Ntest i—1

where x}’s are testing samples generated in the same way as x;’s.

Scenario I. In the first scenario, we aim to verify that E (]?n) will converge to 0 as sample size n increases
when the privacy parameter is a fixed constant. To this end, we consider cases (n,e) = {100 x 2,i =
0,1,...,8} x{1,2,3,4,c0}.

Scenario II. In the second scenario, we explore the asymptotic behavior of E(]Tn) with e adaptive to
the sample size n. Specifically, we set ¢ = 5n~¢ and consider cases (n,¢) = {100 x 2!,4 = 0,1,...,8} x
{1/5,1/4,1/3,1/2,2/3,1}. We also include the worst case € = 0 as a baseline.

—1/2 i the dividing line between whether
-1/2

Scenario III. In the third scenario, we intend to verify that e < n
or not the excess risk converges. To this end, we consider three kinds of adaptive ¢, including € < n
e =< log(n)n=1/2, and € =< log~(n)n~'/2. The size of D is set as {100 x 3*,i = 0,1,...,7}. For all cases, we
report the averaged empirical excess risk in 1,000 replications as well as their 95% confidence intervals.

For Scenario I and Scenario II, we report the averaged empirical excess risk and the classification error in
1,000 replications for each setting in Figure 2 and Figure 3, respectively. From the left panel of Figure 2, we
can see that the empirical excess risks and the classification errors with a fixed e converge to 0 regardless
of the value of €, showing that the randomized response mechanism with a fixed e fails to prevent the third
party from learning the optimal classifier based on D. Moreover, as seen from Figure 3, when ¢ < 1/2 the
estimated excess risks present a decreasing pattern as the sample size increases, whereas that of the case ( =1
deteriorates steadily and the curve finally overlaps with that of the worst case ¢ = 0. It is also interesting
to observe that the curve of ¢ = 1/2 remains unaffected by the sample size. All these phenomenons are in

accordance with the results of Theorem 1.
As can be seen in Figure 4, the curve of the case € < n~'/2 remains unchanged as sample size increases as

in Scenario II. This is due to the offset of information gain yielded by increasing the sample size and the
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Figure 2: The averaged classification errors (Left) and averaged empirical excess risks (Right) of all settings
with nses¢ = 50,000 in Scenario I.
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Figure 3: The averaged classification errors (Left) and averaged empirical excess risks (Right) of all settings
with nses¢ = 50,000 in Scenario II.
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Figure 4: The averaged classification errors (Left) and averaged empirical excess risks (Right) of all settings
with nses¢ = 50,000 in Scenario III.

information loss in the label-flipping mechanism. As expected, the additional logarithmic term significantly
alters the original curve pattern. Specifically, for the case with € =< log_l(n)nfl/ 2. the performance of f,

deteriorates significantly and approaches the worst case with e = 0. On the contrary, the performance of fn
in the case € =< log(n)n~'/2 improves significantly with E(f,) converging to 0. Therefore, e < n~'/2 appears

11
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to be the dividing line that determines whether the excess risk converges, which completely matches our
theoretical results.

5.2 Deep Neural Network Classifier

The simulation in this section aims to verify our theoretical results in Theorem 2, which mainly lies in two
aspects. First, we intend to verify the effect of € of Label DP on the optimal structure of deep neural networks
for classification problems. Specifically, as stated in Theorem 2, if label noise yielded by the randomized
response mechanism increases, a smaller deep neural network should be employed to strike a better balance
between the approximation error and the estimation error to achieve a better generalization error. Second,
the consistency in estimating the decision boundary is prohibited provided that € is adaptive to the training
size n at some specific orders. To these ends, we consider generating training datasets D = {(x;,y;)}1, as
follows. First, we set the regression function as 1., (x;) = 2?21 sin(2mx;;)/8+1/2 with x;; ~ Unif(0, 1) for
any i,j. Then we generate y; from {1, —1} with probabilities 1,,(x;) and 1 — 9, (x;), respectively. As in
the last simulation, we then apply the randomized response mechanism Ay to each y; to generate g; = Ag(y;)
with @ = exp(e)/(1 4 exp(e)). Then we set the hypothesis space to be the class of L-layer fully connected
neural network with equal width and the ReLLU activation function, where h denotes the widths in all hidden
layers.

The overall training process of the neural network is implemented in Tensorflow (Abadi et al., 2016) with
the Adam optimizer and learning rate being 0.001. Additionally, we employ the early-stopping technique to
monitor the training error with patience 10 and maintain the parameter with the smallest training error.
Let fnn denote the resultant neural network obtained from minimizing (4). We construct the associated
plug-in classifier as s, = Sign(ﬁm —1/2) and evaluate its performance by the empirical excess risk and the
classification error as in Section 5.1.

Scenario I. In the first scenario, we consider privacy guarantees € € {1, 2,00} and neural network structures
with L =2 and h € {8,12,16, 20,24} with . We report the averaged empirical excess risks and the classifi-
cation errors of all cases in 100 replications as well as their 95% confidence intervals in Figure 5. Clearly, if
€ = 1, the optimal neural network structure is h = 8, whereas those of the cases ¢ = 2 and € = oo are h = 20
and h = 24, respectively. Such results show that a smaller neural network is preferred when stronger privacy
protection of labels (smaller €) is considered, which coincides with our theoretical results in Theorem 2 that
the optimal neural network structure to achieve the fastest convergence rate of excess risk should diminish as
€ decreases. Moreover, as the training sample size n increases from 2,000 to 4,000, the optimal structure of
the neural network enlarges for the cases ¢ = 1 and € = 2 due to their new tradeoffs between the estimation
and approximation errors.
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Figure 5: The averaged classification errors (Left) and averaged empirical excess risks (Right) of all cases
with ngese = 50, 000.

Scenario II. In the second scenario, we fix the neural network structure as (L,h) = (2,16) and consider
training sample sizes n € {2! x 10%;4 = 0,1,2,3,4}. To verify our theoretical results, we compare two privacy

12
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schemes € < n=1/2 and € < log(n)n_l/ 2. We also include the case with invariant privacy scheme e = 4 as
a baseline. For comparing their difference in trend patterns, the multiplicative constants of two adaptive
privacy schemes are chosen such that they have the same starting point as € = 4 when n = 1,000. We report
the averaged empirical excess risks, the classification errors of all cases in 100 replications, and their 95%
confidence intervals in Figure 6. Clearly, the performances of the cases € = 4 and € < log(n)*rfl/ 2 improve
as n increases. However, the performance of case € =< n~'/2 presents a different pattern in generalization
performance as n increases. Most notably, as n increases from 8,000 to 16,000, it performance deteriorates
while the other two cases still observe significant improvements, showing that the additional logarithmic
term plays a deterministic role in the convergence of excess risk, which perfectly aligns with our theoretical
findings in Theorem 2.
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Figure 6: The averaged classification errors (Left) and averaged empirical excess risks (Right) of all cases
with Nitest — 50, 000.

6 Real Applications - Mnist Dataset

This experiment considers similar settings of the privacy parameter € as Section 5.2 in order to verify our
theoretical findings of DNN on the MNIST dataset (LeCun, 1998). The MNIST dataset consists of 60,000
training images and 10,000 testing images, and each sample is a 28 x 28 grey-scale pixel image of one of the 10
digits. In this experiment, we consider a binary classification problem by only including samples of digits 2
and 3 for training and testing due to their similarity in appearance. The resultant training dataset contains
12,089 training samples and 2,042 testing samples.

For the hyperparameters setting, we consider the neural network with three convolution layers with ReLU
activation and two fully-connected layers. For the three convolution layers, we set their kernel sizes and
numbers of channels as 4 x 4 and 4, respectively. Additionally, each convolution layer is followed by a max
pooling layer with size 2 x 2. The first fully-connected layer has 10 hidden units with ReLU activation,
and the last layer outputs the probability of an image being digit 2. As in Section 5.2, the neural network
is trained with the Adam optimizer and learning rate being 0.001, and the early-stopping technique to
monitor the training error with patience 10 and maintain the parameter with the smallest training error. We
evaluate of the trained model by the testing error on 2,042 testing samples. We consider training sample size
n € {2xix10%;i =1,2,3,4,5}. We mainly consider two scenarios, including the fixed privacy guarantee with
e € {1,2,00} and the adaptive privacy schemes with ¢ =< log(n)vn=1, e < n=/2 and € =< log™'(n)n= /2.
The averaged testing error of each case in 50 replications is reported in Figure 7.

Figure 7 presents similar results as in Section 5.2. First, when e is fixed, differentially private classifiers
improve in generalization performance as the training sample size increases and attain competitive perfor-
mance as the non-private classifier (¢ = o) when the training sample size is large enough. This result
accords with our theoretical findings in Theorem 1 that fixed privacy guarantee in the label DP slows down
the convergence to the optimal classifier with a multiplicative constant. In stark contrast, as shown in the
right plot of Figure 7, the convergence to the optimal classifier is prevented if € =< n~1/2, as boosting the
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Figure 7: The averaged testing errors with fixed e (Left) and adaptive e (Right) under different training
sample sizes in MNIST dataset

training size from 2,000 to 10,000 fails to significantly improve the testing error. This again aligns with our
Theorem 1
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A Appendix

Lemma 1 (Restatement of Lemma 1). Suppose the randomized response mechanism Y = Ag(Y) satisfies
e-Label DP with 6 = exp(e)/(1 + exp(e)), then for any x € X it holds that

E(G :1:) < DKL(HDY‘X :c|]P) ) SZ/{(G,.’B),

Y| X=x

where Dy, (JP’Y‘X m‘IP’le ) denotes the Kullback-Leibler divergence (KL) divergence between ]P’YlX , and
]P)Y|X:m7 ‘C( €, ) - 2(277( ) 1) (1 + eXp( ))727 and u(eam) = mln{U1(€7m)7U2(evm)} with U1(€ CC) =
2

(2n(x) —1)*n~ (@) (1 —n(x)) "' (1 +exp(e))~? and Us(e,x) = (2n(x) — 1) exp(—e).

Proof of Lemma 1: We first prove the lower bound of Dy, (]P’Y|X w|IP’Y‘X ), which is mainly based

on the Pinsker’s inequality (Sason & Verdi, 2016). Without loss of generality, we assume that n(x) > 1/2.
Define

P I—p
ﬂn@zpbg§+ﬂ—pﬂ%l_q—2@—®?

where p,q € [0,1]. Let S(p,q) take the partial derivative with respect to ¢, we get

9S(p, q)
dq

p l-p
=S4+~ +44p—q¢)=—-(p—q)(——— —4) <0,for ¢ < p,
14 (r—q) (p q)(q(l—q) ) q<p

where the last inequality follows from that fact that ¢(1—¢) < 1/4 for ¢ € [0, 1] and the equality holds when
p = g. Suppose that Ay satisfies e-Label DP, which is equivalent to set 6§ = exp(e)/(1 + exp(e)). Therefore,
it holds that

Dt (Pyix=alPy x_p ) > 200(®) = i(2))> = 22n(x) — 1)*(1 + exp(e)) > £ L(c, ).

Next, we proceed to prove the upper bound. For any pair of distribution P and Q, we have

Dgr(PIQ) =Dgr(P|Q) +1—1 < exp(Drr(P|Q)) —
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Recall that ¥ and Y take values in {—1,1}, we have

DKL(PY\X::c|P§|X: ) < exp (DKL(PY\X w|PY|X :z:)) -1

n(x) L-n(@) . _ n(z) 1 —n(=z)
<o)+ (= @)y = 1= (@) (55 = 1) + 0 =) (7 - 1)

n(@) — (@) @) — )y (n(@) - 7(x))
<w>(7ﬁ(w) )+ (1= n(@)( — )=

2

()1 — ()

Note that

@)1 (@) = (0n(@) + (1= 0)(1 = n(@))) ((1 = On(=) + 01 ~ n(a)))
=0(1 = 0)n’ (@) + n(@)(1 — (@) (0* + (1~ 0)°) +6(1 = O)(1 — n(x))?
> max{n(x)(1 - n(@)),0(1 - 0)}.

It then follows that

2

(n(=) — (=)
Dict (Prix—lPyix—.) < ey T =) 00 =0 ©)
Plugging 6 = exp(e)/(1 + exp(e)) into (6) yields that
(2n(x) — 1) s
D (Brix==lPri2) < rr L= a1+ (@@}~ 40
This completes the proof. O

Lemma 2 (Restatement of Lemma 2). IfY = Ag(Y) with 0 > 1/2, then f*(x) = f*(x) for any x € X and
D(f, f*) = (20 = 1)D(f, f*) for any f.

Proof of Lemma 2: By the definition of 7(x), we can obtain
2(e) =1 = (20 = 1)(2n(z) - 1). (7)

Clearly, 2n(x) > 1 indicates that 27j(x) > 1 provided that 6 > 1/2. By the fact that f*(x) = sign(n(x)—1/2),
it holds that f*(x) = f*(x) for any @ € X. Recall that the excess risk in terms of 0-1 loss can be written as

R(f) = R(f*) = E[| sign(f (X)) # sign(f*(X))[|2n(X) — 1].
Combined with (7), it holds that
R(f) - R(J*) =E[| sign(f(X)) # sign(f*(X))||271(X) — 1]]

=(20 - 1)E [|s1gn X)) # sign(f*(X ))HQTI(X)*lH
=(20 — 1)(R( ).

This completes the proof. O

Lemma 3 (Restatement of Lemma 3). Denote that k. = (e€ — 1)/(e + 1). Under Assumption 1, for any
0 € (1/2,1], it holds that

(1) P(27(X) — 1| < t) < w07, for any t € [0,1),

a1

(2) Bolf) = o) = re(4) ™7 (E[F(X) = F(X)[]) * for amy f € F,
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Proof of Lemma 3: By the assumption that ||f|lcc < 1 and the fact that 0-1 loss is upper bounded by
hinge loss, we obtain Ry(f) — Rye(f*) > R(f) — R(f*). Since ¢ is set as hinge loss, it holds that

Ry(f) = Ro(f*) =Ex [|F(X) = F*(X)[11 - 20(X)]]
SEx [|F(X) — f*(X)|I(|1 - 29(X)] > ¢)].

By the fact that I(|1 —2n(X)| >¢) =1 —I(|]1 —2n(X)| < t), it then follows that
Ry(f) = Ro(f*) 2t(Ex[|£(X)

—
>t (Ex [I£(X) - (X)) - 20t7)
=tEx [|£(X) - /(X)) - 2et7*

X)[] - 2P(11 - 29(X)| < 1))

where the last inequality follows from Assumption 1. Choosing ¢ such that tE[|f(X) — f*(X)|] = 4ct?*,
we get

a4l

Ry(f) = Ro(f*) = (4e) " (E[IF(X) = F(X)]])

Next, we proceed to establish the relation between fé(z,(f) - §¢(f*) and E[|f(X)— f*(X)|]. For each & € X,
the conditional risk is given as

By (4(f(X)V)IX = 2) = f@)(f (@) + (1 - i(z)é(~f())
=[on(@) + (1= 6)(1 = n(2))]o(f(@)) + [6(1 = n(@)) + (1 = O)n(@)|é(—f ()
= (Bn(@)6(f (@) + 001 = n(@)é(~f(@))) + ((1 = O)(1 = n@)é(f (@) + (1 - On(@)s(~f()))-

Taking the expectation with respect to X yields that

Ro(f) = B 3, (97 (X)T)) = 0Rs(f) + (1 = O)Rs(~1) (8)
Notice that ¢ is hinge loss, hence

Ry(f) = Ro(f") = Ro(=f") = Ro (1),

for any f with || f]|eo < 1. It follows that

Ro(f) = Ro(f*) = 0(Ry(f) = Ro(f)) + (1 = O)(Ry(~f) = Ro(~ "))
= (20 = 1)(Rs(f) = Ro(f7))

> (20 — 1)(4c)" /7 (E[If(X) - f*(X)H) T

This completes the proof. O]

Lemma 4 (Restatement of Lemma 4). Denote that M = max{EFNE(f) — EFNE(f*), EFPE(f) —
EFPE(f*)}. Under Assumption 1, for any margin classifier f, it holds that

R(P) = B) € M€ 5o (2 ™5 (RO = BT + () = R(P)).

where ¢ and v are as defined in Assumption 1. Particularly, if Assumption 1 holds with v = oo, for any
margin classifier f, (3) becomes

R =R <M< g v = 1), P = 1))
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Proof of Lemma 4: We first prove the left-hand side of (3). By the relation among R(f), EFNE(f), and
EFPE(f), one has

R(f) — R(f*) =(EFNE(f) — EFNE(f*))P(Y = 1) + (EFPE(f) — EFPE(f*))P(Y = —1)
max{EFNE(f) — EFNE(f*), EFPE(f) — EFPE(f*)}(P(Y = 1) + P(Y = —1))

max{EFNE(f) — EFNE(f*), EFPE(f) — EFPE(f*)}.

Al

Next, we prove the right-hand side of (3). We first define

S1(f) ={x € X :sign(f(x)) =1} and S_1(f) = {x € X : sign(f(x)) = —1}.

Clearly, it can be verified that Sy (f*) = {x : n(x) > 1/2} and S_1(f*) = {x : n(x) < 1/2}. With these, we
further get

EFNE(f) — EFNE(f*) = P(le ) </S (f)n(w)Px(w)dw —/S )

1
TPy =1) </Sl(fmsl n(x)Px (z)de — /suf*)\asl n(w)ﬂ”x(w)dw> ,

1
TRV =-1) (fslum“ e [0 ”<””>>Px<m>d“’> ’

where AS_1 = S_1(f*) N S_1(f) and ASy = S1(f*) N S1(f). We can easily verify that S_,1(f) \ AS_; =
S1(f*)\ ASy and S1(f) \ AS1 = S_1(f*) \ AS_1. Therefore, it follows that

n(w)Px(w)dw>

(1- n(w))Px(w)dw>

rp) - ren = ([, x| n@Px(@ye) + ([ (= n@)Px(@s— [ (1- () P ()i

= ( | wapx@a— [ n(w)Px<m>dcc> [ Pxteye

where A; = S_1(f) \ AS_1 and Ag = S1(f) \ AS;.
Then

/A n(@)Px (x)da — /A (@) Px () dz < / Px (x)dz + R(f) — R(f")

VANTSVADY

S/ I(|2n(x) — 1] < )Px (x)dx +/ I(12n(z) — 1] > )Px (z)dz + R(f) — R(f")
AjUA,

AN1UA,
<ottt [ rnte) - 11> 02 ey (@de + () - R(P)

<ct” +t7H(R(f) = R(f*)) + R(f) = R(f*)

where the last inequality follows from the low-noise assumption. Choosing ¢ = (R(f) — R(f*)) ™7 /c¢T+7 | we
get

/A ()P ()dz — / n(@)Px (@)dz < 27 (R(f) - R(f*) ™ + R(f) - R(f*)

Aa

Finally, we have

EFNE(f) ~ EENE(/*) < oot (2¢7 7% (R(f) — B(f*) ™ + B(f) ~ R()). (9)
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Using similar steps, we also have
EFPE(f) ~ BFPE(") < g (2 75 (R() = RO + R = AGD)- (10

Combining (9) and (10) yields that

max{EFNE(f) — EFNE(f*), EFPE(f) — EFPE(f*)}

S min(B(Y = 11),IP’(Y — 1)} (20—ﬁ(R(f) — R(f*))™ +R(f) - R(f*))~

The desired results immediately follows by letting v go to infinity, which completes the proof. O

Theorem 1 (Restatement of Theorem 1). Under Assumptions 1 and 2, for any minimizer fn of (2), there
exist some positive constants A1 and As such that

a{ (RO N oy R - ] < A (OB Ly

2
€ TEPy nkK¢

where Poy be a class of distributions of (X,Y) satisfying Assumption 1, s, = sup,cp infrer H(f, f*), and
Tn = SUprep, infrer D(f, f*).

Proof of Theorem 1: Proof of the upper bound. The proof of the upper bound mainly utilizes a
uniform concentration inequality. We first denote that H(f, f*) = R4(f) — Rs(f*). Next, we proceed to
prove that ]P’(H (fn, ") > 5n) converges to zero as n goes to infinity for some convergent sequence d,, > 0.

For any 6, > 0, we let F5 = {f € F: H(f, f*) > 6,}. If f, € Fs,, one has

n

up LSBT + M) — 30 6@ — AT () >0

feFs, M i=1

This follows from the optimality of ﬁl for minimizing (2). Therefore,

on i=1 i=1

Next, it suffices to prove the convergence of I with n. To this end, we proceed to provide an upper bound
for I. Define that H;; = {f € F : 20716, < H(f, f*) < 216,,27 10y < J(f) < 2o} fori >1and j > 1
and Hyo = {f € F: 2716, < H(f, f*) < 2'6,,, J(f) < Jo}. It can be easily verified that F5, admits the
decomposition as Fs, = U2, U7, H;;. With this, I can be upper bounded as

zn: wz yz )\nJ(f) > 0)

ZZ]P)(SUP *Zﬁb f}‘ T yz)+)‘ J(f]—') : qu(f(wz)gz)_AnJ(f) 20)

i—1 =0 \f€Hy T N4

S\H

I= <sup —Zas (Fr(@)T) + A (f5) —

f€‘7:‘571 =1

IN

fEHi] fEHij

ZZ (suvaw f37) = Z% fr2) = An( inf J(F) = Jo) + inf E(6(f(X:)Yi)) — E(e(

where z; = (x;,7;) and ly(f, z;) = o(f(2:)y:) — E(¢(f(X;)Y;)). Here it is important to note that

inf E(¢(f(X,)Y;) —E(b(f5(X)Y:) = inf Ry(f) — Re(f*) — Ro(f5) + Ry (f*)

FEH:; =
= inf H(f. )+ H(f5 £ = inf H(F.F)+ (@0 - DH(f5. 1)
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Let V(i,7) = Ay (infren,, J(f) — Jo) +infpen,, E(ls(f, Z)) —E(ls(f5, Z)). By the definition of H,;, we get
V(i j) = M(i,j) = \(277" = 1) Jo + (2" = 1/4)6,, fori,j > 1, (11)

where the inequality follows by assuming that (20 — 1)s,, < 1/44,,. Next, we suppose that A, Jy < 1/40,,, we
further have

M(i,0) > (271 —1/2)8, > 2726, fori > 1. (12)
Plugging (11) and (12) into I, it follows that
ISZZP( sup fZlqg [r zi) — Zl¢, fszi) >Mz]> ZZPZ]
i1 j=0 J€Mi; M i—1 j—0

Therefore, bounding I reduces to bounding P;; separately. Let @, = %Zz (l¢,(f]_-,zz) lo(f, zz)), then
P;; can be written as

P;; :P<sup Qn—E[ sup Q] = M(i,j) — E[ sup Qn]>

feH; fEH fEH

Next, we proceed to bound P;; by the Talagrand’s inequality (see Theorem 2.6 in Koltchinskii, 2011). To
this end, we first establish the relation between E[sup ey, Qn] and M(i, 7). Let q(f,2) = o(f5(zi)yi) —
o(f(x;)y;) and 2’ = (21,...,2],) be a ghost sample.

E fselg)ij Qn‘| = [fiugj 7;(] fv Zz (fv ))
1 n 1 n ,
=E. lfi&ﬁj E. (ﬁ Z;Q(fv Zz) - E ;Q(.ﬂ Zz)|z)]
1 1«
<Ez z’ - yeL) T ’ ;
<Ewsr | s (n;qu )= 5 z>)]
*]Ezz o [ sup %ZO—Z( (fazz) - (fazé)))‘|

n

Zazq frzi )} = 2R, (Hij)-

1
rer, \n &

feH; ( i—1

By Theorem 3.11 in Koltchinskii (2011), it follows that there exists some constant Cs such that

v Jo

where ;5 = \/SuprHij 5 i (20 ooy = (/5 2iei @(f,20) , and N(Hij, La(P,),u) is the
minimal number of Ly(P,)-balls of radius u to cover H,;;.

Notice that [ \/V1(0)log(u=1V,(0))du is concave function with respect to o;;, therefore

Eoij

V(0 Toglu V5 (0))du < /F\/v1 ) Tog(u1V5(0))du

IE{ /0 " \/Vl(@)log(u—1V2(®))du} <

0

By the definition of oy, we have E [03,] = E [sup = LS A, zl)} Using symmetrization and con-
traction inequalities, we get

E[07] < sup E[¢*(f, 2)] + 8Rn(f, Hyj).
fEH
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Next, we proceed to bound E[¢?(f, Z)].

Elq*(f. 2)) = E[6(3(X)F) — o(/(X)T)]
OB [o(f(X)V) ~ o(f3(X)V)] +2E[s <f;<X>?>—¢<f<X>?>}2

)
<98 [6(/5(X)V) — 6(*(X)V)] + 2B [|6(£(X)V) — 6(/3(X)V)]
<2s, + 2B [|£(X) — [3(X)|] <2710, + 2E | £/(X) - f3(X)|], (13)

where the second inequality follows from the assumption that ||f||cc < 1. Combining this with Lemma 3
yields that

—

sup Blg(f,2)) < 276, 4 201((20 = )7 (Bo() - Ry(f*))) 77 = 4C1 (20 — 1) 77 (2'5,) 71

where C1 = (4C)ﬁ. Consequently, we get

02 Ulj (f)
\/7

Rn(Hij) < VV1(0) log(u=114(8))du, (14)

where U;;(f) = min {\/401(20 — 1)7 7T (2i6,) 7T + 8R,(Hi;),1} due to the fact that |q(f,Z)| < 1. Then,
the right-hand side of (14) can be upper bounded as

Cy 79 CoVs(O) V(O] [Uis(D/Va(8) -
[ TR A [ 6,
0

f
CQVQ Vl 02 V1@U¢j ©
SV A

Combining (15) with (14) yields that

CPA(O) (401(20 )T (@60 + $Ru(Hy) (%2(6)

(Rutr)" < " Uul)” (19

Solving (16) gives R, (f, Hij) < max{V;(0)n~t, n=1/2V,(0)Y/2(20 — 1)_2(W11>5ﬁ(”+1)}. Therefore, we get
Rn(f, Hij) < 1/49, provided that

Z1C )/n) * (20— 1) log(n/V1(6)) < €5, (17)
for some large constants C'. Hence, as n goes to infinity, it follows that
Ro(f, Hij) < 1/46, < 1/4M (i, 7).
With this, we get

E[ sup Qn] < Ru(f, Hij) < 1/4M(1, j).
feEH

Therefore, P;; can be further bounded as

feHj;

P; <P ( sup Qn —E[ sup Q] > 1/2M(i,j)> : (18)
fEH;
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Applying Talagrand’s inequality to the right-hand side, it follows that there exists some positive constants
C4 such that

nM (i, j) M (27.7)
Py < Cyexp ( 50, log (1 + oE 12]})

As proved above, we can verify that there exists some constant Cj

Elo3] < sup Elg*(f, 2)] +8Ra(f, M) < C5 (20— 1) 77 (2'6,) 77 + M3, ) ).
feH;

Notice that %JT)] converges to 0 as n increases, therefore there exists some constant 0 < C7 < 1 such that
log(1+ z) > Crx for z € [0,1/(2C5)]. It then follows that

ConM2(i, §) ) .
AC4C5((20 — 1)~ 77 (M (i, )77 + M(i, j))

Pij S 04 exp (—

Since M (i, ) < (20 — 1)” 51 (M (i, 7)) 7T when 6 — 1/2 = o(1) and M(i, j) = o(1), we have
Py < Cyexp (= Csn(20 = )77 M7 i, ),

where Cg = C;/(4C4C5). Therefore, we have

n o n n o n y+2 n 42
ZZP <ZZC4eXp< W) +ZC4eXp <—W> =1 + Is.

i=1 j=0 =1 j=1

Note that for any 7,j > 1,

a+2
AT

M3 (i, §) > (271 = 1/4)8, + M (2771 = 1) Jo)”
>(201 — 1/4)5? + (2771 — 1)(Anjo)m

>i/2007 + (5 — 1)(Ando) 7F1.

Hence I, is upper bounded as

y+2 +

y+2
o 2007 + (j — 1)(An o)+t
SZZ@GXP —Csn i/ + )( 0)
i=1 j=1 (20 —1)"7
=
exp <W> a2
2(20—1) " 71 —Cgnd,)
=04 e e SACsexp [t |
—Cgnd Y+ 08771(/\7LJ0 T 2(29 - 1) y+1
I—exp| — 2= 1 —exp
2(20—1)" 7H1 2(20-1) 7T
% 2—-1/v
where the last inequality holds when max < exp (W) , €Xp (W)} < 1/2, which holds
2(20—1) 7+ 2(20—1) 7+
true when n goes to infinity. Similarly, for I>, we get
n 2 2
4C Cgndy
I, < 26’4 exp —Z/Sinw < 2Cyexp —LW
pat (20 — 1)~ 7+ 4(20 — 1)~
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Combining I; and I, it follows that

Csnéyy o
T<6Csiexp | ——20 | =Tyexp | -To—t—— |,
4(20 — 1)~ 741 (20 — 1)

where 77 = 6C4 and Ty = Cs/4. Therefore, we conclude that
P(ﬁ(ﬁ“f*) Z(Sn) ngeXp _T2 9

With a choice of &, such that 6, > Co((26 — 1)_W|@|n log(n/|©]))" G for some positive constants

Cy > 0, we have H(f,, f*) = 0,(1), which implies that E(H(f,, f*)) = O,(3,). Notice that T; and Ty are
both independent of 7, therefore we further have

42

~ o~ ndy
sup P(H(fp, f*)>6n) <Tiexp | -To——— | . 19
sup P(H(Fo 1) 2 02) < Tiexp | T (19)

By the relation between excess risk and excess ¢-risk Ex (5(]77” f*)) <E; (ﬁ](ﬁl, f*)) (Bartlett et al., 2006),
we further have

sup E5(D(Jus 1)) = O(0).

TEP,

Combining this with the Lemma 2 that D(f,, f*) = (20 — 1) D(fn, f*), we get

sup E~ ( (ﬁ,f*)) =0(5,(20 —1)™1).

WE'P—Y
The fastest rate for d,, can be obtained by choosing the fastest rate such that the right-hand side of (19)
converges to zero with n and (17) holds, which yields that
a4l v
= (V1(0)/n) 7#2 (20 — 1)~ 7= log(n).
This completes the proof of the upper bound.

Proof of lower bound. We first define the minimax excess risk as

W, 1rf1f sup E~ [R(f) - R(f*)]’
TEP,

which admits the decomposition as

Wi = inf sup {E5[R(f) — inf R()] + inf R(f) ~ R(7) .

f TEPy

where the second term on the right-hand side denotes the approximation error under the 0-1 risk. In what
follows, we proceed to consider a sub-family of P, such that inf e R(f) = R(f*). For example, let P’ C P,
be such a sub-family, then we have

W,, >inf sup {]EB[R(f) _;relg'R(f)]} + sup ( inf R(f) —R(f*))

fowep mePy NFEF
=inf sup {E[R(f) ~ R(U]}+ sup (fnf ()= R()
==l {B3 (R0 = RO} + s (jut RO = RO)).
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where the last inequality follows from Lemma 2 and P’(6) is a set of probability measures 7 on (X,Y) such
that any probability distribution 7 € P’(0) is associated with an = € P’ with 7 and 7 having the same
marginal distribution on X and Y = Ay(Y).

To provide a lower bound for W, it suffices to bound inf SUP= 5, ) {E~[§(f) — E(f*)] } For ease of
notation, we denote W, = infy SUPZ o) E~ [é(f) - é(f*)] and Pw( )= {F(X,Y):Y = Ay(Y),7 € Py}
Then we proceed to construct P’'(0) C P, (0). First, following from Lemma 3, we have for any 7 € P, (6)

P(12(X) 1] <) < (20— 1),

where the probability is measured under 7.

By Assumption 2, we know VC(Gr) =< V1(0). For any N such that N =< V;(0), there exist N distinct
points @1, ...,xy such that {x1,..., &N} is shattered by Gz. Therefore, we consider distribution supported
on {x1,...,xn}. Let w € (0,1) be a number satisfying (N — 1)w < 1. Let @ be the probability measure on

X such that
w, i=1,...,N—1,
;) =
Q) {1—(N—1)w, 7= N.

In what follows, we consider the hypercube C = {—1,1}¥~!. For any o = (01,...,0n5_1) € C, we define the

regression function as
Ito;h .
- Hh i=1,...,N -1,
N (i) = .

1, i=N.

Next, we let T denote the associated probability measure on X' x {—1, 1} with @ being marginal distribution
on X and 7j,(x) being the regression function. With this, we obtain

P(|2775(X) — 1| < t) = (N — L)wI(h < t).

By assuming (N — 1)w < ¢(20 — 1)77h7, we have P(]2n,(X) — 1] < t) = ¢(20 — 1)77t" for any ¢ € [0,1),
which indicates that 7, € P, (). By setting P'(8) = {%o : o € C}, we have

W, =inf sup E[R(f) - R(f2)],
T €P(6)

where fi(x;) =o0;fori=1,...,N — 1.
Under 74,
R(f) = R(f3) = B=_[|sign(f(X)) # fa(X)||1 = 25(X)]]

— 2B [Jsign(£(X)) - f2(X)I1 — 27(X))]

2
> LB [sien(£(X)) — f200)1(1 - B(1 - 257(X) < 1))]
> (20— ) 0) 7 (B, [[sian(F(X)) - £50)])
> (20— )@ (S () — o))

i=1
Under the distribution 7., we have f*(x;) = o0; for i =1,..., N — 1, which then implies that

a+1

R(f) = R(f3) = (20— ) 70w (Z [sign(f (@) =il )
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Taking the expectation of both sides with respect to D yields that

a+1

Es(B() - R(f3)) 2(260 - 1)(41‘%)‘1/%%“1@5[(% [sign(f(z:) — i) |

(- a0 e (X s - o))
=1

where the second inequality follows from Jensen’s inequality.

241

For ease of notation, we let X (w,~,0) = (20 — 1)(4'=7¢)" V7w ™~ .

v, N1 .
_sw B (R0 - (1) Zai%rjw)X(wm@)]Eg ( > Isien( (@) —ail)].
>y 3 Xy Ok, [(g |sign(f () — il )|
2N il C;CX w V,H)Eﬁrl [T_:I(Sign(f(wi)) # 02-)]
=X (w,~,6 (QN T ZZE [I sign(f(x z))#al)])%l
ocC i=1
=X (w,~,0 (ZQN 12]}” sign(f ))7&02»%1
ocC
For each i, we observe that
2N 1 UZGCP (Slgn z;)) # Uz')
Z PFU(Sign(f(wi))?éUi) Z P~ (Slgn flxz) #0o )
oioi=1 Py

:2]}”+1-(Sign( Fla:)) # 1) + QIP’,i(sign( f(a:)) # —1) > 2 — 2TV(PE!, PET),

where P; = QN% Eam:l IP’;G, P_, = 2N D N - and TV(P%,,P";) denotes the total variation
between P?f and P®?. Notice that for any probability measures P and @, we have

=5 [ Io@) ~ a@)ldz = 5 [ 1V(@) - Vi@ Vol@) + V(@i
<3( [ (Vi@ - va@)'az) " ( [ (Vi@ + Vai@)'az)

H?(P,Q),

where H2(P, Q) denotes the Hellienger distance between P and Q. Let o and o’ be two indexes such that
oy =o] for | #iand o, = —o} = 1, then we have

TV(PSP, PEF) < ) %TV(P?”,P%") < max TV(PL", PL") < maxH(]P®" P2™).

)
+L T/ To!
o,0’

By the definition of 7, and 7,/, we get
N-1 2
HQ(P;"’P;U/) =w Z (\/770'(33%) - \/770’(3% ) (\/1 — 1o ( 151 \/1 — No’ mz )
i=1
=2w(1 — /1 — h?) < 2wh?,
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for any h € [0,1]. By the fact that H?(P®" Q%") =2 —2(1 — 271 H?(P,Q))", we have
H2(PE",PE" ) =2 — 2[1 —w(l — V1 - h2)]" <2 —2[1 —nw(l — V1 - h?)]
=2nw(1 — /1 — h?) < 1/16,

where the last inequality holds by choosing w and h such that wh? < n=1/32, from which it follows that
TV(P%,;,P";) < 1/4. Notice that w and h are chosen to satisfy (N —1)w < ¢(20—1)""h" and wh?® < n~'/32.
For simplicity, we obtain the following solution by considering the case equalities hold.

1 v 2 2 2+
N —1)7+2 (20 — 1)~+=2 c (N — 1) 7+2(20 — 1) 7+
(V- T e ) ey

h = :
(32¢n)+2 (32n)7+2

Therefore, we can conclude that

swp B (R() — R(73)) (20— @i ek 2D T8 - TR (8N - )y =

L_'.l
To€P(0) (32n)7+2 2
L‘F; B 72~7+22 41
:(29—1)(41—”)‘1/75%@_1) - <2€+1 S i (§) i
(32n)~+2 2
_ o/ N-—1 T3 /3\5F
=20 — )4V (= )T (2) T
(20 = 1)) e (3271(2971)2) (2)
Choosing N = V;(0) yields that
. = = Vi(©) \1%
~ _ > _ )
it ig(e)mp(w) R(r") = (20 1>A2(n<29_1>2) ,

6746 Y41

where Ay < (41=7)"V 72 (271) 557 (3/2) .

Following from Lemma 2, it holds that

inf sup Eg(R(f) - R(f*)) > Az(nvl&)% + sup ( inf R(f) — R(f*)).

f TEP,

This completes the proof of the lower bound. O

Corollary 1. Suppose that F is chosen such that s, = 0 and € is adaptive to n such that ¢ = o(1). There
exists some constants Az > 0 such that sup,cp Ex [R(fn) — R(f*)] > As provided that e < n=1/2.

Proof of Corollary 1: By Theorem 1, we have

oup B5[R() - /(7 2 4 () )

TEPy

Since s, = 0 implies 7,, = 0, we further have

s B5[R(G) - () = 4 (O

TEPy

Without loss of generality, we assume that ¢ < 1 since € = o(1). Then, by the definition of ., ke < € when
€ — 0. Therefore, we have

Vi(©) _ Vi(©)(exp(e) +1)* _ Wi(©)

nk2  n(exp(e) —1)2 T ne2e?’

(20)
where the last inequality follows from the fact that e” —1 > ex for any x € (0,1]. Further, if e = o(1/y/n), we

have ne? = o(1). Therefore, it follows that V;(©)n=tk 2 > CV;(0)e~2 for some constants C. The desired
yF1
result immediately follows by setting Az = (C’Vl(@)e_Q)TL and this completes the proof. O
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Theorem 2 (Restatement of Theorem 2). Let P, g be a class of probability measures on X x{—1,1} satisfying

Assumption 1 and n(X) € H(B,[0,1)?,M). For any minimizer fn, in (4) with L, =< log(k.n/log(n)),
2p

N, < (ken/log(n))2#+r, B, =1, and P, < N,log(k.n/log(n)), we have

B(y+1)

( 1 )W < sup Ex [R(gnn)_R(f*)] S’(

2
Nke TEP~,3

28(y+1)
log n) BT 7D
nk2 '

Particularly, sup cp , Ex [R('SVM) — R(f*)} = o(1) given that € > n=1/?*< for any ¢ > 0.

Proof of Theorem 2: Proof of the upper bound. Let Z = (Y +1)/2. We intend to establish the
connection between the excess risk of fo, and || fun — 0|32 (px)- Here the proof is mainly based on Lemma
5.2 in Audibert & Tsybakov (2007).

R(Sn) = RU) =E[25(X) = 1] 1 (Gan(X) # (X))
OB [(X) = 1/2] - I(Ean(X) # [*(X)) - T((X) ~ 1/2 < 1)]

+ 2 [ii(X) = 1/2] - T(3an (X) # £(X) - 1(i(X) = 1/2] > 1)
<2E | [ii(X) ~ Fan(X)] - 1(17(X) = 1/2] < 1)]

+ 2B [7{(X) = Fan(X)] - 1([7(X) = Fan(X)] > 1)), (21)

where the last inequality follows from the fact that ’ﬁ(X) — 1/2| < ‘ﬁ(X) —ﬁm(X)|, when 5,,(X) # f*(X).
Next, by Cauchy—Schwarz inequality, (21) can be further bounded as

28 [[f(X) — Fun(X)]| - (X0 — 1/21 < )] + 2E[[7(X) — (0] - I(7(X) = 1/2] > 1]
<2077 = Fanllz2 @) VET(X) = 1721 < 1) + 2] = Fanll72 () /¢
<2'2 |5 — ﬁm||L2(IPx)C’€e_7/2’5W2 + 2|7 — ﬁm”%zmx)/t'

~ ’Y
Choosing t = || fpn — n|| Px) , we get

~ ~ 29+2
R(sun) — R(f*) S Ke Gk 7 — fnnHL2(]P’x)
Subsequently, by Lemma 2, it follows that

y+1

R(Ean) = R(%) = 57 (RGan) = RUM) S (52205 = FanlFeen)) - (22)

Next, we proceed to establish the convergence rate of || — J?nn”%Z(PX)' Let fﬁg ={f e FVN |5 -
f||2L2(PX) > 0, }. For any 4, > 0,

~ ~ 22 > < —1 * NN 1 _ 2 >
P17 FonlEsem) 2 0n) <B( i 07t D (finlen) =207 = /(o) =507 2 ),
where f = =argmingzyn Ilf — T]||L2 (Px)"

For ease of notation, we denote that U, (f) =n~' S0 (f(a;) — %)% and U(f) = E(f(X) — Z)2. Then, we
have

B = FanllFaery 2 00) <B( 0k Ua(frn) = Ua(F) 20).
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Notice that f,,%\; admits the decomposition as FVN 5, = Ui M with H; = {f € FNN 915, < || —
flZ2(5) < 200} Therefore, we further have

P(17 = Fanll 3oy 2 02) < D_P( inf Un(fin) = Ualf) 2 0).

Clearly, it suffices to bound }P’(inffeq.ti Un(fin) —Un(f) > 0) for upper bounding IP’<||T77 ﬁmHQLQ(PX) > 5n).
Fori>1,

P(fléﬂi Un(fon) = Un(f) 20)
p(flenfl ~U()] = [0 = UH] 2 jinf U = U(F7))
=P ( inf [Ua(£) = UFi)] = [Ua(f) = U(R)] 2 inf U(F) = UG + UG -~ U(Fn)

<P(inf [Unlfi) = U] = [Unl) = U] 2 2700 = 12 = laceny )

Assuming || £, — 7||32 Px) S 0n/2 yields that

B( inf Un(fin) = Un(f) > 0) <B( inf [Un(frn) = Uf)] = [Ual)) = U(1)] 2 27%8,,).

feH:
Denote that M; = 2¢725,. We turn to establish the relation between the variance of ( x (X)) — 2)2 -
(f(X)—Z)% and M,.
sup Var[(f::n(X) - Z)Q - (f(X) - 2)2}
feH:
= sup Var| (f,(X) = /(X)) (fn(X) + F(X) = 27)]
fet:
< sup B[ (F7a(X) — F))* (Frn(X) + F(X) = 22)°] < sup 4V £ = Fla(os
FeH,; feH,

< sup $V2 (I = i3 2(ere) + 17— Fl3a(ey)) < BAVEM; = Vi

In the following, we proceed to verify conditions (4.5)-(4.7) in Shen & Wong (1994). First, the relation
between M; and V; directly implies (4.6) with 7' = 32V,2 and € = 1/2. Second, by Lemma 5 of Schmidt-
Hieber (2020),

tog N (€ FA™ (L Ny Pas B V), | -l eix) ) <
2L (P, + 1) log (e’l(Ln +1)(Ny, + 1) max{ B, 1}).

It then follows that
V.

i

1/2

\/IOgN<E JT_.NN( nvN’n7PnaBn7Vn)7 H ' ||L°°(]P’(X))d6/MZ

= M;

/ w \/QL . + 1) log ( YL, 4+ 1)(N,, + 1) max{B,, 1})de/Mi. (23)

Notice that the right-hand side of (23) is non-increasing in ¢ and M;, it then follows that

/ 1/2\/2L P, +1)log (e YLy + 1)(N, Jrl)max{Bn,l})de/M

V11 /2

< \/2Ln(Pn +1)log (e—l(Ln +1)(N, + 1) max{Bn, 1})de/M1.
M
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With this, condition (4.7) can be satisfied by imposing

/ e \/QL . + 1) log (e YL + 1)(N, —|—1)maX{Bn,1})de/M1 <nl/2, (24)
5 M1

which directly implies the condition (4.5) by appropriate choices of L,, and S,,. By Theorem 3 in Shen &
Wong (1994), we get

~ rs 2 — TLM i—2
P(Hn_fnnHL2(]P’X) Z5n) S;EXP( B12V2M, + 20, /3> Zexp(—n? 1) )
By the fact 2072 > (i — 1/2) for i > 1, there exists some constants C such that

IP(”ﬁ* ﬁLnH%?(PX) Z 5n) ,S exp(—C’nén),

provided that nd = o(1).

Next, we proceed to consider the approximation error of neural network to meet the assumption that || £, —
77HL00(]P ) < d0n. Notice that n(X) € #(5,[0,1]7, M). By Theorem 5 of Schmidt-Hieber (2020), there exists
a class of neural networks FYN(L,,, Ny, P, By, Vi) such that for any 0 < 1, < 1

inf _ o <l$_1
fefﬁN(Ln,Nn,Pn,Bn,Vn)Hf ML @x) < K Yn,

where P, < (k7 '%,) 7P/ P log(ke /tn), No =< (57%,) /8 B, =1, V,, > M + 1 and L,, < log(k/1n). Let
1}, denote the optimal function in F, NN(L,, Np, Py, By, oo) to approximate 1. Suppose that 7, is a L-layer
neural network and formulated as

Mon(®) = ALy19L(x) + bri1,
where g1, (x) = hp ohp_j0---0hy(x). We construct a new neural network that 7,,, as
TN (2) =015, () + (1 = 0)(1 — 0y, (2))

=0A+19L(x) +0br11+ (1 —0)(—Art1gn(x) + (1 —bri1))

=20 —-1)Ar1195(x) + (20 — Dbry1 + (1 —60)1141.
It can be easily verified that 7, € FYN(L,,, Ny, Pn, By, Vi,). This along with the fact that 7j(z) = 0n(zx) +
(1-0)(1 —n(x)) with B,, > 1 results in

[Mnn = Ml L @x) =00, + (1 —0)(1 —npy,) — 00— (1= 0)(1 —n)|[z=@x)
=(20 = Dllnpn — nlleo@x) = Kelltnn = nlle@x) < ¥n.

Therefore,

= M = o 18 o N = Ty < an — Ty < 02
Plugging P, =< (k- '4,) P/ log(ke/tn), Nn = (k7140,)7P/8 and L, =< log(k./vy) into (24) yields that
ng/(%)w;p/(?ﬂ) log(¢; 1) < (né,)'/?. Combining this with the assumption that 2 < 6, it follows that

§p =< P2 = /i?p/(wﬂ’)(log n/n)?8/(26+P)  Plugging this into (22) yields that
26(3+1)

log n) (1211 72)

nk2 '

E[R(m) — R(F)| £ (

Notice that the proof of (25) is independent of the distribution of X, therefore (25) holds for any distribution
in Py g, which implies that

(25)

28(v+1)
log TL) BGI2 TP

2
nKZ

sup E|R(3) — R()| 5 (

mEPy,8
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Proof of the lower bound. The proof is based on the well-known Assouad’s lemma. The overall proof
for the lower bound is mainly based on the proofs Theorem 3.5 and 4.1 in Audibert & Tsybakov (2007). We
first introduce the partition {X;}7, of the cube [0, 1]” using the grid G, C [0, 1]” defined by

2k +1 2k, +1
G, = p k; 0.---.g—1Y.4 1w
q {( 2q b ) 2q ) 6{7 7q }726{7 7p}}?

where ¢ > 1 is an integer. For any « € R?, let n,(x) € G, be the unique point which is the closest point to
x € RP among all points in G4. Without loss of generality, we assume the uniqueness of n,(x) by choosing
the one closest to 0. We define a partition {Xi’}?; of RP as follows. For x,y € RP, x and y are in the
same cell A; if and only if n,(x) = ny(y). Then, for m < ¢P, we define &; as X; = &/ for 1 <i < m and
Xo=RP/U™, AX,.

Let w : Ry — Ry be a non-increasing infinitely differentiable function such that « =1 on [0,1/4] and u =0
on [1/2,00). Let ¢ := Cyu(||x]]), where Cy < 1 is taken small enough such that ¢ € H(5, [0, 1]?, M). For a
given o = (01, ,0m) € {£1}™, we construct a distribution 7, on R? x {—1,1} as follows. Let u be the
Lebesgue measure. For 0 < w < i and Ay C Xy with u(Ap) > 0, we construct the marginal distribution
Px on RP that has the density function

MECTRIEIR x € B(z,q7'/4) for some z € Gy,
PX (ZB) = ( - mw)/ﬂ(AO)v T e AOv
0, otherwise.

The conditional distribution on {—1,1} is defined by

Ua(l'):IP’(Y:HX:a:): 2 ’ or & € Aj,] ’ , M,
1/27 CL’GXO7

where p(x) = ¢ P¢(q(x — ny(x))). Correspondingly, for any o, 7, () is given as

1+(29_1)‘7j90(m) fOI' x € X: 17=1.--- m
Na :0~ +1_0 1_~ _ P} ) ]7.7 ) ) )
o () = 071y (@) + (1~ 6)(1 ~ 7y (2) {1/27 oo
Notice that D*p = ¢I*I=9D*(¢(z — n,(x))) for any s € N with |s|] < 8. Thus, n,(z) belongs to
H(B,[0,1]7, M).

P(Ino (@) — 1/2] < t) = mP( (e — ny(w)) < 2t”)

=m Xr — X B —w X
B B(wo,(4q)*1)1(¢(Q( ) = 21q )M(B(O»(4Q)_l))d

w
=m I(qb T S2tq5>7dw:mwl(t2C’¢/(2qﬁ)),
s ) =) i 17
where xy = (ﬁ,,ﬁ) Clearly, the low-noise assumption of 7, can be satisfied by setting mw <
C;I/(Zqﬁ)"y. Let P, 3 denote the set of joint distributions of (X,Y") satisfying the low-noise assumption
and n(x) € H(B,[0,1]?, M). For any o, we have 7, € Py g, implying P’ = {n, : 0 € {—1,1}""} C P, 3.
Therefore,

sup Ej[R(Gun) = RUM)| 2 sup E5[R(Gun) = R

TEP~,3

Let P’ be a set of probability measures on (X, Y) satisfying that for each T, € P’ there exists an 7y € P’
such that 7, and 7, have the same marginal distribution of X and 7j,(x) = e (x) + (1 — 0)(1 — 1o (x)).
It follows that

sup Ex|R(3un) fR(f*)} > (20-1)"" sup Ex|R(3un) fﬁ(f*)].
e EP! ;065/
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Next, we proceed to bound sup~ = E [E(gm) — E(f*)] Notice that f* varies with the value of o,

therefore we use f to characterize its dependence on o.
sup By [R(3un) — R/ SR {B5 [Exerx [120:(X) 115, (x)00,xen ] |
71’0-677’ 7)/

(29 = 1) sup {Eg [Bxeex (015, x02mxen ]|}
e €P’

where 1¢,; = 1 if the statement z is true.

Let II be the distribution of a Rademacher random variable o, that is, II(c = 1) = II(¢ = —1) = 1/2. Then

S {85 [Bxor [#001 6, c0p; 00 2 B {B [ [2001 5, 0001, 000}

Note that for € X, ||z — ny(z)| > (2¢)~* and p(x) = 0. Thus, we have

m

Enn {5 [Ex~ex [0, o0rs00)) | = ;EH’" {B5 [Bxerx 015, 0ppmixen]] |-

Let 0, = (01, ,0j-1,7,0j41, - ,0m) for r € {0,£1}. Here o;, denotes a vector deduced from o by
fixing its j-th element to r. We have

Epm {Eg [EX~]P’X [‘P(X)]l{gm(X)#Uj;XGXJ}H}

dm}
:]EHm {]E"' [d n EXNIP’X [@(X)ﬂ{gnn(x);éo],XeXJ}H }

O'Jo
dr
i I by O]EX”PX {‘P(X)]l{?mx#oj;xexj}} '

where 75, , has the same marginal distribution as Px and 7y, , and 7, differ in the conditional distribution
over the points in &;. Specifically,

~ 1/2, ifx € X;,
Moo (:17) = ~/ J .
Nlo(x), otherwise.

It then follows that

E E E d7g E X)1
=t ;gm oIl Wgo X~Px [“P( ) {Zn,w,(X)yéaj;Xexj}]
75
dml
=Eppm—1 E;gjon%NH 7 O]EXNPX[ (X)]I{XGX;'}]I{ZW(X)#W}}
J»
dm?
=B Extopx |0(X)xex) By Eojon Fn_ol{;m(x#oj}
o,
1 ~ -
>Erm—1 {EX~]P’X |:90<X)]I{X€Xj} (ip;g . (Snn(X) 7é 1) + o (snn(X) 7é _1)):| }

Z%Enm—l {EXNIP’X [@(X)]I{XGXJ}] (1 - TV(mg Mo ZJ —1)} ’

where TV is the total variation distance between two distributions. Since Px (X;) = w, we have

Enn {Eg [Exrx [0CO1G, 0 20xe ]|} 2 SExrx (0(X)|X € X)) (1= TV, 72, ),
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Notice that the above inequality holds for any index j € [m]. In conclusion, we obtain

m
mw ~n ~n
> Enn {Ez, [Exeex [$OO1G, x)s0,xc ]| | 2 T Exex (90| X € ) (1-TV(F, 75, ).

j=1

Now we bound TV (72 72 ). First, it holds

01,17 " 01,—1

TV, 5, ) = 3 ()l - w0,

=1

where V; = TV (7L, 7}) with 7, = s, (| X € X1). Note that

Vi< HFE 7)) = |2 (1 - {1 - WD

where H is the Hellinger distance and

1- w = Excupy (VI— (20— 1)2¢(X)‘X eX) = V1-1

Since 1 — (1 — 2?)1/2 < % for I > 2 and z > 0, we have V; < by/I and

n

TV(FL, 7 ) < biP(Zew = l)\/z < by/nuw,
=1

i=1
where ¢; are i.i.d. random variables such that P(e; = 1) = w =1 — P(¢; = —1). In conclusion, we have
sup {Eg [E(E‘Tnn)} - E*} > mwb' (1 — by/nw),
TP

where

b= {1 - (E [\/1 (26— 1)2¢2(X)‘ X e Xj]ﬂ . (20— 1)g~",
b = E<(29 - 1)¢(X)’X e xj) = (20— 1)g~".
As a result, we have

sup Ex {R(gnn) - R*} > mwqP(1— (20 — 1)~ P /nw).

TEP~, 8

8
Take w = 471(2(1;771)2 and m = ¢P, we obtain

(v+1)B
_ qﬂﬂ' 1 (CE=ET
sup Ex {R(snn) — R*} > =

~ 2 2
TEP~, 8 nke nke

a1

by taking g < (n(20 — 1)?) @757 Particularly, when € < n~1/2*¢, we have
EEETICES 284y

logn) BO+FP(FD) (log(n)) BT T

— 0 asn— oo.
nk2 n2¢

el

This completes the proof.
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