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Abstract

Federated bilevel optimization has attracted in-

creasing attention due to emerging machine learn-

ing and communication applications. The biggest

challenge lies in computing the gradient of the

upper-level objective function (i.e., hypergradient)

in the federated setting due to the nonlinear and

distributed construction of a series of global Hes-

sian matrices. In this paper, we propose a novel

communication-efficient federated hypergradient

estimator via aggregated iterative differentiation

(AggITD). AggITD is simple to implement and

significantly reduces the communication cost by

conducting the federated hypergradient estima-

tion and the lower-level optimization simultane-

ously. We show that the proposed AggITD-based

algorithm achieves the same sample complexity

as existing approximate implicit differentiation

(AID)-based approaches with much fewer com-

munication rounds in the presence of data het-

erogeneity. Our results also shed light on the

great advantage of ITD over AID in the feder-

ated/distributed hypergradient estimation. This

differs from the comparison in the non-distributed

bilevel optimization, where ITD is less efficient

than AID. Our extensive experiments demonstrate

the great effectiveness and communication effi-

ciency of the proposed method.

1. Introduction

Bilevel optimization has drawn significant attention from

the machine learning (ML) community due to its wide ap-

plications in ML including meta-learning (Finn et al., 2017;

Rajeswaran et al., 2019), automated hyperparameter opti-

mization (Franceschi et al., 2018; Feurer & Hutter, 2019),
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reinforcement learning (Konda & Tsitsiklis, 1999; Hong

et al., 2020), adversarial learning (Zhang et al., 2022; Liu

et al., 2021a), signal processing (Kunapuli et al., 2008) and

AI-aware communication networks (Ji & Ying, 2023). Ex-

isting studies on bilevel optimization have mainly focused

on the single-machine scenario. However, due to compu-

tational challenges such as the second-order hypergradient

computation and the increasing scale of problem models

(e.g., deep neural networks), learning on a single machine

turns out to be inefficient and unscalable. In addition, data

privacy has also arisen as a critical concern in the single-

machine setting recently (McMahan et al., 2017). These

challenges have greatly motivated the recent development of

federated bilevel optimization, with emerging applications

such as federated meta-learning (Tarzanagh et al., 2022),

hyperparameter tuning for federated learning (Huang et al.,

2022), resource allocation over edges (Ji & Ying, 2022) and

graph-aided federated learning (Xing et al., 2022) etc.

Mathematically, federated bilevel optimization takes the

following formulation with m clients.

min
x∈Rd1

f(x) =
1

m

m∑

i=1

fi(x, y
∗
(x))

subject to y∗(x) ∈ argmin
y∈Rd2

1

m

m∑

i=1

gi(x, y), (1)

where the upper- and lower-level functions fi(x, y) =
EÀiFi(x, y; Ài) and gi(x, y) = E·iGi(x, y; ·i) for each

client i are jointly continuously differentiable. To efficiently

solve the distributed nested problem in Equation (1), the

biggest challenge lies in computing the gradient of the upper-

level objective, i.e., the hypergradient ∇f(x), due to the

approximation of a global Hessian inverse matrix and the

client drift induced by the data heterogeneity (Karimireddy

et al., 2020; Hsu et al., 2019). To overcome these issues,

existing approaches all focus on the AID-based federated

hypergradient estimation (Huang et al., 2022; Tarzanagh

et al., 2022). However, the AID-based approaches naturally

contain two consecutive loops at each outer iteration, each

of which contains a large number of communication rounds,

for minimizing the lower-level objective and constructing

the federated hypergradient estimate, separately, as shown

in the left illustration in Figure 1. This heavily complicates
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Figure 1. Comparison between AID-based FHE (left) in FedNest (Tarzanagh et al., 2022) and our proposed AggITD estimator (middle).

The right plot compares the performance among fully local hypergradient estimator (i.e., using only local information), AID-based FHE

and AggITD in federeated hyper-representation learning in the presence of data heterogeneity.

Hypergradient estimators Comm rounds/Outer itr Comm loops/Outer itr Sample complexity

AID-based FHE (Tarzanagh et al., 2022) 2N + T + 3 2 Õ(ϵ−2)

AggITD (this paper) 2N + 3 1 Õ(ϵ−2)

Table 1. Comparison of AID-based FHE and the proposed AggITD in the presence of data heterogeneity. Communication round: the

procedure that ”for i ∈ S, in parallel do”, where the participating clients send their local information (gradients or Hessian-vector

products) to the server for aggregation, and the aggregated information is then broadcast back to clients. N and T : the number of iterations

for optimizing the lower-level objective and approximating the global Hessian-inverse-vector product, respectively. Sample complexity:

the total number of samples to achieve an ϵ-accurate stationary point. Õ: hide log factors.

the implementation and increases the communication cost.

1.1. Main contributions

In this paper, we propose a new federated hypergradient esti-

mator (FHE) via aggregated iterative differentiation, which

we refer to as AggITD. As shown in Figure 1, our AggITD

estimator leverages intermediate iterates of the lower-level

updates on y for the federated hypergradient estimation

rather than the last iterate as in AID-based methods, and

hence admits a simpler implementation and much fewer

communication rounds by conducting the lower-level up-

dates on y and the Hessian-vector-based hypergradient es-

timation simultaneously within the same communication

loop. Our detailed contributions are summarized as below.

A new ITD scheme. We first show that existing ITD-based

approaches in the non-distributed setting (Franceschi et al.,

2018; Grazzi et al., 2020; Ji et al., 2021) rely on the accom-

plishment of the lower-level updates on y for the matrix-

vector-based hypergradient estimation, and hence still re-

quires two long communication loops for the federated hy-

pergradient estimation (see Section 2.2 for more details). In

contrast, we propose a new iterative differentiation process

suitable for the efficient distributed implementation, which

starts the matrix-vector based hypergradient estimation at a

randomly sampled intermediate lower-level iterate, as illus-

trated in Figure 1. We anticipate that our estimator can be

of independent interest to other distributed settings such as

decentralized or asynchronous bilevel optimization.

Communication-efficient bilevel optimization. Building

on the proposed AggITD, we further develop a federated

bilevel optimization algorithm named FBO-AggITD, which

incorporates the technique of federated variance reduction

into the lower- and upper-level updates on y and x to mit-

igate the impact of the client drift on the hypergradient

estimation accuracy. FBO-AggITD contains only a single

communication loop, where only efficient matrix-vector

products rather than Hessian or Hessian-inverse matrices

are computed and communicated for the global Hessian-

inverse-vector approximation.

New theoretical analysis. We provide a novel error and

convergence analysis for the proposed AggITD estimator

and FBO-AggITD algorithm, respectively. The analysis

addresses two major challenges. First, differently from the

AID-based estimator, the proposed AggITD depends on

less accurate intermediate iterates yt, t = Q + 1, ..., N at

a random index Q, which may introduce uncontrollable

estimation errors due to the client drift. Second, the random-

ness from stochastic Hessian matrices and gradients further

complicates the analysis. In fact, there has been no analysis

even for non-distributed stochastic ITD-based estimators.

To this end, a tighter recursion type of analysis is developed

by decoupling the errors induced by the lower-level updates

and the global Hessian-inverse-vector approximation. As

shown in Table 1, AggITD achieves the same sample com-

plexity of Õ(ϵ−2) as the AID-based FHE (Tarzanagh et al.,

2022), with much fewer communication rounds.
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Strong empirical performance. As shown in the right plot

of Figure 1, AggITD admits a much faster convergence rate

w.r.t. communication rounds and better test accuracy than

AID-based FHE. In addition, compared to the fully local

hypergradient estimator (which is computed using only local

client data), AggITD achieves a much higher test accuracy

with a comparable rate and is much more stable with lower

variance. This demonstrates the importance of aggregation

under the lower-level heterogeneity. Such comparisons are

also observed in the experiments in Section 5.

1.2. Related work

Bilevel optimization. A large body of bilevel optimization

methods have been proposed since the work in Bracken

& McGill 1973. For example, Hansen et al. 1992; Gould

et al. 2016; Shi et al. 2005; Sinha et al. 2017 reduced the

bilevel problem to the single-level constraint-based prob-

lem. Gradient-based methods have drawn more attention

in machine learning recently, which can be generally cat-

egorized into AID (Domke, 2012; Pedregosa, 2016; Liao

et al., 2018; Arbel & Mairal, 2022) and ITD (Maclaurin

et al., 2015; Franceschi et al., 2017; Finn et al., 2017; Sha-

ban et al., 2019; Grazzi et al., 2020) based methods. Vari-

ous stochastic bilevel optimizers have also been developed

via momentum (Yang et al., 2021; Huang & Huang, 2021;

Guo & Yang, 2021), variance reduction (Yang et al., 2021;

Dagréou et al., 2022), Neumann series (Chen et al., 2021b;

Ji et al., 2021). Theoretically, the convergence of bilevel

optimization has been analyzed by Franceschi et al. 2018;

Shaban et al. 2019; Liu et al. 2021b; Ghadimi & Wang 2018;

Ji et al. 2021; Hong et al. 2020. More results and details

can be found in the survey by Liu et al. 2021a. In this pa-

per, we propose a new stochastic ITD-based hypergradient

estimator, which is further extended to the federated setting.

Federated learning. Federated Learning was firstly intro-

duced to allow different clients to train a model collabora-

tively without sharing data (Konečnỳ et al., 2015; Shokri &

Shmatikov, 2015; Mohri et al., 2019). As one of the earliest

methods, FedAvg has been shown to effectively reduce the

communication cost (McMahan et al., 2017). An increasing

number of variants of FedAvg have been further proposed to

address the issues such as the slow convergence and client

drift via regularization (Li et al., 2020; Acar et al., 2021),

variance reduction (Mitra et al., 2021; Karimireddy et al.,

2020), proximal splitting (Pathak & Wainwright, 2020) and

adaptive optimization (Reddi et al., 2020). In the homo-

geneous setting, FedAvg is relevant to local SGD, and has

been analyzed in Stich 2019; Wang & Joshi 2018; Stich &

Karimireddy 2019; Basu et al. 2019. In the heterogeneous

setting, Li et al. 2020; Wang et al. 2020; Mitra et al. 2021;

Li et al. 2019; Khaled et al. 2019 provided the convergence

analysis of their methods.

Federated bilevel optimization. Recent works (Gao, 2022;

Li et al., 2022) focused on the homogeneous setting, and

proposed momentum-based methods with fully local hyper-

gradient estimators. The most relevant work (Tarzanagh

et al., 2022) proposed FedNest using an AID-based FHE,

and further provided its convergence rate guarantee despite

the data heterogeneity. This paper proposes a simple and

communication-efficient method via an ITD-based FHE.

Bilevel optimization has also been studied in other dis-

tributed setups such as decentralized bilevel optimiza-

tion (Chen et al., 2022; Yang et al., 2022; Lu et al., 2022)

and asynchronous bilevel optimization over directed net-

work (Yousefian, 2021). We anticipate that our proposed

ITD-based estimator can be also applied to these scenarios.

Notations. We use ∂f(x, y∗(x))/∂x to denote the gradient

of f as a function of x, and ∇xf and ∇yf are partial deriva-

tives of f with respect to x and y. For any vector v and

matrix M , we denote ∥v∥ and ∥M∥ as Euclidean and spec-

tral norms, respectively. We let f(x, y) = 1
m

∑m
i=1 fi(x, y)

and g(x, y) = 1
m

∑m
i=1 gi(x, y) denote the averaged upper-

and lower-level objective functions across all clients i. Fi-

nally, let S = {1, ...,m} denote the set of all clients.

2. Federated Hypergradient Computation

2.1. Federated Hypergradient and Existing Approach

Federated hypergradient. The biggest challenge of fed-

erated bilevel optimization lies in computing the aggre-

gated hypergradient ∇f(x) = 1
m

∑m
i=1

∂fi(x,y
∗

(x))

∂x
due to

the implicit dependence of the global lower-level solution

y∗(x) on x. Using the implicit function theorem (Griewank

& Walther, 2008) and if g(·) is twice differentiable and

∇2
yg(x, y

∗
(x)) is invertible, an explicit form of ∇f(x) is

∇f(x) =
1

m

m∑

i=1

(
∇xfi(x, y

∗
(x))−∇x∇yg(x, y

∗
(x))

×
[
∇2

yg(x, y
∗
(x))

]−1∇yfi(x, y
∗
(x))

)
, (2)

where the first and second terms on the right side are di-

rect and indirect parts of the federated hypergradient. As

shown by Equation (2), two challenges arise in the feder-

ated hypergradient computation. First, the second-order

derivatives ∇x∇yg(x, y
∗
(x)) and ∇2

yg(x, y
∗
(x)) are all global

information that is not accessible to each client i. This

greatly complicates the design of an unbiased estimate of

∇f(x). For example, it can be seen that a straightforward

estimator by replacing such two global quantities with their

local counterparts, i.e., ∇x∇ygi(x, y
∗
(x)) and ∇2

ygi(x, y
∗
(x))

is a biased approximation of ∇f(x) due to the client drift.

Second, it is highly infeasible to compute and communicate

second-order information (such as Hessian inverse or even

Hessian/Jacobian matrices) due to the restrictive computing

and communication resource.
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AID-based FHE. To address these challenges, Tarzanagh

et al. 2022 recently proposed a matrix-vector-based FHE

building on a non-federated AID-based estimate used in

Ghadimi & Wang 2018, which takes the form of

ĥI(x) =
1

m

m∑

i=1

[
∇xFi(x, y

N ; Ài)−∇x∇yGi(x, y
N )pT ′

]

where yN is first obtained to estimate the global y∗(x) via a

FedSVRG (Mitra et al., 2021; Konečnỳ et al., 2016) type of

method with 2N communication rounds and an aggregated

Hessian-inverse-vector (HessIV) estimate

pT ′ =

T ′∏

t=1

(
I − ¼

1

|St|
∑

i∈St

∇2
yGi(x, y

N ; ·i,t)
)
p0

with p0 =
¼T

|S|
∑

i∈S

∇yFi(x, y
N ; Ài,0)

is then constructed based on the inner output yN using extra

T ′ communication rounds as, for t = 1, ..., T ′

Local client i: pi,t = (I − ¼∇2
yGi(x, y

N ; ·i,t))pt−1

Server aggregates: pt =
1

|St|
∑

i∈St

pi,t,

where T ′ is chosen from {0, ..., N−1} uniformly at random.

However, several challenges still remain, as elaborated in

the next Section 2.2.

2.2. Our Method: Aggregated Iterative Differentiation

Challenges in AID-based FHC. Note that at each outer

iteration k, AID-based FedIHGP includes two major com-

munication loops, i.e., 2N rounds for inner y updates and

T ′ rounds for outer FHC, which introduce two challenges

in practice. First, the construction of an AID-based hyper-

gradient estimate is built on the output yN is inherently

separated from the inner y updating loop, and the result-

ing two communication and optimization loops complicate

the implementation in practice. Second, the separate T ′

(which can be large at an order of » log 1
ϵ

in the worst

case (Tarzanagh et al., 2022)) communication rounds for

the HessIV estimation can add a non-trivial communication

burden on the FL systems due to the limited communication

bandwidth and resource (e.g., in wireless setting). Then,

an important question here is: Can we develop a new FHE

that can address these implementation and communication

challenges simultaneously, while achieving better commu-

nication and computational performance in theory and in

practice? In this section, we provide an affirmative answer

to this question by developing a novel aggregated iterative

differentiation (AggITD) for communication-efficient FHC.

Our idea. Instead of constructing the federated hypergra-

dient after obtaining the inner output yN , our idea is to uti-

lize the intermediate iterates y1, ..., yN and communication

Algorithm 1 h̃, yN = AggITD(x, y, ´)

1: Set y0 = y and choose Q from {0, ..., N} UAR

2: for t = 0, 1, 2, ..., N do

3: for i ∈ S in parallel do

4: Compute qti = ∇yGi(x, y
t; ·i,t) for y updates

5: if t = Q, compute rti = ∇yFi(x, y
t; Ài,t)

6: if t g Q + 1 and t f N , compute zti = zt−1 −
∂ï∇yGi(x,y

t;ui,t),z
t−1ð

∂yt via autograd

7: end for

8: if t f N − 1 then

9: Server aggregates and broadcasts qt =
1
|S|

∑
i∈S qti

10: yt+1 = One-Round-Lower(x, yt, qt, ´)
11: end if

12: if t = Q, aggregate zt := rt = 1
|S|

∑
i∈S rti

13: if t g Q+1 and t f N , aggregate zt = 1
|S|

∑
i∈S zti

14: end for

15: p = λ(N + 1)zN−1 if Q < N or λ(N + 1)zN otherwise.

16: for i ∈ S in parallel do

17: h̃i = ∇xFi(x, y
N ; Ài)− ∂ï∇yGi(x,y

N ;Çi),pð
∂x

18: end for

19: Server aggregates h̃ = 1
|S|

∑
i∈S h̃i

rounds of the inner y loop also for the federated hypergra-

dient approximation, and hence remove the expensive T ′

communication rounds. To do this, one possible solution

is to use the idea of an ITD-based method from the non-

federated bilevel optimization (Ji et al., 2021; Grazzi et al.,

2020), which approximates the hypergradient
∂f(x,y∗(x))

∂x

by computing
∂f(x,yN )

∂x
via the automatic differentiation,

where yN is the N -step output of gradient descent1, i.e.,

yt+1 = yt−³∇yg(x, yt) for t = 0, ..., N − 1. The explicit

form of the indirect part of
∂f(x,yN )

∂x
is then taken as

−³

N−1∑

t=0

∇x∇yg(x, y
t)

×
N−1∏

j=t+1

(I − ³∇2
yg(x, y

j))∇yf(x, y
N ), (3)

which, however, still needs an extra communication loop

for the construction because its matrix-vector computations

require the information of ∇yf(x, y
N ) at the output yN ,

and in addition, the N summations complicate the feder-

ated implementation. To this end, we next provide a novel

aggregated ITD-based estimator for FHC, which uses the

same communication loop for both the y updates and the

federated hypergradient construction.

1We take GD as an illustration example, and other solvers can
also be used
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Algorithm 2 y+ = One-Round-Lower(x, y, q, ´)

1: for i ∈ S in parallel do

2: yi0 = y and choose ´i ∈ (0, ´]
3: for Å = 0, 1, 2, ..., Äi − 1 do

4: qiÅ = ∇yGi(x, y
i
Å; ·

i
Å)−∇yGi(x, y; ·

i
Å) + q

5: yiÅ+1 = yiÅ − ´iqiÅ
6: end for

7: end for

8: y+ = 1
|S|

∑
i∈S yiÄi

Proposed AggITD. As shown in Algorithm 1 and the il-

lustration in Figure 1, AggITD first samples an index Q
from the set {0, ..., N} uniformly at random, and then at

each inner iteration t, each client i computes the local gradi-

ent ∇yGi(x, y
t; ·i,t), which are aggregated for optimizing

the lower-level objective via the federated SVRG-type One-

Round-Lower sub-procedure in Algorithm 2. The steps in

lines 5-6 and 12-13 provide an efficient iterative way to con-

struct a novel estimate of federated Hessian-inverse-vector

product (∇2
yg(x, y

∗
(x)))

−1∇yf(x, y
∗
(x)), which is given by

ĤessIV =¼(N + 1)

Q+1∏

t=N

(
I − ¼

|S|
∑

i∈S

∇2
yGi(x, y

t;ui,t)
)

×
[

1

|S|
∑

i∈S

∇yFi(x, y
Q; Ài,Q)

]
,

where we use
∏N+1

j=N (·) = I for simplicity. Note that these

steps for the FHC process compute and communicate only

efficient Hessian-vector products
∂ï∇yGi(x,y

t;ui,t),z
t−1ð

∂yt =

∇2
yGi(x, y

t;ui,t)z
t−1 using automatic differentiation (e.g.,

torch.autograd), rather than Hessian or Hessian inverse

matrices. After broadcasting the global ĤessIV, each client

i builds a local FHE h̃i(x) = h̃D
i (x) − h̃I

i (x), where the

direct and indirect parts are given by

h̃D
i (x) =∇xFi(x, y

N ; Ài)

h̃I
i (x) =∇x∇yGi(x, y

N ;Çi)ĤessIV.

Then, the aggregated hypergradient estimate is given by

h̃(x) = h̃D(x)− h̃I(x) = 1
|S|

∑
i∈S h̃i(x). Meanwhile, we

would like to point out the differences between our method

and distributed bilevel problems, such as (Yang et al., 2022).

First, in our algorithm, the server is to aggregate the local

weights from clients and broadcast the aggregated weights

back to the clients. In contrast, for such decentralized meth-

ods, the server needs to compute the gradients or hypergra-

dients. Then, our method runs multiple local updates to

improve communication efficiency, whereas the decentral-

ized methods do not have such operations. Third, all such

decentralized methods use the AID-based hypergradient es-

timator, whereas our method uses the ITD-based scheme.

However, to analyze this AggITD-based estimator, several

technical challenges arise as below.

Technical challenges. First, differently from the AID-based

FHE that is evaluated at the last iterate yN , our proposed

estimator depends on less accurate intermediate iterates

yt, t = Q + 1, ..., N , which may introduce larger or even

uncontrollable estimation errors given the client drift effect.

Thus, a more careful and tighter analysis is required. Sec-

ond, the randomness from stochastic Hessian matrices and

gradients further complicates the analysis. In fact, there

has been no analysis for even non-federated (i.e., |S| = 1)

stochastic ITD-based estimators. Third, the aggregation
1
|S|

∑
i∈S complicates the bias and variance analysis.

3. Proposed Algorithm

We now develop a new federated bilevel optimizer named

FBO-AggITD based on the proposed AggITD estimator.

As shown in Algorithm 3, FBO-AggITD first obtains the

federated hypergradient estimate h̃ and the approximate

yk+1 = yNk of the lower-level solution y∗k via the AggITD

sub-procedure in Algorithm 1. Then, building on h̃ and

yk+1, similarly to (Tarzanagh et al., 2022), we use a local

SVRG-type One-Round-Upper sub-procedure for solving

the upper-level problem w.r.t. x, where each client i runs Äi
steps based on the radient hi,Å given by

hi,Å =h−∇xFi(x, y+; À
i
Å) +∇xFi(x

i
Å, y+; À

i
Å)

=h̃D(x)− h̃I(x)−∇xFi(x, y+; À
i
Å)

+∇xFi(x
i
Å, y+; À

i
Å),

where the direct part h̃D(x) = 1
|S|

∑
i∈S ∇xFi(x, y+; Ài)

of the global hypergradient estimate h̃ uses different samples

Ài from ÀiÅ of the local gradient ∇xFi(x, y+; À
i
Å), i ∈ S to

provide an SVRG-type variance reduction effect on the

direct part of the hypergradient. This is in contrast to the

upper update in FedNest (Tarzanagh et al., 2022) where the

data samples Ài and ÀiÅ are chosen to be the same. Note

that we do not apply the SVRG-type updates to the entire

hypergradient but only the direct part because the indirect

part requires the global Hessian information at iterates xi
Å,

which is infeasible at each client i.

Algorithm 3 FBO-AggITD

1: Input: K,N ∈ N, ³k, ´k > 0, initializations x0, y0.

2: for k = 0, 1, 2, ...,K do

3: h̃, yk+1 = AggITD(xk, yk, ´k)

4: xk+1 = One-Round-Upper(xk, yk+1, h̃, ³k)
5: end for
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Algorithm 4 x+ = One-Round-Upper(x, y+, h, ³)

1: for i ∈ S in parallel do

2: xi
0 = x and choose ³i ∈ (0, ³]

3: for Å = 0, 1, 2, ..., Äi − 1 do

4: hi,Å = h−∇xFi(x, y+; À
i
Å) +∇xFi(x

i
Å, y+; À

i
Å)

5: xi
Å+1 = xi

Å − ³ihi,Å

6: end for

7: end for

8: x+ = 1
|S|

∑
i∈S xi

Äi

4. Main Results

4.1. Definitions and Assumptions

Let z = (x, y) ∈ Rd1+d2 . Throughout this paper, we make

the following definitions and standard assumptions on the

lower- and upper-level objectives, as also adopted in stochas-

tic bilevel optimization (Ji et al., 2021; Hong et al., 2020;

Khanduri et al., 2021; Chen et al., 2021a) as well as in the

federated bilevel optimization (Tarzanagh et al., 2022).

Definition 1. A mapping f is L-Lipschitz continuous if for

∀ z, z′, ∥f(z)− f(z′)∥ f L∥z − z′∥.

Since the objective f(x) is nonconvex, algorithms are ex-

pected to find an ϵ-accurate stationary point defined below.

Definition 2. We say x̄ is an ϵ-accurate stationary point of

the objective function f(x) if E∥∇f(x̄)∥2 f ϵ, where x̄ is

the output of an algorithm.

Assumption 1. The lower-level function Gi(x, y; ·i) is µ-

strongly-convex w.r.t. y for any ·i.

The following assumption imposes the Lipschitz conditions

on the lower- and upper-level functions for each client i.

Assumption 2. The objective functions satisfy

• The function Fi(z; Ài) is M -Lipschitz continuous.

• The gradients ∇Fi(z; Ài) and ∇Gi(z; ·i) are unbiased

estimators of ∇fi(z) and ∇gi(z).

• The gradients ∇Fi(z; Ài) and ∇Gi(z; ·i) are Lf - and

Lg-Lipschitz continuous, respectively.

Assumption 3. The second-order derivatives satisfy

• The derivatives ∇x∇yGi(z; ·i) and ∇2
yGi(z; ·i) are

unbiased estimators of ∇x∇ygi(z) and ∇2
ygi(z).

• The derivatives ∇x∇yGi(z; ·i) and ∇2
yGi(z; ·i) are

Ä-Lipschitz continuous.

Assumption 4. The variances of gradients ∇Fi(z; Ài) and

∇Gi(z; ·i) are bounded by Ã2
f and Ã2

1 . Moreover, the lower-

level client dissimilarity E∥∇gi(z)−∇g(z)∥2 f Ã2
2 .

In this paper, let Ã2
g = max{Ã2

1 , Ã
2
2} for notational sim-

plicity. Assumption 4 is commonly adopted in the hetero-

geneous FL, and it is reduced to the homogeneous setting

when Ã2 = 0. It is worth noting that our assumptions are ex-

actly the same as existing AID-based federated/distributed

bilevel studies such as (Tarzanagh et al., 2022).

4.2. Estimation Properties for AggITD

We analyze the estimation properties of AggITD. Let

BI =E
[
∥E[h̃I(x)]−∇x∇yg(x, y

N )

× (∇2
yg(x, y

N )−1)∇yf(x, y
N )∥2 |x, yN

]

denote the estimation error of the indirect part of h̃I(x).

Proposition 1. Suppose Assumptions 1-4 are satisfied and

let y∗(x) = argminy g(x, y). Further, set ¼ f min{10, 1
Lg

}
and ´i = ´

Äi
and any stepsize ³ > 0, where ´ f

min{1, ¼, 1
6Lg

}. Then, we have

BI f [4¼2L2
gM

2³1(N) + 4¼2L2
fL

2
g³3(N)]E ∥y − y∗(x)∥2

+
4L2

gM
2(1− ¼µ)2N+2

µ2
+ 400¼2´2L2

gM
2Ã2

gÄ
2³2(N)

+
200¼´2Ã2

gL
2
fL

2
gN(N + 1)

µ
, (4)

where ³1(N) = 4(N+1)(1− ´µ
2 )N [ Ä2

¼µ3 +
4Ä2

´µ3 ], ³2(N) =

N(N+1)(1+(1−¼µ)2)
¼µ3 and ³3(N) =

3(N+1)(1− βµ
2 )N

¼µ
.

Proposition 1 provides an upper bound on the second

moment of the estimation bias of the AggITD estimator.

As shown in Equation (4), the first two terms O((1 −
´µ
2 )N E[∥y−y∗(x)∥2]) and O((1−¼µ)2N+2) correspond to

the estimation errors without the client drift, which can be

made small by choosing N properly. In addition, the initial-

ization gap E[∥y − y∗(x)∥2] further relaxes the requirement

of N due to the warm start yk = yNk−1 (see Algorithm 3),

as shown in the final convergence analysis. It is worth

mentioning that these two terms match the error bound of

the stochastic AID-based hypergradient estimator in non-

federated setting (Ji et al., 2021; Ghadimi & Wang, 2018;

Chen et al., 2021a), and hence our analysis can be of inde-

pendent interest to non-federated bilevel optimization. Also

note that the last two error terms O(¼2´2) and O(¼´2) are

induced by the client drift in the y updates, which exists

especially in the FL, can be addressed by choosing a suffi-

ciently small stepsize ´. Technically, we first show via a

recursive analysis that the key approximation error between

the expected indirect part of the AggITD estimator

E[h̃I(x)|x, yN ] =¼∇x∇yg(x, y
N )

×
N∑

Q=0

Q+1∏

t=N

(I − ¼∇2
yg(x, y

t))∇yf(x, y
Q) (5)
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and the underlying truth is bounded by

O
(

N
∑

Q=0

(1− λµ)2N−2Q∥yQ − y
∗
(x)∥

2 + ∥yN − y
∗
(x)∥

2
)

.

Note from Equation (5) that although the optimality gap

∥yQ − y∗(x)∥ can be large for small Q (which is induced

by our ITD-based construction), the coupling factor (1 −
¼µ)2N−2Q still makes the overall bound to be small, and

this validates the design principle of our AggITD estimator.

Then, unconditioning on x, yN , incorporating the conver-

gence bounds on the iterates yQ with intrinsic client drift,

we derive the final estimation bounds on AggITD. The fol-

lowing proposition characterizes the estimation variance of

the global indirect hypergradient estimate h̃I
i (x) and the

local hypergradient estimate at iteration Å of client i.

Proposition 2. Suppose Assumptions 1-3 are satisfied. Set

¼ f min{10, 1
Lg

}. Then, conditioning on x, y+, we have

E ∥h̃I
i (x)− h̄I

i (x)∥2 f Ã2
h,

E ∥h̃D
i (xi

Å, y+)− h̃D
i (xi

0, y+) + h̃D(x)− h̃I(x)∥2 f D2
h

where the constants are given by Ã2
h =

¼(N+1)L2
gM

2

µ
and

D2
h = 12M2 +

4¼(N+1)L2
gM

2

µ
.

Proposition 2 demonstrates that the varaince of our AggITD

estimation is bounded. Based on the important bias and

variance characterizations in Propositions 1 and 2, we next

provide the total convergence and complexity analysis for

the proposed FBO-AggITD algorithm.

4.3. Convergence and Complexity Analysis

We first provide a descent lemma on the total objective f(x).

Lemma 1 (Objective descent). Suppose Assumptions 1-4

hold. Let y∗ = argminy g(x, y). Further, we set ¼ f
min{10, 1

Lg
}, ³i = ³

Äi
with Äi g 1 for some positive ³ and

´i = ´
Äi

, where ´ f min{1, ¼, 1
6Lg

} ∀i ∈ S. We have

E[f(x+)]− E[f(x)]

f −³

2
E[∥∇f(x)∥2] + 4³2(Ã2

h + Ã2
f )L

′
f + 2³2M2L′

f

− ³

2
(1− 4³L′

f )E
∥

∥

∥

1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

h̄D
i (xi

Å, y+)− h̄I(x)
∥

∥

∥

2

+
3³

2

[
BI(x, y) +

M2
f

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

E[∥xi
Å − x∥2]

+M2
f E[∥y+ − y∗∥2]

]
(6)

where the estimation bias BI(x, y) is defined in Proposi-

tion 1, and the expected quantities h̄I(x) = E[h̃I(x)|x, y+],
h̄D
i (xi

Å, y+) = E[h̃D
i (xi

Å, y+)|xi
Å]

Note from Lemma 1 that the bound on the total objective

descent contains three error terms including the FHC bias

BI(x, y), which is handled by Proposition 1, the lower-level

estimation error E∥y+ − y∗∥2, which is handled by the de-

scent lemma on the lower-level objective function g(x, ·),
and the upper-level client drift

∑m
i=1

1
Äi

∑Äi−1
Å=0 E[∥xi

Å −
x∥2]. Also note that the bias error BI(x, y) contains the

lower-level initialization gap E∥y − y∗∥2, which is charac-

terized by the following lemma.

Lemma 2 (Lower-level initialization gap under warm start).

Suppose Assumptions 1-4 hold. Let y∗ = argminy g(x, y)

and y∗(x+) = argminy g(x+, y). Further, set ³i = ³
Äi

with

Äi g 1 with some ³ > 0, ∀i ∈ S. Then, we have

E[∥y+ − y∗(x+)∥2]

fb1(³)E
[∥∥∥

1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)∥∥∥

2]

+ b2(³)E[∥y+ − y∗∥2] + b3(³)(2Ã
2
h + 2Ã2

f +M2)

where the constants are given by b1(³) = 4L2
y³

2 +
L2

y³
2

4µ +
2Lyx³

2

¸
, b2(³) = 1 + 4µ +

¸LyxD
2
h³

2

2 , b3(³) = 4³2L2
y +

2Lyx³
2

¸
with a flexible parameter µ > 0.

As shown in the above Lemma 2, the lower-level ini-

tialization gap contains a hypergradient estimate norm

O(³2)E
∥∥ 1
m

∑m
i=1

1
Äi

∑Äi−1
Å=0

(
h̄D
i (xi

v, y+) − h̄I(x)
)∥∥2,

which is dominated by the same hypergradient norm with

the factor Θ(−³) in Lemma 1 for the stepsize ³ small

enough. Then, the remaining step is to upper bound the

upper-level client drift E∥xi
Å − x∥2.

Lemma 3 (Upper client drift). Suppose Assumptions 1-4

are satisfied. Set ¼ f min{10, 1
Lg

}, ³i = ³
Äi

and ´i =
´
Äi
, Äi g 1 where ³ f 1

324M2
f
+6Mf

f 1
6Mf

, ´ f
min{1, ¼, 1

6Lg
} ∀i ∈ S. Recall the definitions of y∗ =

argminy g(x, y), h̄(x) = E[h̃(x)|x, y+]. Then, we have

E[∥xi
Å − x∥2] f 18Ä2i (³

i)2
[
3M2

f E[∥y+ − y∗∥2]

+3E[∥∇f(x)∥2] +BI(x, y) + 3Ã2
h + 6Ã2

f

]

where the bias BI(x, y) is defined in Proposition 1.

It can be seen from Lemma 3 that the upper-level client drift

is bounded by the lower-level estimation error E∥y+−y∗∥2,

the total gradient norm E∥∇f(x)∥2 and the hypergradient

estimation bias BI(x, y), which can be addressed by the de-

scent lemmas on y and x (i.e., Lemma 1) and Proposition 1

for the stepsize ³i small enough. By combining the above

lemmas, we next provide the general convergence analysis.

Theorem 1. Suppose Assumptions 1-4 are satisfied. Set ¼ f
min{10, 1

Lg
}, ³i

k = ³k

Äi
and ´i

k = ´k

Äi
for i ∈ S. Choose
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Figure 2. Hyper-representation on MNIST dataset with a 2-layer MLP with SVRG-type optimizer. Left two plots: comparison of

FBO-AggITD and Fednest (Tarzanagh et al., 2022) in the i.i.d. and non-i.i.d. cases. Right two plots: the impact of the number τ of local

update steps on FBO-AggITD.

Algorithm Comm rounds/Outer itr Data Outer ep Comm rounds (90%) Final Accuracy

FedNest 2N+T+3
IID

τ=1 1630 91.68%
τ=5 610 93.48%

NON-IID
τ=1 1380 91.46%
τ=5 760 92.87%

FBO-AggITD 2N+3
IID

τ=1 530 92.94%
τ=5 195 94.61%

NON-IID
τ=1 520 92.67%
τ=5 305 93.88%

Table 2. Quantitative comparison between FBO-AggITD and FedNest.

parameters such that ³k = min{³̄1, ³̄2, ³̄3,
³̄√
K
}, ´k ∈

[
max

{ ¯́³k

N
, ¼
10

}
,min

{
1, ¼, 1

6Lg

}]
, where ³̄1, ³̄2, ³̄3, ³̄

and ¯́ are constants independent of K, whose specific forms

are given in Appendix D.1. Then, the outputs of the proposed

FBO-AggITD algorithms satisfy

1

K

K−1∑

k=0

E[∥∇f(xk)∥2] = O
(

1

min{³̄1, ³̄2, ³̄3}K
+

1

³̄
√
K

+
³̄max{c0, c1Ã2

h, c2, c3}√
K

+ (1− ¼µ)2N
)
,

where c0, c1, c2, and c3 are positive constants independent

of K, whose complete forms are given in Appendix D.1.

By specifying the parameters N and ³̄ properly, we obtain

the following complexity results.

Corollary 1. Under the same setting as in Theorem 1, if we

choose N = O(»g), ³̄ = O(»−4
g ), then we have

1

K

K−1∑

k=0

E[∥∇f(xk)∥2] = O(
»4
g

K
+

»4
g√
K

)

To achieve an ϵ-accurate stationary point, the total number

of samples required by FBO-AggITD is O(»9
gϵ

−2).

As shown in Corollary 1, the overall sample complexity (i.e.,

the total number of data samples required to achieve an ϵ-
accurate stationary point) of our FBO-AggITD is O(»9ϵ−2),
which matches the sample complexities of stocBiO (Ji et al.,

2021), BSA (Ghadimi & Wang, 2018) and ALSET (Chen

et al., 2021a) in the non-federated bilevel optimization and

FedNest (Tarzanagh et al., 2022) in the federated setting

despite the data heterogeneity. Note that our method uses

only (2N + 3)/(2N + T + 3) communication rounds of

FedNest (shown in Table 1) at each outer iteration. As

a result, in theory, our method achieves a constant-level

improvement over FedNest. To improve the dependence

on ϵ, we suspect that the server-level variance reduction or

periodic averaging can help, but this goes beyond the focus

of this paper. We are happy to leave it for future study.

5. Experiments

In this section, we compare the performance of the pro-

posed FBO-AggITD method with FedNest and LFedNest

in Tarzanagh et al. 2022 on a hyper-representation prob-

lem. Following the problem setup in Franceschi et al. 2018,

we use a 2-layer multilayer perceptron (MLP) as the back-

bone, where the hidden layer is optimized at the upper-level

problem and the head is optimized at the lower-level prob-

lem. We study the impact of data heterogeneity on the

comparison algorithms by considering both the i.i.d. and

non-i.i.d. ways of data partitioning of MNIST, following the

setup in McMahan et al. 2017.

The first two plots in Figure 2 compare our FBO-AggITD

method with FedNest in both i.i.d. and non-i.i.d. setups with

Ä = 5, respectively. It can be seen that FBO-AggITD con-

verges much faster than FedNest, and achieves a higher test

accuracy with much fewer communication rounds. In the

non-i.i.d. case also shows that FBO-AggITD is more stable

with lower variance than FedNest. The last two plots in

8
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Figure 2 show that local updates are useful to improve com-

munication efficiency and stabilize the training. In Table 2,

it can be seen that to achieve an accuracy of 90%, our FBO-

AggITD uses more than 2-3 times fewer communication

rounds than FedNest, in both the i.i.d. and non-i.i.d. cases

and in addition, for all four setups, FBO-AggITD achieves

a higher final test accuracy than FedNest.
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Figure 3. Comparison under different client participation ratios.

In Figure 1 and Figure 3, we compare the performance of our

FBO-AggITD, FedNest, and LFedNest (which uses a fully

local AID-based hypergradient estimator) given different

client participation ratios (denoted as C) in the non-i.i.d. set-

ting. It can be seen that FBO-AggITD outperforms the

other two algorithms with higher communication efficiency

and higher accuracy. Note that LFedNest has the largest

variance and the lowest accuracy, and this validates the im-

portance of federated hypergradient computation. All above

experiments use SVRG-type optimizer which outperforms

the SGD-type optimizer, shown in Figure 4.
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Figure 4. Performance using SGD-type optimizer.

Figure 4 compares the performance of FBO-AggITD,

FedNest and LFedNest when the One-Round-Lower uses

the SGD-type FedAvg methed. In the both i.i.d. and

non-i.i.d. settings, our method (which is defined as FBO-

AggITDSGD) still performs the best with the fastest con-

vergence rate w.r.t. the number of communication rounds.

Another observation is that using the the SGD-type lower-

level solver introduces a larger variance and fluctuation than

the SVRG-type optimizer, by comparing Figure 2 and Fig-

ure 4. This validates the importance of variance reduction in

mitigating the impact of the client drift on the convergence

performance.

Finally, Figure 5 shows the performance of FBO-AggITD

on CIFAR-10 with MLP/CNN network in the i.i.d. setting.

We found that FedNest could not converge in this task after

an extensive grid search on hyperparameters. However, our

method can converge with both MLP and CNN backbones.

However, the test accuracy is not satisfactory here. We

suspect that it is because the objective function in hyper-

representation is not good for federated setting, and a more

careful network architecture should be designed for more

challenging datasets. We would like to leave this for the

future work.

Figure 5. Performance on CIFAR-10 with MLP and CNN.

6. Conclusions

In this paper, we propose a simple and communication-

efficient federated hypergradient estimator based on a novel

aggregated iterative differentiation (AggITD). We show that

the proposed AggITD-based algorithm achieves the same

sample complexity as existing approaches with much fewer

communication rounds on non-i.i.d. datasets. We anticipate

our new estimator can be further applied to other distributed

scenarios such as decentralized bilevel optimization.
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Konečnỳ, J., McMahan, H. B., Ramage, D., and Richtárik, P.
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Supplementary Materials

A. Further Specifications on Experiments

A.1. Additional experiments

Experiments on MNIST with CNN networks. Figure 6 compares the performance of FBO-AggITD, FedNest and

LFedNest on MNIST when the backbone is chosen as CNN and One-Round-Lower uses the SVRG-type method. In the

non-i.i.d. setting, it turns out that both FedNest and LFedNest failed to converge depsite of a grid search for stepsizes. The

grid search on inner step sizes and outer step sizes of 4 settings are [(0.003, 0.01), (0.001, 0.005), (0.0005, 0.003), (0.0003,

0.001)]. However, our method (which is defined as FBO-AggITD) can have the ability to converge in both non-i.i.d. and

i.i.d. cases with high training accuracies. The inner step szie and outer step size are chosen as [0.003, 0.01] after grid search.

The training accuracies after 2000 communication rounds in i.i.d. and non-i.i.d. cases are 97.6% and 96.7%, respectively.

Figure 6. Performance of LFedNest, FedNest and FBO-AggITD on MNIST when the backbone is chosen as CNN and One-Round-Lower

uses the SVRG-type method.

Running time comparison. The following Figure 7 shows the running time comparison between FedNest, FBO-AggITD

and gossip-based method, Algorithm 2 in (Yang et al., 2022). Our FBO-AggITD archives a running time comparable to that

of FedNest because both methods consume a similar number of gradient and Hessian-vector computations.However, our

FBO-AggITD converges much faster than this gossip-based method, which is slower due to the computation of the Hessian

and Jacobian matrices. Since no codes are provided in (Yang et al., 2022), we wrote a code for comparison.

Figure 7. Performance of FedNest, FBO-AggITD and gossip-based method on MNIST when the backbone is chosen as MLP with i.i.d.

data.

A.2. Model Architectures

We first follow the same experiment in (Tarzanagh et al., 2022), thus the model is a 2-layer multilayer perceptron (MLP)

with 200 hidden units. The outer problem optimizes the hidden layer with 157,000 parameters, and the inner problem

optimizes the output layer with 2,010 parameters. Additionally, for the CIFAR-10-CNN experiment, we use the 7-layer

CNN (LeCun et al., 1998) model to train CIFAR-10. We optimize the last two fully connected layers’ parameters for solving
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the lower-level problem and optimize the rest layers’ parameters for solving the upper-level problem.

A.3. Hyperparameter settings

For all comparison methods, we optimize their hyperparameters via grid search guided by the default values in their source

codes, to ensure the best performance given the algorithms are convergent.

Parameter selection for the experiments in Figure 2 and Figure 7. For FedNest and FBO-AggITD, we used the same

hyperparameter configuration for both the i.i.d. and non-i.i.d. settings. In particular, the inner-stepsize is 0.003, the outer-loop

stepsize is 0.01, the constant ¼ = 0.01 and the number of inner-loop steps is 5. The choice of the number Ä of outer local

epochs and the data setup are indicated in the figures. Then the default value for the client participation ratio is C = 0.1.

Here, it is worth mentioning that for all comparison methods, we optimize their hyperparameters via grid search guided by

the default values in their source codes, to ensure the best performance given the algorithms are convergent.

Parameters selection for the experiments in Figure 3 and Figure 4.

In Figure 3 and Figure 4, the choice of stepsizes and constant ¼ of FedNest and FBO-AggITD is the same as in Figure 2.

For LFedNest, we choose the same hyperparameters as FedNest and FBO-AggITD, except that in the non-i.i.d. case, the

inner- and outer-stepsizes are set smaller to be 0.001 and 0.005 to avoid the overfitting. The number Ä of outer local epochs

is set to be 1 for all cases. In Figure 4, the client participation ratio is C = 0.1, and the update optimizer in the inner loop is

the SGD-type FedAvg method rather than FedSVRG. The choice of hyperparameters for Figure 6 is indicated above and for

Figure 5 the choice of inner step size and the outer step size are 0.002 and 0.01, respectively while the other options keep the

same.

B. Notations

For simplicity, we remove subscript k as long as the involved definitions are clear in the context. In some proof steps, we

will use x and x+ (similarly for y and y+) to denote xk and xk+1 (similarly yk and yk+1), where the definitions of xk and

yk are given in Algorithm 3. Based on Algorithm 3, we also have the definition of y+ = yN . We recall and define useful

notations for the ease of presentation.

Direct parts. h̃D
i (xi

Å, y+) = ∇xFi(x
i
Å, y+; À

i
Å), h̃

D
i (x) = ∇xFi(x, y+; Ài), ∇̄fD

i (x, y) = ∇xfi(x, y)

Indirect parts. h̃I
i (x) = ¼(N + 1)∇x∇yGi(x, y

N ;Çi)

Q+1∏

t=N

(I − ¼∇2
yG(x, yt;ut))∇yF (x, yQ; ÀQ)

∇̄f I
i (x, y) = ∇x∇ygi(x, y)(∇2

yg(x, y))
−1∇yf(x, y), (7)

where ÀiÅ and Ài are different data samples and two crucial components are defined by

∇yF (x, yQ; ÀQ) =
1

|S|
∑

i∈S

∇yFi(x, y
Q; Ài,Q), ∇2

yG(x, yt;ut) =
1

|S|
∑

i∈S

∇x∇yGi(x, y
t;ui,t).

Based on the notations in Equation (7), we also recall the important forms of our stochastic hypergradient estimate h̃(x)

constructed by the proposed AggITD method as well as its expectation form h̄(x) = E[h̃(x)|x, y+], and an auxiliary

hypergradient notation ∇̄f(x, y+), respectively.

h̃(x) =
1

|S|
∑

i∈S

h̃i(x) =
1

|S|
∑

i∈S

[h̃D
i (x)− h̃I

i (x)] = h̃D(x)− h̃I(x)

=∇xF (x, y+; À)− ¼(N + 1)∇x∇yG(x, yN ;Ç)

Q+1∏

t=N

(I − ¼∇2
yG(x, yt;ut))∇yF (x, yQ; ÀQ)

h̄(x) =
1

|S|
∑

i∈S

h̄i(x) =
1

|S|
∑

i∈S

[h̄D
i (x)− h̄I

i (x)] = h̄D(x)− h̄I(x)

=∇xf(x, y+)− ¼∇x∇yg(x, y
N )

N∑

Q=0

Q+1∏

t=N

(I − ¼∇2
yg(x, y

t))∇yf(x, y
Q)
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∇̄f(x, y) =
1

|S|
∑

i∈S

∇̄fi(x, y) =
1

|S|
∑

i∈S

[∇̄fD
i (x, y)− ∇̄f I

i (x, y)] = ∇̄fD(x, y)− ∇̄f I(x, y)

=∇xf(x, y)−∇x∇yg(x, y)(∇2
yg(x, y))

−1∇yf(x, y), (8)

Based on Equation (8), it is noted that the hypergradient ∇f(x) = ∇̄f(x, y∗(x)). By the analysis in Ghadimi & Wang 2018

and Chen et al. 2021a, the following lemma characterizes the continuity and smoothness properties of the inner and outer

functions (fi, gi) for all i ∈ S.

Lemma 4. Suppose Assumption 1-Assumption 3 hold, for all x1 and x2:

∥∇f(x1)−∇f(x2)∥ fL′
f∥x1 − x2∥,

∥y∗(x1)
− y∗(x2)

∥ fLy∥x1 − x2∥,
∥∇y∗(x1)

−∇y∗(x2)
∥ fLyx∥x1 − x2∥.

(9)

Besides, for all i ∈ S, x1, x2 and y, we have

∥∇̄fi(x1, y)− ∇̄fi(x1, y
∗
(x1)

)∥ fMf∥y∗(x1)
− y∥

∥∇̄fi(x2, y)− ∇̄fi(x1, y)∥ fMf∥x2 − x1∥,

where all constants are given by

Ly :=
Lg

µ
= O(»g)

Lyx :=
Ä+ ÄLy

µ
+

Lg(Ä+ ÄLy)

µ2
= O(»3

g)

Mf :=Lf +
LgLf

µ
+

M

µ
(Ä+

LgÄ

µ
) = O(»2

g)

L′
f :=Lf +

Lg(Lf +Mf )

µ
+

M

µ
(Ä+

LgÄ

µ
) = O(»3

g)

(10)

where all other Lipschitzness constants are provided in Assumptions 1-4.

C. Proof of Proposition 1 and Proposition 2

For the estimator, recall from Equation (8) that the indirect part is given by

h̃I(x) = ¼(N + 1)∇x∇yG(x, yN ;Ç)

Q+1∏

t=N

(I − ¼∇2
yG(x, yt;ut))∇yF (x, yQ; ÀQ),

where Q is drawn form {0, ..., N} uniformly at random.

C.1. Proof of Proposition 1

Proof. First, based on the definition of h̃I(x) in Equation (8) and conditioning on x, yN , we have

E[h̃I(x)] =E

[
¼(N + 1)∇x∇yG(x, yN ;Ç)

Q+1∏

t=N

(I − ¼∇2
yG(x, yt;ut))∇yF (x, yQ; ÀQ)

]

(i)
=¼∇x∇yg(x, y

N )
N∑

Q=0

Q+1∏

t=N

(I − ¼∇2
yg(x, y

t))∇yf(x, y
Q), (11)

where (i) follows from the fact that Q is drawn from {0, ..., N} uniformly at random and from the independence among

Ç, ut, ÀQ for t = 1, ..., N . Then the estimation bias of h̃I(x) is bounded by

∥E[h̃I(x)]−∇x∇yg(x, y
N )(∇2

yg(x, y
N ))−1∇yf(x, y

N )∥2
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f
[
∥∇x∇yg(x, y

N )∥2
∥∥∥¼

N∑

Q=0

Q+1∏

t=N

(I − ¼∇2
yg(x, y

t))∇yf(x, y
Q)− (∇2

yg(x, y
N ))−1∇yf(x, y

N )
∥∥∥
2]

(i)

fL2
g

[∥∥∥¼
N∑

Q=0

Q+1∏

t=N

(I − ¼∇2
yg(x, y

t))∇yf(x, y
Q)− (∇2

yg(x, y
N ))−1∇yf(x, y

N )
∥∥∥
2]

=L2
g

[∥∥∥¼
N∑

Q=0

Q+1∏

t=N

(I − ¼∇2
yg(x, y

t))∇yf(x, y
Q)− ¼

N∑

Q=0

Q+1∏

t=N

(I − ¼∇2
yg(x, y

t))∇yf(x, y
N )

+ ¼
N∑

Q=0

Q+1∏

t=N

(I − ¼∇2
yg(x, y

t))∇yf(x, y
N )− (∇2

yg(x, y
N ))−1∇yf(x, y

N )
∥∥∥
2]

(ii)

f 2¼2L2
g

[∥∥∥
N∑

Q=0

Q+1∏

t=N

(I − ¼∇2
yg(x, y

t))[∇yf(x, y
Q)−∇yf(x, y

N )]
∥∥∥
2]

+ 2L2
g

[∥∥∥¼
N∑

Q=0

Q+1∏

t=N

(I − ¼∇2
yg(x, y

t))− (∇yg(x, y
N ))−1

∥∥∥
2

∥∇yf(x, y
N )∥2

]

(iii)

f 2¼2L2
fL

2
g (N + 1)

N∑

Q=0

(1− ¼µ)2N−2Q[∥yQ − yN∥2]
︸ ︷︷ ︸

1⃝

+ 2L2
gM

2
∥∥∥¼

N∑

Q=0

Q+1∏

t=N

(I − ¼∇2
yg(x, y

t))− (∇yg(x, y
N ))−1

∥∥∥
2

, (12)

where (i) uses Assumption 2, (ii) follows from Young’s inequality, and (iii) follows from Lemma 4 and Assumption 2.

Then, unconditioning on xk, y
N
k yields

E

[
∥E[h̃I(x)]−∇x∇yg(x, y

N )(∇2
yg(x, y

N ))−1∇yf(x, y
N )∥2 |x, yN

]

f2¼2L2
fL

2
g (N + 1)

N∑

Q=0

(1− ¼µ)2N−2Q
E[∥yQ − yN∥2]

︸ ︷︷ ︸
1⃝

+ 2L2
gM

2
E

[∥∥∥¼
N∑

Q=0

Q+1∏

t=N

(I − ¼∇2
yg(x, y

t))− (∇yg(x, y
N ))−1

∥∥∥
2]
. (13)

Based on Theorem 4 in Mitra et al. 2021, for all t ∈ [0, ..., N − 1], we obtain

E[∥yt+1 − y∗(x)∥2] f (1− ´µ

2
)E[∥yt − y∗(x)∥2] + 25´2Ã2

g (14)

which, by telescoping over t from 0 to Q− 1 for any Q ∈ {0, ..., N}, yields

E[∥yQ − y∗(x)∥2] f (1− ´µ

2
)Q E[∥y − y∗(x)∥2] + 25N´2Ã2

g . (15)

Now we provide the upper bound of the first term on the RHS of Equation (12) as

1⃝ f(N + 1)

N∑

Q=0

(1− ¼µ)2N−2Q
[
2E[∥yQ − y∗(x)∥2] + 2E[∥yN − y∗(x)∥2]

]

(i)

f2(N + 1)

N∑

Q=0

(1− ¼µ)2N−2Q
[
(1− ´µ

2
)N E[∥y − y∗(x)∥2] + (1− ´µ

2
)Q E[∥y − y∗(x)∥2] + 50N´2Ã2

g

]
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(ii)

f 2(N + 1)
( (1− ´µ

2 )N

¼µ
+

(1− ´µ
2 )N

1− (1−¼µ)2

1− βµ
2

)
E[∥y − y∗(x)∥2] +

100N(N + 1)´2Ã2
g

¼µ

f2 (N + 1)
3(1− ´µ

2 )N

¼µ︸ ︷︷ ︸
³3(N)

E[∥y − y∗(x)∥2] +
100N(N + 1)´2Ã2

g

¼µ
, (16)

where (i) follows from Equation (15), (ii) follows because
(1−¼µ)2

1− βµ
2

f 1−¼µ

1− βµ
2

f 1−¼µ

1−λµ
2

f 1 as the selection that ´ < ¼ f 1
Lg

.

Then we provide the upper bound of the second term in Equation (12) as

E

[∥∥∥¼
N∑

Q=0

Q+1∏

t=N

(I − ¼∇2
yg(x, y

t))− (∇2
yg(x, y

N ))−1
∥∥∥
2]

=¼2
E

[∥∥∥
N∑

Q=0

Q+1∏

t=N

(I − ¼∇2
yg(x, y

t))−
N∑

Q=0

(I − ¼∇2
yg(x, y

N ))N−Q −
∞∑

Q=N+1

(I − ¼∇2
yg(x, y

N ))Q
∥∥∥
2]

(i)

f2¼2(N + 1)
N∑

Q=0

E

[∥∥∥
Q+1∏

t=N

(I − ¼∇2
yg(x, y

t))− (I − ¼∇2
yg(x, y

N ))N−Q
∥∥∥
2

︸ ︷︷ ︸
M2

N−Q

]
+

2(1− ¼µ)2N+2

µ2
(17)

where (i) follows from the Young’s inequality. Now we provide the upper bound of the term MN−Q as

MN−Q =
∥∥∥

Q+1∏

t=N

(I − ¼∇2
yg(x, y

t))− (I − ¼∇2
yg(x, y

N ))N−Q
∥∥∥

=
∥∥∥(I − ¼∇2

yg(x, y
N ))

[Q+2∏

t=N

(I − ¼∇2
yg(x, y

t))− (I − ¼∇2
yg(x, y

N ))N−Q−1
]

+ (¼∇2
yg(x, y

N )− ¼∇2
yg(x, y

Q+1))

Q+2∏

t=N

(I − ¼∇2
yg(x, y

t))
∥∥∥

(i)

f(1− ¼µ)
∥∥∥

Q+2∏

t=N

(I − ¼∇2
yg(x, y

t))− (I − ¼∇2
yg(x, y

N ))N−Q−1
∥∥∥

︸ ︷︷ ︸
MN−Q−1

+¼Ä(1− ¼µ)N−Q−1∥yN − yQ+1∥

(ii)

f (1− ¼µ)N−QM0 + ¼Ä(1− ¼µ)N−Q−1
N∑

Ä=Q+1

∥yÄ − yN∥

(iii)

f ¼Ä(1− ¼µ)N−Q−1
N∑

Ä=Q+1

∥yÄ − yN∥, (18)

where (i) follows from the Assumption 1 and Assumption 3, (ii) can be obtained after telescoping over t from 0 to N − 1
and (iii) follows from that M0 = 0. Then substitute Equation (18) into Equation (17), we obtain,

(N + 1)

N∑

Q=0

E[M2
N−Q] f¼2Ä2(N + 1)

N∑

Q=0

[
(1− ¼µ)2N−2Q−2

]
(N −Q)

N∑

Ä=Q+1

[
2
(
1− ´µ

2

)Ä

E[∥y − y∗(x)∥2]

+ 2
(
1− ´µ

2

)N

E[∥y − y∗(x)∥2] + 50N´2Ã2
g + 50Ä´2Ã2

g

]

f¼2Ä2(N + 1)

N∑

Q=0

(1− ¼µ)2N−2Q−2(N −Q)
[4(1− ´µ

2 )Q+1

´µ
E[∥y − y∗(x)∥2]

17
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+ 2(N −Q)
(
1− ´µ

2

)N

E[∥y − y∗(x)∥2 + 100N(N −Q)´2Ã2
g

]

=2(N + 1)¼2Ä2
N∑

Q=0

(1− ¼µ)2N−2Q−2(N −Q)2(1− ´µ

2
)N E[∥y − y∗(x)∥2]

+ 4(N + 1)¼2Ä2
N∑

Q=0

(1− ¼µ)2N−2Q−2(N −Q)
(1− ´µ

2 )Q+1

´µ
E[∥y − y∗(x)∥2]

+ 100´2Ã2
g¼

2Ä2N(N + 1)

N∑

Q=0

(1− ¼µ)2N−2Q−2(N −Q)2

< 4(N + 1)(1− ´µ

2
)N

( Ä2

¼µ3
+

4Ä2

´µ3

)

︸ ︷︷ ︸
³1(N)

E[∥y − y∗(x)∥2]

+ 100´2Ä2Ã2
g

[N(N + 1)(1 + (1− ¼µ)2)

¼µ3

]

︸ ︷︷ ︸
³2(N)

, (19)

where the last inequality follows because
∑N

t=0(1− ¼µ)2N−2t−2(N − t)2 < 1+(1−¼µ)2

¼3µ3 and
∑N

t=0(1− ¼µ)2N−2t−2(N −
t)(1− ´µ

2 )t+1 < 1(
1− (1−λµ)2

1−
βµ
2

)2 f (2−¼µ)2

¼2µ2 . Substituting Equation (19) into Equation (17), and applying Equation (19) and

Equation (16) to Equation (12), we have

E
[
∥E[h̃I(x)]−∇x∇yg(x, y

N )(∇2
yg(x, y

N )−1)∇yf(x, y
N )∥2 |x, yN

]

f4¼2L2
fL

2
g³3(N)E[∥y − y∗(x)∥2] +

200¼´2Ã2
gL

2
fL

2
gN(N + 1)

µ

+
4L2

gM
2(1− ¼µ)2N+2

µ2
+ 4¼2L2

gM
2³1(N)E[∥y − y∗(x)∥2] + 400¼2´2L2

gM
2Ã2

gÄ
2³2(N)

=[4¼2L2
gM

2³1(N) + 4¼2L2
fL

2
g³3(N)]E[∥y − y∗(x)∥2] +

4L2
gM

2(1− ¼µ)2N+2

µ2

+ 400¼2´2L2
gM

2Ã2
gÄ

2³2(N) +
200¼´2Ã2

gL
2
fL

2
gN(N + 1)

µ
,

which completes the proof.

C.2. Proof of Proposition 2

Based on the definition of h̃I(x) and h̄I
i (x), using the fact that Var(X) f E[X2], and conditioning on x, yN , we have

E ∥h̃I
i (x)− h̄I

i (x)∥2 f E ∥h̃I
i (x)∥2

fE

∥∥∥¼(N + 1)∇x∇yGi(x, y
N ;Ç)

Q+1∏

t=N

(I − ¼∇2
yG(x, yt;ut))∇yF (x, yQ; ÀQ)

∥∥∥
2

(i)

f¼2(N + 1)2L2
gM

2
E

∥∥∥
Q+1∏

t=N

(I − ¼∇2
yG(x, yt;ut))

∥∥∥
2

(ii)

f ¼2(N + 1)2L2
gM

2
EQ(1− ¼µ)2(N−Q)

=¼2(N + 1)L2
gM

2
N∑

Q=0

(1− ¼µ)2Q = ¼2(N + 1)L2
gM

2 1− (1− ¼µ)2N

1− (1− ¼µ)2

(iii)

f
¼(N + 1)L2

gM
2

µ
, (20)
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where (i) follows from Assumption 2, (ii) follows from Assumption 1 and (iii) follows from ¼ f 1
Lg

. Then, the first part is

proved. For the second part, conditioning on x, y+, we have

E ∥h̃D
i (xi

Å, y+)− h̃D
i (xi

0, y+) + h̃D(x)− h̃I(x)∥2

f 4E ∥h̃D
i (xi

Å, y+)∥2 + 4E ∥h̃D
i (xi

0, y+)∥2 + 4E
∥∥∥

1

|S|
∑

i∈S

h̃D
i (x)

∥∥∥
2

+ 4E
∥∥∥

1

|S|
∑

i∈S

h̃I
i (x)

∥∥∥
2

(i)

f 8M2 + 4E ∥h̃D
i (x)∥2 + 4E ∥h̃I

i (x)∥2
(ii)

f 12M2 +
4¼(N + 1)L2

gM
2

µ
,

where (i) follows from Assumption 2 and (ii) follows from Equation (20). Then, the proof is complete.

D. Proof of Theorem 1 and Corollary 1

We now provide some auxiliary lemmas to characterize the Theorem 1 and Corollary 1.

Lemma 5 (Restatement of Lemma 1). Suppose Assumptions 1-4 are satisfied. Let y∗ = argminy g(x, y). Further, we set

¼ f min{10, 1
Lg

}, ³i = ³
Äi

with Äi g 1 for some positive ³ and ´i = ´
Äi

, where ´ f min{1, ¼, 1
6Lg

} ∀i ∈ S. Then, we

have the following inequality

E[f(x+)]− E[f(x)] f− ³

2
E[∥∇f(x)∥2] + 4³2Ã2

hL
′
f + 4³2Ã2

fL
′
f + 2³2M2L′

f

− ³

2
(1− 4³L′

f )E
[∥∥∥

1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̄D
i (xi

Å, y+)− h̄I(x)
)∥∥∥

2]

+
3³

2

[(
4¼2L2

gM
2³1(N) + 4¼2L2

fL
2
g³3(N)

)
E[∥y − y∗∥2] +

4L2
gM

2(1− ¼µ)2N+2

µ2

+ 400¼2´2L2
gM

2Ã2
gÄ

2³2(N) +
200¼´2Ã2

gL
2
fL

2
gN(N + 1)

µ

+
M2

f

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

E[∥xi
Å − x∥2] +M2

f E[∥y+ − y∗∥2]
]

(21)

where h̄I(x) = E[h̃I(x)|x, y+], h̄D
i (xi

Å, y+) = E[h̃D
i (xi

Å, y+)|xi
Å] and ³1(N), ³2(N), ³3(N) are defined in Proposition 1.

Proof. From Algorithm 4, we have, ∀i ∈ S

x+ =x− 1

m

m∑

i=1

³i

Äi−1∑

Å=0

(
h̃D
i (xi

Å, y+)− h̃D
i (xi

0, y+) + h̃D(x)− h̃I(x)
)
,

where xi
0 = x and the data samples for h̃D

i (xi
0, y+) and h̃D(x) are different. Using the descent lemma yields

E[f(x+)]− E[f(x)] fE[ïx+ − x,∇f(x)ð] +
L′
f

2
E[∥x+ − x∥2]

=− E

[〈 1

m

m∑

i=1

³i

Äi−1∑

Å=0

(
h̃D
i (xi

v, y+)− h̃D
i (xi

0, y+) + h̃D(x)− h̃I(x)
)
,∇f(x)

〉]

+
L′
f

2
E

[∥∥∥
1

m

m∑

i=1

³i

Äi−1∑

Å=0

(
h̃D
i (xi

v, y+)− h̃D
i (xi

0, y+) + h̃D(x)− h̃I(x)
)∥∥∥

2]
. (22)

We next bound each term of the right hand side (RHS) of Equation (22). In specific, for the first term, we have

−E

[〈 1

m

m∑

i=1

³i

Äi−1∑

Å=0

(
h̃D
i (xi

v, y+)− h̃D
i (xi

0, y+) + h̃D(x)− h̃I(x)
)
,∇f(x)

〉]
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=− E

[
E

[〈 1

m

m∑

i=1

³i

Äi−1∑

Å=0

(
h̃D
i (xi

v, y+)− h̃D
i (xi

0, y+) + h̃D(x)− h̃I(x)
)
,∇f(x)

〉∣∣∣x, y+
]]

(i)
= − E

[
E

[〈 1

m

m∑

i=1

³i

Äi−1∑

Å=0

(
h̃D
i (xi

v, y+)− h̄I(x)
)
,∇f(x)

〉∣∣∣xi
Å

]]

(ii)
= − ³E

[〈 1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)
,∇f(x)

〉]

=− ³

2
E

[∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)∥∥∥

2]
− ³

2
E[∥∇f(x)∥2]

+
³

2
E

[∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)
−∇f(x)

∥∥∥
2]
, (23)

where (i) follows because h̄I(x) = E[h̃I(x)|x, y+] and E

[
1
m

∑m
i=1 ³

i
∑Äi−1

Å=0

(
− h̃D

i (xi
0, y+) + h̃D(x)

)∣∣∣x, y+
]
= 0, (ii)

follows because h̄D
i (xi

Å, y+) = E[h̃D
i (xi

Å, y+)|xi
Å]. The next step is to upper bound the last term of RHS of Equation (23).

Based on the notations in Equation (7) and Equation (8), we have

∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)
−∇f(x)

∥∥∥
2

=
∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)
− ∇̄f(x, y+) + ∇̄f(x, y+)−∇f(x)

∥∥∥
2

=
∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̄D
i (xi

v, y+)− ∇̄fD
i (x, y+)

)
− h̄I(x) + ∇̄f I(x, y+) + ∇̄f(x, y+)−∇f(x)

∥∥∥
2

(i)

f3
∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̄D
i (xi

v, y+)− ∇̄fD
i (x, y+)

)
∥2 + 3

∥∥∥h̄I(x)− ∇̄f I(x, y+)
∥∥∥
2

+ 3∥∇̄f(x, y+)−∇f(x)∥2

(ii)

f
3M2

f

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

∥xi
Å − x∥2 + 3M2

f ∥y+ − y∗∥2 + 3∥h̄I(x)− ∇̄f I(x, y+)∥2 (24)

where (i) follows from the Young’s inequality and (ii) follows from Lemma 4 and Assumption 2. Then applying

Proposition 1 to Equation (24), we can obtain

E

[∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)
−∇f(x)

∥∥∥
2]

f
12L2

gM
2(1− ¼µ)2N+2

µ2
+ [12¼2L2

gM
2³1(N) + 12¼2L2

fL
3
g³3(N)]E[∥y − y∗∥2]

+ 1200¼2´2L2
gM

2Ã2
gÄ

2³2(N) +
600¼´2Ã2

gL
2
fL

2
gN(N + 1)

µ

+
3M2

f

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

E[∥xi
Å − x∥2] + 3M2

f E[∥y+ − y∗∥2]. (25)

Then for the second term of Equation (22), we have

E

[∥∥∥
1

m

m∑

i=1

³i

Äi−1∑

Å=0

(
h̃D
i (xi

v, y+)− h̃D
i (xi

0, y+) + h̃D(x)− h̃I(x)
)∥∥∥

2]

(i)

f2³2
E

[∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̃D
i (xi

v, y+)− h̃I(x)
)∥∥∥

2]
+ 2³2

E

[∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
− h̃D

i (xi
0, y+) + h̃D(x)

)∥∥∥
2]
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=2³2
E

[∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̃D
i (xi

Å, y+)− h̄D
i (xi

Å, y+) + h̄I(x)− h̃I(x) + h̄D
i (xi

Å, y+)− h̄I(x)
)∥∥∥

2]

+ 2³2
E

[∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̃D
i (xi

0, y+)
)∥∥∥

2]
+ 2³2

E[∥h̃D(x)∥2]

(ii)

f 4³2
E

[∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

h̄D
i (xi

Å, y+)− h̄I(x)
∥∥∥
2]

+ 4³2
E

[∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̃D
i (xi

Å, y+)− h̄D
i (xi

Å, y+) + h̄I(x)− h̃I(x)
)∥∥∥

2]
+ 4³2M2

(iii)

f 4³2
E

[∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

h̄D
i (xi

Å, y+)− h̄I(x)
∥∥∥
2]

+ 8³2
E

[∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̃D
i (xi

Å, y+)− h̄D
i (xi

Å, y+)
)∥∥∥

2

+ 8³2
E

[∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̄I(x)− h̃I(x)

)∥∥∥
2]

+ 4³2M2

(iv)

f 4³2
E

[∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

h̄D
i (xi

Å, y+)− h̄I(x)
∥∥∥
2]

+ 8³2Ã2
f + 8³2Ã2

h + 4³2M2 (26)

where (i) and (iii) follow from the Young’s inequality, (ii) follows from Young’s inequality and Assumption 2 and (iv)
follows from Assumption 4 and lemma 4. Plugging Equation (25) and Equation (26) into Equation (22) completes the

proof.

Lemma 6 (Restatement of Lemma 2). Suppose Assumptions 1-4 are satisfied. Let y∗ = argminy g(x, y) and y∗(x+) =

argminy g(x+, y). Further, set ³i = ³
Äi

with Äi g 1 with some positive ³, ∀i ∈ S. Then, we have

E[∥y+ − y∗(x+)∥2] fb1(³)E
[∥∥∥

1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)∥∥∥

2]
+ b2(³)E[∥y+ − y∗∥2]

+ b3(³)(2Ã
2
h + 2Ã2

f +M2)

where the constants are given by

b1(³) :=4L2
y³

2 +
L2
y³

2

4µ
+

2Lyx³
2

¸
, b2(³) := 1 + 4µ +

¸LyxD
2
h³

2

2
, b3(³) := 4³2L2

y +
2Lyx³

2

¸

with a flexible parameter µ > 0 decided later.

Proof. First note that

E[∥y+ − y∗(x+)∥2] =E[∥y+ − y∗∥2] + E[∥y∗(x+) − y∗∥2] + 2E[ïy+ − y∗, y∗ − y∗(x+)ð]. (27)

In Equation (27), we bound the second term using Lemma 4 and Equation (26) as

E[∥y∗(x+) − y∗∥2] fL2
y E

[∥∥∥
1

m

m∑

i=1

³i

Äi−1∑

Å=0

(
h̃D
i (xi

v, y+)− h̃D
i (xi

0, y+) + h̃D(x)− h̃I(x)
)∥∥∥

2]

f4³2L2
y E

[∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)∥∥∥

2]
+ 8³2L2

yÃ
2
h + 8³2L2

yÃ
2
f + 4³2L2

yM
2,

and for the third term, we have

E[ïy+ − y∗, y∗ − y∗(x+)ð] =− E[ïy+ − y∗,∇y∗(x+ − x)ð]
− E[ïy+ − y∗, y∗(x+) − y∗ −∇y∗(x+ − x)ð]. (28)
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For the first term on the RHS of the above Equation (28), we have

−E[ïy+−y∗,∇y∗(x+ − x)ð]

=− E

[〈
y+ − y∗,E

[ 1

m
∇y∗

m∑

i=1

³i

Äi−1∑

Å=0

(
h̃D
i (xi

v, y+)− h̃D
i (xi

0, y+) + h̃D(x)− h̃I(x)
)∣∣∣x, y+

]〉]

=− E

[〈
y+ − y∗,E

[ 1

m
∇y∗

m∑

i=1

³i

Äi−1∑

Å=0

(
h̃D
i (xi

v, y+)− h̄I(x)
)∣∣∣xi

Å

]〉]

=− E

[〈
y+ − y∗,

1

m
∇y∗

m∑

i=1

³i

Äi−1∑

Å=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)〉]

(i)

f E

[
∥y+ − y∗∥

∥∥∥
1

m
∇y∗

m∑

i=1

³i

Äi−1∑

Å=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)∥∥∥

]

(ii)

f Ly E

[
∥y+ − y∗∥

∥∥∥
1

m

m∑

i=1

³i

Äi−1∑

Å=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)∥∥∥

]

(iii)

f 2µ E[∥y+ − y∗∥2] +
L2
y³

2

8µ
E

[∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)∥∥∥

2]
(29)

where (i) follows from the Cauchy–Schwarz inequality, (ii) follows from Lemma 4, and (iii) follows from Young’s

inequality that ab f 2µa2 + b2

2µ . For the second term of RHS of Equation (28), we have

−E[ïy+ − y∗, y∗(x+) − y∗ −∇y∗(x+ − x)ð]
fE[∥y+ − y∗∥∥y∗(x+) − y∗ −∇y∗(x+ − x)∥]
(i)

fLyx

2
E[∥y+ − y∗∥∥x+ − x∥2]

(ii)

f ¸Lyx

4
E[∥y+ − y∗∥2∥x+ − x∥2] + Lyx

4¸
E[∥x+ − x∥2]

f¸Lyx

4

1

m

m∑

i=1

³2

Äi

Äi−1∑

Å=0

E
[
∥y+ − y∗∥2 E[∥h̃D

i (xi
Å, y+)− h̃D

i (xi
0, y+) + h̃D(x)− h̃I(x)∥2|x, y+]

]

+
Lyx

4¸
E[∥x+ − x∥2]

(iii)

f ¸LyxD
2
h³

2

4
E[∥y+ − y∗∥2] + Lyx³

2

¸
E

[∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)∥∥∥

2]

+
Lyx³

2

¸
(2Ã2

h + 2Ã2
f +M2) (30)

where (i) follows from the decent lemma by the smoothness of y∗(·), (ii) follows from the Young’s inequality, and (iii)
follows from Proposition 1 and Equation (26). Substituting Equation (29) and Equation (30) into Equation (28), and using

Equation (27), we complete the proof.

Lemma 7 (Restatement of Lemma 3). Suppose Assumptions 1-4 are satisfied. Set ¼ f min{10, 1
Lg

}, ³i = ³
Äi

and ´i =
´
Äi
, Äi g 1 where ³ f 1

324M2
f
+6Mf

f 1
6Mf

, ´ f min{1, ¼, 1
6Lg

} ∀i ∈ S. Recall the definitions of y∗ = argminy g(x, y),

h̄(x) = E[h̃(x)|x, y+]. Then, we have

E[∥xi
Å − x∥2] f18Ä2i (³

i)2
[
3M2

f E[∥y+ − y∗∥2] + 3E[∥∇f(x)∥2] +
4L2

gM
2(1− ¼µ)2N+2

µ2

+ [4¼2L2
gM

2³1(N) + 4¼2L2
fL

2
g³3(N)]E[∥y − y∗∥2]
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+ 400¼2´2L2
gM

2Ä2Ã2
g³2(N) +

200¼´2L2
fL

2
gN(N + 1)Ã2

g

µ
+ 3Ã2

h + 6Ã2
f

]
(31)

where ³1(N), ³2(N), ³3(N) are defined in Proposition 1.

Proof. The result holds for Äi = 1 according to line 2 in Algorithm 4 where xi
0 = x, and hence we consider the case when

Äi > 1. Based on the notations in Equation (8), we define

viÅ :=h̄(x)− ∇̄f(x, y+),

Éi
Å :=∇xFi(x

i
Å, y+; Ài,Å)−∇xfi(x

i
Å, y+) +∇xfi(x, y+)

−∇xFi(x, y+; Ài,Å) + h̃(x)− h̄(x),

ziÅ :=∇xfi(x
i
Å, y+)−∇xfi(x, y+) + ∇̄f(x, y+)−∇f(x) +∇f(x).

(32)

Based on Algorithm 4, for each i ∈ S, and ∀Å ∈ 0, ..., Äi − 1, we have,

xi
Å+1 − x = xi

Å − x− ³i(viÅ + Éi
Å + ziÅ). (33)

Based on Lemma 4 and Proposition 1, we bound viÅ , Éi
Å , and ziÅ as

E[∥viÅ∥2] f
4L2

gM
2(1− ¼µ)2N+2

µ2
+ [4¼2L2

gM
2³1(N) + 4¼2L2

gL
2
f³3(N)]E[∥y − y∗∥2]

+ 400¼2´2L2
gM

2Ä2Ã2
g³2(N) +

200¼´2Ã2
gL

2
fL

2
gN(N + 1)

µ
,

E[∥Éi
Å∥2] f3E[∥∇xFi(x

i
Å, y+; Ài,Å)−∇xfi(x

i
Å, y+)∥2

+ ∥∇xfi(x, y+)−∇xFi(x, y+; Ài,Å)∥2 + ∥h̃(x)− h̄(x)∥2]
f6Ã2

f + 3Ã2
h,

E[∥ziÅ∥2] f3E[∥∇xfi(x
i
Å, y+)−∇xfi(x, y+)∥2

+ ∥∇̄f(x, y+)−∇f(x)∥2 + E ∥∇f(x)∥2]
f3(M2

f E[∥xi
Å − x∥2] +M2

f E[∥y+ − y∗∥2] + E[∥∇f(x)∥2]).

(34)

Now, we bound RHS of Equation (33) as

E[∥xi
Å−x− ³i(viÅ + Éi

Å + ziÅ)∥2]
(i)

f(1 +
1

2Äi − 1
)E[∥xi

Å − x∥2] + 2Äi E[∥³i(viÅ + Éi
Å + ziÅ)∥2]

(ii)

f (1 +
1

2Äi − 1
)E[∥xi

Å − x∥2] + 6Äi(³
i)2 E[∥viÅ∥2 + ∥Éi

Å∥2 + ∥ziÅ∥2]
(iii)

f (1 +
1

2Äi − 1
+ 18Äi(³

i)2M2
f )E[∥xi

Å − x∥2]

+ 6Äi(³
i)2

[
3M2

f E[∥y+ − y∗∥2] + 3E[∥∇f(x)∥2] +
4L2

gM
2(1− ¼µ)2N+2

µ2

+ [4¼2L2
gM

2³1(N) + 4¼2L2
gL

2
f³3(N)]E[∥y − y∗∥2] + 400¼2´2L2

gM
2Ä2Ã2

g³2(N)

+
200¼´2Ã2

gL
2
fL

2
gN(N + 1)

µ
+ 6Ã2

f + 3Ã2
h

]
(35)

where (i) follows from ∥x+ y∥2 f (1 + c)∥x∥2 + (1 + 1
c
)∥y∥2, (ii) follows from the Young’s inequality, and (iii) uses

Equation (34). Substituting Equation (35) into Equation (33) yields

E[∥xi
Å+1 − x∥2] f(1 +

1

2Äi − 1
+ 18Äi(³

i)2M2
f )E[∥xi

Å − x∥2]
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+ 6Äi(³
i)2

[
3M2

f E[∥y+ − y∗∥2] + 3E[∥∇f(x)∥2] +
4L2

gM
2(1− ¼µ)2N+2

µ2

+ [4¼2L2
gM

2³1(N) + 4¼2L2
gL

2
f³3(N)]E[∥y − y∗∥2] + 400¼2´2L2

gM
2Ä2Ã2

g³2(N)

+
200¼´2Ã2

gL
2
fL

2
gN(N + 1)

µ
+ 3Ã2

h + 6Ã2
f

]

f(1 +
1

Äi − 1
)E[∥xi

Å − x∥2]

+ 6Äi(³
i)2

[
3M2

f E[∥y+ − y∗∥2] + 3E[∥∇f(x)∥2] +
4L2

gM
2(1− ¼µ)2N+2

µ2

+ [4¼2L2
gM

2³1(N) + 4¼2L2
gL

2
f³3(N)]E[∥y − y∗∥2] + 400¼2´2L2

gM
2Ä2Ã2

g³2(N)

+
200¼´2Ã2

gL
2
fL

2
gN(N + 1)

µ
+ 3Ã2

h + 6Ã2
f

]
, (36)

where the last inequality follows because ³i f 1/(6MfÄi). For all Äi > 1, we have

Å−1∑

j=0

(1 +
1

Äi − 1
)j =

(1 + 1
Äi−1 )

Å − 1

(1 + 1
Äi−1 )− 1

f Äi(1 +
1

Äi
)Å f Äi(1 +

1

Äi
)Äi f exp(1)Äi < 3Äi. (37)

Finally, telescoping Equation (36) and using Equation (37), we have

E[∥xi
Å − x∥2] f18Ä2i (³

i)2
[
3M2

f E[∥y+ − y∗∥2] + 3E[∥∇f(x)∥2] +
4L2

gM
2(1− ¼µ)2N+2

µ2

+ [4¼2L2
gM

2³1(N) + 4¼2L2
gL

2
f³3(N)]E[∥y − y∗∥2] + 400¼2´2L2

gM
2Ä2Ã2

g³2(N)

+
200¼´2Ã2

gL
2
fL

2
gN(N + 1)

µ
+ 3Ã2

h + 6Ã2
f

]
.

Then, the proof is complete.

D.1. Proof of Theorem 1

Theorem 2 (Restatement of Theorem 1). Suppose Assumption 1-4 hold. Further set ¼ f min{10, 1
Lg

}, ³i
k = ³k

Äi
an

´i
k = ´k

Äi
for all i ∈ S. Define ¯́ =

(
MfLy

2 ³̄2 + 11MfLy + ¸LyxD
2
h³̄2 +

(6+
ᾱ2
3 )(N+1)¼LyL

2
g

Mf

(
328Ä2M2

µ3 +
6L2

f

µ

))
1
µ

,

³̄1 = 1

8L′

f
+16MfLy+

8MfLyx

ηLy

, ³̄2 = 1
324M2

f
+6Mf

, ³̄3 =
N min{1,¼, 1

6Lg
}

2 ¯́
, and Ã2

h =
¼(N+1)L2

gM
2

µ
, where L′

f = Lf +

Lg(Lf+Mf )
µ

+ M
µ
(Ä+

LgÄ

µ
), Mf = Lf +

LgLf

µ
+ M

µ
(Ä+

LgÄ

µ
), Ly =

Lg

µ
, and Lyx =

Ä+ÄLy

µ
+

Lg(Ä+ÄLy)
µ2 . Besides, define

c0 =2L′
f + 4MfLy +

2LyxMf

¸Ly

,

c1 =
1

4
+ 4L′

f + 8MfLy +
4LyxMf

¸Ly

,

c2 =
1

2
+ 4L′

f + 8MfLy +
4LyxMf

¸Ly

,

c3 =
25Mf

Ly

[
1 + (12 +

2³k

3
)(
2³̄2¼

2L2
gM

2Ä2Ly

NMf

³2(N) +
³̄2¼L

2
fL

2
g(N + 1)Ly

µMf

) +
MfLy³̄

2
2

4

+
11³̄2MfLy

2
+

¸LyxD
2
h³̄

2
2

2

] ¯́2
N

,
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where ¸ =
Mf

Ly
and D2

h = 8M2 +
4¼(N+1)L2

gM
2

µ
. Choose parameters such that ³k = min{³̄1, ³̄2, ³̄3,

³̄√
K
}, ´k ∈

[max{ ¯́³k

N
, ¼
10},min{1, ¼, 1

6Lg
}], where ³̄ is a parameter that can be tuned. Then we have

1

K

K−1∑

k=0

E[∥∇f(xk)∥2] = O
( 1

min{³̄1, ³̄2, ³̄3}K
+

1

³̄
√
K

+
³̄max{c0, c1Ã2

h, c2, c3}√
K

+ (1− ¼µ)2N ). (38)

Proof. Now, we define a Lyapunov function

Wk := f(xk, y
∗
(xk)

) +
Mf

Ly

∥yk − y∗(xk)
∥2.

Motivated by (Chen et al., 2021a), we bound the difference between two Lyapunov functions as

Wk+1 −Wk = f(xk+1, y
∗
(xk+1)

)− f(xk, y
∗
(xk)

) +
Mf

Ly

(∥yk+1 − y∗(xk+1)
∥2 − ∥yk − y∗(xk)

∥2). (39)

Recall that ³i
k = ³k

Äi
, ´i

k = ´k

Äi
, ∀i ∈ S. Using such stepsizes and substituting Lemma 5 into Equation (39), we have

E[Wk+1]− E[Wk]

f− ³k

2
E[∥∇f(xk)] + 4³2

kÃ
2
hL

′
f + 4³2

kÃ
2
fL

′
f + 2³2

kM
2L′

f

− ³k

2
(1− 4³kL

′
f )E

[∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̄D
i (xi

k,Å, y+)− h̄I(x)
)∥∥∥

2]

+
3³k

2

[(
4¼2L2

gM
2³1(N) + 4¼2L2

fL
2
g³3(N)

)
E[∥yk − y∗(xk)

∥2] +
4L2

gM
2(1− ¼µ)2N+2

µ2

+ 400¼2´2
kL

2
gM

2Ã2
gÄ

2³2(N) +
200¼´2

kÃ
2
gL

2
fL

2
gN(N + 1)

µ
+

M2
f

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

E[∥xi
k,Å − xk∥2]

+M2
f E[∥yk+1 − y∗(xk)

∥2]
]
+

Mf

Ly

E[∥yk+1 − y∗(xk+1)
∥2 − ∥yk − y∗(xk)

∥2]. (40)

Then, following Lemma 6, Equation (40) can be rewritten as

E[Wk+1]− E[Wk]

f4³2
kÃ

2
hL

′
f + 4³2

kÃ
2
fL

′
f + 2³2

kM
2L′

f +
Mf

Ly

b3(³k)(2Ã
2
h + 2Ã2

f +M2)

+
300³k¼´

2
kL

2
fL

2
gN(N + 1)Ã2

g

µ
+

6³kL
2
gM

2(1− ¼µ)2N+2

µ2
+ 600³k¼

2´2
kL

2
gM

2Ä2Ã2
g³2(N)

− ³k

2
E[∥∇f(xk)∥2] +

3³kM
2
f

2m

m∑

i=1

1

Äi

Äi−1∑

Å=0

E[∥xi
k,Å − xk∥2] (41a)

−
(³k

2
− 2³2

kL
′
f − Mf

Ly

b1(³k)
)
E

[∥∥∥
1

m

m∑

i=1

1

Äi

Äi−1∑

Å=0

(
h̄i(x

i
k,Å, y+)− h̄(x)

)∥∥∥
2]

(41b)

+
(3³kM

2
f

2
+

Mf

Ly

b2(³k)
)
E[∥yk+1 − y∗(xk)

∥2]

+
(
6³k¼

2L2
gM

2³1(N) + 6³k¼
2L2

fL
2
g³3(N)− Mf

Ly

)
E[∥yk − y∗(xk)

∥2]. (41c)

Set µ = MfLy³k. Then according to the selections in Theorem 2 that ³k f 1
324M2

f
+6Mf

, ³k f 1

8L′

f
+16MfLy+

8MfLyx

ηLy

,

and substituting Equation (15) in Equation (41c), the following results can be obtained.

(41a) f− ³k

4
E[∥∇f(xk)∥2] +

³2
k

4
Ã2
h +

³2
k

2
Ã2
f +

³2
kL

2
gM

2(1− ¼µ)2N+2

3µ2
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+
100³2

k¼
2´2

kL
2
gM

2Ä2Ã2
g

3
³2(N) +

50³2
k¼´

2
kL

2
fL

2
gN(N + 1)Ã2

g

3µ
+

25Mf

Ly

(
MfLy

4
³2
k)N´2

kÃ
2
g

+
Mf

Ly

[
(
MfLy

4
³2
k)(1−

´kµ

2
)N +

³2
k¼

2LyL
2
gM

2

3Mf

³1(N) +
³2
k¼

2LyL
2
fL

2
g

3Mf

³3(N)
]
E[∥yk − y∗(xk)

∥2], (42)

In (41b), we have
³k

2
− 2³2

kL
′
f − Mf

Ly

b1(³k) g 0, (43)

(41c) f25Mf

Ly

(3³kMfLy

2
+ b2(³k)

)
N´2

kÃ
2
g +

Mf

Ly

[(3³kMfLy

2
+ b2(³k)

)
(1− ´kµ

2
)N

+
6³k¼

2L2
gLyM

2³1(N)

Mf

+
6³k¼

2L2
fLyL

2
g

Mf

³3(N)− 1
]
E[∥yk − y∗(xk)

∥2]. (44)

Then, adding Equation (42), Equation (43) and Equation (44) together, we have

E[Wk+1]− E[Wk]

f− ³k

4
E[∥∇f(x∗

k)∥2] +
³2
kÃ

2
f

2
+

³2
kÃ

2
h

4
+

50³k¼´
2
kL

2
fL

2
gN(N + 1)Ã2

g

µ
(6 +

³k

3
)

+ 2³2
kL

′
f (2Ã

2
f + 2Ã2

h +M2) + 100³k¼
2´2

kL
2
gM

2Ä2Ã2
g(6 +

³k

3
)³2(N) +

Mf (2Ã
2
f + 2Ã2

h +M2)

Ly

b3(³k)

+
2³kL

2
gM

2(1− ¼µ)2N+2

µ2
(3 +

³k

6
) +

25Mf

Ly

(
MfLy

4
³2
k +

3MfLy³k

2
+ b2(³k))N´2

kÃ
2
g

+
Mf

Ly

((MfLy

4
³2
k +

3MfLy³k

2
+ b2(³k)

)
(1− ´kµ

2
)N − 1 +

2³k¼
2LyL

2
gM

2

Mf

³1(N)(3 +
³k

6
)

+
2³k¼

2LyL
2
fL

2
g

Mf

³3(N)(3 +
³k

6
)
)
E[∥yk − y∗(xk)

∥2]

f− ³k

4
E[∥∇f(x∗

k)∥2] +
³2
kÃ

2
f

2
+

³2
kÃ

2
h

4
+

50³k¼´
2
kL

2
fL

2
gN(N + 1)Ã2

g

µ
(6 +

³k

3
)

+ 2³2
kL

′
f (2Ã

2
f + 2Ã2

h +M2) + 100³k¼
2´2

kL
2
gM

2Ä2Ã2
g(6 +

³k

3
)³2(N) +

Mf (2Ã
2
f + 2Ã2

h +M2)

Ly

b3(³k)

+
2³kL

2
gM

2(1− ¼µ)2N+2

µ2
(3 +

³k

6
) +

25Mf

Ly

(
MfLy

4
³2
k +

3MfLy³k

2
+ b2(³k))N´2

kÃ
2
g

+
Mf

Ly

[(MfLy

4
³2
k +

3MfLy³k

2
+ b2(³k)

)
(1− ´kµ

2
)N − 1

+
2³k¼

2LyL
2
gM

2

Mf

(6 +
³k

3
)(N + 1)(1− ´kµ

2
)N

( 2Ä2

¼µ3
+

80Ä2

¼µ3

)

+
3³k¼LyL

2
fL

2
g

µMf

(6 +
³k

3
)(N + 1)(1− ´kµ

2
)N

]
E[∥yk − y∗(xk)

∥2], (45)

where in the last inequality, recalling from Lemma 6 and Proposition 1 that b2(³) := 1 + 4µ +
¸LyxD

2
h³

2
k

2 , ³1(N) =

4(N + 1)(1 − ´kµ
2 )N

(
Ä2

¼µ3 + 4Ä2

´kµ3

)
, ³3(N) = 3(N + 1) (1−´kµ)

N

¼µ
, we choose ´k g ¼

10 . Based on the parameters

selections in Theorem 2 that ´k g
(

MfLy

2 ³k + 11MfLy + ¸LyxD
2
h³k +

(6+
αk
3 )(N+1)¼LyL

2
g

Mf

(
328Ä2M2

µ3 +
6L2

f

µ

))
³k

µN
and

µ = MfLy³k, we have

⇒ exp
(MfLy

4
³2
k +

11MfLy³k

2
+

¸LyxD
2
h³

2
k

2
+

³k(6 +
³k

3 )(N + 1)¼2LyL
2
g

Mf

×

(164Ä2M2

¼µ3
+

6L2
f

¼µ

))
exp(−N´kµ

2
) f 1
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⇒
(MfLy

4
³2
k +

3MfLy³k

2
+ b2(³k)

)
(1− ´kµ

2
)N +

2³k¼
2LyL

2
gM

2

Mf

³1(N)(3 +
³k

6
)

+
2³k¼

2LyL
2
fL

2
g

Mf

³3(N)(3 +
³k

6
)− 1 f 0. (46)

Then plugging Equation (46) into Equation (45), we can obtain that

E[Wk+1]− E[Wk]

f− ³k

4
E[∥∇f(xk)∥2] +

2³kL
2
gM

2(1− ¼µ)2N+2

µ2
(3 +

³k

6
) +

(
2³2

kL
′
f +

Mf

Ly

b3(³k)
)
M2

+
(
4³2

kL
′
f +

³2
k

4
+

2Mf

Ly

b3(³k)
)
Ã2
h +

(
4³2

kL
′
f +

³2
k

2
+

2Mf

Ly

b3(³k)
)
Ã2
f

+
25Mf

Ly

(³k¼
2L2

gM
2Ä2Ly

NMf

(24 +
4³k

3
)³2(N) +

³k¼L
2
fL

2
g(N + 1)Ly

µMf

(12 +
2³k

3
)

+
MfLy³

2
k

4
+

3³kMfLy

2
+ b2(³k)

) ¯́2
N

³2
kÃ

2
g

f− ³k

4
E[∥∇f(xk)∥2] +

2³kL
2
gM

2(1− ¼µ)2N+2

µ2
(3 +

³k

6
) + c0³

2
kM

2 + c1³
2
kÃ

2
h + c2³

2
kÃ

2
f + c3³

2
kÃ

2
g (47)

where c0, c1, c2, c3 are defined in Theorem 2. Finally, telescoping Equation (47) yields

1

K

K−1∑

k=0

E[∥∇f(xk)∥2] f
4W0

∑K−1
k=0 ³k

+
4c0

∑K−1
k=0 ³2

k∑K−1
k=0 ³k

M2 +
4c1

∑K−1
k=0 ³2

k∑K−1
k=0 ³k

Ã2
h +

4c2
∑K−1

k=0 ³2
k∑K−1

k=0 ³k

Ã2
f

+
4c3

∑K−1
k=0 ³2

k∑K−1
k=0 ³k

Ã2
g +

8L2
gM

2
∑K−1

k=0 ³k(1− ¼µ)2N+2

µ2
∑K−1

k=0 ³k

(3 +
³k

6
)

f 4W0

min{³̄1, ³̄2, ³̄3,
³̄√
K
}K +

4c0³̄√
K

M2 +
4c1³̄√
K

Ã2
h +

4c2³̄√
K

Ã2
f +

4c3³̄√
K

Ã2
g

+
8L2

gM
2(1− ¼µ)2N+2

µ2
(3 +

³k

6
)

f 4W0

min{³̄1, ³̄2, ³̄3}K
+

4W0

³̄
√
K

+
4c0³̄√
K

M2 +
4c1³̄√
K

Ã2
h +

4c2³̄√
K

Ã2
f +

4c3³̄√
K

Ã2
g

+
8L2

gM
2(1− ¼µ)2N+2

µ2
(3 +

³k

6
)

=O
(

1

min{³̄1, ³̄2, ³̄3}K
+

1

³̄
√
K

+
³̄max{c0, c1Ã2

h, c2, c3}√
K

+ (1− ¼µ)2N
)
. (48)

The proof is complete.

D.2. Proof of Corollary 1

Proof. Let ¸ =
Mf

Ly
= O(»g). It follows from Lemma 4 and Theorem 2 that

Ly =O(»g), Lyx = O(»3
g), Mf = O(»2

g), L
′
f = O(»3

g), Ã
2
h = O(N»g),

³̄1 =O(»−3
g ), ³̄2 = O(»−4

g ), ³̄3 = O(N»−4
g + »−3

g ), ¯́ = O(»4
g +N»3

g),

c0 =O(»3
g), c1 = O(»3

g), c2 = O(»3
g), c3 = O

((»8
g

N
+N»6

g

)(
»g +N»−1

g

))
.

(49)

Now, if we select N = O(»g), ³̄ = O(»−4
g ), we obtain from Equation (48) that

¯́ = O(»4
g), c3 = O(»8

g),
1

K

K−1∑

k=0

E[∥∇f(xk)∥2] = O(
»4
g

K
+

»4
g√
K

).
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To achieve an ϵ-stationary point, it requires K = O(»8
gϵ

−2) and the number of samples in À and · are both O(»9
gϵ

−2). Then

the proof is complete.
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