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Abstract

In this paper, we introduce a novel approach to multi-agent coordination under partial state and observation,
called Multi-Agent Recurrent Deterministic Policy Gradient with Inter-Agent Communication (MARDPG-
IAC). In such environments, it is difficult for agents to obtain information about the actions and observations
of other agents, which can significantly impact their learning performance. To address this challenge, we
propose a recurrent structure that accumulates partial observations to infer the information and a communi-
cation mechanism that enables agents to exchange information to enhance their learning effectiveness. We
employ an asynchronous update scheme to combine the MARDPG algorithm with inter-agent communi-
cation algorithm, without requiring a replay buffer. Through a case study of building energy control in a
power distribution network, we demonstrate that our proposed approach outperforms conventional multi-
agent deep deterministic policy gradient (MADDPG) that relies on partial state only.

1 Problem Formulation

We consider multi-agent reinforcement learning (MARL) with a decentralized markov decision process
(MDP) and partially observable states, denoted as (M,S, O, A,P,R). Here, M is a set of m agents,
S = x;SU is the set of joint state space, @ = x;O is the set of joint observation space, A = x;A®
is the joint action space, R is the reward function. Each agent i executes action () € A®). The joint
action a = (a™,---,a(™)) causes state transition from s € S to s’ € S with probability P(s'|s;a) =
P(s,a;s’). Each agent i only has access to its local state s( and local observation o("), and has its own
policy ) : S (@) x O,(:) X AS) — A® in which subscript i denotes history of agent ¢’s observations and
actions. The joint policy is denoted as p = (u(l), Sy u(m)). The agents receive a shared joint reward of
re+1 = R(st,a) at each time ¢ + 1. The goal is to maximize the expected return, J = E(} ;% v'r¢41),
where + is the discount factor.

Although existing reinforcement learning (RL) algorithms, such as multi-agent deep deterministic policy
gradient (MADDPG), can be employed to tackle a Markov decision process (MDP) with partial states, the
efficacy of these algorithms can be substantially reduced compared to that with full states. Consequently,
we propose a new approach in this work to address this performance degradation by utilizing the history
of local observations, actions, and inter-agent communication. Specifically, at each time step ¢, we assume
that each agent has access to local observations oy) e QO which are determined by the joint action a;_;
and joint state s;_; from the previous time step. We incorporate a recurrent structure to accumulate this side
information in our RL algorithm design, enabling agents to leverage this information to generate improved
policies. It is important to note that our proposed multi-agent reinforcement learning (MARL) formulation
differs from that of the standard decentralized partially observable MDP (Dec-POMDP). The latter assumes
that each agent makes decisions solely based on local observations, whereas in our setting, local observations
are employed as additional information alongside local states to facilitate the generation of better policies.
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Figure 1: Agent 1’s Actor-Critic Structure of Modified MARDPG for the 2 agents scenario

Furthermore, the states in our MDP formulation cannot be construed as observations in the Dec-POMDP, as
they are not necessarily a consequence of the agents’ actions.

2 The Proposed MARDPG-IAC

Modified Multi-Agent Recurrent Deterministic Policy Gradient: Recurrent Deterministic Policy Gradi-
ent (RDPG) [1]] offers several advantages for tackling the challenges of partial observability in multi-agent
environments. RDPG leverages a recurrent neural network to maintain a memory of past observations,
which can be used to infer hidden state information and the actions of other agents. In this paper, we adopt
modified MARDPG with recursive actor structure to mitigate performance degradation resulting from partial
observability. In the given system model, each critic can access full state information and all actions con-
ducted by agents so the critic does not need to use recurrent structure to accumulate information about other
agents. In contrast, the actor of each agent can obtain only partial state and observation and needs to take ad-
vantage of recursive structure to accumulate partial information to infer actions and partial observations by
other agents. This asymmetry between the actor and critic structure provides accurate temperal-difference
(TD) target with less backpropagation computational burden while actors can infer information effectively.
Another difference from conventional RDPG structure is direct connection from fixed partial state informa-
tion. During the iteration, partial state information doesn’t change and contains definite information about
the current partial state, which doesn’t require inference based on recursive structure. The actor and critic

structure adopted in the proposed structure is described in Figure The message history mé2), ceey mg)l

from agent 2 is fed into the recurrent structure of agent 1’s actor network to generate the action a,gl) at time

index t.

The policy gradient with respect to agent i’s policy parameterization is
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where the expectation is over the observation-action-message trajectory

T(Z) = (Sgi)7 Ogi)v agi)a mgl )7 Ogi)7 ) a’gf)—P m§£217 ng)), ,U,g)

for agent ¢, and Q,(f) is the true action-value function of agent ¢ associated with the current policy. We

is a deterministic policy with parameter 6)

replace Q,(f) with the learned approximation )* parameterized with w for the implementation.

Inter-Agent Communication: We adopt modified DIAL (Differentiable Inter-Agent Learning) [2] structure
for reinforced communication learning between agents. DIAL doesn’t use experience replay to avoid non-
stationarity misleading caused by multiple agents’ concurrent learning and backpropagation starts once the
episode reaches its terminal state or the maximum length of sequence. It is challenging to integrate the
update algorithm of DIAL with that of Modified MARDPG when using an off-policy replay buffer. To
combine DIAL with modified MARDPG, we use asynchronous network update scheme. The update for the
action network based on modified MARDPG and the update for Inter Agent Communication(IAC) network
based on DIAL happen asynchronously as described in Figure[2] The IAC network and action network are
separated, which means IAC network is not affected by the action network’s off policy update based on
experience replay and while actor-critic update phase, IAC network is frozen to give stability in update. In
IAC update phase, run a episode until it reaches its terminal state or the maximum length of sequence. At
the end of the trajectory, the gradient calculation for IAC network begins from the time 7" in a backward
direction. The loss function for agent i’s IAC network is defined by the downstream bootstrap TD error of

other agents > (AMt(Q), where M is Q-network for IAC and 7’ is all agents indices except agent

m,t' >t
1, and the update for the agent i’s IAC gradient chain is done by taking derivation of the loss function with
respect to the outgoing message mgl). Once IAC network has been updated, the action network update phase
starts alternately. A detailed description of the MARDPG-IAC is shown in Algorithm 1 at the end of

this document.
3 A Case Study of Decentralized Building Energy Control in Power Distribution Network

To evaluate the proposed MARDPG-IAC in practical applications, we conduct a case study by considering
a building energy control problem in a power distribution network for reliable and low-cost grid operation.
For simplicity, assume each node of the distribution network is connected to only one building complex
whose real and reactive power consumption and generation can be controlled. The radial power distribution
network (the environment) used here is a simplified single-phase IEEE-13 Node Test Feeder, as shown in
Figure 3]

Let the 13 nodes indexed by ¢ = 0,...,12, where Node 0 is the feeder head maintaining a constant
voltage magnitude. To ensure reliable grid operation, voltage magnitudes at all nodes should be maintained
within a certain range. Let V' € R'2 denote the vector containing the voltage magnitude of all the remaining
12 nodes except the feeder head, at any time instant, we have V' = f(P,Q), where the mapping f(-) is
determined by the power distribution network topology and configuration, and P = P, + P. € R'? and
Q = Q; + Q. € R'? are the net real and reactive power consumption vectors at all 12 buildings with posi-
tive indicating consumption and negative indicating generation. In the proposed MARDPG-IAC framework,
P, and Q) are the baseline net real and reactive power consumption vectors, which are regarded as state,
P, and Q. are the controllable net real and reactive power consumption, which are considered as action.
We note that the actions here are continuous valued. The voltage magnitude V;, at the ¢th node, is consid-
ered as local observation. Moreover, at any time, the negative total power loss of the distribution network
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Figure 2: Asynchronous Network Update and IAC Structure of agent 1 for the 2 agents scenario
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Figure 3: Case study: Building energy control in a power distribution network.

—L(P, Q) is regarded as the global reward, and the negative generation/consumption cost —c¢;(Pe;, Qc.i)
of each building ¢ is regarded as the local reward. The goal is to minimize the total power loss plus all the
local generation/consumption costs, which can be formulated as the following optimal power flow problem.

12
min L(P,Q) + > ci(Pei, Qei)
e i=1

(1)
st.P,<P.<P; Q <Q<Q; V<V<IV,

where P, P.., QC, and Q, are vectors containing local physical limits of all buildings’ energy units, and V'
and V are vectors denoting the nodal voltage bounds.



4 Numerical Results

In Figure @ The performance of the proposed MARDPG-IAC method is compared with three other re-
inforcement learning (RL) algorithms, namely Modified MARDPG without IAC, Two-Stage MADDPG
(TS-MADDPG) [3|], and conventional MADDPG [4], using a power distribution network described in Sec-
tion 3. The power distribution network consists of 12 nodes, which are divided into two groups of six nodes
each for the scenario 1 and four groups of three nodes each for the scenario 2.

Each group of nodes is treated as an agent, and each agent has access to only the local states, partial
observations and its own previous actions within their group. The performance comparison of the four RL
algorithms for both scenarios are presented in Figure |4] where the left sub-figure shows the histogram of
the evaluation results for scenario 1, and the right sub-figure shows the result for scenario 2. The x—axis
of the figure represents the reward percentage error rate (PER), which is defined as the difference between
the optimal reward obtained by a conventional centralized optimization algorithm and the reward obtained
by applying the generated actions using each of the four RL algorithms, divided by the optimal reward. The
expectation is calculated over a total of 6 - 10* independently generated states, where the states represent the
nodal baseline power consumption/generation and are independent of each other over time. We assume that
the components of each state vector follow a Gaussian distribution with zero mean and a variance of 106.
It should be noted that the conventional algorithm assumes full knowledge of the states and the distribution
network and needs to be re-run for each new state to compute the optimal reward. On the other hand, the
four RL algorithms do not assume any prior knowledge of the power network topology and configuration.

Based on the results presented in Figure 4] it is evident that the proposed MARDPG-IAC and Modified
MARDPG exhibit similar performance, which are notably superior to that of TS-MADDPG and MADDPG,
as evidenced by their respective histograms. The primary difference between MARDPG-IAC and Modified
MARDPG is the presence of an Inter-Agent Communication (IAC) module. This finding suggests that, for a
higher percentage of states, MARDPG-IAC and Modified MARDPG can generate near-optimal actions that
result in rewards that are closer to the optimal values, as indicated by a smaller reward percentage error rate
(PER). In contrast, the histograms for TS-MADDPG and MADDPG exhibit heavier tails, indicating a higher
probability of these algorithms failing to generate near-optimal actions compared to MARDPG-IAC and
Modified MARDPG. Furthermore, the results indicate that the performance difference between MARDPG-
IAC and Modified MARDPG is more pronounced in the four-agent scenario compared to the two-agent
scenario. Specifically, the histogram of MARDPG-IAC in the four-agent scenario has a noticeably higher
peak located closer to the left side of the graph. The reason for the performance improvement with IAC
in the four-agent scenario is that, unlike the two-agent scenario, each agent in the four-agent scenario has
more hidden information to infer, and the use of a recurrent neural network is not sufficient to capture all
the relevant information.

In summary, the results demonstrate that the incorporation of MARDPG-IAC leads to improved perfor-
mance compared to MARDPG without IAC, TS-MADDPG and MADDPG, especially in scenarios with a
larger number of agents, where there is more hidden information to infer.

5 Conclusions and Future Work

This work introduces a novel MARDPG-IAC algorithm that enhances collaboration among agents and im-
proves learning performance in Multi-Agent RL with partial states by utilizing history of local observations
and actions as side information and inter-agent communication. The case study of power distribution net-
work demonstrates the efficacy of MARDPG-IAC, which outperforms prior studies that only employed
partial states for training optimal control policies. This work is the first to utilize history of actions and volt-
age observations in addition to partial states to train actor-critic networks and exhibit improved performance.
As a follow-up to this research, we aim to explore the impact of DDPG Based Inter-Agent Communication



0.1 : : : 0.05 ‘ ‘
=MARDPG-IAC =MARDPG-IAC
008t “IModified MARDPG | 0.04b =Modified MARDPG |
—ITS-MADDPG ' —ITS-MADDPG
>
2006 =MADDPG go.os— =MADDPG
Q a
® ®©
Q o
©0.04 90.02
Q S
0.02} 0.01¢

0 10 20 30 40 50 0 20 40 60 80 100
percentage error rate(%) percentage error rate(%)

Figure 4: Histograms of reward percentage error rate (PER) using MARDPG-IAC, Modified RDPG, TSMADDPG,
and MADDPG. Left: 2 Group Scenario. Right: 4 Group Scenario

Algorithms, such as the Attentional Communication Model (ATOC) [3]], on performance without asyn-
chronous update. Additionally, we note that the grouping topology in the power distribution network affects
performance, and we expect that incorporating attention [[6] to consider grouping topology can alleviate this
performance dependency.
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Algorithm 1: Multi-Agent RDPG with Inter Agent Communication under Partial States and Ob-
servations

Modified Multi-Agent RDPG update:

Fix IAC network parameters

Initialize all agents’ cirtic network Q((j ) and actor ,uéi) (hgi)> with parameters w and 6
Initialize target network QS,) and Méi) (hgi)) with weight w’ < w and §' < 6

Initialize replay buffer R

for episodes =1 to M do
initialize empty history hg
for =1 toT do

for each agent ¢,

receive partial state sgi) at t=1
receive partial observation ng‘)

append partial state, previous action agi_)l and partial observation to history hgi)
select action agi) = ,ug) (h@) + € where € is exploration noise

receive reward 7
end

Store the trajectory sequence in R
Sample a minibatch of IV trajectory episodes from R
Compute target values for each sample episode without using recurrent network

i i i 1 Ly (1 1 L L
o =9 420 (0, o, (1) - P (1))
Compute critic update
; ; a7 0 900 (s, (B o
89 = 30, 5 (47— Q) (S0, o8, af9)) 2Lt o)
Compute actor update

200 = 1y 3, Dl () P () 1 (1)

Update actor and critic parameters using Adam
Update the target networks

end

Inter Agent Communication update:

Fix Modified MARDPG network parameters

Load the the most recent trajectory episode in the replay buffer R

for each episode do
| Train Inter-Agent Communication Network by DIAL algorithm

end
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