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INTRODUCTION

In this work, a simplified pressurized water reactor
(PWR) fuel loading pattern optimization problem is solved. 
This is a modification of a problem [1] previously studied 
using quantum annealing, involving the design of the
APR1400 initial core with quarter-core (rotational only) 
symmetry and the choice of two fuel assembly designs, a high 
and low enrichment, for each core location. Lastly, a lower-
enrichment fuel assembly is fixed at the center of the core.
Thus, the problem has 60 degrees of freedom and 260

potential solutions. This differs from the previous study [1], 
which sought a 30/30 split between higher- and lower-
enrichment fuel assembly design usage. Here, the constraint
on region split has been removed and additional constraints 
were added to the cost function. The previous study
considered only the maximum local power peaking factor as 
well as the cycle length. Here, the initial critical boron, as 
well as the fuel cost, are included in the cost function.  Note 
that the cycle length and fuel cost serve to drive the solution 
to the optimal region split between the more expensive high 
enriched fuel and the low enriched fuel. Candidate loading 
patterns are evaluated by the metrics listed in Table I.

TABLE I. Cost Function Components

Component Limit Penalty Credit
Initial Boron (B, ppm) 1450 10 0
Maximum Local Peaking 
Factor (𝐹𝐹𝑞𝑞)

2.15 100 10

Cycle Length (CE, 𝐺𝐺𝐺𝐺−𝑑𝑑
𝑀𝑀𝑀𝑀 ) 20.95 100 0

Fuel Cost (FC, $
𝑀𝑀𝑀𝑀−ℎ) 10.06 100 100

With H as the Heaviside step function, the cost function 
for a given loading pattern is given by Eq. (1).

𝐸𝐸 = 10𝐻𝐻(𝐵𝐵 − 1450) + 100𝐻𝐻(𝐹𝐹𝑞𝑞 − 2.15) − 10𝐻𝐻(2.15 −
𝐹𝐹𝑞𝑞) + 100𝐻𝐻(𝐶𝐶𝐶𝐶 − 20.95) + 100𝐻𝐻(𝐹𝐹𝐹𝐹 − 10.06) − 10 −

0𝐻𝐻(10.06 − 𝐹𝐹𝐹𝐹) ,             (1)

In Eq. (1), B represents the initial boron, Fq represents 
the maximum local power peaking factor, CE represents the 
cycle length, and FC represents the fuel cost. Acceptable
loading patterns must meet the upper limits on the initial
boron, maximum local power peaking factor and fuel cost 
and the lower limit on the cycle length.

METHODS

The phrase “quantum computing” generally refers to (i) 
adiabatic quantum computing (ii) gate-based quantum 
computing or (iii) the implementation of algorithms inspired 
by quantum physics on a traditional (classical) computer. 
Here, only (i) and (iii) are addressed. Addressing (i), the D-
Wave 2000Q was used to solve the problem. Additionally, a 
quantum-inspired genetic algorithm (QGA) was used to solve 
the problem, addressing (iii). QGA is a variation on more 
typical genetic algorithms (GAs) that have been used in 
solving fuel loading pattern optimization problems. None of 
the gate-based architectures (ii) were used in solving this 
problem. Lastly, parallel simulated annealing (PSA) based on 
the constraint annealing method was used to solve the stated 
problem [2].

The CASMO-SIMULATE code system for reactor 
analysis was used to evaluate the cost components of the 
candidate loading patterns. This involves (1) one-time 
generation of the nuclear cross-section library using CASMO 
for the fuel assembly designs in the problem and then (2) core 
depletion using SIMULATE to determine the metrics listed 
in Table I. Here, PSA and QGA could be “traditional” 
methods in that they generate sample loading patterns as 
input to SIMULATE, and then, based upon the SIMULATE 
output, they adaptively generate new samples. Simulated 
annealing (SA) and classic genetic algorithms (GAs) are also 
common methods but these results are not presented here [3].

Quantum computers, in general, are useful for solving 
fewer problems than what is commonly believed. D-Wave 
solves the quadratic unconstrained binary optimization 
(QUBO) problem. Other methods exist for solving QUBO 
problems, and the authors make no statement on whether D-
Wave is superior or could be made superior to these other 
methods [4]. Nevertheless, an examination of how to relate 
the fuel loading optimization problem to a QUBO problem 
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will allow insight into the fuel loading optimization problem. 
Additionally, D-Wave solutions to the QUBO representing 
the problem must be input into SIMULATE and the output 
must be extracted to determine solution quality. D-Wave, 
then, unlike the “traditional” methods, does not work by 
directly manipulating the input and output of SIMULATE. If 
the best solutions generated by D-Wave are comparable to 
the best solutions generated by PSA, then the method by 
which D-Wave solves the fuel loading problem (i.e. by 
solving a QUBO) should be examined in greater detail. 
QUBOs are a specific type of sparse graph and-if shown to 
be useful in modeling the fuel loading problem-should be 
examined in greater detail as surrogate models for the fuel 
loading problem. 

 
A process [1] for using CASMO-SIMULATE to 

generate a QUBO was previously developed assuming 
random sampling (20,000 samples) of SIMULATE. This 
process creates a surrogate model using a machine learning 
approach; however, other methods have directly created the 
QUBO by embedding a rules-based approach [5]. First, since 
the neutron mean free path in PWRs is small, it is appropriate 
to use a 2D Ising model (easily convertible to a QUBO) that 
only incorporates nearest-neighbor connectivity between fuel 
assemblies. Once the graph’s structure is assumed, the values 
for its vertices (linear coefficients) and edges (quadratic 
coefficients) must be trained. First, acceptable fuel loading 
patterns were sampled. Secondly, the samples were input to 
SIMULATE, and the cost functions were evaluated 
according to Eq. (1). Next, the ground state of the cost 
function is estimated. The lower-enrichment fuel assemblies 
were assumed to have a spin of “-1” whereas the higher-
enrichment fuel assemblies were assumed to have a spin of 
“1.” The sign convention on the summation terms is the same 
as that of the previous methodology. A previously discovered 
training algorithm [6] for the 2D Ising model was altered to 
include corrections to account for the expected Boltzmann 
distribution of the solutions. Additionally, the tuning 
parameter was set to zero, as the 2D Ising model ia not a very 
accurate surrogate model (though it is more accurate at lower 
energies). The algorithm was run and the values for the linear 
and quadratic coefficients of the 2D Ising model were 
discovered. For the current problem, the only alteration is that 
the sampling randomly selects (with equal probability) a fuel 
assembly design at each location as opposed to randomly 
selecting an entire fuel loading pattern at once with a 30/30 
split in the fuel assembly designs. The 2D Ising model 
obtained using this method is shown in Fig. 1. In all 2D Ising 
maps (Figs.1, 2, and 3), the blue locations represent the 
location of a fuel assembly as well the corresponding linear 
coefficient to the 2D Ising model. Additionally, the green 
locations represent the quadratic coefficient, the coupling 
between fuel assembly locations. Before being input into D-
Wave, all 2D Ising models were converted to QUBOs. 

 

 
 

Fig. 1. 2D Ising map generated using random samples. 
 
As seen in Fig. 1, the behavior of the linear and quadratic 

coefficients is broadly as expected. The quadratic coefficients 
are largely positive, indicating a preference for dissimilar fuel 
assembly designs to be located adjacent to each other. This is 
consistent with checkerboard-style strategies. Additionally, 
the linear coefficients begin as more positive towards the 
center of the core (favor lower-enrichment fuel) but become 
more negative closer to the periphery (favor higher-
enrichment fuel) of the core. This behavior is consistent with 
IN-OUT fuel loading pattern strategies. 

 
Next, two additional QUBO models were prepared. 

Parallel simulated annealing was run to generate 
approximately 25,000 candidate loading patterns. For the 
first 20,000 of these loading patterns, the set comprising those 
meeting the criteria listed in Table I was found. Thus, all of 
the first 20,000 solutions as well as only the solutions meeting 
the criteria in Table I among the first 20,000 solutions were 
used to train a 2D Ising model. The major change from the 
method used to train the 2D Ising model for the random cases 
is that there is no longer the exponential correction term 
accounting for the Boltzmann distribution. Because PSA 
itself is an optimization method, it should favor the lower 
energy solutions. Fig. 2 shows the 2D Ising model trained on 
the first 20,000 solutions generated by PSA and Fig. 3 shows 
the 2D Ising model trained on only accepted solutions among 
the first 20,000 solutions generated by PSA. 

 

 
 

Fig. 2. 2D Ising map generated using all PSA samples. 
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Fig. 3. 2D Ising map generated using only accepted PSA 
samples. 

 
Comparing Fig. 2 and Fig. 3 to Fig. 1, it is apparent that 

for the PSA-informed 2D Ising models, the outermost linear 
coefficients (unlike in Fig. 1) are negative, implying a 
preference for the lower-enriched fuel *assemblies at this 
location. Thus, unlike the 2D Ising model trained on random 
cases, the 2D Ising models presented in Figs. 2 and 3 capture 
the low neutron leakage design criterion. Otherwise, the 2D 
Ising models in Figs. 2 and 3 are broadly similar both to each 
other as well as those in Fig. 1. All models point to a 
preference for checkerboard-style loading patterns as well as 
IN-OUT loading pattern strategies. To determine which 
model best captures the details of the problem, the QUBOs 
(2D Isings are easy to convert to QUBOs) are embedded onto 
D-Wave to solve the QUBO using quantum annealing. To 
keep the results of all methods comparable, at most 5,000 
unique solutions should be generated using D-Wave, with the 
solutions subsequently input to and evaluated with 
SIMULATE. 

 
Likewise, QGA should be used to evaluate 25,000 

candidate solutions for a valid comparison of computational 
expense. QGAs implement the usual genetic operators of 
randomly initializing a chromosome population (here, qubits 
rather than bits), evaluating the fitness of chromosomes, and 
mutating chromosomes to generate new populations. QGAs 
add a qubit rotation gate that informs chromosome mutation, 
allowing for superposition to hasten convergence. Prior 
results suggest that QGAs converge faster and find solutions 
of similar quality compared to GAs on loading pattern 
optimization problems [7]. QGA solutions provide similar 
best loading patterns to PSA solutions. 

 
RESULTS 

 
Table II lists the five methods along with the evaluated 

cost function for the best loading pattern generated. Table II 
shows that using QA to solve the 2D Ising trained only on 
accepted PSA samples has a much higher evaluated cost 
function (worse solution) than the other four methods, which 
obtain best solutions of comparable quality. Figs. 4, 5, 6, 7, 
and  8 show graphically the best loading pattern obtained 
using each method. In these figures, blue represents lower-
enrichment fuel assemblies and red represents the higher-
enrichment fuel assemblies. 

 
TABLE II. Evaluated Cost Function 

 
Method Average Best 

PSA 171.2 -0.5 
QGA 513.3 31.4 

QA, Random 180.7 57.4 

QA, All PSA 177.7 34.3 

QA, Accepted PSA 348.9 212.0 
 

 
 

Fig. 4.  Best loading pattern generated by PSA. 
 

 
 

Fig. 5.  Best loading pattern generated by QGA. 
 

 
  
Fig. 6.  Best loading pattern generated by QA solve of 
2D Ising trained on random samples. 
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Fig. 7.  Best loading pattern generated by QA solve of 
2D Ising trained on all PSA samples. 

 

 
 

Fig 8.  Best loading pattern generated by QA solve of 
2D Ising trained on only accepted PSA samples. 
 

In general, the best loading patterns generated using QA 
(Figs. 6, 7, and 8) have much more higher-enrichment fuel on 
their periphery compared to the loading patterns generated 
using methods unrelated to solving a 2D Ising surrogate (Fig. 
4: PSA, Fig. 5: QGA). Although the result in Fig. 7 has nearly 
the same cost function evaluation as that in Fig. 5, the Fig. 5 
result is most similar to the Fig. 4 result. In fact, the PSA and 
QGA results are remarkably similar in terms of the structure 
of the loading pattern closer to the core. On the other hand 
QA results either mimic IN-OUT strategies (Fig. 8) or IN-
OUT strategies combined with checkerboard-style loading 
patterns (Figs. 6 and 7). 

 
CONCLUSIONS 

 
PSA, QGA and QA were used to solve a two-batch PWR 

fuel loading optimization problem. PSA and QGA resulted in 
best solutions of very similar quality. When QA was used to 
solve 2D Ising surrogate models trained on either random 
samples or all PSA results, the best QA solution was 
comparable to the best PSA and QGA solutions. However, 
when QA was used to solve the 2D Ising trained on only PSA 
samples that met the design criteria, the best solution was 
much worse than any of the other four approaches taken. A 
surprising result is that for QA approaches, both using 
samples resultant of some classical optimization method 
(such as PSA) as well as explicit reconstruction of the 
Boltzmann distribution result in the same solution quality. 
Failure to include lower quality solutions during the classical 

optimization approach also results in a lower quality best 
solution obtained using QA. 

 
It must be re-stated that the results in this paper do not 

reflect conclusions on the validity of quantum computing 
itself; rather, this work explores how the steps involved in 
formulating the problem into a QUBO allows for greater 
insight into the problem. QA is a competitive option for 
generating loading patterns despite the low surrogate 
accuracy [1] of the 2D Ising model. Thus, the general use of 
sparse graphs as surrogate models for fuel loading pattern 
optimization should be investigated further for reactors with 
tight local spatial coupling. Further innovation could be 
including diagonal coupling to improve the sparse graph 
surrogate accuracy. 
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