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INTRODUCTION

In this work, a simplified pressurized water reactor
(PWR) fuel loading pattern optimization problem is solved.
This is a modification of a problem [1] previously studied
using quantum annealing, involving the design of the
APR1400 initial core with quarter-core (rotational only)
symmetry and the choice of two fuel assembly designs, a high
and low enrichment, for each core location. Lastly, a lower-
enrichment fuel assembly is fixed at the center of the core.
Thus, the problem has 60 degrees of freedom and 2%
potential solutions. This differs from the previous study [1],
which sought a 30/30 split between higher- and lower-
enrichment fuel assembly design usage. Here, the constraint
on region split has been removed and additional constraints
were added to the cost function. The previous study
considered only the maximum local power peaking factor as
well as the cycle length. Here, the initial critical boron, as
well as the fuel cost, are included in the cost function. Note
that the cycle length and fuel cost serve to drive the solution
to the optimal region split between the more expensive high
enriched fuel and the low enriched fuel. Candidate loading
patterns are evaluated by the metrics listed in Table I.

TABLE I. Cost Function Components

Component Limit | Penalty | Credit

Initial Boron (B, ppm) 1450 | 10 0

Maximum Local Peaking | 2.15 100 10

Factor (F,)

Cycle Length (CE, GV;;d) 20.95 | 100 0

Fuel Cost (FC, $ ) 10.06 | 100 100
MW—h

With H as the Heaviside step function, the cost function
for a given loading pattern is given by Eq. (1).

E = 10H(B — 1450) + 100H(F, — 2.15) — 10H(2.15 —
F,) + 100H(CE — 20.95) + 100H (FC — 10.06) — 10 —
0H(10.06 — FC) , (1)

In Eq. (1), B represents the initial boron, Fq represents
the maximum local power peaking factor, CE represents the
cycle length, and FC represents the fuel cost. Acceptable
loading patterns must meet the upper limits on the initial
boron, maximum local power peaking factor and fuel cost
and the lower limit on the cycle length.

METHODS

The phrase “quantum computing” generally refers to (i)
adiabatic quantum computing (ii) gate-based quantum
computing or (iii) the implementation of algorithms inspired
by quantum physics on a traditional (classical) computer.
Here, only (i) and (iii) are addressed. Addressing (i), the D-
Wave 2000Q was used to solve the problem. Additionally, a
quantum-inspired genetic algorithm (QGA) was used to solve
the problem, addressing (iii). QGA is a variation on more
typical genetic algorithms (GAs) that have been used in
solving fuel loading pattern optimization problems. None of
the gate-based architectures (ii) were used in solving this
problem. Lastly, parallel simulated annealing (PSA) based on
the constraint annealing method was used to solve the stated
problem [2].

The CASMO-SIMULATE code system for reactor
analysis was used to evaluate the cost components of the
candidate loading patterns. This involves (1) one-time
generation of the nuclear cross-section library using CASMO
for the fuel assembly designs in the problem and then (2) core
depletion using SIMULATE to determine the metrics listed
in Table I. Here, PSA and QGA could be “traditional”
methods in that they generate sample loading patterns as
input to SIMULATE, and then, based upon the SIMULATE
output, they adaptively generate new samples. Simulated
annealing (SA) and classic genetic algorithms (GAs) are also
common methods but these results are not presented here [3].

Quantum computers, in general, are useful for solving
fewer problems than what is commonly believed. D-Wave
solves the quadratic unconstrained binary optimization
(QUBO) problem. Other methods exist for solving QUBO
problems, and the authors make no statement on whether D-
Wave is superior or could be made superior to these other
methods [4]. Nevertheless, an examination of how to relate
the fuel loading optimization problem to a QUBO problem
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will allow insight into the fuel loading optimization problem.
Additionally, D-Wave solutions to the QUBO representing
the problem must be input into SIMULATE and the output
must be extracted to determine solution quality. D-Wave,
then, unlike the “traditional” methods, does not work by
directly manipulating the input and output of SIMULATE. If
the best solutions generated by D-Wave are comparable to
the best solutions generated by PSA, then the method by
which D-Wave solves the fuel loading problem (i.e. by
solving a QUBO) should be examined in greater detail.
QUBOs are a specific type of sparse graph and-if shown to
be useful in modeling the fuel loading problem-should be
examined in greater detail as surrogate models for the fuel
loading problem.

A process [1] for using CASMO-SIMULATE to
generate a QUBO was previously developed assuming
random sampling (20,000 samples) of SIMULATE. This
process creates a surrogate model using a machine learning
approach; however, other methods have directly created the
QUBO by embedding a rules-based approach [5]. First, since
the neutron mean free path in PWRs is small, it is appropriate
to use a 2D Ising model (easily convertible to a QUBO) that
only incorporates nearest-neighbor connectivity between fuel
assemblies. Once the graph’s structure is assumed, the values
for its vertices (linear coefficients) and edges (quadratic
coefficients) must be trained. First, acceptable fuel loading
patterns were sampled. Secondly, the samples were input to
SIMULATE, and the cost functions were evaluated
according to Eq. (1). Next, the ground state of the cost
function is estimated. The lower-enrichment fuel assemblies
were assumed to have a spin of “-1” whereas the higher-
enrichment fuel assemblies were assumed to have a spin of
“1.” The sign convention on the summation terms is the same
as that of the previous methodology. A previously discovered
training algorithm [6] for the 2D Ising model was altered to
include corrections to account for the expected Boltzmann
distribution of the solutions. Additionally, the tuning
parameter was set to zero, as the 2D Ising model ia not a very
accurate surrogate model (though it is more accurate at lower
energies). The algorithm was run and the values for the linear
and quadratic coefficients of the 2D Ising model were
discovered. For the current problem, the only alteration is that
the sampling randomly selects (with equal probability) a fuel
assembly design at each location as opposed to randomly
selecting an entire fuel loading pattern at once with a 30/30
split in the fuel assembly designs. The 2D Ising model
obtained using this method is shown in Fig. 1. In all 2D Ising
maps (Figs.1, 2, and 3), the blue locations represent the
location of a fuel assembly as well the corresponding linear
coefficient to the 2D Ising model. Additionally, the green
locations represent the quadratic coefficient, the coupling
between fuel assembly locations. Before being input into D-
Wave, all 2D Ising models were converted to QUBOs.
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Fig. 1. 2D Ising map generated using random samples.

As seen in Fig. 1, the behavior of the linear and quadratic
coefficients is broadly as expected. The quadratic coefficients
are largely positive, indicating a preference for dissimilar fuel
assembly designs to be located adjacent to each other. This is
consistent with checkerboard-style strategies. Additionally,
the linear coefficients begin as more positive towards the
center of the core (favor lower-enrichment fuel) but become
more negative closer to the periphery (favor higher-
enrichment fuel) of the core. This behavior is consistent with
IN-OUT fuel loading pattern strategies.

Next, two additional QUBO models were prepared.
Parallel simulated annealing was run to generate
approximately 25,000 candidate loading patterns. For the
first 20,000 of these loading patterns, the set comprising those
meeting the criteria listed in Table I was found. Thus, all of
the first 20,000 solutions as well as only the solutions meeting
the criteria in Table I among the first 20,000 solutions were
used to train a 2D Ising model. The major change from the
method used to train the 2D Ising model for the random cases
is that there is no longer the exponential correction term
accounting for the Boltzmann distribution. Because PSA
itself is an optimization method, it should favor the lower
energy solutions. Fig. 2 shows the 2D Ising model trained on
the first 20,000 solutions generated by PSA and Fig. 3 shows
the 2D Ising model trained on only accepted solutions among
the first 20,000 solutions generated by PSA.
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Fig. 2. 2D Ising map generated using all PSA samples.
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Fig. 3. 2D Ising map generated using only accepted PSA
samples.

Comparing Fig. 2 and Fig. 3 to Fig. 1, it is apparent that
for the PSA-informed 2D Ising models, the outermost linear
coefficients (unlike in Fig. 1) are negative, implying a
preference for the lower-enriched fuel *assemblies at this
location. Thus, unlike the 2D Ising model trained on random
cases, the 2D Ising models presented in Figs. 2 and 3 capture
the low neutron leakage design criterion. Otherwise, the 2D
Ising models in Figs. 2 and 3 are broadly similar both to each
other as well as those in Fig. 1. All models point to a
preference for checkerboard-style loading patterns as well as
IN-OUT loading pattern strategies. To determine which
model best captures the details of the problem, the QUBOs
(2D Isings are easy to convert to QUBOs) are embedded onto
D-Wave to solve the QUBO using quantum annealing. To
keep the results of all methods comparable, at most 5,000
unique solutions should be generated using D-Wave, with the
solutions subsequently input to and evaluated with
SIMULATE.

Likewise, QGA should be used to evaluate 25,000
candidate solutions for a valid comparison of computational
expense. QGAs implement the usual genetic operators of
randomly initializing a chromosome population (here, qubits
rather than bits), evaluating the fitness of chromosomes, and
mutating chromosomes to generate new populations. QGAs
add a qubit rotation gate that informs chromosome mutation,
allowing for superposition to hasten convergence. Prior
results suggest that QGAs converge faster and find solutions
of similar quality compared to GAs on loading pattern
optimization problems [7]. QGA solutions provide similar
best loading patterns to PSA solutions.

RESULTS

Table II lists the five methods along with the evaluated
cost function for the best loading pattern generated. Table 11
shows that using QA to solve the 2D Ising trained only on
accepted PSA samples has a much higher evaluated cost
function (worse solution) than the other four methods, which
obtain best solutions of comparable quality. Figs. 4, 5, 6, 7,
and 8 show graphically the best loading pattern obtained
using each method. In these figures, blue represents lower-
enrichment fuel assemblies and red represents the higher-
enrichment fuel assemblies.

TABLE II. Evaluated Cost Function

Method Average Best

PSA 171.2 -0.5

QGA 5133 314

QA, Random 180.7 57.4
QA, All PSA 177.7 343
QA, Accepted PSA 348.9 212.0

m Higher-Enriched
m Lower-Enriched

Fig. 4. Best loading pattern generated by PSA.

m Higher-Enriched
m Llower-Enriched

Fig. 5. Best loading pattern generated by QGA.

m Higher-Enriched
m Lower-Enriched

Fig. 6. Best loading pattern generated by QA solve of
2D Ising trained on random samples.
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m Higher-Enriched
m lower-Enriched

Fig. 7. Best loading pattern generated by QA solve of
2D Ising trained on all PSA samples.

m Higher-Enriched
m lower-Enriched

Fig 8. Best loading pattern generated by QA solve of
2D Ising trained on only accepted PSA samples.

In general, the best loading patterns generated using QA
(Figs. 6, 7, and 8) have much more higher-enrichment fuel on
their periphery compared to the loading patterns generated
using methods unrelated to solving a 2D Ising surrogate (Fig.
4: PSA, Fig. 5: QGA). Although the result in Fig. 7 has nearly
the same cost function evaluation as that in Fig. 5, the Fig. 5
result is most similar to the Fig. 4 result. In fact, the PSA and
QGA results are remarkably similar in terms of the structure
of the loading pattern closer to the core. On the other hand
QA results either mimic IN-OUT strategies (Fig. 8) or IN-
OUT strategies combined with checkerboard-style loading
patterns (Figs. 6 and 7).

CONCLUSIONS

PSA, QGA and QA were used to solve a two-batch PWR
fuel loading optimization problem. PSA and QGA resulted in
best solutions of very similar quality. When QA was used to
solve 2D Ising surrogate models trained on either random
samples or all PSA results, the best QA solution was
comparable to the best PSA and QGA solutions. However,
when QA was used to solve the 2D Ising trained on only PSA
samples that met the design criteria, the best solution was
much worse than any of the other four approaches taken. A
surprising result is that for QA approaches, both using
samples resultant of some classical optimization method
(such as PSA) as well as explicit reconstruction of the
Boltzmann distribution result in the same solution quality.
Failure to include lower quality solutions during the classical

optimization approach also results in a lower quality best
solution obtained using QA.

It must be re-stated that the results in this paper do not
reflect conclusions on the validity of quantum computing
itself; rather, this work explores how the steps involved in
formulating the problem into a QUBO allows for greater
insight into the problem. QA is a competitive option for
generating loading patterns despite the low surrogate
accuracy [1] of the 2D Ising model. Thus, the general use of
sparse graphs as surrogate models for fuel loading pattern
optimization should be investigated further for reactors with
tight local spatial coupling. Further innovation could be
including diagonal coupling to improve the sparse graph
surrogate accuracy.
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