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Abstract

The Markov game is a popular reinforcement learning framework for modeling competitive
players in a dynamic environment. However, most of the existing works on Markov games
focus on computing a certain equilibrium following uncertain interactions among the play-
ers but ignore the uncertainty of the environment model, which is ubiquitous in practical
scenarios. In this work, we develop a theoretical solution to Markov games with environ-
ment model uncertainty. Specifically, we propose a new and tractable notion of robust
correlated equilibria for Markov games with environment model uncertainty. In particular,
we prove that the robust correlated equilibrium has a simple modification structure, and
its characterization of equilibria critically depends on the environment model uncertainty.
Moreover, we propose the first fully-decentralized stochastic algorithm for computing such
the robust correlated equilibrium. Our analysis proves that the algorithm achieves the poly-
nomial episode complexity O(SA2H%¢~2) for computing an approximate robust correlated
equilibrium with € accuracy.

Keywords: robust Markov games, model uncertainty, robust correlated equilibrium,
reinforcement learning

1 Introduction
The Markov game is a general and popular reinforcement learning framework for modeling

multiple players competing with each other in a dynamic environment (Littman, 1994). In a
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Markov game, players interact with each other through a Markov decision process, and each
player aims to improve its own decision-making to compete for more rewards. In particular,
many important real-life applications fit into this framework, including multi-player games
such as decentralized multi-agent robotic control (Brambilla et al., 2013) and distributed
autonomous driving (Shalev-Shwartz et al., 2016).

One of the popular goals of Markov games is to achieve the Nash equilibrium (NE)
among the players, that is, an optimal product policy so that no player can improve its
gain by deviating from its own policy alone. The NE has been shown to exist for general
Markov games (Filar and Vrieze, 2012). However, it turns out that finding NE of a Markov
game is generally a PPAD-complete problem that is still unknown if it could be solved in
polynomial time (Deng et al., 2021; Jin et al., 2022b), except for some special Markov games
with either zero-sum rewards (Bai and Jin, 2020; Jin et al., 2018) or potential structures
(Leonardos et al., 2021; Zhang et al., 2021). Besides Nash equilibria and its hardness,
researchers have found multiple theoretically-tractable notions. For example, the correlated
equilibrium (CE) (Aumann, 1974) (see Definition 4) and the coarse correlated equilibrium
(CCE) (Moulin and Vial, 1978), which are similar to the NE but allows dependency among
the players’ policies, have been shown to have polynomial-complexity algorithms (Blum
and Mansour, 2007). Also, the extensive-form correlated equilibrium (EFCE) is proposed
in extensive-form games (Von Stengel and Forges, 2008), which is also the solution to the
PPAD-complete problem of finding Nash equilibria in multi-player games with inperfect
information. And the Stackelberg equilibrium is also proposed as a substituion for the NE
due to its sample efficiency (Bai et al., 2021). Particularly, in recent years, the CE has
attracted much attentions due to its polynomial computation complexity (Jin et al., 2022a;
Liu et al., 2021; Li et al., 2021).

Although Markov games and these polynomially-efficient notions have been extensively
investigated, this standard framework only considers the competition among the players
but ignores the environment model uncertainty, which is a critical factor that often reduces
players’ gains and must be considered in theoretical analysis and practical applications. For
example, many applications such as multi-UAV systems (Chen et al., 2023) naturally involve
uncertain environments due to real-world noises, sensor errors, or dynamic changes. As an-
other example, policies trained in a simulated environment often suffers from significant per-
formance degradation when implemented in the real environment, due to model mismatch;
therefore, it is much more preferred to train a robust agent in the simulated environment,
especially in autonomous vehicle controls (Allamaa et al., 2022). In all these scenarios, it is
much desired to learn an optimal robust policy against such model uncertainty. To address
model uncertainty, numerous robust reinforcement learning approaches have been developed
and extensively studied in the single-agent case (Wang and Zou, 2021; Li et al., 2022b,a;
Neufeld and Sester, 2022). However, model uncertainty is still underexplored in the general
case with multiple competing agents, where only two works (Kardes et al., 2011; Zhang
et al., 2020) exist to our knowledge. Specifically, Kardes et al. (2011) applied the robust
Markov game with model uncertainty to the application of queueing control. Zhang et al.
(2020) proposed provably convergent Q-learning and actor-critic type algorithms to compute
a certain robust variant of NE of robust Markov games. However, computing robust NE of
general Markov games with model uncertainty is in general a PPAD-complete problem and
therefore it remains open if any polynomial-time algorithms exist. Motivated by existing
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studies proposing new notions that can be found in polynomial complexity, we notice that
the robust version of correlated equilibria has not been studied. This motivates the two
major goals of this work: (i) to propose a theoretically generalized robust equilibrium
notion and study its fundamental properties; and (ii) to construct a fully decentralized,
provably-convergent and polynomial-complexity algorithm for computing such the robust
equilibrium.

1.1 Ouwur Contributions

In this work, we study episodic Markov games in an uncertain environment, that is, the
environment transition kernel in every time step is queried from an underlying uncertainty
set. To find a robust equlibrium policy of such Markov games with model uncertainty,within
polynomial time, we make the following technical contributions.

e We propose a new theoretically-tractable notion of robust correlated equilibrium (CE)
for Markov games with model uncertainty (see Definition 6). Specifically, the robust
CE generalizes the standard CE in that it is defined based on a robust value function
(see eq. (2)), which corresponds to the worst-case value function achieved under model
uncertainty.

e We study the fundamental properties of robust CE. Specifically, we show that robust CE
can be equivalently defined using either stochastic modifications or deterministic mod-
ifications (see Proposition 7). This indicates that robust CE inherits the modification
structure from the standard CE. Similar to the non-robust case, if a policy is a robust
NE, then it must be a robust CE (see Proposition 8, item 1). Moreover, through an
illustrative example (see Proposition 8, item 2), we prove that the characterization of
equilibria of robust CE critically depends on the uncertainty set, that is, there exists
some uncertainty sets for the same state and action spaces such that the set of robust CE
strictly includes the set of robust NE.

e We develop a fully decentralized robust V-learning algorithm for finding robust CE of
Markov games with model uncertainty. This algorithm is a generalization of the original
V-learning algorithm (for solving standard Markov games) and adopts robust TD learning
in its critic update. Under low-level of model uncertainty (that is, when the diameter of the
uncertainty set D is not larger than a given threshold ), we prove that this algorithm

achieves a polynomial episode complexity (5(SA2H 56_2) for computing an approximate
robust CE with € accuracy. Under sufficient exploration with relatively high-level of model
uncertainty (that is, when the diameter of the uncertainty set D is within the interval
(5725 Pmin)) the complexity becomes 6(SA2H5p;1i2ne’2). This is the first non-asymptotic
convergence result for solving Markov games with model uncertainty. Moreover, our
analysis of robust V-learning is substantially different from that of the original V-learning.
Please refer to the elaboration of technical novelty after Theorem 13 for more details.
To briefly elaborate, this is because the robust TD update enables tracking the desired
robust value function at the cost of introducing uncertainty to the state transitions when
unrolling the iterative updates. Therefore, we need to bound the model uncertainty via a
stronger convergence metric, which leads to solving a linear system that involves an upper
triangular Toeplitz matrix.
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1.2 Related Work

Markov games: Markov games, also known as stochastic games, are standard formalism in
multi-agent RL (Littman, 1994). The existence of NE for multi-player general-sum Markov
games has been established in Fink (1964). Various algorithms have been designed to find
NE, such as Nash-Q learning (Hu and Wellman, 2003), FF-Q learning (Littman et al., 2001),
and correlated-Q learning (Greenwald et al., 2003). The first polynomial-time algorithm for
finding NE is developed in Hansen et al. (2013), but works only for zero-sum games. Re-
cent studies showed that finding NE of general-sum multi-player games is PPAD-complete
(Daskalakis, 2013), so there are currently no polynomial-time algorithms for solving them
(Deng et al., 2021; Jin et al., 2022b). Another notable goal in Markov games is to find a
weaker version of NE, such as the correlated equilibrium (CE) or coarse correlated equi-
librium (CCE). Polynomial-time algorithms such as V-learning (Jin et al., 2022a; Mao and
Bagar, 2022; Song et al., 2021) and Nash value iteration (Liu et al., 2021) have been devel-
oped for computing these notions.

Robust reinforcement learning: Single-agent robust reinforcement learning has been
widely explored (Nilim and Ghaoui, 2003; Nilim and El Ghaoui, 2005; Wiesemann et al.,
2013; Satia and Lave Jr, 1973), which assume the environment transition kernel belongs to
a given uncertainty set. Under a specific uncertainty model, Roy et al. (2017) and Wang
and Zou (2021) developed model-free online robust Q-learning algorithms to solve the ro-
bust reinforcement learning problem. For robust multi-agent reinforcement learning, value
iteration-based algorithm has been developed in Kardes et al. (2011) but with no explicit
analytical form. For cooperative multi-agent reinforcement learning with model uncertainty;,
Huang et al. (2021) proposed a robust policy iteration algorithm to maximize the gain of
the whole group. For non-cooperative Markov games with model uncertainty, Zhang et al.
(2020) introduced robust Q-learning and actor-critic algorithms with asymptotic conver-
gence guarantees of finding robust NE. To the best of our knowledge, there is no existing
polynomial-time algorithm for solving Markov games with model uncertainty.

Existence of Nash equilibria: The existence of Nash equilibria for the discounted stochas-
tic games is provided by Fink (1964), which also implies the existence of correlated equilibria
and coarse correlated equilibria. Though the existence of robust Nash equilibria doesn’t hold
in general, it is ensured under some mild regularity assumptions (Perchet, 2014, 2020; Kardeg
et al., 2011).

2 Preliminaries of Markov Games

An episodic m-player Markov game is specified by the tuple (H,S, A, P, {r(j)};”:l), where H
is the length of each episode, S and A := X;-nzl AU correspond to the state space and joint

action space, respectively, and they are assumed to be finite. Moreover, r@):Sx A— [0,1]
denotes the reward function of the j-th player and P := {]P’h}hH:1 corresponds to the collection
of transition kernels at time steps h = 1,..., H. At every time step h, the players observe a
global state s, € S of the environment. Then, they take a joint action ap = [ag), e ,aém)]
following a joint stochastic policy 7y (+|$1.4, ay:(h—1y), which corresponds to a distribution on
the joint action space A that depends on the past states sy, := {s;}/_; and past actions
ari(h—1) = {at}f;;l. After that, the global state transfers to a new state sp11 following the
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state transition kernel P(-|sp, ap), and each player j receives a local reward rff )(
the environment.

In the above Markov game, each player j collects its own rewards over the episodes. In
particular, we define 7 := {7, }/L | as the collection of joint policies over the time steps (they
may be correlated; that is, policies in different time steps could be dependent). Then we
can define the following value function for the j-th player at state s and time step h under

the policy 7.

Sh,ap) from

(Value Function): = E[ZTU) S, ag ‘sh =s,7 IP’} (1)

which corresponds to the expected cumulative reward received by player j starting from state
s at time step h under joint policy w. The goal of the player j is to optimize its own policy
() = {W](lj )}th1 in order to maximize its associated value function. However, since every
player’s value function is also affected by the other players’ policies and actions, the players
must compete with each other to gain more rewards until they reach a certain equilibrium.
Here, we introduce two popular equilibrium notions that will be discussed throughout the

paper.

Definition 1 (Nash Equilibrium (NE)) A joint policy 7 is called an NE if the following
two conditions are met: (i) for any time step h, the joint policy wy, is a product of independent
policies, that is, mp = 7r,(11) X ... X W](lm)' (ii) For any player j with any associated policy 7)),

it holds that v(] 1(s) > ’U~(3)XW(\J) L(8) for all states s € S. Here, 7(\) denotes the joint policy

of all the other players excluding the player j, and ‘x’ means that 79 is independent from
(\J)
),

In the existing literature, it has been shown that computing NE is in general a PPAD-
complete problem (Deng et al., 2021; Jin et al., 2022b; Daskalakis, 2013), for which it is
still unknown if it is possible to develop polynomial-time algorithms. This has motivated re-
searchers to propose a surrogate correlated equilibrium (CE) notion (Aumann, 1974). Before
introducing the formal definition of CE, we first define the following stochastic modification
operator.

Definition 2 (Stochastic Modification) At any time step h, denote aglj) as player j’s
action induced by joint policy Tp. Given the past states and actions $i:p, a1.(h—1), @ stochastic

modification ¢(]) associated with player j randomly maps a(]) to another action a,(f), that is,
~(]) ¢(j)('|sl'hva/1'h 1,Q ())

Moreover, we denote cb(])oﬂ'h as the joint policy modified by qb(]) that is, Ty, first generates
— [a} (J) 2\3)]

a joint action ap, : , and then qzﬁ(]) maps a}f) to another a(])

Remark 3 If qﬁ(]) places probability 1 on a single action, we say that it is a deterministic
modification.

Throughout, we denote ¢ := {gb(])}H and ¢U) o7 = {qb(]) o, HL | as the collections
of stochastic modifications and modified pohc1es over the episode, respectively. We are now
ready to introduce the definition of correlated equilibrium (CE).
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Definition 4 (Correlated Equilibrium (CE)) A joint policy 7 is called a CE if for any
player j and any stochastic modification ¢, it holds that v;{)l(s) > vg&)oml(s) for all states
seS.

Intuitively, at CE, no player can improve its value function by modifying its own action
induced by the joint CE policy. Compare to NE policies, CE policies do not require joint
independence among all the players. In fact, it has been shown that any NE policy is
guaranteed to be a CE policy (Jin et al., 2022a; Liu et al., 2021; Song et al., 2021), and
hence CE is a weaker equilibrium notion than NE. Moreover, CE can be reformulated as
linear programming and hence is tractable.

3 Markov Games with Model Uncertainty

In this section, we study episodic general-sum Markov games with uncertainty in the en-
vironment transition kernel. We aim to define a tractable notion of correlated equilibrium
under such model uncertainty and study its fundamental properties.

3.1 Robust Correlated Equilibrium

We adopt the same episodic Markov game settings as described in Section 2, but consider
an uncertain transition kernel. Specifically, at every time step h and for every state-action
pair (s,a), the environment transition kernel P (+|s, a) is uncertain and belongs to a general
uncertainty set Py (s, a). Below we list some popular examples of uncertainty sets.

Example 1 (KL divergence) The uncertainty set under KL divergence dkp, is defined as

Pu(s,a) == {Py(-|s,a): dir(Py(-|s,a), Pp(-]s,a)) < p},

where dgp, (IP’,IF’) =D ses P(s) In % and Py (-|s,a) denotes a fixed transition kernel.

Example 2 (R-contamination model) The uncertainty set of R-contamination model is
Pu(s,a) :={(1— R)Py(:|s,a) + Rq: q € A'S‘},
where Pp(-|s, a) is a fized transition kernel.

In the above examples, Py, (-|s,a) can be understood as the original stationary transition
kernel, and the parameters p > 0 and R > 0 characterize the level of uncertainty. In a
Markov game with model uncertainty, the state transitions are determined by uncertain
transition kernels queried from the uncertainty sets. Therefore, it is possible that a certain
transition kernel in the uncertainty set can lead to frequent low-reward state transitions,
which are unacceptable to the players. Hence, under model uncertainty, each player aims to
learn a robust optimal policy that maximizes its expected accumulated reward in the worst
case. Motivated by this intuition, we define the following robust value function for the j-th
player at state s and time step h under joint policy 7. For simplicity of notation, we denote
P = Q5.0 Pn(s;a) as the product of uncertainty sets.

H
(Robust Value Function): VF(J,Z(S) = %niE[Zréﬂ)(sé, ae)‘sh = s,w,]fp]. (2)
€ t=h
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Intuitively, the robust value function characterizes the minimum expected total reward one
can obtain over all possible transition kernels in the uncertainty set. We note that the above
robust value function is defined for every single player in the Markov game. In particular, the
worst-case (adversarial) transition kernels associated with the players’ robust value functions
are generally different from each other. To deal with model uncertainty, the players aim to
achieve a certain equilibrium in terms of the robust value function. Specifically, we define
the following robust Nash equilibrium (NE).

Definition 5 (Robust NE) A joint policy w is called robust NE if (i) for all h, 7, is a
product policy; (ii) for any player j with any policy 79), we have Vﬁ(,]l)(s) > V%((Jj))xﬂ\j) 1(s)
forallseS. 7

It can be seen that robust NE is similar to the NE defined in Definition 1, with the main
difference being that robust NE is defined based on the robust value function. However,
robust NE is generally more difficult to compute than NE. For example, NE is known to be
tractable in zero-sum Markov games. As a comparison, in a zero-sum Markov game with
model uncertainty, the environment model uncertainty can be viewed as a third adversarial
player that competes with both players and breaks the zero-sum structure. Therefore,
solving robust NE is PPAD-hard in general, and this further motivates us to define the
following tractable surrogate notion of robust correlated equlibrium (CE).

Definition 6 (Robust CE) A joint policy 7 is called a robust CE if for any player j and

any stochastic modification ¢\9), it holds that Vﬂ(’jl)(s) > V(;Zi))oﬁ 1(3) for all states s € S.

Although robust CE is a straightforward generalization of the standard CE defined in
Definition 4, it incorporates model uncertainty into the nature of correlated equilibrium and
turns out to have more complex structures than the standard CE as we elaborate in the
next subsection.

3.2 Properties of Robust Correlated Equilibrium

Stochastic modification is the key element to define CE. In particular, it has been shown
that the standard CE defined by stochastic modification is equivalent to that defined by
deterministic modification. Our next result shows that robust CE inherits this property and
we will leverage this property to build our convergence analysis later.

Proposition 7 In a Markov game with model uncertainty, for any robust CE m and any
player j, there exists a deterministic modification ¢\9) such that Vﬂ(’]l)(s) = Vqs((ji)>07r,1(s) for
alls € §.

Our next result shows that for robust CE, its characterization of equilibrium can be
different from that of robust NE and critically depends on the uncertainty set.

Proposition 8 Robust CE and robust NE have the following relations.

1. In any robust Markov game, the set of robust CE includes the set of robust NE, or
equivalently, any robust NE is a robust CFE.
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2. There exists a robust CE (in some Markov games) which is not a robust NE.

Remark 9 From Proposition 8 Item 1, the existence of robust CFE is directly implied by the
existence of robust NE, which is ensured under some mild regularity assumptions (Perchet,
2014, 2020; Kardes et al., 2011).

Based on the example given in Proposition 8 Item 2, we further illuminate the influence
the uncertainty set on the set of robust CE. We consider the two-player coordination game
described in Figure 1 in which there are five states S = {Si}?:o and each player has two
actions A = {az(-l)}%zo X {aZ@)}il:O. Its transition probability {Pp}n=12is parameterized by
p. Let m; be the joint policy taken at the step h = 1 and 7y be the joint policy taken at
the step h = 2. The transition P, ,, is described in the proof of Proposition 8 Item 2. We
consider the following three types of uncertainty sets:

1. Py, C {Php : p € [0, %—8)}. In this case, the unique robust NE policy is given as 71(a =

[0,0]|]s = s4) = 1 and my can be arbitrary (since the action taken at h = 2 does not
change the state). Moreover, this robust NE is also the unique robust CE.

2. P, C{Ppp:p € (%, %)} In this case, there are two robust NE, i.e., mi(a = [0, 1]|s =
s4) = 1 and m1(a = [1,0]|s = s4) = 1 (w2 can be arbitrary). Moreover, any convex

combination of these two policies is a robust CE. Therefore, the set of robust NE is a
strict subset of the robust CE.

3. Let Py, be the union of the uncertainty sets in cases (1) and (2). Then, the robust NE

and robust CE are the same as those of case (1).

When training the RL agent, the model mismatch problem is usually unavoidable. In
this example, such problem could be described as the training environment has a large model
shift (that is, the training environment has p larger than %—8 while the target environment
has the parameter p less than %—8). In this case, we always need to learn the robust policy
over a sufficiently large uncertainty set such that the it includes the target environment to
ensure it achieves the robust NE. When the environment becomes more complicated, solving
a robust NE could be costly, which motivates us to find a more efficient robust equilibrium
(such as the robust CE) that could be solved in polynomial time.

In the next proposition, we consider the special case of a single player. When there is
only a single player (m = 1), we can prove that every robust CE policy achieves the optimal
robust value function, by noticing that for any given policies 7, 1 over the action space A
there always exists a stochastic modification ¢ such that ¢ o w(a) = p(a) for all a € A.
Therefore, the robust V-learning algorithm can be applied to single-agent reinforcement

learning to address model uncertainty. We obtain the following proposition.

Proposition 10 Let 7 be the policy such that 'vfrl’%(s) > vé?ml(s) for any stochastic modi-
fication ¢ and all states s € S, then vfj}(s) > vfﬂ(s) for any policy p and all states s € S.

4 Decentralized Robust V-Learning

In this section, we develop a fully decentralized algorithm for finding robust CE of Markov
games with model uncertainty. Our algorithm is inspired by the V-learning algorithm for
solving standard Markov games (Jin et al., 2022a), and adopts some techniques from the
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robust control in MDPs (Wang and Zou, 2021; Nilim and Ghaoui, 2003) to address model
uncertainty.

4.1 Algorithm Design

We let every player j keep a value table Vh(j ) e RIS! for each time step h, and denote

{V/,g(yjh)}hH:1 as the value tables held by player j in the k-th episode. The main steps of our
algorithm consist of a critic step and an actor step. In the critic step, we aim to learn
the robust state value function associated with the current policy. To do so, we apply the
following robust TD-learning type updates with every state-action transition sample (s, a, s’)
to update the players’ value tables.

Vial(s) = (1= a)V, 1 (s) + ou (T;(«Lj) + 0, (Vi) + 675) ’ ®)
) = min (11170, ;

where the first update performs a robust TD type update and the second update performs
a simple upper truncation. Here, oy > 0 is a learning rate parameter where t := Ny 5(s)
denotes that state s has been visited at step h for ¢ times at the beginning of the k-th episode,
and the value function mapping op, (s4)(-) is defined via the following linear program for
any value table V.

opea) (V)= inf  (Pals,a), V(). (5)
Py (+|s,a)EPr(s,a)

Intuitively, the above mapping corresponds to the worst-case expected state value of the
next state. In particular, when there is no model uncertainty and the transition kernel is
Py, (-], a), it reduces to the expected state value at the next state, that is, Eyp, (.|s,a)[V (5")]-
Moreover, this linear program can be numerically solved for several important classes of
uncertainty sets, as we elaborate below.

Example 3 (KL divergence) Consider the uncertainty set Pp(s,a) defined under the KL
divergence in Example 1. Then, the linear program (5) reduces to the following optimization
problem, as proved in Theorem 1 of Hu and Hong (2013).

min alnEy p, (|s,q) [ev(s,)/a] + an. (6)

a>0
In practice, we can query some samples to approximate the expectation involved in the
above one-dimensional problem and solve it to obtain a sample-based estimator Gp, (5,4)(V).

Example 4 (R-contamination model) Consider the uncertainty set Pp(s,a) defined by
the R-contamination model in Example 2. Then, the linear program (5) can be approximated
by the sample-based estimator 0p, (s 4)(V) = Rmaxses V(s) + (1 = R)V(s") (Wang and Zou,
2021).

In the actor step, we leverage the adversarial bandit algorithm developed in Jin et al.
(2022a) to update the current policy. To briefly explain, in step h of episode k, every player
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J takes an action aﬁlj) ~ 77,(5,{( |sp) and observes an adversarial loss 1 —

both of which are then fed into the adversarial bandit algorithm to produce the policy

)4~ )
Th] +J7’h(sh7ah) (Vk,Jthl)
H 9

77,(621 1 (:|sn). The specific updates of this algorithm are shown in Algorithm 3 in Appendix
E. In particular, Jin et al. (2022a) proved that it achieves a regret bound in the order of
O(B+\/H/t) (see Lemma 17 in the appendix).

The entire decentralized robust V-learning algorithm is summarized in Algorithm 1 be-
low, where we use the estimator o'p, (s o) instead of op, (5 4) in the critic update. For a specific
uncertainty model, this estimator can be solved with arbitrary accuracy; for example, for
KL divergence model, it suffices to solve eq. (6) with knowing its centroid P and the radius
p. After obtaining all the policies {7y 5} x, the final non-Markov output policy 7 is defined
by randomly selecting an episode k at each step h and taking an action ap ~ mgp (see
Algorithm 2 for more details).

Algorithm 1: Decentralized Robust V-Learning (j-th player)
Initialize: Set V,))(s) = V%) (s) = H-+1—h, mu(als) = 7, N{)(s) = 0 for all
s,a,h
for episode k =1,..., K do
Observe initial state s, Véf}l+1(s) =0 for all s
for step h=1,...,H do

Take action a,(f) ~ W,(cj,)l( Ish)

Transfer to next state sp1 ~ ﬁ)h( |s, ap) with P, € Pr(sh,ap)
Let V(])1 h Vk(]h)’ V(j)1 b Vk(jh)7 l(chZl h I(cjl)z

Receive reward r(]) and set t := ng+1 n(Sn) N,ijg(sh) +1

‘7151)1 p(sn) =(1 — ozt)f/k(?g (sp) + ay ( ) 4 N ( k(h+1) + B(])> (7)

VO () =min{H +1—n, VL, ) (sn)} (8)
@) |~ (4)
40D, (s a )V
e |sh):ADV_BANDIT<t,ah,1— h Ph(gh)( k’h“) ) |sh)) (9)
end
end

Output: Joint policy 7 defined by Algorithm 2

Here the hyperparameters a; and ﬁt(j ) are the learning rates given in (3). In practice, their
values could be tuned using grid-search. We also provide a theoretical setting in Theorem
12 and Theorem 13 to ensure the polynomial-time sample complexity. After obtaining all
7, by calling Algorithm 3 in Algorithm 1, we define the final output policy 7, := 711 as
Algorithm 2 below by following Algorithm 3 of Jin et al. (2022a). To facilitate the technical
proof in Lemma 22 and Lemma 24, we use a slightly more general notation here as the
policy 7y, 5, for all k € [K| and h € [H]; when setting h = 1, Algorithm 2 exactly matches
Algorithm 3 of Jin et al. (2022a).

10
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Algorithm 2: Implement output policy 7y 5. (Algorithm 3 from Jin et al. (2022a))

Input: Time step h, episode k, states sj.q, policies {Wk/,h:H}i,:l obtained from
Algorithm 1.
for step ' =h,h+1,...,H do
Set t + Nk,h/(sh') and let {k;l/(sh/) E:l (k‘}ll/(sh/) < k}%/(sh/) <... < kZ/(Sh’) < k)
be the episodes where state s;, is visited at h'-th step, i.e., Ski, (spr)sh = Sh'-
Randomly select i € [t] with prob. ai (defined in (23)) and set k < ki, (sp).
ap ~ T p (-[sn)-
end
Output: Joint actions ap.g.

4.2 Convergence and Complexity Analysis

For any joint policy 7, we measure its optimality gap toward achieving exact robust CE

as follows, where we define Vd)(fgml(s) = max () qué))ow’l(s) as player j’s value function
associated with the policy m modified by player j’s best-response modification ¢*.
(Optimality gap): Jnéé[i}]( max [V¢(f<)>7r,1(5> — V7r(,]1)<5)] > 0. (10)

In particular, policy 7w is a robust CE if the gap vanishes. We also need the following
definitions to characterize the impact of model uncertainty on Algorithm 1’s convergence
rate.

Definition 11 Regarding the uncertainty sets {Pp(s,a)}n.sq, the value function mapping
0P, (s,a) and state exploration probability, we define the following quantities.

o Uncertainty diameter: D := maxy s 4 o/ MAXpep, (5.a)BePp(s,a’) IP(-) — IF)()HOO

e [Estimation error: ¢ 1= supy g , v |O"ph(s7a)(V) - 8ph(s’a)(V)}7 where the supremum is taken
over all bounded value tables that satisfy 0 < V(s) < H + 1 for all s.

o State exploration: pmin := ming p, ; P(si p = s), which denotes the minimum probability of
visiting an arbitrary state s at any step h of any episode k.

The uncertainty diameter D defined above characterizes the diameter of the uncertainty
set Py,. That is, a larger D means that the transition kernel P, can change over a wider range
and therefore induces larger uncertainty. For example, for the uncertainty set defined by
the R-contamination model in Example 3.2, the uncertainty diameter is analytically given
by D = Rmax { maxy Py,(s'|s,a),1 —ming Pj(s|s,a) }, which monotonically increases with
regard to the uncertainty set parameter R. When the uncertainty level is sufficiently small,
we can simply bound the error caused by model uncertainty with a non-asymptotic error
term 5DSH?. This bound also holds for any value of D but the robust V-learning algorithm
may not achieve € error when D is larger than Our first theorem characterizes this
situation.

_€ _
SH?"

Theorem 12 Let S := |S| and A = maxi<j<;, | AY)| correspond to the size of the state

space and action space, respectively. Choose ﬁt(j), oy and of according to egs. (21)-(23).

11
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The output policy T produced by Algorithm 1 satisfies the following convergence rate with
probability at least 1 — c¢d for some constant ¢ > 0. For any D > 0, we have the bound

HSA? N e))

max max (V(]) (s) — Vfr(fl)(s)) <5DSH? + (’)(H (A\/ KS In 5

jel] se§ v eroml

Further, if the uncertainty diameter D < gz and the approzimation error e = O(7), then
the e-accuracy is guaranteed with K = O(SA2H5¢~2) episodes.

In many situations, the uncertainty level cannot be guaranteed to be sufficiently small to
the level O(g77z). In this case, we show that if the policy can maintain sufficient exploration
during training, then the requirement on the diameter can be relatively relieved; more
explicitly, if there is sufficient exploration pmin > g%, the requirement on D of achieving
polynomial complexity will be increased from g7 to Prin

Theorem 13 Let S := [S| and A := maxi<j<m, AY)| correspond to the size of the state

space and action space, respectively. Choose Bt(J), ay and of according to egs. (21)-(23).
The output policy & produced by Algorithm 1 satisfies the following convergence rate with
probability at least 1 — cd for some constant ¢ > 0. For any D and pmin satisfying 5= <

D < Poin e have the bound

G) ) H \/H3S mKHSA?
mascmax (Vidor (o) = Vil (0) < O( = (4y T ==5— +¢)).

Further, if the state exploration pmin > g7 and the approzimation error ¢ = O(Pmin ), then
the e-accuracy is guaranteed with K = (5(SA2H5pr;i2ne_2) episodes.

Theorem 12 and Theorem 13 characterize the convergence rate and episode complexity
of decentralized robust V-learning. When the state exploration ppi, is decreasing, the
non-asymptotic bound will increase; also, we need to require a stronger restriction on the
uncertainty diameter D (since the bound holds only for D < Pxin). We note that the
optimality gap adopted in the above theorem takes the maximum over all the states and
hence is stronger than that used in the original V-learning (Jin et al., 2022b). This is because
we need to develop new techniques to address the state transition uncertainty caused by the
environment model uncertainty. As a result, the environment model uncertainty diameter
D should not be too large compared to the state exploration probability pmin and the target
accuracy e.

Technical novelty of Theorem 12 and Theorem 13. Our analysis leverages the following
technical developments to address model uncertainty and establish the convergence rate.

e To address model uncertainty, our decentralized robust V-learning algorithm adopts the
worst-case expected value function estimator aph(&a)(V) in the critic update, as opposed
to the exact value V' (s) used in the standard V-learning. Such a nonlinear operator allows
us to track the robust value function in the analysis. In particular, we developed various
important properties of this operator in Lemma 19, including boundedness, monotonicity,
etc., which are crucial to establish the key Lemmas 20, 21, 22 and 24 that lead to the
desired convergence rate result.

12
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e The proof of the original V-learning algorithm (Jin et al., 2022a) tracks the upper bound
of the optimality gap g n = Vi n(Skn) — Vi n(sk,n) at a single state and builds a recursion
on it. This approach cannot be applied to our case as this gap turns into an uncertainty
form op, (5.0)(Vi,nt1) = 0p, (s,a) (Vg n41), Which inevitably involves all possible states. To
address this issue, we decompose this term as op, (s.a)(Va,h+1) =P, (s,0) Vi ht1) = Ok pr1+
op, (s,a) Vane1) = 0p, (s,0) Vi nt1) — Ok,np1 to link it to the desired term dg py1 (see eq.
(14)). Consequently, we need to solve a more challenging recursion that we build in
Lemma 26.

e The decomposition mentioned in the previous bullet point involves an error term
op,(s,a) Vine1) = 0p, (s,0) (Vi pt1) — Okpt1 that critically depends on the level of un-
certainty. For example, this error term vanishes when there is no model uncertainty.
We develop an upper bound of this error term in Lemma 25 by leveraging the uncer-

tainty diameter (Definition 11) and introducing a stronger convergence metric A,(j ,)1 =

> ses (V,jfg(s) - K;ﬂ(s)) compared 0 O .

e To derive the desired convergence rate, we build a recursion on the convergence metric
{Zle Ag gz}he[H] in Lemma 27. The key challenge in solving this recursion is to rewrite
it as a vectorized linear system that involves an upper triangular Toeplitz matrix, whose
spectrum can be characterized analytically and used to derive the final result.

5 Conclusion

In this work, we proposed a new and tractable notion of robust correlated equilibrium for
Markov games with environment model uncertainty. We showed that the robust correlated
equilibrium has a simple modification structure, and its characterization of equilibrium crit-
ically depends on the environment model uncertainty. Moreover, we proposed the first
fully-decentralized robust V-learning algorithm for computing such robust correlated equi-
librium and established a polynomial sample complexity for computing an approximate
robust correlated equilibrium. We believe this work provides an initial solution to competi-
tive multi-agent reinforcement learning in uncertain environment, and an interesting future
direction is to explore if it is possible to establish convergence of the algorithm under relaxed
requirements on the uncertainty diameter.
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Appendix A. Proof Sketch of Theorem 12 and Theorem 13

Before giving the detailed proof for Theorem 12 and Theorem 13, we provide a sketch of
proof with highlighting the technical novelty and the main differences from the standard
convergence analysis of V-learning (Jin et al., 2022a) for solving the non-robust CE of
Markov games.

e Instead of directly bounding ngggﬁk (8 — Vﬁ(g )h 1 (), we follow the proof steps of V-
learning (Jin et al., 2022a) to start with the gap between the optimistic and pessimistic
estimation

51(52 = Vk(,]h)(sk,h) - K;{%(sk,h),

where sy 5, is the state visited at k-th episode and h-th step. Since the update rule
of robust V-learning algorithm depends on the worst-case expected value function
estimator op, (54)(V) in the critic update, as opposed to the exact value V(s) used
in the standard V-learning. These optimistic and pessimistic estimations are not
as straightforward as the original proof and require us to develop various important
properties of this operator in Lemma 19, including boundedness, monotonicity, etc.
These properties will be used to lead the desired pessimistic and optimistic estimations
Vﬁ(i)h’h(s) > Zg}l(s) (Lemma 22) and Vk(’jh)(s) >y ) (s) (Lemma 24).

P*oTtg p,h
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e With following the same steps as the proof of V-learing (Jin et al., 2022a), we obtain
the following recursion:

X 1y & . .
Z(sl(c]f)L S( E) Z (Uph(sk hyQ/ h) V(/.]}L—‘,-l) - UPh(Sk,hvak/,h)(Kgcj’?h—&-l))
k=1 k=1
1\ & ,
( ) Z ( W1 (S nt1) = Vl(c]'?h+1(sk’7h+1)>
k'=1

mKHSA?

13\ <& '
M (1+H>I;_151(cjzb+1+@(f1 \/H3SK1n5]

For the non-robust V-learing (Jin et al., 2022a), the first two terms are directly canceled
while we have to consider the influence of operator op, (5 4), Which is one of the main
differences in analyzing the robust V-learning.

)+4Ke.

o We developed Lemma 25 as one our of technical contributions to upper bound this
difference term

OPh(sk,hsays g, (Vk(/j;wrl) OPn(sk,naps h)(vl(c]/)h-i-l) Vk(/]}LH(Sk/,hH) + Kl(cj’?h—i-l(sklah'i‘l)'
This lemma shows the operator op, (s ) has Lipschitzness in Li-norm with a high
probability, which performs as the bridge between the robustness and non-robustness
convergence analysis. After applying Lemma 25, we will be able to obtain the following

bound (17):

H—-h

S p(14 ) S (1 Y S (W) V)

k=1 i=0 k=1 seS

+2m [ (1+ %) \/32KH21n2mK5HSA +@(Aj\/H35K1anI;% ) +4ke].

e We note that the first term in the above bound

H—h
D14 30) 3 (14 3) S5 (e - )

will not appear in the non-robust V-learning since it characterizes the influence of di-
ameter of uncertainty set on the convergence error of robust V-learning. For non-robust
V-learning, the diameter of uncertainty set is 0, so this term will simply disappear.
We propose two approaches to handle this error term and they will lead to different
conditions on obtaining a polynomial-time complexity.

o Theorem 12. In Theorem 12, we bound the tracked value functions by their
upper bound to obtain the following characterization of the error term:

D)3 (1% 5) 7 S5 (0 - L)
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<5DSKH?.

It implies that if the uncertainty set is sufficiently small (that is, the diameter of
uncertainty set D is less than the threshold sz ), we could always control the
error term caused by the model uncertainty by e.

o Theorem 13. In many cases, we do not expect the uncertainty set to be too
small. So we developed Theorem 13 by considering the expectation of this error
term. With taking expectation, Equation (17) will be simplified to Equation (19)

K H—h 1. K )
Pmin Z A/(jzb S Z (1 + ﬁ)Z-H Z A](€]721+1+i + 02/].7
k=1 =0 k=1

where pnin characterizes the exploration ability of the whole learning process.
To solve this recursion, we developed Lemma 27 to characterize the solution of a
upper triangular Toeplitz system, which is also a new technique in convergence
analysis and will be potentially applied to other algorithms. To satisfy the con-
dition of Lemma 27, we need to require the diameter of uncertainty set to be
sz <D< Prmin -~ This condition indicates that for learning a robust CE of
general-sum multi-agent Markov games, we cannot let the uncertainty set to be
arbitrarily large.

Appendix B. Proof of Proposition 7

First, we re-state Proposition 7 here.

Proposition 14 In a Markov game with model uncertainty, any robust CE policy m can be
achieved by deterministic modifications, i.e., for any player j there exists a deterministic

modification 1) such that V, (j)(s) V;gj))oﬂ 1(s).

Proof
We will prove this proposition for a more general setting where each reward 7“,(1] ) =
(J)(sl .h,a1.p) relies on all the past and current states s1.;, := {sh/}}ﬁ, , and actions ay., :
(J)

{ah/} w—1- Then the conclusion directly applies to the special case of interest where r;’" =

D (snoan).
We will find ¢ by applying mathematical induction to the horizon H.
When H =1, the MDP does not involve transition kernel, so

Vilera®) = Zl61 om) (o 5,00

é Z ¢(J) (])|8 a(j)) ([agj),ag\])” )7’9)(3,@1)
(J)

ai,a

=3 (X601, 3 (@@, al ) sy s, an)

~§7) 57) a(1\1>

17



Ma, CHEN, ZOU AND ZHOU

(41)

<3 (max S (@ o) (s, an) ),

~(J) al (\J)

where (i) uses the following formula that directly follows from the definition of stochas-

tic modification ¢), and (ii) becomes “=” using the deterministic modification such that

j)(alj)|s g ) :=1 for a certain a(j) € argmax ) > () Wl([agj ,al\])]|s)) (])(s,al)

((b(J)OWh)(ahlSLh,aLh 1) Z¢(J) (j)\81 By Q1:h—1, G (J))Wh([ a?) g\

ap " ap ”Slihaal:h—l). (11)
~511)

This proves the existence of the optimal deterministic solution gb(j) for H = 1. Suppose it
also exists for horizon H — 1. Then it suffices to prove the existence of ¢\) for H as follows

() .
V¢(j])071' l(S)

= H})g%E[ZT(]) 81:h7a1:h)‘81 =s,¢9 o W;P}

T

_ ~ (4) ) _ (4) H-1p
Pl:H—;IEIgDI:H—2 <E[ 7 (81:hy Q1) |51 = 8,{P) © T}y ,PI.H72}

T
L

+ inf [(])s ,a ‘s =369 om, P }
p, nof (s1:H,01:H)|51 o LH-1

H-1
= inf <]E[ 7‘;(;7) (51:n, @1 h)’sl =3, {</>(j) o Wh}hHgll,Ple—z}
P1.H2€P1.H-2 he

—

+ Z Pr(si.m-1,a1.1-1|51 = s, {cb(])oﬂh}h L Prgo2)

S1:H—1,A1:H—1

inf E Pr_1(smlsg—1,am-1) § (])OWH Jam|s1:m, a1 07— 1)7’H (s1:H,a1:H)
Py_1(:|sg—1,am—-1)
€Pu_1(sg_1,am—1) °F
@) : [ (J) () H-1
= inf 7 (810, G1: )81—8 ¢p omht_1 s PrH—2
P1.g_—2€P1.H 2 < Z ’ { }h_l ’

+ Z Pr(si.p—1,a1.1-1|51 = s, {¢(]) omp i Pry—2)

S1:H—1,A1:H—1

inf ZPH—1(5H|SH—17 ap-1)

Py_1(lsp—1,05-1) -
€Pr-1(sH-1,aH-1)

S 690 51, a1 @) rr(a Sfﬁ,ag}”nm,ale_l)r?(sl;H,al:H))
~(j)

ap,ay

H-1
= inf ]E[ r9 (s1, ,a1.4)|51 = s, U)o Lp }
Pl:H—ZEPI:H—2< hz_l w7 (81:hy @1:1) |81 {oy” o} Prm—o
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+ Z Pr(si:m-1,a1.n-1]51 = s, {¢U) o Tty Pra—2)
S1:H—1,21:H—1
inf > Puo(sulsu—1,an- 1)Z¢>§3} (a|s1.ar, arrr—1, 35y

Pr_1(-|sg—-1,0H-1)
€Pr-1(SH-1,0H— 1)5H7~(]) (}?)

Z m([ﬁg), a%j)HSLH, al:H_l)rg)(sle, a1:H))
(\7)
aH

(i) A
< inf ( { Z 7'(]) Sl:ha al:h)‘sl =S, {¢§g) o ﬂh}]?;lla ]P)le—2}

P1.g—2€P1.H—2

J H-1 :
+ E Pr(si.m—1,a1.H-1]51 = s, {¢( ) omptp—1 > P1.H-2) inf
. - Py_1(:|sg—1,am—-1)
LH-1,01:H—1 €Pr-1(sg—1,a1-1)

Z Py SH|8H 1,AH-1 HlaXZWH( (J) En}j)HSlH,alH 1) 51)<51H7a1H))

]
o) UL G\
(i) H-2 ) i
1% (J H-1
= inf [ 7 (81:hy arn) + A{H ((SLH-1,01:H-1)|51 = 8, {¢ O Thtn_q aPI:HfQ}a
P1.g—2€P1H—2 P

(12)
where we denote Py, 1= {Ph/}z/zl and Py, = {Ph/}Z, 1> (i) uses eq. (11), (ii) becomes

“=" using the deterministic modification qb(] such that ¢(j)(a(j)|sl H,Q1:H-1,0 (])) =1 for

a certain

(9)
ajf € argmax, >, ) TH

following surrogate reward at step H -1,

~7)

(3)

([ag (]) g}j)”sl:H,alH 1)ry (s1:m,01:1), and (iii) denotes the

- 1(31H 1,01:H-1)
—Tg)l(&H 1 aLg-1) + inf Z Pr-i(sulsm-1,am-1)
Pr_1(lsg—1,0m-1) )
€EPHa-1(SH-1,0H—1) SH,Af1 7
maoe S ()l s, v 1)) (s1em aven). (13)
GG\

Note that eq. (12) can be seen as the value function with horizon H — 1, so there are deter-

ministic modifications ng * for h € [H — 1] that maximize eq. (12), which along with ¢g)
above forms the deterministic modification ¢U) := {¢h )}he (] that maximizes V¢((JJ)> 1 (8).

This completes the proof.

Appendix C. Proof of Proposition 8

Proposition 15 Robust CE and robust NE have the following relations.

1. In any robust Markov game, the set of robust CE includes the set of robust NE, or
equivalently, any robust NE is a robust CFE.
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2. There ezists a robust CE (in some Markov games) which is not a robust NE.

Proof First, we will prove item 1 that the set of ro- a=[11] a=[10]
bust CE always includes the set of robust NE. This (%) ( %) (s2) () () (1) (=) /Sz‘

part of proof is directly taken from Proposition 9 AN ,»"/ 1=/ N
-~ [ —~(
(Jin et al., 2022a) with changing the V-function to (s+) (1)
the robust V-function. Let m = m X mg X« -« X 7, a=[o1] a=[00]
be a robust Nash equilibrium; then () (s) (22) (5) () (5) () (=)
"\\ 1,3), J v/ '\\' r"\\ g J
(4) (i) (l) PN ) S \ 172; ‘/S.
H};?X Viqﬁiom)xﬂ(\i) (s) = max Vﬂgxﬂ(\i) (s) ) )
(Z)V(i)( ) Figure 1: Transition kernel at h =1
S Ve(s),

where (i) is because that 7 is a product policy and (ii) applies the definition of robust Nash
equilibrium (see Definition 1). It implies that 7 is also a robust CE by Definition 4.

Next, we prove item 2. It suffices to give an example of a Markov game setting and
a robust CE policy 7 that is not NE. Consider a two-player coordination game in which
there are five states S = {s;}1_, and each player has two actions A = {al(l)}ilzo X {al(?) Lo
At time step h = 1, Figure 1 depicts the transition kernel Py, parameterized by a param-
eter p € [0,3). At time step h = 2, we set the transition kernel Py, (s|s,a) = 1 for all
s and a, i.e., players stay in their current state no matter what actions are taken. The
rewards of both players are set as r(so,a) = [0.5,0.5], r(s1,a) = [0,1], r(s2,a) = [1,0],
r(s3,a) = [0.95,0.95], and r(s4,a) = [0, 0] for any action a € A. The initial state is fixed to
be s = s4. We consider the uncertainty set Py = {Py, : p € (33, 5)} where there are two
robust NE, i.e., m1(a = [0,1]|s = s4) = 1 and m1(a = [1,0]|s = s4) = 1 (72 can be arbitrary).
Moreover, any convex combination of these two policies is a robust CE but not robust NE. H

Appendix D. Proof of Proposition 10

Proposition 16 Let 7 be the policy such that 'vfrl’%(s) > 'vé?ﬂ 1(8) for any stochastic modi-
fication ¢ and all states s € S, then oM (s > oW (s for any policy u and all states s € S.
m,1 w1

Proof It suffices to prove that for the single-agent case, all stochastic modifications of a
policy form the space of all policies. Let IT be all distributions over A and 7 € II is given
with 7(a) > 0 for all a € A. We will prove that

{¢om: ¢ is a stochastic modification} = II.

For any p € II, we can construct the desired ¢ as follows: define ¢(-|b) = p for all b € A.
Then we will show that ¢ o 7 is same p.

pom(a) =Y m(b)p(alb)

beA

= w(b)ula) = p(a).

be A
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This implies that II = {¢ o 7 : ¢ is a stochastic modification}. It concludes that enumer-
ating all stochastic modifications of a given policy is equivalent to enumerating all policies. B

Appendix E. Policies in Algorithm 1

In this section, we will elaborate how is 7, j, in Algorithm 1 obtained from the adversarial
bandit algorithm.

Obtaining 7 5: In Algorithm 1, to output robust equilibrium (robust CE), we adopt
V-learning algorithm (Jin et al., 2022a) for single-agent adversarial bandit to update the
current policy. To elaborate, we denote the i-th iteration of this algorithm as m;41(:)
ADV_BANDIT(b;, ¢;(-)), where the player takes action b; € B following its own policy m;(-)
obtained from its previous iteration and observes the noisy bandit-feedback ¢;(b;) with the
loss function ¢; selected by the adversary. The procedure of implementing ADV_BANDIT
algorithm for multiple iterations is shown in Algorithm 6 of Jin et al. (2022a) and we
extracted the i-th iteration as shown in the following Algorithm 3.

Algorithm 3: Adversarial bandit algorithm (ADV_BANDIT)

Input: Iteration index i, action b and the corresponding bandit-feedback E(g), the
previous policy ;.
for each action b € B do
/(b i (0)4(b)
O = e
£;(b'|b) « 0,V € B/{b}
7(+|b) o exp [ — L D w;l;(-|b) |, where {; is obtained from the j-th iteration
of ADV_BANDIT algorlthm
end

Output: ;11 obtained by solving the linear equation m;y1(-) = > ,cpmi+1(0)7(:|b)

It has been proved by Corollary 25 of (Jin et al., 2022b) that Algorithm 3 has the
following convergence rate.

Lemma 17 Implement Algorithm 8 for iterations i =1,...,t with hyperparameter choices
wy = W (o is defined in eq. (23)), e = m = v/ ( HlnB . Then for any ¢ € (0,1),
with probability at least 1 — §, we have

H In(B2/5)
t )

mmzat [(mi(-), li(-)) = ((@omi) (), li())] < 10B

where ¢ om; can be defined by reducing the definition of stochastic modification in Definition
2 to single-agent policy ;.

Appendix F. Proof of Theorem 12

Theorem 12 Let S := |S| and A := max1<]<m |AY)| correspond to the size of the state

space and action space, respectively. Choose ﬁt , o and of according to egs. (21)-(23).
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The output policy T produced by Algorithm 1 satisfies the following convergence rate with
probability at least 1 — c¢d for some constant ¢ > 0. For any D > 0, we have the bound

) ©)) 2
x - V. <5DSH
gg?;;rgg(% or1(8) = Vil (5)) <5DS +<’)

H3S 771.1(12]5&42 N e))

Further, if the uncertainty diameter D < < and the approzimation error ¢ = O(7), then

the e-accuracy is guaranteed with K = O(SA2H5¢2) episodes.

Proof Note that Vk(J;L)(s) (defined by egs. (7) & (8)) and V,(cjzl(s) (defined by egs. (27) &
(28)) are respectively the upper bound and the lower bound of V(J) »(8) (Since Vk(]h)(s) >
vy (s) > V(]) p(s) > V(J)( ) based on Lemmas 22 & 24). Denote the gap between

@*oftk, p,h
the upper bound and the lower bound as follows

5;(.3];)1 = V;ff}f(sk,h) - K;&{?L(Sk,h) > 0.

Let sp p, arp respectively be the state and action at the h-th step in the k-th episode. Let
{kk pH<i<ngn (k‘k p < kP n<...< knk " < k) be the set of episodes in which the state sy,
is visited at the h-th step N by 1= Nkyh(skﬁ) is the number of such visits.

Then we unroll the update rule for both Vk(]}z(sk,h) and K](ngl(shh) along k as follows.

(3) ~ ,
5(]) V(] (8k,n) —Y,ff,f(sk,h)

(n) O
o, (H—h+1)
L
i () v ©)
+ Z npn (Uph(sk nolyt )(Vk{h,h+1) O-Ph(sk ngi h)(— : h+1) + 25ij )
i=1 ’
(444) Tk
< Z ank h (07’h(5k g )(Vk;(l]) h+1) - UPh(Sk,h,aki )(Vgl) h+1)>

k,h> k,h>
1=1

N, h N, h

+2 Z aﬁlk’hﬁi(j) + 2¢ Z aflk’h
i=1 i=1

(iv) .
i (4) (4)
< Z ank h (O-’Ph(sk hya k’b i b (V Ij b h+1) - O-Ph(sk»makz . )(Kk]z h+1)>

k,h>

where (i) uses eqgs. (8) & (28), (ii) unrolls the update rules (7) & (27), (iii) uses eq. (29)
and o = 0 (eq. (23)), and (iv) uses egs. (24) & (26). By summing over k, we obtain the
following recursion:

K K "kh

@) i (4) ()
Zék,h < Z QX i, U7’h(5k,h7¢1k;g h»h)(vki h,h+1) - Jph(sk,h,ak}c Wb )(sz h+1)
k=1 =1 ’ ’

k=1 i ke
=11
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K 2
H3 mKHSA?
+) O(A4; n L) +4Ke
; ( ]\/nhh 5 )

IR ) o
< Z (Uph(Sk,hﬂk',h,)(Vk’,thl) = OPu(sk,n:an 1) k’ h+1 ) Z a
k=1 = nh "1

K 2
H3 mKHSA:?
+ O(A; n L) 4 4Ke
; < ]\/nkﬁ ) )
@ 1\ v () ()
< (1 + ﬁ) Z (gph(sk,mak/,h)(Vk/,h-i-l) = OPu(sk,hrap )(Vk/ h+1)>
k=1

Ni41,n(s) \/H3 mK HSA2
J

+Z Z @(A .

(iid) 1\ K ) )
< (1 + 7) (Uph(sk,mak/,h,)(Vk’],thl) - Uph(sk,hvak’,},,)(Zk]’,thl))

)+4Ke

mKHSA?
HN e 41(5) In ——— ) +4Ke

K
(1 + é) (Vkﬂ+1(3kch+1) - Kg?h+1(5k’,h+1)>
k'=1
K A A
(e %) > (Vi) = Vil (i) .

1 mK HSA?
+S@ A]JH?)SZS:NK+1JL(S)1H6J ) +4Ke

K . .
(”)< ) Z (Uph(sk,hvak/,h)(vk(’]}wrl) - Uph(sk,hvak’,h)(Kg?h‘Fl))

(1 + é) i ( W ha1 (k1) = Vo (swe h+1))
k'=1
+(1+ %) i 601 +0(A \/H?’SKlan};SA? ) +4Ke

where (i) changes the order of summation by following Jin et al. (2018) and Jin et al. (2022a),
(ii) uses eq. (25) and pigeonhole argument, (iii) uses >, ° K“ w(2) V1/n = ©(Ngi1u(s)),
(iv) applies Jensen’s inequality to the convex function +/-, and (v) is by the definition of
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Ok h+1. Now we apply Lemma 25 to the first two terms above on the right-hand side,

K
Z (UP},,(SIC,;uak/,h)(Vk(/J}z—»—l) = OPu(sk,n.ay, )(Vgcj’)h+1))

=1
- Z ( w1 (k1) — Vl(cj’?h+1(3k’,h+1)) : (15)
=1

Then we obtain the recursion

K
; S <D <1 ) Z Z (Vk(]FB—H )= Vi (s )) i+ (1 + %) \/ 32K H?In w

k=1 se

1 KHSA?
* (1 + ﬁ) ;5l(e]f)z+1 +@< \/HSSKlnm(SJ

We apply Lemma 26 to solve this recursive relation by setting

ap —Z@Ejzvbh = ZZ (V,C(Jh)(s K;%(S)) ,Ci =1+ %,CQ = D(l + %»

k=1 k=1 seS

) + 4K (16)

1 omKHSA mK HSA?
Cs=(1+ H)\/32KH21nm§S +®(Aj\/H33K1n5J ) + 4K

Then we obtain

H—h

S <p(1+ 4) T (14 5) TF (o)~ Vihor0) an
k=1

=0 )

2 (1+ %) \/32KH2 In w + @(Aj\/mSK In 6SA )+ 4],

where we also apply (1 + %)H_Hl < 3. The first term of the recursion eq. (17),

D1+ 2) T (14 4) 5 (e V)

measures the influence of diameter of uncertainty set on the convergence error of robust
V-learning. In Theorem 12, we aim to build the upper bound with dependencies on the
uncertainty diameter D without introducing other conditions. To do so, we can estimate
this term with a universal upper bound; that is, for h =1,

D) (1 4) S (o L)

1=

<o(i+ ) X (1) X3 ()

= k=1 se
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H—-1 1\
—DSK ; (1 + E) (H — i)
<5DSKH?.

Then eq. (17) can be bounded by

i&}j} <2 [(1+ %) \/32KH2 In w + @(Aj\/H3SK In mK];ISA? ) + 4]

k=1
(18)

+5DSKH?.
The derived upper bound of optimality gap based on this inequality becomes

v v
* 7 - S
Jl'lelﬁx][ é 07r71(31) .1 (s1)]

<5DSH? + 2H[2 S2H7 ) 2mKHSA e(A\/H35 S A ) +4e},
K ) K 0
where s; is the initial state. Since the initial state can be any state over S due to the
initialization, we obtain the desired bound. If D < <7 and the estimation error ¢ is suffi-
ciently small, then this bound implies the number of episodes for achieving e-approximation
of robust correlated equilibrium is K = O(SA?H®%¢~?).
|

Appendix G. Proof of Theorem 13

Definition 18 Let s 5 be the state visited at h-th step k-th episode. The density of sy is
universally bounded below by pmin; that is

in — inf P Skh = S).
Pmin s€8,keN, he[H] (k. )

Theorem 13 Let S := [S| and A := maxi<j<m, |AY)| correspond to the size of the state
space and action space, respectively. Choose 515])7 oy and of according to egs. (21)-(23).
The output policy & produced by Algorithm 1 satisfies the following convergence rate with
probability at least 1 — c§ for some constant ¢ > 0. For any D and pmin satisfying 5= <
D < Pmin we have the bound

U (o) v °H \/H3S mKHSA?
ey (Vi) = VA0 <0 p (Y e 2 )

Further, if the state exploration pmin > g7 and the approzimation error e = O(Luin) " then

the e-accuracy is gquaranteed with K = 6(SA2H5pr;i2ne_2) episodes.
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Proof We follow the same steps of Theorem 12 to obtain eq. (17):

K H—h
S <p(1 )T (1 5) S8 (o) s )

k=1 =0

o[ (1+ %) \/32KH2 lnw + @(Aj\/msmnwm;[“%? ) +4Ke].

In Theorem 13, we need to consider the case where D cannot be sufficiently small but we
still expect to obtain the e-accuracy. To do so, we need to introduce the state exploration
parameter ppi, (Definition 18). For convenience, we define

A =Y (Vi) - Vi)

seS
and
1 2mKHSA mK HSA?
- il 2 3 J
U - 4H[(1+H)\/32KH In =22 104 \/H SKIn——— ) +4kc].
Then we can have the following compact form of eq. (17):
- (4) ©))
> oD Z (L4 )™ Z Ahrgi +
k=1
We take expectation on both sides and obtain
K . H- h
S5 Plsin = 9) (v,jfg( ) - VY s)) D =) Z AD
k=1 seS 1:0

The left-hand side can be further lower bounded by the definition of pyi,. We have

K
Pmin Z A,(j) <D Z (1 + ) Z Ak el T (19)
k=1

Now we assume ppin > 0. Then this recursion can be solved by applying Lemma 27 with
setting

K

Y.
an=> A).C =L and G =
k=1 Pmin Pmin
Due to the requirement given in Lemma 27, we require Co := pD, < % Under this

condition, we obtain the following upper bound:

K

©)
max A <
helH) £~ kh =

%

_ 2
pmin_HD ( 0)
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Lastly, we bound the optimality gap at the step h. In expectation with respect choosing k,
we have

max maX[V(]) (s) — VI (s)]

jeim] s€S ¢*oT,1 7,1
<max » [V, ¢*o7r 1(s) — V7r(]1)(3)]
Jem] 23

(7)
< max fZZ Vi a(8) = V2 (s)]

]E[m] k=1 seS
(Z) 1 XK:Z (V(j)( ) V(J)( ))
2 max — AY
jelm) K ; wl
(i)  3H 32H2 2mKHSA \/H3S mK HSA?
<
_pmm_HD[ I = +®(A el )+4e}

where (i) uses the definitions of 7 and 7 p, given by Algorithms 2, (ii) uses Lemmas 22 &
24 and sampling rule of k given in Algorithm 2, (iii) is by the definition of A,(g })1, and (iv)
uses eq. (20) and A := maxi<;<m A;. It completes the proof.

When evaluating the sample complexity, we require the estimation error to satisfy ¢ <
%e. Then the last term is bounded by €/2. Then we let

1 mKHSA? 1
- 5 2 - < — .
P \/H SA21n 5 /K < 26

It solves the number of episodes for achieving e-approximation of robust correlated equilib-
rium is K = O(SA2Hp 2 ¢2).

pmln

Appendix H. Supporting Lemmas

Hyperparameter choices Throughout this subsection, we use the following hyperpa-
rameter choices

H3 mKHSA?
O) — oa \/ o MEHSA (21)
t )
H+1
= 22
o7 H+t7 ( )
t
ad =0, o =aq H (1—aj)(i>1) (23)
j=i+1
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where ¢ > 0 is an absolute constant. It can be seen that the above hyperparameters satisfy
the following conditions. (Eq. (24) is obvious and egs. (25) & (26) are proved in Lemma 10
of Jin et al. (2022a).)

t
D aj=1 (24)
=1

© 1
dai=1+ o (25)
t=i

t 2
o H3 mKHSA*
i=1

Pessimistic estimation of V function: To facilitate the proof, we also provide a pes-
simistic estimator of V functions denoted as Kg 31, which is constructed by the following

update rules with initial values l/l(]h)(s) = l/k(%ﬂ(s) =0 for all s,h,k,j

V& ulon) = (= )V 1) + au (1) +p, 00 VN = B7) s (27)
V) (sn) = masc{0, V) ()1 (28)

The above update rules are similar to those for optimistic estimation in egs. (7) & (8), with
the major difference that —|—Bt(3) > 01in eq. (7) yields optimism (i.e. Vk(]h)(s) > Vqs(f())ﬁk La(8) =
Vfr(g)h ,(s) as shown by Lemma 24) while —ﬁt(j) < 0 in eq. (27) yields pessimism (i.e.

K;j%(s) < Vfr(g)h ,(s) as shown by Lemma 22)
Lemma 19 The operator op, (s ) defined in eq. (5) has the following properties:
1. Boundedness: infy V(s') < op, (5.0)(V) < supy V(s').

2. Monotonicity: op, sq)(V') < 0p,(sa)(V) for any V-tables V,V' such that V'(s) <
V(s),Vs.

3. Estimation bound: The estimator op, (s 4) has the following bounds for any V function

V.

UPh(s,a)(V) —e< a'\Ph(s,a)(v> < U’Ph(s,a)(v) +e. (29)

Proof Proof of boundedness: The upper bound op, (5 4)(V) < supy V (s) can be directly
proved based on eq. (5) as follows.

op, (s.a)(V) = inf IF);L s'|s,a)V (s
Pu(s.a) (V) u?h(.|s,a>e7>h(s,a>§€; (s']s, )V (s')

< inf Py (s'|s,a) sup V(s")
Pr(-ls,a)€Pr(s,a) ycg s"€S
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9 sup V(s"),

s"eS
where (i) uses ) s Py(s'|s,a) = 1. The proof logic for the lower bound infy V(s') <
Op, (s,0) (V) is similar.

Proof of monotonicity: Suppose p € Pj(s,a) achieves the infimum in op,(s,a) (V)
defined by eq. (5), i.e.

UPh,(s,a)(V) = Zp(sl)v(sl)' (30)
s'eS
Then the monotonicity can be proved as follows.
0Py, (s,a) (V) — 0Py (s,a) (VI)

=3 p( W)~ inf S Bu(ls, V()

Py (:|s,a)EPr(s,a) 7

s'eS s'eS
(i)
>Zp W(s') =Y pshV'(s) > 0, (31)
s'eS s'eS

where (i) will be used later and (ii) uses p(s’) > 0 and V(s') > V/(¢') for all s’ € S.
Proof of estimation bound: ¢ :=sup, ;, v |O’73h(57a)(V) —6'\7Dh(57a)(v>| defined by Def-
inition 11 directly implies eq. (29). [ ]

Lemma 20 For any player j and all s € S, the V-table ‘716(],3 and Yk(]h) tracked by Algorithm
1 at the h-th step in the k-th episode satisfying YN/k(’],z(s) >0 and l/k(Jh)(s) <H+1-h.

Proof We will only prove l/k(Jh)(s) < H +1— h since the proof logic for ‘7,{(],3 (s) > 0 is similar.

For k = 1, the initial value lfl(Jh)(s) :=0 < H+1—h. Then we assume L/k(],z(s) <H+1-h
for a certain fixed k£ > 1 and we prove Yk(i)l n(s) < H 41— h as follows.

(2) i
VO sn) 2 (1 — a) V9 (sn) + ae(r (sn, an) + Fpy (o) Vi ne) — BY)

(i) A
< (L= a)(H + 1= 1) + (14 0p, (g0 (L 10) = B +e)

where (i) uses the update rules (27) & (28), (ii) uses l/k(]h)(s) < H+1—hand eq. (29), and

(iil) uses ,ng ) > ¢ based on eq. (21) and the following inequality based on item 1 of Lemma
19. This concludes the proof.

Pu(oman) Vih 1) < max V) (s) < max [max (0, V9,1 (5)] < H = h.
[ |

The following lemma says that the tracked upper confidence bound Vk(]};) (s) is always larger

than the lower confidence bound K,(j ;l(s)
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Lemma 21 For any player j and all s € S, the V-tables V,gh)(s) and K,(jgl(s) tracked by
Algorithm 1 at the h-th step in the k-th episode satisfy the following inequality

V() 2 Vi (9) (32)
Proof It suffices to show ‘7;],3(5) > Yk(]h)(s) since it implies eq. (32) as follows

Vin(s) = V)
Y ining H + 1 — b, V9 (s1)} — max{0, ;% (sn)}
W min{H +1 - h,max[0, V) (s)]} — min{H + 1 — h, max[0, V%) (s1)]}
(iii)
>0, (33)
where (i) uses egs. (8) and (28), (ii) uses Lemma 20, and (iii) uses ‘N/k(jh)(s) > l/'k(]}B(s)

Then we prove ‘716(]}3(8) > l/k(]h)(s) via induction with regards to k. For k =1, ‘N/l(jh) (s) =
H+1-h> l/l(]h)(s) = 0 due to initialization. Suppose ‘7,5],3(3) > L/,yh)(s) and thus eq. (32)
holds for a certain fixed k. Then we aim to prove ‘7151)1 n(s) > l/k(fl n(s) (i-e., eq. (32) also
holds for k + 1). It suffices to consider the case where s is the state visited at the h-th step
in the k-th episode, that is, s = s 5. Otherwise, XN/k(i)l n(8) = 1715])(5) > Y,C(Jh)(s) = Yk(i)l n(5)
When s = si, 5, the update rules (7) & (27) imply that

Veta(®) = Vilia(s)
~(1 = a0) (V35) = V) + 0t (5p6.0 (V1) = Fpuom VN 11) ) + 20087
(@) 4 . N (#)
a1 (0, (V1) = 0P (Vi k)26 + 2687 ) =0 (34)
where (i) uses ‘716(’],3(5) > l/'k(’jfz(s) and eq. (29), and (ii) uses Vk%ﬂ > K,@Hl, the monotonic-

ity of op, (sq) (see item 2 of Lemma 19) and ﬁt(j) > ¢ (see eq. (21)). This concludes the
proof.
|

Lemma 22 The V-tables Vﬁ(z)h p and Z,E}j,)l satisfy the following inequality with probability

at least 1 — 6 for all players j € [m], episodes k € [K], time steps h € [H]| and states s € S
and any § € (0, 3),

VO (s) > V) (s).

T,y h
() @) (). 3t impli () ()
Proof It suffices to prove V_>" ; (s) > V;y/(s); it implies V2", (s) > V7} (s) because
V.9 (s)>0
h -

Th,h
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by its definition (2) (note that r(gj)(Sg,ag) >0) and
Vih(s) = max{0, V) (sn) .

Now we start to prove V(j ) n(s) = V(j )( ) by induction with respect to h backward. When

h = H +1, the proof is tr1v1al as V(JQIH(S) Vo HH(S) = 0 for any policy 7. Then suppose
v (s) > Vk(jh)H( ) holds so V.9 (s) > V,(CJ;LH( ) for a certain fixed h, and we

Tk, ht1,h+1 Tk, h+1,R+1
will prove that Véi,)h,h( ) > l/k(h)(s) Let {kiti<i<t (k1 < k2 < ... < k¢ < k) be the set of
episodes where the state s is visited at the h-th step. Then we unroll the update rule (27)
of l/'k(]g (s) as follows with respect to the episode k.

V) = at [ (s, 0) + 5y s ) (VD 10) — B

t
< Zai |:T](~Lj)(s Qi ) + O'Ph(S,aki,h)(Vl(g]l)h-i-l) ¢ — BZ(])} ) (35)
where (i) uses eq. (29). Let

Xi = at |:T](1]) (8, Qi ) + U’Ph(sh,akl n) (f](gjz)h+1):|

g = max{0, v (sn)} < H—h based

Then X; always has the following bound since Vi 1 Vi

on Lemma 20. _
0<X;<ayH+1-h).

Then by using Azuma’s inequality and applying union bound to all j € [m],i € [t] C [K],h €
[H],s € S, we have the following bound with probability at least 1 — 4.

t t t
SB[ 3] < 5 () Steprr 1wy w2 o
=1 =1 ]

where (i) uses 31_; (a})? < 2 in Lemma 10 of Jin et al. (2022a). Therefore, with probability
at least 1 — 4, the following inequality holds for all j, k, h, s.

(i)
VI(s)< ZX

(1)
< Z O{;Eﬂ'kl N [’I“i(lj) 8 y Qi h)+077h(sh agi h)(f](fjl)h+1)}

2mKHS Z B(j) )

(#it) )
( v
< E Oéfszkz N [Th] 8, Qi p) + U’Ph(sh,aki’h)( frZi’h_‘_l,h-}l)]
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() x~(j
= Vq”r(,i)hyh(s)a

where (i) uses eq. (35), (ii) uses eq. (36), (iii) uses eq. (26) and the assumption that

Vfr(,i),hﬂ(s) > K](C]i?h+1(s) holds for £ = k% < k—1, and (iv) uses the robust Bellman equation
and the definition of 7y j, given by Algorithm 2. |

H.1 Lemmas on Robust Correlated equilibrium

The following lemma follows Lemma 15 of (Jin et al., 2022a), with the bandit input changed

H—r;,—0o Vi
from (ap, to (ap, phzh’““( +1)).

Lemma 23 Let w41, be the policy given by the ADV_BANDIT UPDATE algorithm at
the h-th step of the k-th episode. Then the following bound holds for all j € [m], k € [K],
h € [H] and s € S with probability at least 1 — 6 under Lemma 17.

H—rp—Vii1(Shy1) )
H

t
max » a; |:]Ea~¢(j)o(7rki7h) ["”;(1]) (s,0) + P, (s,0) (Vk(g,)h—&-l)]}

o) =1
, , , H3 mKHSA?
< Z O‘?ﬁ [Ea"‘”ki,h [T}(Lj) (8, a) + UPh(s,a)(V(ij,)h+1)]:| + 1OAJ \/t In 5 : ) (37)
i=1
. . _ H-rp(s,a)—0op, (s,a)(Vat1)
Proof By applying Lemma 17 to the loss function /;(a) = T for any s,

we obtain that the following bound holds for all k € [K], h € [H] and s € § with probability
1 —§ (we replace ¢ in the bound in Lemma 17 with ﬁ by applying union bound to all
k € [K], h € [H] and s € S), which is equivalent to the above bound and thus concludes
the proof.

i ZE [H - Tl(lj) (Sa a) - UPh(s,a)(V(ij,)h_;,_l)}
ma, G Egorn
i i H - r}(zj) (87 (I) — 0Py (s,a) (Vk(zj)h_i_l)
H mKHSA?
1044/ —In ———.
+10 J\/t n 5
|
Lemma 24 For the j-th player, the V-tables V(b(z())ﬁk,hah(s) = max() Vdf(];'))ofrk,h,h(s) and

Vk(]h)(s) at h-th step in the k-th episode, satisfy the following inequality with probability at
least 1 — 26 for any 6 € (0, %)

Vk(,Jh)(S) = Vdffgfrk,mh(s)
foralls e S.
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Proof It suffices to prove \N/k(])( ) > quf()mk ..n(8); it implies Vk(])( ) > quf()mk ..n(8), since

V) (sn) = min{ H + 1 — b, V;9) (s1)}
due to eq. (8), and

() ._ )
V¢*07Tk hyh(s) o 1235( Vq&(]’)ofrk’h,h(s) sH+1-h
since r,gj) < 1 for all j,h. Let {ki}1<i<t (k1 < k2 < ... < k¢ < k) be the set of episodes
where the state s is visited at the h-th step. Then we unroll the update rule (7) of 1716(],1) (s)
with respect to the episode k as follows.
t

‘715’]}3(8) - a?(H —h + 1) + Z a; {T}(Lj)(& akl ) + JPh(s Qi h)( kt h+1) ﬁ(])]
=1

t
Z ZO‘% [r,(f)(s,aki’h) + UPh(s,aki’h)(V,gLH) Bi(”—e .
1=1

where the above > uses af = 0 (see eq. (23)) and eq. (29). Substituting (36) which holds
with probability at least 1 — ¢ into the above inequality, we obtain that the following bound
holds for all j, k, h, s with probability at least 1 — 6,

t
Vi (s) 2 Y alE i [ (s, axi ) + 0, 0,00 (Vi hyt)]

i=1
¢ 3
i), \/H | 2MEH S
+ ;:1: at(ﬂz n 5 (38)

By substituting eq. (37) into eq. (38), we obtain the following bound which holds for all
J, k, h, s with probability at least 1 — 2§ (since eq. (37) holds with probability at least 1 — §
and so does eq. (38)).

(s >maxZatE¢<a>ow [Tf(z)(s’akl n) + 0Py (sap ) k(lj)h—&-l)}

o)
t 2
e 2 KHS H3 mKHSA=
+)° (B —e) \/ Y 104, \/ I J
=1
(i) t , ,
Zlggf Z OétEaN¢(J)Oﬂ.kl . [Tﬁlj) (5,a) + 0P, (5,0) (V(372+1)] (39)
ho =1 ’

where (i) holds using eq. (26).
Then we can apply induction to h backward to prove V(J)(s) > V(Zs(f())7r e For the

base case h = H + 1, it can be easily seen that ‘719(]}){“(3) Vd)(fc)mk r41(8) = 0 based on
Algorithm 1 and the definition of V(J) given by eq. (2). Suppose Vk(,]}3+1( ) > Véfgﬂk a1 (8)
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for a certain fixed h and all j, k,s, so Vk(i)ﬂ(s) > V<z>(£g7r ni1(s). Then eq. (39) further
implies the following inequality, which concludes the proof. (Note that the whole induction

builds on eq. (39) which holds for all k, h, j, s with probability at least 1 — 24.)

V(s >>max2at om0+ om0 (Villa )| 2 Villa

o
k*,h
¢>h =1

where the second < uses the following inequality obtained via the same proof logic as Lemma
13 of Jin et al. (2022a) (see the beginning of page 19 of Jin et al. (2022a)).

v (s) := max v (s)

¢*oft hyh o) ¢ ofy pyh
(4) () (4)
=max max E ) ( ry (s, a) + O"ph(&a)(v i ))

(J) ¢81>+1):H ar~ey o[f nln Dhy1): Ok it 1,h+1

t

“ max max AdE ) (rﬁf)(s a) + op, s.0) (V.35 )
- ~pY . n(s,a J A

¢(J) E;L)H)H — anvgy oy D b1y O ki g1 AL

(422) t

()
<
I(I;g)xi_zlat aN¢(j)°”kt; (Th ( )

) (4) !
+ max inf ( s, a)V(J) h+1(8 )>

4’5&1)»1{ Py (|s,a)€Pn(s,0) (h 1)1 O i 10

< maXZat amdom, (r(j)(s,a)
o o1 "

+ _ inf Z~( 'Is,a) max V%)> (s’))
Pr(-[s,a)EPh(s,a) ¢>(h)+l)H Dby O g g1 AL

t
() ' () ()
S L 0lE (8100 i O 000);
h 1=

where (i) uses robust Bellman equation and denotes |7y 4]p, as the marginal distribution of
ap, based on policy 7y defined by Algorithm 2, (ii) uses the definition of 7y} given by
Algorithm 2, (iii) and (iv) use the definition of op, (s o) given by eq. (5). [ ]

H.2 Key Lemmas to Handle Uncertainty
Lemma 25 With the probability at least 1 — 9,

K
() )
Z (O—Ph(sk,hyak’,h)(Vk’J,h-‘rl) - O—Ph(sk,hyak/,h)(Kk]’,h-l—l))
k'=1
B Z ( w1 (5K 1) — Vl(c]/?h+1(3k’,h+1))
k'=1
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2mKHSA
<D Z > (Vi) = Vi () + \/ 32K H? In ==, (40)
k=1 seS

Proof For the k’-th episode, let

_ . T 1,0)
UPh(sk,h,akr,h) k/ h+1 Zpk’ k/ h+1( )_pk’,hzkz/,h-‘rl’

i.e., the minimum is achieved at p{, - Then

K
Z (aph(sk,hvak',h)(vk(’]}lﬂ) - O-Ph(sk,hﬂk’,h)(Kg?}H’l))

k=1
K . .
- Z (Vk(’],;LJrl(sk’,h-i-l) - K](fjf?h+1(3k’,h+1))
K—1

K K
< Z pg/,h (Vk(’],zﬂ - Kl(cj/?hﬂ) B Z (Vk(/j,%ﬂ(sk/vhﬂ) n Kl(ej/?hﬂ(sk/’h“))
k=1 k'=1

K K
<> Pl (szf]}m - Kl(cj/?h—&—l) -) E (V;y}zﬂ(sw,hﬂ) — Vi Gswnin) ‘Sk’,ha ak/,h)
k'=1 k'=1

(4)

K K
+ ZE(VéiL+1(Sk’7h+1) Vi (kg ’Sk’}“ak’ ) Z( a1 (S 1) — Vl(fj/?h—&-l(sk',h-*-l))'
k'=1 k'=1

(B)

Then we will bound terms (A) and (B), respectively. For term (A), we define p; ,(s) :=
Ph(sk,h+1 = S|Sk,h, ak, ) for some distribution sampled from the uncertainty set Py, (sk.p, ak,n)-
Then we obtain

K
Z pghh (Vk('jzwl Vl(c]/)h+l) Z E( k,h+1 (sk h+1) Vi(cj/?h+1(3k’,h+1)’3k’,haak’,h)

k=1 K—1
Z Z Pkt b (Vk(’]31+1 Vl(cj’ h+1> Z Py (Vk(’]}zﬂ - Kg?hH)
k=1 k'=1
@ > rrn = Dhop)” (Vk(fj,;LH - Kl(cj’?thl)
k=1
(#17) )
< mae e (5) = o (5) >y (Vi1 (9) = VD 5)
k'=1seS
@) . ()
<D Z Z ( k h+1 Kk,h-i—l(s)) )
k=1 seS
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where (i) expands the conditional expectation, (ii) combines the same term together, (iii)
applies the Holder’s inequality (u,v) < [|ul|so||v]|1, and (iv) uses ¢ := supy, ¢ o v |0p, (s.0) (V) —
0P, (s.a) (V)| defined by Definition 11.

Now we turn to bound term (B). Let

Yy =E (Vk(/]}lﬂ(skchﬂ)—K;(f/?hﬂ(skf,hﬂ)‘Sk/,mak/,h) - (Vk(/{;t+1(5k’,h+1)_K](fjl?h+1(5k’,h+1)> :
Then 22,21 Y} forms a martingale with |Yy/| < 4H. By Azuma-Hoeffding inequality, with

a probability at least 1 — ¢, for any episode k, any (si p41,ar 1) € S X A, any agent j, and
any step h € [H],

K
2mKHSA
S v < \/32KH2 In %
k'=1
Combining the bounds of (A) and (B), we obtain the upper bound of eq. (15):

K
Z (Uph(sk,h7ak/,h)(V(I]}L+1) - O-Ph(sk,huakfyh) (K’I(j/?h+1))
k=1
K
j j 2mKHSA
<D (Vi) = V() + \/ sok 2w 2RI
k=1 seS

This lemma gives a more general version of recursion used in Jin et al. (2022a). When
setting by, = 0 and iterating to h = 1, this result is reduced to Jin et al. (2022a).

Lemma 26 Suppose the sequence {an, bp}pe(m41) satisfies the following recursion:

ag4+1 =byy1 =0,
ap < Crapg1 + Cobpgq + Cs.

Then for any h € [H],

H-h CH-h+1 _q
ap <G Z Cibny1yi + (lcli—l)c?”
=0

Proof We prove it by induction with respect to h backward. For h = H, the statement
obviously holds. Then assuming the statement holds for h+1 (for some h < H), we consider
the upper bound of a:
(%)
ap < Grapq1 + Cobpgg +C3
<G [CQ ; Cibpyoti + (lcli—l)cg'} + Cobp1 +GC3

=0
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H-h CH-h+1 _ 4
= Cy Z Cibnyiqi + (1C17—1>C3’
=0

where (i) uses the recursion, (ii) applies the induction hypothesis, and (iii) rearranges the

order of each term. It completes the proof.
|

Lemma 27 Suppose the sequence {an, bp}pem1] satisfies the following recursion:

ap+1 =0,
H-h ,
1 \+1
ap < C + G Z (1 + E) Aht1+i-
=0
If Co < 1/H, then
2 < 1
ma — .
hX h = 1— HCy

Proof We re-write the recursion in matrix form. Here inequality holds for entry-wise.

B 2 H—17]
o (1+4) (1+%) - (1+4)
ay 1 \E2| |
- 0 0 (1+F) (14 4) i
sGlr Gy 0 (1+L)H73
aH : : : . : aH
0 0 0 ... 0

Denote the upper triangular Toeplitz matrix by T. Then we take || - || on both sides and
obtain

max ap <C+GCy \|T||Oomf?xah

H-1 1\
§C1—|—CQZ (14—*) maxap
= H h

1\H
<C + C2H|:(1 + ﬁ) — 1] ml?xah

<Ci+ HG m}?xah.

When Cy < 1/H, it solves the upper bound of maxy, a5 as

G

ap < ————.
mi?x h_l—HCQ
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