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Abstract

Camera orientations (i.e., rotation and zoom) govern the
content that a camera captures in a given scene, which in
turn heavily influences the accuracy of live video analytics
pipelines. However, existing analytics approaches leave this
crucial adaptation knob untouched, instead opting to only
alter the way that captured images from fixed orientations
are encoded, streamed, and analyzed. We present MadEye,
a camera-server system that automatically and continually
adapts orientations to maximize accuracy for the workload
and resource constraints at hand. To realize this using com-
modity pan-tilt-zoom (PTZ) cameras, MadEye embeds (1) a
search algorithm that rapidly explores the massive space of
orientations to identify a fruitful subset at each time, and (2) a
novel knowledge distillation strategy to efficiently (with only
camera resources) select the ones that maximize workload ac-
curacy. Experiments on diverse workloads show that MadEye
boosts accuracy by 2.9-25.7% for the same resource usage, or
achieves the same accuracy with 2-3.7Xx lower resource costs.

1 Introduction

Building on the steady growth in camera deployments and
advances in deep neural networks (DNNs) for vision tasks
(e.g., classification or detection) [8,21,46, 66, 70], live video
analytics pipelines have become prevalent. These pipelines
operate by continually streaming live video feeds from cam-
eras to processing servers (either edge [9, 11,76, 82,109] or
cloud [33,56,67,119]), where DNNs are run on incoming
frames to produce low latency and highly accurate results for
different application queries, i.e., combinations of task, DNN,
and object(s) of interest. Key use cases include autonomous
driving, footfall tracking, traffic coordination, business ana-
Iytics, among others [6, 10,12,25,27,31,41,42,90,91].
Given their practical importance, much research has been
devoted to improving both the resource efficiency and ac-
curacy of live video analytics pipelines. Existing solutions
include accuracy-aware tuning of inference configuration, en-
coding, or appearance knobs [34, 40, 57, 85, 119], filtering
out redundant content [26, 33,53, 67], using cheaper model
variants [9,92], improving job scheduling [82,96, 119], and
so on. However, all of these works assume that the content
observable by cameras is unchangeable, and instead can only
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be encoded, streamed, or analyzed differently. In essence, they
focus on optimizing fixed, preset camera deployments.

Unfortunately, the deployment of cameras for analytics is
itself a daunting task for operators. Subject to practical con-
straints (e.g., mounts, power sources), for a scene of interest,
operators must determine the number of cameras to deploy
and the orientation (i.e., combination of rotation and zoom
factor) to use for each. There exist many possible orientations,
and altering these decisions requires manual intervention. Yet
we find that doing so can be highly fruitful: across differ-
ent workloads and scenes, dynamically adapting orientations
over time can yield accuracy improvements of 21.3-35.3%
(without inflating resource usage) compared to even the best
fixed-orientation scheme. These wins cannot be reaped by
simply deploying more fixed cameras to simultaneously cover
more orientations: most orientations are ‘best’ for short total
times (median of 6 sec per 10-min video), drastically hinder-
ing the efficiency of such an approach, especially in resource-
constrained settings where video analytics run [9,68,76,97].

An alternative strategy is to leverage PTZ (pan-tilt-zoom)
cameras that offer software libraries for tuning orientations,
thereby providing a logical approach to capturing the above
wins. Indeed, despite existing for nearly two decades, PTZ
camera popularity has surged in recent years (global market
value of $1.5 billion in 2021 that is expected to reach $3.6
billion by 2028 [20]) largely due to declining price points that
can rival fixed-camera costs [1-4,94, 102]. However, multiple
challenges complicate their use for live analytics (§2.3). First,
queries are highly sensitive, in different ways, to orientation
knobs due to their diverse goals (e.g., tasks), inherent model
biases (how models perceive scenes and objects), and scene
dynamism (where objects are located) — optimizing orienta-
tion tuning for one workload can forego up to 25.1% of the
potential median accuracy wins for another. Second, the ‘grid’
of orientations is large, but the selection space is sparse, with
steep accuracy drops from the best orientation(s) to others
at any time. Third, the best orientation changes rapidly, e.g.,
85% of changes occur in <1 sec since the last change.

To overcome these issues, we present MadEye, a camera-
server system that automatically and continually adapts PTZ
camera orientations to maximize analytics accuracy for the
scene and workload at hand. The key insight behind Mad-
Eye is that the speed at which commodity PTZ cameras can
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change orientations (i.e., upwards of 600° per sec with con-
current zoom) far outpaces the rate at which applications
require analytics results (typically 1-30 frames per second
(fps), i.e., every 33-1000 ms). This, in turn, allows MadEye
to eschew typical non-stationary multi-armed bandit strate-
gies [64, 81, 107] that rely purely on previous explorations to
determine orientation importance, in favor of a more informed
strategy based on current scene content. Concretely, in each
timestep (33 ms for 30 fps) and subject to network/compute
resource availability, MadEye cameras explore multiple orien-
tations and quickly determine which will maximize workload
accuracy and warrant transmission to backend servers for full
inference. Though intuitive, realizing this strategy in practice
involves addressing several core challenges.

First, to enable fast camera-side evaluation of the impor-
tance of different orientations, MadEye adopts a custom
knowledge distillation [49] strategy with edge-grade, ultra-
compressed NN models. To cope with their potentially limited
predictive power, we task them with modeling query sensi-
tivities only to the point of accurately ranking orientations in
terms of impact on workload accuracy — precise results are
left to backend servers. Even with this relaxed framing, Mad-
Eye must employ several optimizations to achieve sufficient
rank accuracy. Most notably, MadEye trains edge models us-
ing a common abstraction — detection for objects of interest
— that reflects the minimum information needed to capture
sensitivities and biases for popular tasks. Task-specific seman-
tics need not be baked into edge models, and instead can be
incorporated by post processing the generated detections.

Edge models are continually trained on MadEye’s backend
using both the latest and historical workload results to mitigate
data skew towards recently-selected orientations. Importantly,
to balance resource costs and accuracy, each edge model cov-
ers only a single query but all orientations. The intuition is
that, while results from different query models can substan-
tially divergen [14, 35, 63,77], feature-level variance between
orientations for the same scene is considerably narrower, often
smaller than that in typical pre-training datasets [69]. Accord-
ingly, MadEye freezes pre-trained feature extraction layers
across queries, caching those weights on cameras to lower
retraining and (downlink) model update overheads.

Second, we devise a novel, on-camera search strategy to
explore orientations with the goal of capturing the best one
(accuracy-wise) at each timestep. Three key empirical obser-
vations guide our search: (1) despite rapid temporal shifts,
transitions between best orientations move slowly in the spa-
tial dimension, (2) the best orientations at any time are usu-
ally clustered spatially, and (3) neighboring orientations (with
overlapping views) have highly correlated trends in efficacy.

Building on these observations, MadEye explores a flexible
shape of contiguous orientations at each timestep, and con-
siders shifting only towards neighboring orientations whose
efficacy can be robustly predicted. Decisions to keep/remove
orientations are governed by both response rates (and the cor-

responding time budgets) and relative comparisons of recent
edge model results. For the former, MadEye uses an efficient
heuristic to determine path feasibility in the time budget (a
variant of the NP-Hard Traveling Salesman Problem [48]).
For the latter, MadEye gracefully trades off exploration (i.e.,
shape size) for network usage (i.e., sending more orientations
for backend inference) to bound the effects of edge model
errors and maximize accuracy for the required response rate.
To evaluate MadEye, we developed the first (to our knowl-
edge) dataset that supports tuning rotation and zoom at each
time instant by splicing out scenes of interest from publicly
available 360° videos. Using this dataset, we evaluated Mad-
Eye on a variety of network conditions, commodity PTZ cam-
era hardware, and workloads that incorporate multiple vision
DNNs and query tasks: classification, counting (per-frame
and aggregate), and detection. Across these settings, MadEye
boosts accuracy by 2.9-25.7% compared to an oracle fixed-
orientation strategy without inflating resource usage; these
wins are within 1.8-13.9% of the oracle dynamic strategy.
Framed differently, MadEye achieves those accuracy boosts
with 2-3.7X lower resource footprints than the best strategy of
using (multiple) fixed-orientation cameras. Moreover, Mad-
Eye outperforms recent PTZ tracking algorithms [93, 98] (by
2.0-3.8%) and multi-armed bandit solutions [106] (by 5.8X).
The source code and datasets for MadEye are available at
https://github.com/michaeldwong/madeye.

2 Background and Motivation

We start with an overview of live video analytics deploy-
ments (§2.1). We then show measurements highlighting the
importance of dynamically adapting camera orientations to
workloads and scenes (§2.2), and the challenges associated
with realizing those benefits in practice (§2.3).

2.1 Overview of Live Video Analytics

In a live video analytics deployment, one or more cameras
continually stream their video frames to servers for process-
ing. Servers can range from distant (but powerful) cloud ma-
chines [96, 119] to nearby (but weaker) edge boxes [9, 76, 82],
and are tasked with running queries on the incoming frames
to support different applications. Queries most often involve
running deep neural network (DNN) inference on individual
frames, with the goals of locating and characterizing vari-
ous objects in the scene, e.g., an intersection. Moreover, the
queries for different applications can vary in terms of the
tasks they perform, the objects they consider, the DNNs they
use (different architectures and weights), and the response
rates they require. For instance, footfall tracking for business
analytics will count people passing through an area, with re-
sponse rates at 1 fps or less [12]. In contrast, smart driving or
sports analytics applications will detect the specific locations
of cars or people, with response rates upwards of 30 fps [91].

In this paper, we focus on the following four query tasks
(and their corresponding accuracy metrics) that have been
prevalent in recent literature [23,33,58,59,67] and real-world
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deployments [74, 82]; §3.4 details our target queries. We note
that these tasks also serve as the building blocks for more
complex queries, e.g., tracking relies on detections.

¢ Binary classification: asks if any objects of interest are
present in a frame. Accuracy across the video is measured
as the fraction of frames with the correct binary decision.

o Counting: counts the number of objects of interest in each
frame. Accuracy for each frame is measured as the percent
difference between the returned and ground truth counts.

o Detection: finds the precise bounding box coordinates for
objects of interest in a frame. Accuracy per frame is mea-
sured using mAP [38], which evaluates the overlap between
each returned box and its ground truth counterpart.

e Aggregate counting: counts the unigue objects of interest
that appear in a scene. Accuracy per video is the percent
difference between the returned and ground truth counts.

Over time, an analytics deployment will face diverse work-
loads to run on the feeds it manages, each varying in query
composition and size [77,82]. Yet, the overarching goals per-
sist: subject to resource constraints, deliver low-latency results
(at the desired response rate) with maximal accuracy.

2.2 Opportunities with Tuning Camera Orientations

Existing video analytics systems (§6) assume that a stationary
camera’s orientation (rotation and zoom), and thus what it
ingests from the target scene, is fixed and incapable of being
adapted. To quantify the significance of this restriction, we
run experiments on our 50-video dataset and workloads that
incorporate 4 model architectures, the tasks from §2.1, and
people/cars; §5.1 details our setup. Each video supports tun-
ing of rotations (150° horizontally by 30°, 75° vertically by
15°) and zoom (1-3X); we use other granularities in §5.4.

For each video, we obtained per-frame (15 fps here) results
for each workload by running its queries on all 75 orientations.
We then define accuracy relative to the best orientation for
each frame, i.e., the orientation that maximized per-frame ac-
curacy for the workload. In other words, best orientations rep-
resent an upper bound on the accuracy that could be achieved
by using a single orientation at a given timestep. For instance,
for counting, an orientation’s accuracy at any time is its object
of interest count divided by the max count across all orienta-
tions at that time. Using this methodology, we compare three
schemes: (1) one time fixed which selects the best orientation
at time=0 and keeps it throughout the video, (2) best fixed
which uses oracle knowledge to pick the best single orienta-
tion that maximizes average workload accuracy for the video,
and (3) best dynamic which selects the best orientation per
frame in the video.

As shown in Figure |, adapting camera orientations brings
substantial accuracy improvements without inflating resource
usage, i.e., the same number of frames are transmitted and pro-
cessed: median boosts with best dynamic are 30.4-46.3% over
one time fixed and 21.3-35.3% over the best fixed scheme that
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Figure 1: Accuracy for 5 representative workloads when using
varying degrees of orientation adaptation. Bars list results for
the median video, with error bars spanning 25-75th percentiles.
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Figure 2: Accuracy wins from adapting orientations (compared
to best fixed) grow as query specificity grows. Bars list median
videos, with error bars for 25-75th percentiles. We exclude agg.
counting+cars due to limits of multi-object trackers (§5.1).

Accuracy wins (%)
u
o

is an upper bound for any fixed-orientation approach. Figure 2
breaks down these results by query task. Notably, the impor-
tance of adapting orientations grows as query types become
more specific. For instance, for YOLOv4 and cars, median
accuracy improvements over best fixed are 1.2%, 13.4%, and
16.4% for binary classification, counting, and detection. The
reason is that coarser queries mask certain differences across
orientations, e.g., if many objects of interest are present in the
scene, any orientation that catches a single object will deliver
max accuracy for binary classification; counting, on the other
hand, will favor the orientation with the most objects.

Primer on PTZ cameras. Pan-tilt-zoom (PTZ) cameras
present an intuitive mechanism to realize such adaptation.
PTZ cameras come in two forms, traditional [36, 86] and
electronic (ePTZ) [51, 87], both of which support software
tuning of pan (horizontal rotation), tilt (vertical rotation), and
zoom. The key difference between the two variants is in their
tuning mechanisms. Traditional PTZ cameras embed physical
motors to rotate at up to 600°-per-second and concurrently op-
tically zoom (i.e., without reducing resolutions). In contrast,
ePTZ cameras capture wide field-of-views and employ near-
instantaneous digital rotation and zoom to focus on specific
parts of the scene. ePTZ cameras change orientations faster
and are cheaper, but also cover smaller rotation areas (150° vs.
360°) and degrade image quality by using digital zoom. PTZ
cameras rival traditional ones in on-board compute resources,
with recent offerings housing edge-grade GPUs [79].

2.3 Challenges

Despite the potential benefits of adapting camera orientations
using PTZ cameras, three fundamental challenges complicate
this approach in practice. We describe them in turn.
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Figure 3: Shifts in the best orientation are frequent. Results
list a PDF (binned by 1 sec) of time between switches in best
orientation across all videos and workloads.
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Figure 4: Workloads exhibit different sensitivity to orientations.
Results apply the best orientations for workload X (legend) to
workload Y (x axis), and plot the accuracy wins (over best fixed
for Y) that are lost from not using the best orientations for work-
load Y. Bars list medians; error bars for 25-75th percentiles.

C1: rapid changes in best orientation over time. As shown
in Figure 3, switches in best orientation are frequent: 85%
of switches occur in <1 sec since the last switch. The reason
for this high flux is threefold: (1) the typical motion for cer-
tain objects (e.g., moving car or walking person) is sufficient
to frequently cross orientation boundaries, especially since
orientations exhibit a degree of content overlap, e.g., an ob-
ject may be visible in two orientations and quickly move to
change the one it is most prominent in, (2) models can pro-
vide inconsistent results across even back-to-back frames that
are seemingly unchanged [60,61], so best orientation swaps
can occur even with static objects, and (3) aggregate queries
seek previously unseen objects and thus intentionally move to
new orientations, e.g., the percentage of sub-second switches
mildly drops to 70% when aggregate queries are excluded.

C2: diverse workload sensitivities to zoom and rotation.
At any point in time, the best orientation can vary across
individual queries and workloads. Figure 4 illustrates this,
showing that adapting orientations to maximize accuracy for
one workload can result in foregoing 3.2-25.1% of the poten-
tial (median) accuracy wins for other workloads.

Figure 5 highlights this at a query level, showing that differ-
ent models, objects, and tasks can all influence orientation se-
lections. Model discrepancies influence what can be discerned
in the scene during inference and under what orientations. For
instance, with people counting, selecting best orientations for
a YOLOv4 query will miss out on 26.3% median accuracy
wins for the same task using SSD (even when trained on the
same dataset). In contrast, tasks dictate the specificity needed
in the collected results, e.g., optimizing for counting people

FRCNN detection cars
BSSD Hagg. count  Mcars+people

1 Lo

Model Query Object
Figure 5: Applying the best orientations for a base query of
{YOLOv4, counting, people} to a query Y that modifies a single
element in the base query; we compare the accuracy wins (over
best fixed) to those when using the best orientations for Y. Bars
list medians; error bars for 25-75th percentiles.
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rather than aggregate people counting with the same model
foregoes 10.2% of potential wins. Lastly, object type governs
the importance of regions based on object densities, as well
as the features used for and difficulty in detecting relevant
objects (smaller objects are tougher to discern [88]). Thus, op-
timizing for a YOLOv4 people counting query would forego
13.3% of wins if the query considered cars instead.

Figure 6 provides example screenshots to illustrate the ben-
efits and harm of changing orientations. Importantly, tuning
orientations does not simply bring new objects into field of
view, and instead plays a large role in a model’s ability to
detect objects that were already visible. Indeed, simply using
the lowest zoom factor will capture the largest portion of the
scene, but can result in models missing in-view objects due
to degradations in object size or resolution.

C3: massive (but sparse) search space. The orientation
space exhibits substantial sparsity in the spatial and temporal
dimensions. For the former, among the 75 orientations at
any time, only 1 (or several, with ties) is best, with steady
dropoff in accuracy to the others, e.g., median dips of 4.8%
and 20.7% from the best to 2nd and 5th best. For the latter,
most orientations are best for short total times in each video,
with median durations of 5-6 sec across workloads (Figure 7).

3 Design

Figure 8 shows the end-to-end operation of MadEye. The
main insight behind MadEye is to leverage fast PTZ rotation
speeds to explore many orientations in each timestep (i.e.,
between when results are needed for an fps), and then select,
based on their current content, the one(s) that maximize work-
load accuracy under resource constraints. The idea is to limit
the “guess work™ compared to prior search algorithms that
rely only on past orientation efficacy (§5.3).

As in other video analytics systems [33,57,67, 82], users
register queries with a backend agent (on an edge or cloud
server), specifying a target scene, as well as a model to use,
object(s) of interest, and a task. To operate under camera com-
pute constraints, MadEye then trains edge-compatible (i.e.,
highly compressed) models (§3.1), not to replace the original
(more accurate) query models (as in typical knowledge distil-
lation [49]), but instead to approximately extract information
of importance in a frame for each query. In other words, ap-
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Figure 6: Screenshots showing the (diverse) impact of rotation and zoom for different queries. Each column shows two images from the
same time instant that use either different rotation or zoom. On the bottom row, green arrows show newly captured objects, while red
arrows show objects that are newly missed after the orientation change. Left: rotation brings a new object into the scene, helps detect 2
previously-visible objects, but loses a previously-detected object. Middle: zooming in helps detect new people. Right: after switching
models, the same zoom from the middle column actually reduces the number of detected people.
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Figure 7: Most orientations are best for short total times in each
video. Results consider all orientation-video pairs per workload.

proximation models are explicitly designed to estimate the
inherent sensitivities of each query (C2 from §2.3).

To cope with the large space of orientations and rapid shifts
in best ones (C1 and C3 from §2.3), MadEye employs an effi-
cient on-camera search strategy (§3.3) that explores as many
potentially fruitful orientations as possible while avoiding fps
violations for results. The camera then runs approximation
models on all captured orientations in each timestep and uses
the results to (1) rank the orientations in terms of their like-
lihood to maximize workload accuracy, and (2) determine
the orientations to consider in the next timestep. The highest
ranked orientations that the network can support are sent to
the backend for full workload inference, with results used to
continually adapt approximation models to the scene (§3.2).

3.1 Designing Approximation Models

The primary objective of MadEye’s approximation models
is to quantify the relative importance of orientations for the
queries in a workload. However, this requires capturing the
sensitivity of each query to different orientation and scene dy-
namics, subject to camera compute constraints. Given the po-
tential complexity of workload queries, we eschew noisy (and
limited) vision features based on local gradients [30,73] in
favor of knowledge distillation with compressed models [49].
However, we alter this approach in several ways to favorably
balance ranking accuracy and resource efficiency.

We design approximation models using a common abstrac-
tion that reflects the minimum amount of information needed
to sufficiently rank orientations. The key idea is that the core
elements of query sensitivity pertain to how models find and
characterize objects, rather than how tasks post-process those
results. Thus, MadEye’s approximation models are structured
purely as ultra-lightweight detectors for objects of interest;
this strategy also avoids tricky development of compressed
models per task. Concretely, we use the smallest variant of
the edge EfficientDet family [103], EfficientDet-D0 (3.9M
parameters, >150 fps on a Jetson edge GPU), which enables
MadEye to scale to multi-query workloads. More complex
detectors could be used, but cameras possess limited GPU
memory [67,82], and inference delays negatively influence
the degree to which MadEye can explore orientations (§3.3).

Why a detector? Two alternatives we considered for the
approximation models are to directly estimate object counts
in an image, and to directly output rank orderings across
multiple images. However, we empirically observed high error
rates with both. This is largely because such approaches can
only relate the presence of features to objects via a global
regression over an entire image (or multiple images), failing
to leverage local regressions via bounding box predictions
to boost precision. While image-level DNN object counters
do exist [99, 113, 118, 122], they focus on large crowds of
people. In contrast, there are often few objects of interest
in an orientation at any time (§2.3), making rank orderings
extremely sensitive to small errors in count prediction.
MadEye uses one approximation model per query, rather
than per workload or object. Though more efficient, we avoid
per-workload and per-object approximation models as we
(like others [77]) find that different DNNs can exhibit wildly
varying response profiles to even the same object classes due
to object-independent factors like scale and resolution [50].
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Figure 8: Overview of MadEye’s end-to-end workflow.

Moreover, DNNs trained on very different datasets are known
to inherit different algorithmic biases [14,35,63,80,100,111].
However, each approximation model is configured to sup-
port all orientations for two reasons. First, the number of
orientations is large (§2.3), making per-orientation approxi-
mation models impractical with on-camera GPUs. Second,
neighboring orientations exhibit substantial overlap, and since
we only consider orientations for a given scene, divergence
in background content, lighting, shadows, etc. are minimal.
Indeed, we measured the perceptual distance [89] of images
(LPIPS) from different orientations in the same scene to be
0.30. For context, the same value for the popular MS-COCO
and Pascal VOC datasets used to successfully pre-train many
vision models (including EfficientDet) are 0.46 and 0.41.

Estimating workload accuracies. MadEye post-processes
the generated bounding boxes from all approximation mod-
els to compute predicted workload accuracies for orientation
ranking. To do this, MadEye follows the per-task accuracy
metrics from §2.1, but computes per-orientation predicted ac-
curacy in a relative manner compared to the other orientations
under test. For instance, counting computes the ratio of object
counts between each orientation and the max among the set
of explored orientations at that timestep, while detection ex-
pands this to incorporate object area sizes (as per mAP score).
Lastly, aggregate counting modulates count scores to favor
less explored orientations (that may have unseen objects).

3.2 Continually Training Approximation Models

MadEye servers train a new approximation model for each
new query, with the goals of being fast and accurate (in rank-
ing orientations). Initial training uses a small set of 1000
historical images from the target scene that is then labeled (on-
line) using the DNN in the registered query; label generation
takes 7-90 sec depending on the DNN. However, to accelerate
this process, MadEye begins with a version of EfficientDet
that is pre-trained on Pascal VOC, and freezes both the back-
bone and BiFPN layers responsible for feature extraction and
fusion. Only weights for the final 3 bounding box and class
prediction layers are fine-tuned to mimic the target query’s
behavior. The rationale is that model features progressively
move from general (e.g., textures, gradients) to task-specific
(e.g., object labels) from model start to end [16, 116, 117].
Initial fine-tuning lasts 40 epochs (*25 mins).

Even after initial fine-tuning, approximation models may
fail to generalize to changing scene dynamics [101], leading
to degrading accuracy. To cope with such data drift, Mad-
Eye employs continual learning (every 120 sec) to update the
model’s weights using the latest query results on orientations
sent to the server for full workload inference. While contin-
ual learning has been applied to edge video analytics [9, 75],
MadEye requires several alterations from prior efforts. The
main challenge is that within each retraining window, sam-
ples are only available for the orientations that MadEye’s
camera-side component recently visited and deemed worthy
of backend inference. Since orientations are typically best for
short total times (§2.3), there is often severe imbalance in the
orientations covered by new training samples. For instance,
with perfect rankings, the average 2-minute window sees only
9.3% of orientations get sent to the backend. This can result
in overfitting to certain orientations, and catastrophic forget-
ting [62] for others that may soon be ranked highly.

To deal with this, MadEye retrieves the most recent histor-
ical training samples from each orientation and uses this to
balance the dataset. As we will discuss in §3.3, we find that
orientation shifts are often spatially localized, with changes to
distant orientations happening over longer timescales. Thus,
MadEye pads the data samples for neighboring orientations
(up to 3 away from the latest one) to match the count for
the most popular orientation in the retraining window. The
remaining orientations use an exponentially declining number
of samples based on their distance from the latest orientation.

Each continual learning round considers the last 120 best
orientations selected by MadEye (1 sample per second since
the last retraining round), as well as 200 historical images (on
average) to account for neighboring orientations; a random
30% of this is reserved for validation. Retraining runs for
5 epochs and takes an average of 32 seconds. Note that all
continual learning runs asynchronously on backend servers;
§5.4 profiles network usage for shipping model updates which
are small due to the use of ultra-lightweight (compressed)
detectors and the aforementioned backbone freezing.

3.3 Exploring and Ranking Orientations

The primary goal of MadEye’s on-camera component is to
efficiently explore (a subset of) the large orientation space
to capture the best orientation for each timestep. Realizing
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Figure 9: Spatial distance between successive best orientations

is small, with most transitions between neighboring orientations.

Results aggregate across all videos and workloads for 15 fps.

this is challenging for three reasons. First, MadEye only has
visibility into the orientations that it has recently explored, but
other orientations can change in content and importance at
any time. Second, even among recently explored orientations,
MadEye only has access to coarse results from approximation
models (i.e., that accurately capture only relative importance)
for most. Third, each timestep is not only dedicated to explo-
ration, but also (1) running approximation models on explored
orientations, (2) encoding and shipping select orientations to
the server, and (3) running the workload on shipped images.
Rather than relying on previous (and potentially stale) ob-
servations at each orientation (§5.3), MadEye opts for a more
informed strategy guided by 3 empirical observations.

o Although best orientations change rapidly over time (§2.3),
those changes are far slower in the spatial dimension. Fig-
ure 9 illustrates this, showing that the median and 90th
percentile spatial distance between successive best orienta-
tions are 30° and 63.5°, which pertains to shifts spanning
only 1 or 2 orientations in our default grid (§5.1).

e The best performing orientations (accuracy-wise) at any
time are often spatially clustered (Figure 10). Concretely,
across our dataset, the 75th percentile distance separating
orientations in the top k at each timestep is 1 and 2 orienta-
tions for k values of 2 and 6.

e Accuracy for neighboring orientations often shift in tandem.
Indeed, as shown in Figure 11, the correlation coefficient
for accuracy changes in direct neighbors is 0.83; intuitively,
this value shrinks to 0.75 when considering neighbors 2-
hops away (that exhibit less content overlap).

Taken together, these findings motivate a search strategy that
considers a flexible shape of contiguous orientations at each
timestep, and swaps out underperforming orientations in the
previous shape only for neighboring ones whose trends we
can robustly predict for the next timestep. We start with a
description of the algorithm that does not account for zoom
or resource constraints and later incorporate those elements.
Common themes are: only relative comparisons of approxima-
tion model results are used, we leverage all outputs from those
models (including bounding boxes), and search decisions are
entirely local (i.e., on cameras) to remain rapid.

MadEye begins with a rectangular seed shape that reflects
the largest coverable area in the time budget, thereby maximiz-
ing early exploration; we reset to this shape any time O objects
of interest are found in a shape. The corresponding orienta-
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Figure 10: Top ranked orientations are often spatially clustered.
Results use 15 fps, are aggregated across all workloads and
videos, and show the max distance between orientations in the
top k ranked orientations at each timestep.
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Figure 11: Correlation in accuracy changes across orientations
separated by N hops. Results list Pearson Correlation Coeffi-
cients and cover 3 representative videos and workloads (15 fps).

tions are captured and analyzed with approximation models
to compute a predicted workload accuracy for each (§3.1).
After sending the top k orientations to the server for workload
inference, MadEye must use these prior results to determine
the set of orientations to explore in the next timestep.

To do this, MadEye labels each orientation from the last
timestep with a value that indicates the likelihood of being
fruitful in the next timestep. Concretely, we combine the
exponentially weighted moving averages from recent (10)
timesteps for (1) any computed predicted accuracy values,
and (2) the deltas between those values. Weighted averages
are used to remain robust to inconsistencies in DNN results
across consecutive frames [77, 84], which is especially pro-
nounced with MadEye’s compressed approximation models.

Using those labels, MadEye must now determine which
orientations to remove and add for the upcoming timestep.
For this, MadEye sorts orientations into an ordered list based
on their label values. Using pointers at the head H (largest
label) and tail 7' (smallest label) of the list, MadEye iteratively
compares orientations by asking: should we remove the ori-
entation at 7' in favor of adding a neighbor to H? Concretely,
MadEye computes the ratio of label values for H/T. If (1) that
ratio exceeds a threshold (indicating a substantial disparity
in the potential of H and T), (2) H has neighbors not already
in the shape, and (3) removing 7 would not break contiguity,
we remove the orientation at 7 and increment the pointer.
The process repeats by considering the addition of another
neighbor for H, this time using a larger threshold to account
for the additional uncertainty of adding more neighbors. H
is decremented when a neighbor cannot be added, and the
process ends when even one neighbor for H cannot be added.
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For each iteration that results in a neighbor addition for
H, MadEye selects among H’s neighbors by analyzing the
bounding boxes that its approximation models generated in
the last timestep. For each candidate neighbor, we compute
the ratio of two values: normal distances to the center of H and
to the centroid of all bounding boxes in H. Values <1 indicate
lower chances of H’s objects moving to the candidate in the
next timestep. We repeat this process for all other orientations
in the last shape that the candidate exhibits any non-zero
overlap with. Candidate neighbor scores are computed as the
weighted sum of these ratios (weights according to degree of
overlap), and the candidate with the max score is selected.

Reachability and path selection. The search algorithm thus
far ignores whether a PTZ camera can sufficiently cover the
selected shape in a given time budget. Formally, the shape
of orientations can be represented as a fully-connected undi-
rected graph with edge weights pertaining to the time taken
to move between two adjacent orientations (given a rotation
speed). Our goal is to determine whether the shape is cover-
able in a given time budget, and if so, what is the shortest path.
The paths between orientations satisfy the triangle inequality
property [104], so this can be modeled as a variant of the
NP-Hard Traveling Salesman Problem (TSP) [18]. Given our
tight time budgets, MadEye employs the Minimum Spanning
Tree (MST) heuristic [48], but optimizes it to minimize online
delays. In particular, since our orientation grid is static, we
precompute pairwise distances and the entire MST ahead of
time. Online, for a given shape, we quickly extract and per-
form a preorder walk on the corresponding subgraph to get the
shortest path. This reduces the heuristic to linear complexity
(in orientations); each path computation takes 14 us, and the
resultant paths are within 92% of optimal. Upon failure, Mad-
Eye greedily removes the orientation with the lowest potential
(that does not break contiguity) and rechecks reachability.

Balancing search size and network/compute delays. Mad-
Eye pipelines its exploration through orientations with the
running of approximation models on each one. However, net-
work transmission to and workload inference on the backend
do not overlap with orientation exploration. The reason is
that transmissions are governed by global ranks across all ori-
entations explored in each timestep. Thus, in each timestep,
we face a tradeoff between exploring more orientations and
sending more orientations to the backend.

MadEye resolves this tension based on the expected dif-
ficulty for its approximation models to accurately rank the
considered orientations, which in turn governs the risk asso-
ciated with exploring more orientations (and sending fewer
to get ground truth results). Intuitively, scenarios where the
considered orientations are projected to contribute similar ac-
curacies pose the biggest difficulty for approximation models
(as the gaps between ranks shrinks). MadEye determines the
right balance by first selecting a target number of frames to
send according to the training accuracy for approximation

models (provided by the backend) and the variance in pre-
dicted accuracy values in the last timestep, e.g., with 85%
training accuracy, any frames within 15% accuracy of the top
ranked frame are sent. MadEye then computes a target shape
size for exploration, accounting for network delays (harmonic
mean of past 5 transfers [115]), backend compute delays,
rotation speeds, and approximation model inference delays.

Handling zoom. After selecting the set of orientations to
visit, the search algorithm must determine the zoom factor
to use for each one. The challenge is that past accuracies are
insufficient for determining zoom fidelity as MadEye cannot
know what objects are being missed by not zooming in/out.
Instead, we rely on bounding boxes from approximation mod-
els to determine the risk of zooming in. When an orientation
is added to the shape, we start at the lowest zoom factor to
gain visibility into its whole content. At each timestep, we
compute the average distance between each bounding box
and the centroid of all boxes; smaller distances indicate more
clustering and less risk of zooming in. These values are com-
pared with the area covered by each zoom factor to select
one, and MadEye automatically zooms out after 3 seconds to
avoid missing newly entering objects in the orientation.

Transmitting images. At the end of each timestep, MadEye
must transmit select images to the server for workload in-
ference. Unlike standard streaming, MadEye sends disjoint
sets of images from each orientation’s video stream. To keep
bandwidth costs low, MadEye maintains a list of the last im-
age shared for each orientation, and employs a functional
encoder [39] that computes deltas relative to that image.

3.4 Query Support and Deployment Discussion

As noted in §2.1, MadEye targets the large class of object-
centric queries (i.e., those that find and label people or cars)
which have dominated reported industrial workloads [74,82]
and prior work [23,33,58,59,67,75,77]. Further, we consider
tasks that return per-frame (e.g., counting, detection) and per-
video (e.g., aggregate counting) results.

Supporting other object-centric queries with new objects
of interest or tasks involves two main steps: training a new
approximation model, and (potentially) developing new logic
to rank orientations using approximation model results. The
former is automated; MadEye does not make any assumptions
about object type or task, and instead trains its approximation
models as detectors for the objects of interest identified by
results of provided query models. The latter is only required
for new tasks and can be arbitrarily complex, e.g., a ranker can
consider keypoints of detected objects for activity recognition
queries. §A.1 presents results for other object types and tasks.

MadEye currently operates on videos from cameras that
are statically mounted. For changing mounting locations (e.g.,
dashcams), MadEye will face similar challenges to any multi-
armed bandit strategy: past content becomes a weaker indica-
tor of orientation efficacy since orientations continually point
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to new scenes. MadEye may still outperform prior approaches
by comparing explored orientations in terms of current con-
tent, but we leave a detailed exploration to future work.

4 Implementation

MadEye’s core components are written in 9.1k lines of Python
code, with all training and inference tasks across the backend
and camera run in PyTorch. We use TensorRT [7] to accel-
erate inference on the backend, and a variant of Nexus [96]
as a round-robin scheduler for approximation model infer-
ence. Orientations are first represented as rotational values,
projected onto a 360° space, and then converted using an in-
house equirectangular-to-rectilinear image converter (in C++)
to match the APIs offered by PTZ cameras [17]. For ground
truth accuracy computations (§5.1) that need a global perspec-
tive on object locations and uniqueness, atop the ByteTrack
multi-object tracker [114] that links objects across an orienta-
tion’s video, we use cv2 and scikit-image to extract image
features (e.g., SIFT) that link objects across orientations.

5 Evaluation

We evaluated MadEye across diverse workloads, network
settings, and videos. Our key findings are:

e MadEye increases median workload accuracies by 2.9-
25.7% compared to an oracle fixed-orientation strategy
(while using the same amount of resources); wins are
within 1.8-13.9% of the oracle dynamic strategy.

o Achieving MadEye’s accuracy wins with 1 PTZ camera
would require the best 4-6 fixed-orientation cameras, which
comes with a 2-3.7X inflation in resource costs.

e MadEye outperforms prior PTZ algorithms by 2.0-5.8X,
providing 31.1-52.7% higher accuracy than Panoptes [98],
tracking [93], and multi-armed bandits [106].

e MadEye gracefully balances on-camera exploration and
transmission of orientations to maximize accuracy even as
resources shrink and response rates rise.

5.1 Methodology

Video dataset for PTZ analysis. To the best of our knowl-
edge, there does not exist a public video dataset for PTZ cam-
eras that enables users to tune rotation and zoom knobs; in-
stead, existing PTZ datasets reflect pre-determined knob deci-
sions. Thus, to evaluate MadEye, we generate our own dataset.
To construct our dataset, we begin with the abundance of
360° datasets. Concretely, we use 50 360-degree videos (5-10
mins each) from YouTube that incorporate scenes of interest
resembling those from prior video analytics work [9,33,67],
e.g., searching for people and/or cars in traffic intersections,
walkways, shopping centers. From each video, we carve out
the scenes of interest as regions that each span 150° hori-
zontally and 75° vertically. We then subdivide each scene
into grids of orientations to mimic recent PTZ offerings [51]
(30° and 15° granularities for pan and tilt; we explore other

grids in §5.4), and extract a full video per orientation. For
zoom, since we operate on pre-captured videos, we employ
digital zoom (1-3X) by cropping images and scaling back the
dimensions to match the original image.

Models and workloads. We consider 4 popular architec-
tures for vision tasks: SSD [71] and Faster RCNN [95] with
ResNet-50 backbones, YOLOv4 and Tiny-YOLOv4 [108]
with CSPDarknet53 backbones. We consider two versions of
each model trained on Pascal VOC and MS-COCO, but show
results for the latter as the trends were similar. To construct
queries, we follow the same methodology from production
analyses [82]. Each model can perform any of the 4 tasks from
§2.1 with a focus on people or cars. We enumerate all possible
workloads sized between 2-20 queries and pick 10 randomly.
§A.2 details each workload. As in prior work [23,82], we run
each workload on all videos in our corpus that contain the
objects of interest for the workload’s queries. Since MadEye
does not make any assumptions about frame arrival rates, we
consider response rates between 1-30 fps.

Hardware and networks. On-camera computations run on
an edge-grade Jetson Nano [79] equipped with a 128-core
Maxwell GPU, quad-core ARM CPU with 1.43 GHz clock
speed, and 4 GB of memory. We consider default camera
rotation speeds of 400° per second and study this parameter
in §5.4. Workload inference and training of approximation
models run on a server with an NVIDIA RTX 2080 Ti GPU
(8 GB RAM) and 18-core Intel Xeon 5220 CPU (2.2 GHz;
125 GB RAM). Camera and server components are connected
with emulated Mahimahi networks [78] using fixed-capacity
(24-60 Mbps; 5-20 ms) and real-world mobile traces.

Note. Although we run on real edge hardware and emulated
networks, we do not use a deployed PTZ camera for our main
evaluations as it would preclude practical consideration of
diverse scenes and camera parameters, e.g., different rotation
speeds. We present results with a real PTZ camera in §5.5.

Metrics. Our primary evaluation metric is average workload
accuracy per video. For each frame, following the accuracy
definitions from §2.1, we compute per-orientation accuracy
for each query relative to the orientation that delivers the max
accuracy at that time. Per-query accuracies at each time are
averaged to compute per-frame workload accuracies, which in
turn are averaged to compute workload accuracy for a video.

While computing these values for binary classification and
counting are straightforward, detections and aggregate count-
ing need slight alterations. For detections, mAP scores depend
on bounding box coordinates for specific objects and thus
cannot be measured by comparing results across orientations.
Thus, we consolidate the bounding boxes across orientations
into a global view, and employ de-duplication [83] to elimi-
nate redundant objects in overlapping regions. We then com-
pute each orientation’s mAP score relative to the global scene,
and assign per-orientation accuracies as the ratio of its mAP
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{24 Mbps, 20 ms} network and varying fps. Bars list medians with errors bars spanning 25-75th percentiles.
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score to the max one across orientations. For aggregate count-
ing which is evaluated across an entire video, we compute the
ratio of unique objects across the orientations that a system
selects with the total number of unique objects in the video.
Note that ByteTrack (§4) was unable to robustly support car
tracking, so we exclude aggregate counting for cars.

5.2 Overall Results

We first compare MadEye with the two baselines from §2.2,
best fixed and best dynamic, on different network and fps set-
tings. Both baselines impractically rely on oracle knowledge
of video content and workload accuracy, i.e., to pick the best
orientation per video or per timestep, respectively, that maxi-
mizes accuracy for the target workload-video. Nonetheless,
they serve as useful context for MadEye’s performance. Note
that MadEye automatically adapts the number of frames it
explores and transmits based on network delays and response
rates (§3.3). For best fixed, we leverage increasing network
speeds by adding more fixed cameras (i.e., best, 2nd best,
etc.), rather than simply capturing more (redundant) frames
from 1 camera. Best dynamic does not change for any query
other than aggregate counting, for which we send the largest
number of fruitful orientations that the network can support.

Our results are captured in Figures 12-13. Across these set-
tings, MadEye delivers median and 75th percentile accuracies
that are 2.9-25.7% and 1.6-20.7% higher than best fixed, and
within 1.8-13.9% and 1.3-12.5% of best dynamic. Digging
deeper, our results show two key trends. First, as frame rates
decrease (for a fixed network), MadEye’s accuracies and wins
over best fixed grow, e.g., for a {24 Mbps, 20 ms} network,
median wins improve from 5.8-13.3% to 12.4-25.7% as fps
drops from 15 to 1. The reason is that lower fps yields larger
timesteps (e.g., 1 sec for 1 fps, 66.7 ms for 15 fps), enabling

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10
(b) 24 Mbps; 20 ms

o

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10
(c) 60 Mbps; 5 ms

Figure 13: Comparing MadEye with the best possible fixed- and adaptive-orientation schemes across all videos and workloads with
fixed fps (15) and varying networks (improving from left to right). Bars list medians with errors bars spanning 25-75th percentiles.
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Figure 14: MadEye’s accuracy wins (over best fixed) for different
tasks and objects (left: people, right: cars). Results consider all

videos and models, and use 15 fps and {24 Mbps; 20 ms}.

MadEye Variant | Median Accuracy (%) | # Fixed Cameras
MadEye-1 63.1 3.7
MadEye-2 66.3 5.5
MadEye-3 66.8 6.1

Table 1: Number of optimally-configured fixed cameras needed
to match the accuracy of MadEye. MadEye-k refers to a version
of MadEye that is restricted to sending the top k frames to the
server for workload inference. Results consider a {24 Mbps; 20
ms} network, 15 fps response rate, and all video-workload pairs.

more exploration and/or transmission. Second, as network
speeds grow (for fixed fps), the same trends persist (since
each network transfer is faster) but to a lesser extent, e.g.,
median 15 fps wins grow to 8.6-18.4% for {60 Mbps, 5 ms}.

Figure 14 breaks down MadEye’s wins over best fixed by
task and object. Following the rationale from §2.2, accuracy
boosts with MadEye grow as task specificity grows: median
wins grow from 8.6% to 13.3% to 22.1% as we move from
counting to detections to aggregate counting for people. We
also observe consistently larger accuracy wins for people
queries (rather than cars) due to their less structured motion
patterns (more frequent and scattered orientation switches),
e.g., for detections, wins for cars shrink to 6.7%.
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Results thus far focus on accuracy improvements. However,
a key goal with MadEye is to maximize accuracy for a given
resource cost, i.e., network and backend inference overheads.
Table 1 lists the smallest number of optimally configured fixed
cameras that would be required to match the accuracies that
different versions of MadEye deliver, each of which sends a
different number of frames per timestep. As shown, it would
take 3.7 fixed cameras to realize the 63.1% accuracy that
MadEye-1 achieves, implying a 3.7X reduction in network
and backend compute usage. MadEye-2 is matched by 5.5
fixed cameras; here, however, the resource reduction factor is
2.8% since MadEye also sends 2 frames per timestep.

5.3 Comparisons with State-of-the-Art

We compare MadEye with 3 alternate approaches for adaptive
camera orientations. Figure 15 shows results for a {24 Mbps;
20 ms} network and 15 fps; trends hold for all other scenarios.

First, we consider Panoptes [98], a recent PTZ system that
configures orientations for workloads of applications, each
explicitly concerned with specific orientation(s). For orien-
tations of relevance, Panoptes generates a static round-robin
schedule that is weighted according to how many queries
an orientation is of interest to and how much motion has
been detected historically in that orientation; higher weights
indicate staying in an orientation for longer. Panoptes then
switches between orientations according to this schedule with
one exception: if motion gradients in the direction of any over-
lapping orientation of interest exceed a threshold, Panoptes
switches there for several sec before resuming the round robin.
Panoptes does not specify a zoom strategy, so we consider the
best zoom (accuracy-wise) for any orientation it visits.

We consider two versions of Panoptes, Panoptes-all and
Panoptes-few, in which each workload query is interested
in all orientations or only its best fixed orientation, respec-
tively. Max accuracy in both cases is defined relative to the
best orientation among only the set of considered ones. As
shown in Figure 15, MadEye outperforms Panoptes-all by
3.8X%, with 46.8% higher accuracy at the median. The rea-
son is that Panoptes cycles through orientations based on
a pre-determined schedule and motion gradients in the cur-
rent orientation, neither of which are sufficient indicators of
importance of other orientations at the current time, e.g., ori-
entations are suboptimal most of the time (§2.3). In contrast,
MadEye considers many orientations per timestep, ranking
them based on current content. The wins persist compared to

System

Resource reduction

Median accuracy

Chameleon [57]

2.4%

46.3%

56.1%

Chameleon + MadEye | 2.4x

Table 2: MadEye preserves resource savings of recent systems,
while improving accuracy. Results use 15 fps, {24 Mbps; 20 ms}.

Panoptes-few (not shown due to the different accuracy met-
ric), but are less pronounced (median of 40.5%) as there are
fewer unfruitful orientations for Panoptes to consider.

Next, we consider tracking algorithms that most PTZ cam-
eras come equipped with today [93]. This algorithm starts
in a home region (best fixed in our experiment), selects the
largest object it finds, and tracks that object continually across
orientations aiming to keep it as centered as possible. The
algorithm resets to the home region upon losing the tracked
object. We consider a favorable variant in which all orien-
tations explored in a timestep are shared with the backend,
which uses the one with the highest accuracy. As shown, Mad-
Eye delivers 2.0x higher workload accuracies (31.1% more
at the median) compared to this tracking scheme. The main
reason again is that the presence of a large object is a poor
indicator of accuracy importance as it fails to capture more
general scene properties and specific query sensitivies.

Finally, we consider the common UCB1 multi-armed ban-
dit (MAB) algorithm [106]. Each orientation is considered
a lever with a weight set to the average observed accuracy
across all past visits (we seed this with historical data). The
algorithm continually selects an orientation to visit as the
one with the highest sum of weighted average and upper con-
fidence bound (which favors less-visited orientations). As
with tracking, we send all visited orientations to the backend,
which selects the best one per timestep. MadEye delivers
52.7% higher median accuracies than this scheme, i.e., a 5.8X
win. Unlike the schemes above, MAB does factor in workload
accuracies in selecting orientations. However, its adaptation
considers only historical efficacy (not current content), and
scene dynamics have shifted by the time it updates its patterns.

Compatibility with other optimizations. By focusing on
previously un-tuned knobs (rotation and zoom) to boost ac-
curacy, MadEye is largely compatible with prior efforts that
optimize resource overheads. To illustrate this, we consider
a variant of Chameleon [57] that dynamically tunes pipeline
knobs (resolution and frame rate) to lower network and back-
end inference resource costs without harming accuracy; we
brute force selections per frame focused on the best fixed
orientation. We then run MadEye atop the fps and resolution
selections that Chameleon makes, sending the same amount
of network data. As shown in Table 2, Chameleon lowers
resource costs by 2.4X compared to the naive scheme that
sends all frames at the highest resolution; MadEye preserves
these efficiency wins, while increasing accuracy by 9.8%.

5.4 Deep Dive Results

Rotation speeds. We evaluated the impact of camera rotation
speed on MadEye’s performance by considering values of
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{200, 400, 500, infinite }° per second, a fixed network ({24
Mbps; 20 ms}), and 15 fps. Intuitively, accuracy grows as
rotation speeds increase, e.g., jumping from 54.2% to 64.9%
as rotation speed grows from 200 to 500° per second. The rea-
son is that faster rotations enable the exploration of additional
orientations or, in rarer instances, additional transmissions.
Importantly, benefits plateau since most queries (other than
aggregate counting) are fully satisfied accuracy-wise as long
as MadEye finds the best orientation at each timestep.

Grid granularity. To understand the effect of grid granularity
(with other settings fixed), we focus on the pan dimension
(since it is wider) and consider steps of {15, 30, 45, 60}°.
Overall, MadEye’s accuracy benefits shrink as grids become
more fine-grained (with more orientations), e.g., median ac-
curacies drop from 67.5% to 51.8% when pan steps drop
from 45 to 15. This is because, although exploration in a time
budget is governed by rotation speeds rather than grid gran-
ularity, the same distance (in °) of exploration will warrant
more approximation model inference on more orientations,
thereby shrinking each timestep’s exploration budget.

Overheads. On MadEye’s backend, the primary overheads
are in initializing approximation models and continually shar-
ing model updates with the camera. Across our workloads, we
find median bootstrapping delays to be 27 mins (including la-
beling and initial fine-tuning). Downlink streaming consumes
3.2 Mbps for the median experiment. Recall that both over-
heads are mitigated by MadEye’s fine-tuning strategy (§3.2).
On cameras, the main overheads are in selecting orientations
to explore and running approximation models; for the median
workload-video pair, per-timestep delays for each task were
17 ps and 6.7 ms for 15 fps and {24 Mbps; 20 ms}. The former
benefits from pre-computed reachability analysis (§3.3).

Microbenchmarks. MadEye’s performance is governed by
two main tasks: (1) ranking orientations with approxima-
tion models, and (2) selecting orientations to explore to find
the best one(s) per timestep. For the former, Figure 16 (in
§A) show that MadEye’s approximation models assign me-
dian ranks of 1.1-1.3 to the best explored orientation at each
timestep, significantly outperforming the variant that relies
on counting directly on images. For the latter, for the median
workload-video pair on {24 Mbps; 20 ms} and 15 fps, Mad-
Eye explores best orientation 89.3% of the time, with 6.8%
of errors coming from our conservative zoom strategy (§3.3).

Downlink network speeds. MadEye servers periodically ship
updated weights for approximation models to cameras for ori-
entation ranking. To understand the impact that downlink
network speeds have on MadEye, we augmented the set of
networks used in our main experiments with two network
scenarios that deliver far slower transmissions: Narrowband-
IoT ({10 Mbps; 50 ms} on average) and AT&T 3G network
({2 Mbps; 100 ms} on average). Across five representative
videos and workloads (at 15 fps) from our corpus, we ob-
served increases in weight transmission times from {11, 5, 2}

seconds for Verizon LTE, {24 Mbps; 20 ms}, and {60 Mbps;
5 ms} networks to {13, 66} seconds for the two new networks.
These delays, in turn, resulted in mild accuracy degradations
of up to 0.9% and 2.1% relative to MadEye running on the
{24 Mbps; 20 ms} network. The reason is that on such short
timescales, previous approximation models deliver only mod-
erate errors in orientation ranking as they were trained just
several minutes in the past. Those errors are further bound
by the fact that MadEye’s search strategy moves slowly spa-
tially to ensure that the several top-ranked orientations are all
considered for ranking at each timestep (§3.3).

5.5 On-Camera Evaluation

To demonstrate that commodity PTZ offerings (and their cor-
responding tuning APIs and rotational motors) can support
the computational and exploratory requirements that MadEye
imposes, we ran experiments using the PTZOptics PT12X-
USB [5]. We selected a random set of 6 videos and 4 work-
loads from our main corpus, and considered response rates
of 1-30 fps and the networks from §5.1. For each scenario,
we fed the video into the PTZ camera at 30 fps. MadEye’s
camera-side processing ran on a Jetson Nano and interacted
directly with the camera through its native HTTP interface
for tuning orientations; the server was the same as in §5.1.

Overall, the camera was able to support the required explo-
ration and computation load. However, we observed several
rare artifacts that deviate from our main setup: (1) seemingly
random, though minor, delays in API responsiveness for tun-
ing orientations, and (2) small delays to reach max rotation
speed, which our setup failed to capture by not modeling the
physical mechanics of camera motors. These discrepancies
mildly reduced the number of orientations that MadEye could
explore in especially high-exploration windows with scattered
orientations, but the effect on accuracy was minimal: across
the experiments, wins over best fixed dropped by <1%.

Note that these results do not evaluate the long-term wear-
ing effect of high exploration on PTZ camera components,
which falls outside the scope of this paper and our setup.
However, the results in §5.4 show that MadEye can still pro-
vide substantial accuracy benefits even with highly restricted
rotation speeds (and thus, exploration rates).

6 Related Work

Adapting video analytics knobs. VideoStorm [120] selects
an input knob configuration (e.g., frame rate, resolution) per
workload to lower resource costs and facilitate job scheduling
on servers. Chameleon [57] extends such tuning to adapt to
dynamic scenes, while Llama [40] further tunes knobs across
heterogeneous hardware to meet latency targets. By focusing
on tuning camera orientations, MadEye provides comple-
mentary benefits to these efforts, boosting accuracies while
preserving their resource efficiency wins (§5.3). Other efforts
focus on camera-side knobs as MadEye does. For example,
CamTuner [85] learns to boost accuracy by automatically
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tuning capture knobs that cameras do not usually auto-adjust,
e.g., brightness and contrast. AccMPEG [34] predicts the ef-
fects of macroblock encoding settings on DNNs, and tunes
encoding to maximize accuracy. MadEye shares the goal of
these efforts — tune camera knobs to boost workload accuracy
— but focuses on complementary knobs, i.e., orientations.

Frame filtering and result reuse. Many prior efforts exploit
temporal redundancies in video data by filtering out frames
for network transfer and processing, and reusing results ac-
cordingly [13,22,26,29,32,43,44,65,67,84,112,121, 124].
Spatula [53] extends this to multi-camera settings, selecting
among cameras in a network. These optimizations are logi-
cally similar to MadEye, which also aims to maximize accu-
racy per network usage. However, the techniques are largely
complementary: filtering decisions could be made among
explored orientations to maximize new content in transfers.

Computation and network optimizations. Several efforts
lower compute footprints either by identifying lightweight
model variants [19,28,45,49,52,72,92,123], sharing model
layers during inference [55, 82], or using smarter job schedul-
ing [96,120]. Other systems lower network overheads by com-
pressing transmitted frames in a manner that is recoverable on
the server or does not negatively impact accuracy [33,37,110].
MadEye is entirely complementary to both directions in that
it solely focuses on judiciously selecting images (i.e., orien-
tations) to process at any time for an application-provided
model (which can be compressed).

Drone coordination. Many efforts adapt drone flight plans
(and thus what on-board cameras see) to maximize analytics
accuracy or scene coverage [15,47,54,105]. However, these
systems focus on identifying events of interest (e.g., wildfires)
in a geographically dispersed area for a preset application. In
contrast, MadEye tunes camera orientations for a single scene
to cope with workload nuances and maximize accuracy.

7 Conclusion

MadEye continually tunes PTZ camera orientations to max-
imize accuracy for a given analytics workload and resource
setting. Key to MadEye are a rapid algorithm that searches
through the large space of orientations at each time, and a new,
approximate knowledge distillation strategy that efficiently
selects the most fruitful (accuracy-wise) orientations from
those explored. Across diverse workloads and settings, Mad-
Eye improves accuracy by 2.9-25.7% or resource costs by
2.0-3.7x without affecting the other.
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A Appendix
A.1 Additional objects and tasks

To evaluate MadEye’s generality, we ran experiments that
target different object types (counting lions and elephants in
safari videos using FasterRCNN and SSD) or tasks (find sit-
ting people using the OpenPose [24] pose estimation model).
Importantly, MadEye did not require any special tuning, and
instead learned the (new) objects and tasks of interest via
training on the original models’ results. In line with our main
evaluation results, MadEye improved accuracies over best
fixed by 4.6 - 14.5% and 2.8 - 10.9% for lions and elephants
respectively and by 9.5 - 17.1% for pose estimation when
using 400° per second rotation speeds and a {24 Mbps, 20
ms} network. The differences in improvements can be ex-
plained by the dynamics of the videos — elephants in the
videos were largely static so best fixed performed well; in
contrast, the videos used for identifying lions and sitting peo-
ple had many moving objects which necessitated frequent
orientation switches.

A.2 Workloads

Model Object | Type

SSD people aggregate count
Faster RCNN | cars binary classification
SSD people count

YOLOv4 people detection

Faster RCNN | people detection

Table 3: Workload 1 (W1)

Model Object | Type

YOLOv4 people aggregate count
Tiny YOLOv4 | people aggregate count
Tiny YOLOv4 | people | detection

YOLOv4 people binary classification
Tiny YOLOv4 | people aggregate count
Faster RCNN people | count

Faster RCNN people | detection

Faster RCNN car count

YOLOv4 people aggregate count
YOLOv4 people detection
YOLOv4 people count

Tiny YOLOv4 | people aggregate count
YOLOv4 car count

YOLOv4 car detection

Tiny YOLOv4 | car count

SSD person binary classification
Faster RCNN car count

SSD car count

Table 4: Workload 2 (W2)

Model Object | Type

SSD car binary classification
Faster RCNN people aggregate count
Faster RCNN people count

Tiny YOLOv4 | people | binary classification
Tiny YOLOv4 | people | binary classification
Tiny YOLOv4 | people aggregate count
YOLOv4 people count

Faster RCNN people aggregate count
SSD people binary classification
Faster RCNN car count

SSD car count

Table 5: Workload 3 (W3)

Model Object | Type

Tiny YOLOv4 | car count

Faster RCNN car detection
Faster RCNN people aggregate count

Table 6: Workload 4 (W4)

Model Object | Type
Tiny YOLOv4 | car count
SSD car count
Faster RCNN people aggregate count

Table 7: Workload 5 (W5)

Model Object | Type

Tiny YOLOv4 | people aggregate count
Tiny YOLOv4 | people | binary classification
SSD car count

YOLOv4 people aggregate count
Tiny YOLOv4 | people count

Faster RCNN car binary classification
SSD people detection

Faster RCNN car detection

Faster RCNN people aggregate count
YOLOv4 car count

Tiny YOLOv4 | people aggregate count
Faster RCNN people detection

SSD people aggregate count
YOLOv4 car detection

Table 8: Workload 6 (W6)
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Figure 16: Comparing different approximation model designs:
MadEye’s lightweight detection models and compressed count-
ing models (Count CNN). Results use all videos, {24 Mbps; 20
ms}, 15 fps, and list median rank assigned to the best explored
orientation at each timestep (error bars for 25-75th percentiles).

Model Object | Type

YOLOv4 people binary classification
SSD people detection

Tiny YOLOv4 | car binary classification
Tiny YOLOv4 | people detection

SSD people | binary classification
SSD people aggregate count
Tiny YOLOv4 | people | detection

SSD car count

SSD people | count

Faster RCNN people count

YOLOv4 people count

Faster RCNN people
Tiny YOLOv4 | people aggregate count
Faster RCNN people aggregate count
Faster RCNN car count

YOLOv4 car binary classification

binary classification

Table 9: Workload 7 (W7)

Model Object | Type

Faster RCNN car count

Tiny YOLOv4 | people | binary classification
YOLOv4 people aggregate count
YOLOv4 car count

Tiny YOLOv4 | people aggregate count
Faster RCNN people aggregate count
YOLOv4 people aggregate count
Faster RCNN car count

SSD car count

Faster RCNN car count

SSD car binary classification
YOLOv4 car binary classification
SSD car binary classification
SSD people count

YOLOv4 people count

YOLOv4 car binary classification
Faster RCNN person aggregate count
SSD car detection

Table 10: Workload 8 (WS8)

Model Object | Type

Tiny YOLOv4 | people | aggregate count
Faster RCNN people | count

Faster RCNN people count

Tiny YOLOv4 | car detection

Tiny YOLOv4 | people binary clasification
YOLOv4 people detection

Faster RCNN people count

YOLOv4 people aggregate count
SSD people aggregate count

Table 11: Workload 9 (W9)

Model Object | Type
Faster RCNN | people aggregate count
Faster RCNN | car count
Faster RCNN | people | count

Table 12: Workload 10 (W10)
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