é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Sprinter: Speeding Up High-Fidelity Crawling
of the Modern Web

Ayush Goel and Jingyuan Zhu, University of Michigan; Ravi Netravali, Princeton University;
Harsha V. Madhyastha, University of Southern California

https://www.usenix.org/conference/nsdi24/presentation/goel

This paper is included in the
Proceedings of the 21st USENIX Symposium on
Networked Systems Design and Implementation.

April 16-18, 2024 « Santa Clara, CA, USA
978-1-939133-39-7

Open access to the Proceedings of the
21st USENIX Symposium on Networked
Systems Design and Implementation
is sponsored by

alllasc flal] aeala

.% King Abdullah University of

Science and Technology

+ B S————
T e »

Sprinter: Speeding Up High-Fidelity Crawling of the Modern Web

Ayush Goel! Jingyuan Zhu!
YUniversity of Michigan

Abstract—Crawling the web at scale forms the basis of many
important systems: web search engines, smart assistants, gener-
ative Al, web archives, and so on. Yet, the research community
has paid little attention to this workload in the last decade. In
this paper, we highlight the need to revisit the notion that web
crawling is a solved problem. Specifically, to discover and fetch
all page resources dependent on JavaScript and modern web
APIs, crawlers today have to employ compute-intensive web
browsers. This significantly inflates the scale of the infrastruc-
ture necessary to crawl pages at high throughput.

To make web crawling more efficient without any loss of
fidelity, we present Sprinter, which combines browser-based
and browserless crawling to get the best of both. The key to
Sprinter’s design is our observation that crawling workloads
typically include many pages per site and, unlike in traditional
user-facing page loads, there is significant potential to reuse
client-side computations across pages. Taking advantage of this
property, Sprinter crawls a small, carefully chosen, subset of
pages on each site using a browser, and then efficiently identifies
and exploits opportunities to reuse the browser’s computations
on other pages. Sprinter was able to crawl a corpus of 50,000
pages 5x faster than browser-based crawling, while still closely
matching a browser in the set of resources fetched.

1 INTRODUCTION

To make the most of the enormous trove of information avail-
able on the web, all of us today rely upon a range of ef-
forts. Web search engines help users find pages relevant to
their needs. Data from the web serves as input to smart as-
sistants such as Siri and Alexa, and is used to train genera-
tive Al models that can answer our questions. Web archives
store repeated snapshots of web pages to document changes
over time and to preserve the content of deleted pages. Re-
searchers continually study the web to help improve its per-
formance and security.

A key enabler for all of the above is a capability that
we take for granted today: the ability to crawl the web at
scale. Web crawlers have traditionally crawled a page by
first downloading the page’s HTML, and then recursively
fetching all embedded links to images, CSS stylesheets,
scripts, etc. If one deploys many such so called static
crawlers [32, 28] across a fleet of machines, the rate of crawl-
ing is limited by the network bandwidth of each machine.

Given that web crawlers have existed for over three
decades, why revisit this topic now? Because, static crawlers
no longer suffice. On today’s web, the URLs of many of the
resources on a page are determined at runtime, rather than
being statically embedded in the page’s source. To discover
and fetch such resources, modern “dynamic” crawlers [5,

Ravi Netravali’
2Princeton University

Harsha V. Madhyastha®
3University of Southern California

1004 .
Dynamic Sprinter

N
ol

. []
Static

Fidelity (% of bytes)
[\ (&)
[6)] o

25 50 75 100
Crawling throughput per server (pages/s)

Figure 1: Tradeoff between fidelity and performance with dif-
ferent crawlers.

2, 4] leverage web browsers such as Chrome, Firefox, or
Edge. However, due to the compute overheads associated
with JavaScript (JS) execution and with browsers in general,
the rate at which one can crawl pages drops by an order
of magnitude relative to static crawling (Figure 1). Con-
sequently, dynamic crawlers need to be deployed across a
much larger number of servers in order to sustain the same
crawling throughput as that feasible with static crawlers.

Thus, anyone seeking to crawl the web today has to make
do either with the poor performance of dynamic crawlers or
the incompleteness of static crawlers. Unfortunately, there
is no easy fix. One could try to augment a static crawler
with a lightweight JavaScript execution engine, but keeping
up with constantly evolving web APIs is a challenge best
left to the developers of widely used browsers. On the other
hand, proposals that attempt to mitigate the impact of client-
side web computations on user-perceived web performance
have little utility in the context of crawling. For example,
overlapping the browser’s computations with its network ac-
tivity [41, 24, 56] or parallelizing the browser’s execution
of JavaScripts [40] can reduce page load times, but crawl-
ing throughput remains unchanged since the total amount of
client-side computation is the same.

We address this undesirable status quo with Sprinter, a
new crawler which judiciously combines browser-based and
browserless crawling. Sprinter crawls pages at a much faster
rate than dynamic crawlers while matching them in the re-
sources fetched. Our main observation is that large-scale
web crawling workloads typically include many pages from
each site and there is significant potential to reuse client-side
computations across pages (§3.1).To exploit this property,
our design of Sprinter is based on three key principles.

First, when Sprinter crawls a page using a browser, it
strives to minimize the amount of JS code executed. For
every script file on a page, Sprinter attempts to reuse the

USENIX Association

21st USENIX Symposium on Networked Systems Design and Implementation 893

browser’s execution of that file on a previously crawled page.
In user-facing page loads, execution of the same file is sel-
dom exactly identical across multiple pages. In contrast,
Sprinter can reuse JS execution at such a coarse granularity
because it can skip executing a JS file as long as the URLs of
the resources that file would fetch match those fetched dur-
ing a prior execution of that file.

Second, even if none of the JS files on a page are exe-
cuted, crawling the page with a browser imposes significant
compute overhead. Therefore, on any site, Sprinter crawls
the vast majority of pages on the site without a browser. To
realize browserless crawling that does not sacrifice fidelity,
we implement a lightweight page instrumentation framework
that tracks the web APIs used on any page without sup-
port for executing these APIs. When it crawls a page with-
out a browser, Sprinter uses this instrumentation to identify
whether it can safely reuse JS executions from pages that it
previously crawled with a browser.

Lastly, to maximize the fraction of pages that can be
crawled without a browser, Sprinter crawls the pages on a
site in a carefully chosen order. For any given site, Sprinter
efficiently identifies a subset of pages such that most of the
scripts seen on other pages are fetched as part of this sub-
set. Sprinter crawls these pages first using a browser and
captures the effects of JS executions. Most of the remaining
pages can then be crawled without a browser, since Sprinter
can identify all resources to be fetched on those pages with-
out executing any JS code or web APIs.

We used Sprinter to crawl a corpus of 50,000 pages spread
across a diverse collection of 100 sites. It offered a 5x
speedup in crawling throughput compared to existing dy-
namic crawlers. When we recrawled the same corpus a week
later, the rate at which Sprinter crawls pages improved by a
further 78%. Importantly, Sprinter preserves almost all re-
source fetches issued by a browser-based crawler, and it is
compatible with legacy web servers. Sprinter’s source code
is available at https://github.com/goelayu/Sprinter.

2 BACKGROUND AND MOTIVATION

We begin by describing common web crawling workloads
and quantifying the limitations of existing strategies for sup-
porting these workloads.

2.1 Target workloads

Web crawlers take as input a seed list of URLs to pages that
need to be crawled. The input configuration to the crawler
can specify a range of options such as timeout per page,
retry policy, politeness constraints (i.e., time gap between
crawls of pages on the same site), and whether other pages
discovered while crawling the seed list should also be recur-
sively crawled. Some crawlers provide the option of saving
page screenshots [2] and triggering user interactions (e.g.,
scrolling or clicking) on rendered pages [4]. In this work, we
focus on supporting the common need for crawlers to save

the content of resources that are fetched on every page that
is crawled. To not make any assumptions about what the
crawls will be used for, we aim to fetch and save all page re-
sources requested by a browser such as Chrome, rather than
a subset that may suffice for a particular use case.

We focus on supporting workloads where pages are
crawled from a large number of sites. This is the case in
any large-scale system that relies on web crawls, e.g., to sup-
port web search, ChatGPT, and Siri, their providers aim to
crawl the entire web. Even in more focused crawls, it is
common to crawl many sites and many pages in each site.
For example, after every presidential term in the US, the
Internet Archive captures a snapshot of 1.3 million govern-
ment websites, crawling roughly 700 pages on average per
site [14]. Similarly, research studies attempting to under-
stand the web’s security vulnerabilities [44] have crawled
roughly 2500 pages per site. When pages are crawled from a
single site (e.g., a research study of pages on Facebook), the
rate at which pages can be crawled is constrained by the rate
limits imposed by the site being crawled.

2.2 Shortcomings of static crawling

As mentioned earlier, web crawling has traditionally relied
on static crawlers, which identify all the resources to fetch
on every page by extracting links embedded in the page’s
source. To demonstrate and quantify why static crawlers
are now insufficient, we compile Corpuspy, a collection of
10,000 pages comprising 100 randomly sampled pages from
each of 100 sites: roughly 33 sites chosen at random from
three ranges — [1, 1000], [1000, 100k], and [100k, 1m] —
from Alexa’s site rankings. This corpus spans a diverse col-
lection of sites and is representative of real-world crawls in
that it includes a large number of pages per site crawled.

On a server which has a 16-core 2.1 GHz Intel Xeon CPU,
a 1 Gbps network connection, and a 500 GB SSD disk,
we crawl every page in Corpus;p; using a custom crawler
which loads every page in Google Chrome but also fetches
all URLs, both absolute and relative, that are embedded in
text-based resources (i.e., HTML, CSS, and JS). We record
all responses using a web record and replay tool [9]. We
then separately crawl every page from our recorded copy
once using Chrome and once using our custom static crawler
(which mimics wget2 [12], a state-of-the-art static crawler),
with network caching enabled in both cases, i.e., across all
pages, each unique resource was only fetched once. Com-
paring the two types of crawlers in this manner eliminates
any differences that might arise due to server-side non-
determinism [36].

First, the “Dynamic - Static” line in Figure 2 shows that
a static crawler fails to fetch 32% of bytes on the median
page. This is because, on a modern web page, which re-
sources are served to a client are often determined only when
the client executes the scripts included on the page. Since a
static crawler can identify the URLs of a page’s resources

894 21st USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

https://github.com/goelayu/Sprinter

1.00

g e =
g 0.751 Dynamic - Static 7
* — — Static — Dynamic -
8 0.50 -7
g ol
L 0.251 -
o —
0.00=7— -~ - -
10° 10 10 10°
% of bytes fetched by Dynamic
Figure 2: Compared to a dynamic (i.e., Chrome-based)

crawler, a static crawler both fails to fetch some resources and
fetches many additional resources. Distribution shown is over
10,000 pages spread across 100 sites. Note logscale on x-axis.

9297. s

var EA = fetch(“crazyegg.com/usnews.com.json”)
// json contents:

script_url: "crazyeqq.com/commonscripts/759.js”
}

utag.js

const n = document.createElement("script");

n.src = EA.script_url;

const r = document.getElementsByTagName("script")[0];
r.parentNode. insertBefore(n, r);

Figure 3: Snippet of JS code from www.usnews.com. The
browser first fetches a JSON file, and then requests a JS file
referenced inside the JSON.

only by parsing the source code of the page, it is blind to
such resource fetches. Figure 3 shows an example.

Second, Figure 2’s “Static - Dynamic” line shows that,
on the median page, the static crawler fetches 93% more
bytes than fetched by Chrome; on some pages, this over-
head is as high as 200x. These extra resource fetches arise
because, within a single page, web developers often embed
resources that are applicable across a large number of client
device types, expecting the client browser to download the
resources applicable to it. Examples include multiple reso-
lutions of the same image, or different font files for the same
HTML text. To enable the client to pick the appropriate ver-
sion of any particular resource, modern pages either use me-
dia queries [17] or CSS selectors [11]; see Figure 4 for exam-
ples. A static crawler is unable to evaluate media queries and
does not know which CSS selectors are dynamically applied
during JavaScript execution. Therefore, it offers no control
on whether to fetch only resources applicable to the machine
used for crawling a page or to fetch every resource that might
be requested in any load of the page.

2.3 Compute overheads of browser-based crawling

Given the shortcomings of static crawlers, state-of-the-art
web browsers are often employed to crawl pages [2, 5, 4].
We observe that Chrome is the most widely used in browser-
based crawling frameworks because of its better support for
web APIs [18] and for automation capabilities [8]. For this

index.html

<picture>
<source srcset="ct.img/600x338"” media="(min-width:768px)”>
<source srcset="ct.img/400x225" media="(min-width:0px)">
</picture>

style.css

.icon-calendar
{font-family: {src: url(“fonts/icomoon.woff”)}}

widget.js

if (body.firstChild.hasAttr(“data-widget”)){
var inode = document.createElement(“i”);
inode.class = “icon-calendar”;
body.firstChild.insertBefore(inode)

Figure 4: Code snippet from www.chicagotribune.com
showing the two causes for a static crawler’s extra resource
fetches. (a) It will fetch both versions of the ct .img image,
irrespective of the width of the client device’s display. (b) It will
fetch the font file fonts/icomoon.woff, whether or not the
CSS selector . icon-calendar is used in the rest of the page.
The CSS selector is only added if the HTML code contains a
data-widget attribute.

e I CPU I Network Disk
£ 100-

c

i}

= 75-

N

£ 50-

[0

o 25-

>

[e)

3 0 - — v
o Static Dynamic Dynamic w/o

script execution

Figure 5: A comparison of average CPU, network, and disk
utilization by static and dynamic crawlers.

reason, in the rest of this paper, we refer to Chrome! when
discussing overheads of browser-based crawling.

We observe that the average number of pages that we
could crawl per second with Chrome was only 12% of that
achievable with the static crawler. The cause for this signifi-
cant drop in crawling throughput is shown in Figure 5, which
plots the average utilization of CPU, network, and disk with
either crawler. Unlike the static crawler, which was limited
by network bandwidth, the dynamic crawler ended up satu-
rating all CPUs. If we were to use a 10 Gbps network, more
than 5000 CPU cores would be necessary for the dynamic
crawler to fully utilize the network, which is infeasible to
accommodate on a single server.

We break down the reasons behind Chrome’s high CPU
usage using data from Chrome’s in-built profiler [7]. We find
three primary contributors: 1) the JavaScript engine, which
is responsible for parsing and interpreting JS code, 2) inside
the rendering engine, computation of the layout tree which

'We use Chrome in a headless mode as it is known to be more compute
efficient [49, 21].

USENIX Association

21st USENIX Symposium on Networked Systems Design and Implementation 895

www.usnews.com
www.chicagotribune.com

specifies on-screen positions for page content, and 3) time
spent inside Chrome’s internal code, into which the profiler
has no visibility. Together, these three sources of computa-
tion account for 96% of the compute delays on the median
page, with JavaScript execution alone accounting for about
half. Given the complex inter-dependencies between these
three tasks, none of them can be simply eliminated to reduce
Chrome’s computation overheads. For example, JavaScript
execution queries layout information when scripts inspect
the position of elements on the screen.

2.4 Minimizing browser’s computation delays

The observation that the amount of client-side computation
needed to load a web page has increased in recent times is
not new. A large body of prior work [57, 42, 40, 41] has
focused on addressing the impact of this overhead on user-
perceived web performance. However, those solutions have
little utility in the context of web crawling for two reasons.

First, many proposals for reducing the impact of client-
side computation on page load times aim to either increase
the overlap between the browser’s use of the client CPU and
network [41, 46] or parallelize the browser’s execution of
scripts on a page [40]. Such solutions can reduce the end-
to-end latency of individual crawls, but the total amount of
computation that the crawler needs to perform, and thus the
crawling throughput, will remain unchanged.

Second, others [42, 57, 1] rely on server-/proxy-side sup-
port to ship processed versions of pages so as to minimize the
amount of JavaScript that clients need to execute. Notwith-
standing the fact that such solutions are not usable until they
are adopted by millions of domains, we estimate their best
case utility by crawling pages in Corpus;o with script exe-
cution in Chrome disabled. A comparison of “Dynamic” and
“Dynamic w/o script execution” in Figure 5 shows that the
latter marginally reduces the gap between CPU and network
utilization. However, client-side computation remains a sig-
nificant bottleneck, thereby limiting crawling throughput to
still be only 17 pages per second.

Alternatively, one could attempt to build a lightweight
browser from scratch which only supports crawling, but does
not enable users to visit web pages, i.e., has no graphical
interface, does not support user interactions, etc. However,
significant engineering effort would be required to constantly
keep up with updates in HTML, CSS, and JavaScript APIs.
For example, when we load the landing pages of the top 1000
Alexa sites using a version of Chrome from five years ago
(v65), it fails to fetch 16% of the resources fetched by the
most recent version of Chrome (v114). This is because cer-
tain JavaScript APIs that are commonly used today were not
supported by Chrome v65, e.g., support for optional chain-
ing [15] was only added in v80. It would be best for web
crawlers to rely on widely used browsers which are well-
maintained, instead of having to replicate the effort in a
lightweight browser dedicated to crawling.

1.00
3 Same source + same fetches
% 0.751 Same source
&
© 0.501
o
©
5 0.251
(@]
0.00 T T .
0.00 0.25 0.50 0.75 1.00

Fraction of JS files that are shared

Figure 6: For the sites in Corpusio, most JavaScript files ap-
pear on multiple pages and a script typically fetches the same
resources on all the pages which include that script.

3 OVERVIEW

The takeaway from the previous section is that, today, opera-
tors of web crawlers are stuck with having to choose between
two less than ideal options: use static crawlers and miss out
on some resources, or make do with the poor performance
of dynamic browser-based crawlers. We seek to resolve this
quandary by enabling high-fidelity crawling at high through-
put. We do so while respecting two constraints. First, we
make sure to crawl all the resources on a page that a browser
would fetch, but make it configurable whether to crawl only
the resources relevant to the machine on which the crawler
is executed. Second, to make our crawler compatible with
the legacy web, we require no changes to web pages and the
servers that host them.

3.1 Observations and approach

The high-level observation that guides our approach is that,
on any site, there typically is significant overlap across pages
both in the JavaScript code that they include and JavaScript-
initiated fetches when a browser loads them. Figure 6
demonstrates this property on the pages in Corpus .

First, for every site, out of all the unique JS files seen on at
least one of the 100 pages on that site, we compute the frac-
tion which are included in multiple pages; here, we consider
the combination of a file’s URL and a hash of its source code
to be a unique identifier for a file. The “Same source” line
plots the distribution of this fraction across the 100 sites in
our corpus. For the median site, 72% of JS files were shared
across multiple pages.

Next, we examine the likelihood that a JS file fetches the
same set of resource URLs when it is executed on differ-
ent pages. For this, we consider a script file’s execution
uniquely by the file’s URL, the hash of its source, and the
set of URLs it fetches. When we consider only those exe-
cutions which result in at least one fetch, the “Same source
+ same fetches” line in Figure 6 shows that, on the median
site, 65% of unique file executions — at least with respect to
resource fetches — are repeated across multiple pages.

The takeaway from these observations, coupled with the
property that web crawling workloads typically crawl a large
number of pages per site (§2.1), is that there exists signifi-

896 21st USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Phase 1: Static crawl

Download only
statically linked
JS files to compute

Page URLs

Pages to crawl!
dynamically
—_—

set cover

\

Phases 2,4: Dynamic crawl

Load pages
while executing

instrumented JS

Phase 3: Static crawl

Compute
Store/lookup cache Lookup
signatures signatures| ~ Crawl pages
— — where all JS

can be skipped

Pages to recrawl dynamically

Pages to crawl statically
Figure 7: Sprinter crawls the pages on any site in four phases which alternate between browserless and browser-based crawling.

cant redundancy in a dynamic crawler’s execution of JS files.
When the browser used by the crawler executes a JS file that
it had previously executed on a different page on the same
site, the numbers from Figure 6 indicate that the same set
of resources are often requested as on the previous page.
The browser’s network cache will ensure that it does not
have to waste network bandwidth in re-downloading those
resources. But, the browser will still execute every JS file in
its entirety just to identify these resources.

To improve crawling performance by reducing the
crawler’s computations, our approach aims to first eliminate
redundant execution of JS files. Specifically, whenever our
crawler, Sprinter, crawls any page, it skips executing a JS file
if a) it has already executed that file while crawling a differ-
ent page on the same site, and b) it identifies that, if executed,
the file will fetch the same resources as it did on the pre-
viously crawled page. However, as observed earlier (§2.4),
a browser imposes high compute overhead even when it is
used to load pages with execution of scripts disabled. There-
fore, second, on pages where it can reuse the executions of
all JS files, Sprinter does not even employ a browser to crawl
those pages. Put together, Sprinter uses a browser to crawl
only a small subset of pages in each site and minimizes the
browser’s execution of JavaScripts.

3.2 Challenges

Realizing the above approach requires us to answer the fol-
lowing three questions.

e Whenever a script appears on multiple pages, it is not
guaranteed to initiate the same resource fetches on all
pages; in our corpus, 48% of repeated scripts had at least
one execution where they fetched a different set of URLs
than what they fetched in their first execution. Prior to ex-
ecuting a script, how can Sprinter efficiently identify that
the script’s execution will match a prior execution, and it
is safe to skip executing it?

e (Classic memoization involves storing the results of ex-
ecution and using them to skip future executions of the
same code in the same runtime context. In contrast, when
Sprinter crawls a page without a browser, how can it reuse
the browser’s prior computations on other pages? Mim-
icking the entire browser runtime will significantly in-
crease complexity and degrade performance.

e Finally, on each site, which subset of pages should
Sprinter crawl using a browser? To minimize Sprinter’s
compute overheads, it is key that the subset be small.
However, for Sprinter to crawl all the remaining pages on
the site without a browser, we must ensure that the script
executions on the pages crawled using a browser suffice to
skip executing all the JS files on the remaining pages.

4 DESIGN

As shown in Figure 7, Sprinter crawls a corpus of pages
from any particular website in four phases. In the first
phase, Sprinter identifies the subset of pages that need to be
crawled with a browser. It crawls those pages in the second
phase while skipping JS executions whenever feasible. Next,
Sprinter crawls the remaining pages on the site using its aug-
mented static crawler. Finally, it recrawls some of the pages
from the third phase using a browser. We present our design
of Sprinter by first describing its operation in phases 2 (§4.1)
and 3 (§4.2), and lastly, phases 1 and 4 (§4.3).

4.1 Memoizing JavaScript execution

Sprinter maintains a compute cache in order to take advan-
tage of the opportunities to reuse JS executions across the
pages on a site. On any page that Sprinter crawls with a
browser, prior to executing JS on the page, the browser looks
up the compute cache to determine whether the execution
can be skipped. Upon a cache miss, the browser executes the
JS code and logs a summary of its execution in the compute
cache, for use on other pages.

Execution signatures to enable reuse. When JS code runs
within a browser, it can read from or write to the JavaScript
heap and HTML DOM object. It can also read the return
values from various web APIs. Therefore, to enable reuse of
JS executions without violating correctness, we associate the
execution of every block of JS code with a signature which
includes the values at the start of executing that block of code
for all state from the heap or DOM that is read within that
block. When the browser executes any block of JS code,
its execution is guaranteed to result in the same externally
visible effects (i.e., writes to the DOM and heap, and URL
fetches) as a prior execution which had the same signature, if
the block does not invoke any non-deterministic APIs (e.g.,
Date, Randomor Performance). Figure 8 shows an ex-
ample block of code and the corresponding signature.

USENIX Association

21st USENIX Symposium on Networked Systems Design and Implementation 897

vendor.js

var gKey = window.grumi.key; // “bfd2-4adc”
fetch(https://www.geoedge.com/${gKey}/grumi-ip")
var NYTD = {PageViewID: ‘mubjhislka7867'};
window.NYTD = NYTD;

Signaturevendor. js

Reads: [“window.grumi.key”,”bfd2-4adc”],

Writes: [“window.NYTD”,”{PageViewID: ‘mubjhislka7867"}"]

Fetches: [“https://www.geoedge.com/bfd2-4adc/grumi-ip“]
}

Figure 8: JavaScript code from www.nytimes.com which
reads a global variable using the window object and, based
on the property read, fetches a URL. It also writes to the win-
dow object. Signature for this includes the global state read and
written (both the keys and the values) and the fetches initiated.

However, to construct code signatures, modern browsers
provide no APIs to extract the necessary runtime informa-
tion about JavaScript execution. To remedy this, Sprinter
uses a custom JS instrumentation framework, similar to the
ones used in prior work [31, 40, 42]. This instrumentation
framework runs inside a man-in-the-middle (MITM) proxy
which sits in front of the browser. For every new JS file
requested by the browser, the proxy statically analyzes the
code in the file and rewrites it by injecting code that tracks
the state and APISs that are accessed when the file is executed.
Sprinter’s instrumentation tracks variables on the heap which
are in either 1) the global scope, which is accessible using
the window object, or 2) the closure scope, which is created
within a function but persists after the function’s execution if
there exists a nested function declared in the same enclosed
scope. For the DOM object, Sprinter tracks all APIs that
can read from (e.g., getElementById) or write to (e.g.,
appendChild) the DOM.

Once the browser finishes loading a page, Sprinter’s in-
jected JS code compiles signatures for the scripts on the page
and stores them in the compute cache which is co-located
with the proxy. These signatures include both the above-
mentioned information needed to identify the opportunity
for reuse, and the writes to the heap and DOM that need to
be executed when the corresponding code is skipped, along
with any fetches initiated; see Figure 8. When a previously
cached JS file is fetched in future page loads, the proxy em-
beds stored signatures for the code in this file directly into
the file. When processing each JS file, the browser uses the
embedded signatures to determine if any code within the file
can be skipped.

Granularity of JS execution reuse. Given our results from
§3.1, it is natural to try and reuse the browser’s JS executions
at the granularity of entire files, i.e., prior to processing any
script file, the browser uses cached signatures for that file to
determine whether to skip all the code in the file or execute
all of it. However, as shown in the “Full signature” line in
Figure 9, the cache hit rate is pretty poor. On the median site
in Corpus;o, only 40% of JS file executions can be skipped.

1.00
o Full signature
] Trimmed signature
% 0.757 Oracle
1%}
%]
S 0.501
o
IS4
B 0251
o
0.00 T T T
0.00 0.25 0.50 0.75 1.00

Fraction of JS file executions that are skipped

Figure 9: Cache hit rate for JavaScript files that initiate fetches
for other URLs.

To improve the hit rate, our key insight is that, unlike in
user-facing page loads, we do not need to restrict Sprinter’s
skipping of a JS file’s execution only when it is guaranteed to
execute in a manner exactly identical to a previous execution
of the same file. Rather, as long as we can guarantee that the
code will fetch the same resource URLSs, we can skip it. A
crawler does not need to preserve other aspects of JavaScript
execution, such as visual changes by modifying the DOM or
functional changes by adding event handlers that allow users
to interact with the page.

This observation enables us to trim file signatures and only
include state that influences resource fetches. To identify
this state, we turn to dynamic taint tracking [47]. Our in-
strumentation of any JS file marks all statements that initiate
URL fetches (such as XMLHTTPRequest .send) and all
DOM nodes with a src property as sinks. We also mark all
control-flow statements as sinks. At the end of any file’s ex-
ecution, we include in the file’s signature only those reads
which propagate values to any of the sinks.

The “Trimmed signature” line in Figure 9 shows that trim-
ming the signatures stored in Sprinter’s compute cache im-
proves the cache hit rate on the median site to over 80%.
This is because a large fraction of reads performed by JS on
the web does not influence the set of URLs fetched. Further-
more, we see that the cache hit rate with Sprinter is close
to the best achievable hit rate, which we obtain via post-
hoc analysis of JS executions to identify when the set of
URLSs fetched matched a prior execution. The gap between
“Trimmed signature” and “Oracle” is due to Sprinter’s con-
servative tracking of all control-flow dependencies, instead
of only the ones that influence the URLSs fetched.

4.2 Statically crawling pages

So far, we have discussed how Sprinter reuses execution
across pages. However, as mentioned in §2.3, JS execution
is only a part of the total compute overhead of web browsers.
To maximize Sprinter’s performance, we now discuss how it
crawls pages without a browser in phase 3.

Crawling without a browser. We observe that the primary
utility of crawling a page within a browser is its implemen-
tation of the JavaScript heap and the DOM object, and its

898 21st USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

www.nytimes.com

support of various APIs. However, if we are able to skip ex-
ecuting a file, we only need to compile the read state in its
signature, for which we need a log of all the writes performed
by previously executed or skipped JS files. We do not need
to apply these writes to the browser’s heap and DOM since
there are no user interactions at the time of crawling.

Based on this insight, Sprinter’s static crawler maintains a
shadow heap, which is a key-value map from the properties
of the heap to the corresponding values. It also maintains
a shadow DOM, which it constructs by parsing the page’s
HTML at the start of every page load and offers the same
read and write APIs as the ones provided by the browser.

For every page that it statically crawls in phase 3, Sprinter
fetches the page’s HTML, extracts all embedded resource
URLSs, and recursively fetches them. For every IS file
fetched, the static crawler looks up the shadow heap and
DOM to construct the file’s signature. Upon a successful
cache hit, Sprinter logs the writes included in the file’s sig-
nature to the shadow heap and shadow DOM, and issues any
resource fetches included in the signature. It repeats this pro-
cess until all resources on the page have been fetched. When-
ever there is a cache miss for a JS file, the static crawler
is unable to execute the file, and it defers these pages for
browser-based crawling in phase 4 (§4.3).

Handling additional fetches. Crawling pages as de-
scribed above has the downside of fetching additional re-
sources that a browser would not (as described in §2.2). For
Corpus g, this increases the total number of bytes fetched
by 3.5x. Unlike during dynamic crawling, when the net-
work is severely underutilized (Figure 5), these additional
fetches significantly degrade overall throughput when crawl-
ing without a browser.

If the input configuration to Sprinter specifies that only
the resources relevant to the machine executing the crawler
be downloaded, its static crawler does so by leveraging the
browser’s processing of pages crawled earlier in phase 2.
First, during every page load executed within a browser,
Sprinter adds to its compute cache the media queries eval-
vated and the corresponding value (true or false). For any
media query encountered during browserless page loads, the
static crawler fetches the corresponding URL if the compute
cache either returns a true value or does not contain any entry
for that media query. Similar to our observation of similarity
in JS executions across pages, we find that, for the median
site in Corpus o, 92% of all media queries occur on more
than one page. Second, the static crawler uses the cached
signatures for JS files to identify which selectors were ap-
plied when the browser executed those files. It fetches only
the URLs contained within these selectors.

4.3 Scheduling page crawls

Given the high compute overhead of loading pages in a
browser and extracting signatures, we must minimize the
number of pages that Sprinter crawls using a browser. How-

1.00
]
2
‘» 0.7541
3
© 0.501 Pages
3 Js
& 0.251
o
0.00-— T T T :
0 25 50 75 100
% of pages in set cover / % of all JS files covered by
set cover

Figure 10: Approximate set cover captures a large fraction
of JS files (“JS”), while the number of pages in the set cover
(“Pages”) are a small fraction of the total corpus size.

ever, Sprinter can crawl a page without a browser only if it
is able to skip executing every JS file on that page. Hence,
the subset of pages on any site that Sprinter crawls without
a browser in phase 3 should ideally be such that all of the JS
files that appear on any of these pages also appear in at least
one of the pages previously crawled with a browser in phase
2. This does not guarantee that the static crawler will find a
compute cache entry with a matching signature for every JS
file, but at least makes it possible.

Need for scheduling. Since the set of JS files on any page is
not known apriori, Sprinter could use a browser to crawl the
pages on any site in a random order and switch to browser-
less crawling once the set of JS files converges, i.e., once
the union of JS files remains unchanged for n consecutive
pages crawled. But, we find that there is no value of n that
offers a good tradeoff between compute overheads and cov-
erage of JS files. For example, with n = 2, we would need to
crawl only 8% of pages on the median site in Corpus g, with
a browser, but only 49% of the JS files seen across all the
pages on this site appear on those pages. With n = 10, the
fraction of JS files covered by browser-based loads increases
to 82%; however, 38% of pages now need to be crawled us-
ing a browser.

Efficient identification of set cover. Sprinter takes an al-
ternate approach of carefully selecting which subset of pages
on each site to crawl using a browser in phase 2. Though we
cannot predict which JS files are on the remaining pages, we
leverage our finding from §3.1 that the same JS file often
fetches the same resources across pages of a site. Therefore,
instead of finding a subset of pages that includes all the JS
files used on that site, we find a subset that includes all the
JS files that are statically embedded in the remaining pages.
When these files are executed as part of the browser-based
loads, all the JS files that are dynamically fetched on this
site’s pages will likely be fetched and executed.

Thus, in phase 1, Sprinter crawls all pages using a static
crawler which only fetches the JS files that are directly
linked. We then have a set of JS files for every page, and
Sprinter computes the set cover, i.e., the subset of sets whose
union matches the union of all sets. Since computing the op-

USENIX Association

21st USENIX Symposium on Networked Systems Design and Implementation 899

~

MITM proxy

HTML+IS Static crawler
rewriter \ VO

Web servers

1
f —~®
@‘ ‘i cache —

Sprinter
Figure 11: Overview of our Sprinter implementation.

timal set cover is NP-complete [29], we use a greedy heuris-
tic which runs in polynomial time and is known to closely
approximate the optimal [50]. Figure 10 shows that, on the
median site in Corpus;g, Sprinter selects only 7% of pages
to be crawled using a browser, yet these pages cover over
80% of all the JS files seen across all pages on the site.

Given this methodology for choosing which pages to
crawl with a browser in phase 2, there are multiple reasons
why Sprinter’s static crawler may not find a matching com-
pute cache entry for every JS file that it fetches. First, since
the set cover is only based on statically linked JS files, some
dynamically fetched JS files may not have been encountered
in the browser-based loads. Second, even for files that were
executed by the browser, those executions may not have had
the same signature as that expected by the static crawler. If
the static crawler runs into either issue on any page, Sprinter
recrawls that page using a browser in phase 4.

5 IMPLEMENTATION

Our implementation of Sprinter has three components, which
work together as shown in Figure 11.

Dynamic crawler. Sprinter’s dynamic crawler is written
in 1150 lines of NodeJS code. This dynamic crawler al-
lows Sprinter to load pages using Chrome in phases 2 and
4. To automate Chrome, the crawler uses the Puppeteer li-
brary [16]. At the end of every page load, it uses Chrome’s
DevTools protocol [8] to collect runtime information, and it
then sends the per-file signatures that it compiles to the man-
in-the-middle (MITM) proxy.

Static crawler. The static crawler, used in phases 1 and
3, is written in 920 lines of Golang. It uses the goquery li-
brary [13] to create a virtual DOM for every HTML file and
the cascadia library [6] to parse and query CSS selectors.
MITM proxy. The MITM proxy is an HTTP proxy writ-
ten in 350 lines of Golang. It intercepts requests and re-
sponses for every resource fetched by the static and dy-
namic crawlers. The proxy also statically analyzes and in-
struments JS files, for which it uses a static analyzer writ-
ten in 1200 lines of NodelS code. The static analyzer
uses Babel [3], a JS transpiler, to create the abstract syn-
tax tree for every JS file. While instrumenting JS files, the
static analyzer enables tracking of the JS heap and DOM.

Ideally all web APIs should be tracked to achieve perfect
correctness since their return values can potentially influ-
ence URL fetches. However, our evaluation shows that
the subset of APIs that our implementation currently sup-
ports — all values accessible from the window object di-
rectly, e.g., window.navigator.userAgent — largely
suffices. Our finding is in accordance with prior work which
studied the impact of web APIs on URL fetches [36]. The
proxy also runs a gRPC server to receive signatures from the
dynamic crawler.

6 EVALUATION

We evaluate Sprinter with respect to the fidelity with which
it crawls pages and its performance in terms of crawling
throughput. We also estimate the effort that would be re-
quired to maintain its implementation over time as web APIs
evolve. We compare it to various options that exist for web
crawling today. Our key findings are as follows:

e When compared to dynamic browser-based crawlers,
Sprinter improves crawling throughput by 5x while pre-
serving over 99% of the bytes fetched.

e Even in comparison to prior web accelerators that rely on
assistance from web servers to reduce in-browser compu-
tations when loading pages, Sprinter delivers 2.4x higher
crawling throughput.

e Sprinter’s performance benefits significantly improve as
more pages are crawled per site, e.g., its crawling through-
put increases by 2.1x when the number of pages per site
goes up from 100 to 500.

e Sprinter’s performance improves as the same corpus is
crawled repeatedly over time, e.g., the second crawl of our
corpus is 78% faster than the first run 1 week earlier.

6.1 Evaluation setup

Workload. We expand our corpus of pages to include 500
randomly sampled pages in each of 100 sites. This new cor-
pus, which we refer to as Corpussg, retains the same prop-
erties as Corpusg: diverse set of sites, and representative
of real-world crawling workloads in having a large number
of pages per site. As described in §2.2, we crawl every page
in this new corpus using a custom crawler which fetches the
resources downloaded by either dynamic or static crawlers,
and we use a record-replay tool [9] to record all request-
response headers along with the corresponding payloads.

Hardware configuration and crawling methodology. We
store the recorded pages in an SSD drive of a Linux server
which hosts 450 web servers to concurrently service HTTP
requests with the appropriate recorded content. The crawlers
run on a different Linux server with a 16-core 2.1 GHz Intel
Xeon CPU, 128 GB RAM, and a 1 Gbps Ethernet connection
to the server housing recorded pages. Crawling performance
in this setup matches what we see when crawling pages from
the live web, but eliminates the impact of any server-side
effects on our evaluation of performance and fidelity.

900 21st USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

100-

=
g
gj g 75-
wn
£¢
£ 2 50-
D ®©
£ o
g 25-
O
0- TEE—

Dynamic Server Sprinter Static
Assisted Dynamic

(a)

% of bytes fetched by
Dynamic

100-
75-
50-
25-

Dynamic Server Sprinter Static
Assisted Dynamic

(b

o

Figure 12: Comparison of (a) crawling throughput and (b) fidelity of Sprinter against the three baselines.

Baselines. Our primary baselines represent existing static
and dynamic crawlers. For the static approach, we port
wget2, a popular open-source crawler, to be compatible with
our proxy-based setup; we verified that our static crawler
is identical to wget2 in terms of fetched content. For the
dynamic approach, we first considered three popular open-
source crawlers: Archivebox [2], Browsertrix [4], and Broz-
zler [5]. However, our benchmark results for each revealed
substantial performance drawbacks, likely because their pri-
mary goal was high fidelity, not necessarily high through-
put. Specifically, undue overheads stem from spawning a
new browser instance for each crawled page, using a CPU-
intensive MITM proxy, and relying on an outdated Chrome
automation framework. Therefore, we instead built an in-
house Chrome-based crawler that achieves 20%, 33%, and
250% higher throughput than Archivebox, Browsertrix, and
Brozzler, respectively. We verified that our custom crawler
fetches the same set of resources as Archivebox when used
to crawl the landing pages for the 100 sites in Corpussgy.

Our third baseline is representative of prior server-/proxy-
assisted solutions to reduce client-side computations in user-
facing page loads [42, 57]. To the best of our knowledge,
none of these systems are open sourced, and we are unaware
of any domains that have adopted these techniques. There-
fore, to evaluate Sprinter against this prior work, we consider
the best case outcome of these systems, where all client-side
JS execution is eliminated. We mimic such a scenario by
using our Chrome-based crawler to crawl a version of every
page wherein we include links to all the resources fetched by
JS files in the page’s main HTML. The browser loads this
modified HTML with JS execution disabled. We refer to this
baseline as server assisted dynamic crawling.

Metrics. = We measure the crawling throughput of each
crawler as the average number of pages it can crawl per sec-
ond on a single server. For each crawler, we run a sufficiently
large number of instances so as to saturate either the CPU or
the network. We expect crawling throughput to linearly in-
crease with the number of servers. We run 5 trials for each
experiment and plot the median value, with error bars plot-
ting the minimum and the maximum values.

We consider the default goal of crawling to be to match

a Chrome-based crawler. Therefore, we measure the fidelity
offered by a crawler as the fraction of bytes it fetches of all
the resources fetched by Chrome when crawling the same
pages. When the goal is to crawl all resources that are rele-
vant to any client device, we measure fidelity as the fraction
of bytes fetched out of the union of the resources fetched by
the static and dynamic crawlers.

6.2 Throughput and Fidelity
6.2.1 Comparison with baselines

To compare Sprinter with the three baselines, we load pages
in Corpussep using each of the four crawlers separately. We
monitor the resources fetched by each crawler on every page,
and the total time taken to finish crawling the entire corpus.
We also monitor the CPU and network utilization to identify
the bottleneck for each crawler.

Figure 12(a) plots the crawling throughput achieved with
each crawler, and Figure 12(b) shows the fidelity achieved.?
Static crawler achieves the best crawling throughput by far
of 96 pages per second. However, it misses out on 37% of
the bytes fetched by the dynamic crawler. In contrast, the
dynamic crawler could only crawl at a rate of 6 pages per
second. Since CPU utilization was at 100% throughout the
entirety of the crawl with the dynamic crawler, throughput
increased to 13 pages per second with the server-assisted dy-
namic crawler, which does not execute any JS.

Sprinter offers a significant additional speedup, improving
crawling throughput to 31 pages per second, a 5x improve-
ment relative to the dynamic crawler. Importantly, it does
so without requiring any changes to the web and while pre-
serving 99.2% of the bytes fetched by the dynamic crawler.
The 0.8% of bytes that went unfetched stem from the incom-
plete support for all web APIs in our current implementa-
tion. 50% of these unfetched bytes correspond to JavaScript
files, 27% to images, and 17% to HTMLs, with the remain-
ing accounted for by CSS and other content types. While
no resources went unfetched on the median page, the 90"
percentile page was missing 1 resource.

2We see no variation across runs in the resources fetched by each crawler
because all of our crawls rely on one snapshot of every page crawled from
the live web.

USENIX Association

21st USENIX Symposium on Networked Systems Design and Implementation 901

I pages

30000-
-100
20000-
10000- ~50
Q- m—— 3 -4 = -0

2

throughput

Pages
(s/sebed)

indybnoay |

Phases

Figure 13: Number of pages crawled during each of the dif-
ferent phases of Sprinter and the corresponding throughput
achieved in each phase.

50000-
40000-
30000-
20000~
10000-

0-

Pages
Phase 1

1
1
1
1
1
1
1
:
1

400 800 200 1600

Time (s)

Figure 14: A timeline of Sprinter’s crawl of Corpussgi, showing
the duration and number of pages crawled in each phase.

6.2.2 Throughput in each phase

Sprinter’s crawling throughput varies widely across phases.
Figure 13 plots the number of pages crawled in each phase
and the corresponding throughput. Whereas, Figure 14
shows a timeline of how Sprinter’s crawling of the pages in
Corpussg proceeds over time.

e No page is fully crawled in phase 1; Sprinter only stat-
ically crawls the HTML files and embedded JavaScript
files for every page so as to identify the subset of pages
to be crawled with a browser in phase 2. Therefore, phase
1 finishes in 151s, the quickest of all four phases.

e Phase 2 is the slowest since Sprinter not only has to crawl
pages with a browser, but it also has to incur the overheads
of statically analyzing and rewriting every JavaScript file,
executing these instrumented files inside Chrome, and
processing the information it collects to generate and store
per-file signatures. In this phase, Sprinter crawls 1413
pages in 620s, resulting in a crawling throughput of a little
over 2 pages per second.

e Sprinter crawls the vast majority of pages in phase 3:
42497 pages in 316s. The average throughput of 135
pages per second in this phase is even higher than what
a static crawler can achieve (96 pages per second, as
shown in Figure 12(a)). This is because, unlike a static
crawler, Sprinter leverages browser-based execution of
media queries and CSS selectors in phase 2 to eliminate
fetches of resources relevant only for other client types.

e In Phase 4, Sprinter recrawls the remaining 6090 pages

40-

30-

20-
: - -
.. I | ,

Dynamic Dynamic+JS Sprinterw/ Sprinter
reuse random schedule

Crawling throughput
(pages/s)

Figure 15: Incremental benefit offered by each of the tech-
niques used in Sprinter.

with a browser; about a quarter of these are because they
contained a JS file not executed in phase 2, and the re-
maining pages incurred at least one compute cache miss.
The crawling throughput of 11 pages per second in this
phase is better than in phase 2 because significantly fewer
JS files need to be instrumented.

At the end of phase 4, Sprinter’s compute cache had 3089
entries. The cache hit rate of 95.6% is the key enabler of
Sprinter’s throughput improvements as it could crawl a large
fraction of pages in phase 3, without requiring a browser. We
cannot further reduce the total crawl time by immediately
spawning a browser to crawl any page that incurs a cache
miss in phase 3 because both phases 3 and 4 are bottlenecked
by the CPU.

6.2.3 Contribution of techniques

To understand the performance benefits of each of the tech-
niques used in Sprinter, we incrementally add them to the
dynamic crawler and measure crawling throughput.

First, we evaluate the benefits of only using JS memoiza-
tion (§4.1) in Chrome, loading all pages in the corpus in a
random order. Figure 15 shows that “Dynamic+JS reuse”
provides a roughly 66% speedup over “Dynamic”.

Next, we crawl some of the pages with a browser and
the rest using Sprinter’s augmented static crawler (§4.2). To
determine which pages to crawl using a browser, we con-
sider the strawman approach (§4.3) wherein we transition to
browserless crawling once the union of JS files remains un-
changed for n consecutive pages. For Corpussg, we observe
that n = 25 results in browser-based loads fetching the same
fraction of all JS files as that covered by Sprinter’s chosen
set cover. Even this unsophisticated combination of dynamic
and static crawling — “Sprinter w/ random schedule” in Fig-
ure 15 — roughly doubles the crawling throughput.

Finally, by efficiently choosing a carefully chosen subset
of pages to crawl with a browser, Sprinter crawls 88% fewer
pages using a browser in phase 2, resulting in a further 1.6x
improvement in throughput.

6.3 Sensitivity to crawling parameters

We evaluate the impact of the following three configuration
parameters on Sprinter’s crawling throughput: 1) the number
of pages crawled per site, 2) the time gap between repeated

902 21st USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

15-

% pages in set cover

10-
100 200 300 400 500

Number of pages per site
Figure 16: Percentage of pages selected by Sprinter for
browser-based crawling as a function of number of pages
crawled per site. Bars show value for median site, with error
bars for the 25" and 75™ percentiles.

40-
5
Q
5 _ 30-
s 2
£ 9 20-
D ®©
£se ,
g 10-______D_yp_amlc -_)
S I
o. I . .
10 20 100 500

Pages per site
Figure 17: Sprinter’s crawling throughput as a function of the
number of pages per site.

crawls, and 3) whether fetching all statically embedded re-
source URLs is desired.

6.3.1 Number of pages per site

The key to Sprinter’s high crawling throughput is its judi-
cious partitioning of pages, crawling a small fraction using
a browser and the remaining without. We examine how the
fraction chosen for browser-based crawling varies as a func-
tion of the number of pages being crawled per site. For 5
different values of the number of pages per site, Figure 16
plots this fraction for the 25", median, and 75" percentile
sites. The percentage of pages in Sprinter’s carefully se-
lected “set cover” for the median site goes down from 6%
with 100 pages per site to 1.6% with 500 pages per site.
As a result, Sprinter is able to crawl a corpus of 10k pages
at an average rate of 15 pages per second. But, for a 50k
page corpus, its throughput improves to 31 pages per sec-
ond (Figure 17). Akin to how a static crawler benefits more
from network caching with more redundant resource fetches,
Sprinter’s compute cache enables it to reuse more client-side
computations when it crawls more pages per site.

On the flip side, lower the number of pages per site, lower
Sprinter’s throughput. Figure 17 shows that, with 10 pages
per site, Sprinter crawls 4 pages per second on average,
which is slower than the dynamic crawler. For Sprinter to
offer any benefit, we see that it must be asked to crawl at
least 20 pages per site. As a result, workloads that only crawl
landing pages of sites [10] will not benefit from Sprinter.

3 30-
<
S
(2
o =
£ 8 20
b <)
D «©
£ o
= 10-
g
o

0 .
Week old
signatures

Month old
signatures

No signature

Figure 18: Sprinter can crawl pages faster by leveraging sig-
nature information from previous crawls of the same corpus.

6.3.2 Repeated crawling

In many web crawling workloads, the same corpus of pages
is repeatedly recrawled. For example, a web search engine
must ensure that its search index reflects the latest content
on every page, and web archives must track changes to page
content over time. In such cases, Sprinter will crawl the en-
tire corpus in 4 phases the first time. However, when the
corpus is recrawled, Sprinter can directly jump to crawling
pages statically in phase 3, leveraging JS execution signa-
tures from the previous crawls. Pages where no compute
cache entry was found for at least one JS file would have to
be recrawled with a browser in phase 4.

To measure the crawling throughput with Sprinter when
the same corpus is crawled multiple times, we recrawl
Corpus g, once three weeks after our initial crawl, and again
a week later. We then use Sprinter in our replay setup
to crawl pages from our last copy of the corpus. We run
Sprinter once starting with an empty compute cache, once
using signatures from the crawl a week before, and once us-
ing signatures from the crawl a month before.

Figure 18 shows that reusing signatures from a week ago
improves Sprinter’s throughput by 78% as compared to when
no prior crawl existed. Reusing month-old signatures also
speeds up Sprinter. But, since the compute cache entries are
more stale and more previously unseen JS files are fetched,
the benefits are significantly lower.

6.3.3 Preserving static fetches

Thus far in our evaluation, we have considered the goal of
crawling to be to fetch the same resources on every page
as a dynamic crawler. However, in some cases, it might be
desirable to also crawl all resources that would be fetched by
a static crawler. For example, web archivists might want to
preserve all versions of every image on a page, so as to be
able to accurately render the preserved page irrespective of
the client device used to visit this page in the future.

In these cases, Sprinter can be configured to not elimi-
nate fetches using the techniques mentioned in §4.2. The re-
sultant throughput of Sprinter drops to 28 pages per second
which, though 9% lower than when it only tries to match
the dynamic crawler, is still 4.6x faster than the dynamic
crawler. This drop in throughput is because of Sprinter’s
static crawler having to fetch additional bytes in phase 3.

USENIX Association

21st USENIX Symposium on Networked Systems Design and Implementation 903

Chrome | Lightweight browser Sprinter

version
of APIs | # of files | # of APIs | LOC
added added/- added added

modified

v108 4 41 1 9

v109 3 70 1 13

v110 4 58 1 6

vlll 7 109 0 0

| Total | 18 278 3 [28 |

Table 1: Comparison of number of APIs that need to handled
by Sprinter and a lightweight browser.

Note that the impact of this configuration option on
Sprinter’s throughput depends on the number of pages
crawled per site. With more pages per site, phase 3 is able
to achieve higher crawling throughput due to the benefits of
network caching.

6.4 Maintainability

Web APIs and their specifications are constantly up-
dated [38]. Web crawlers need to be correspondingly up-
dated over time to ensure that web pages using the latest
APIs are accurately crawled. Dynamic crawlers leveraging
web browsers such as Chrome and Firefox simply need to
update to the latest version of the browser, as these browsers
are well-maintained and constantly updated to support most
of the latest web APIs.

To get a measure of the effort that would be needed to
maintain Sprinter or a lightweight browser such as phan-
tomJS, we look at all the APIs added in the 4 most recent
versions of Chrome (v108 to v111). For each API, we manu-
ally read its specification. Only a subset of these would need
to be implemented by a lightweight browser designed for the
purpose of crawling, e.g., any API that takes effect only dur-
ing user interactions (such as webRT'C' APIs to enable video
conferencing or navigator.credentials API to enable se-
cure logins) would not have to be handled. Sprinter’s instru-
mentation of JS code would need to keep track of an even
smaller subset of APIs, only those which influence execu-
tion signatures, i.e., any API that can read from or write to
the global state.

Table 1 compares the number of APIs that need to be
tracked and implemented by Sprinter versus a lightweight
browser designed for crawling. Across the four versions,
a lightweight browser would be required to implement 18
APIs; in Chrome’s source, these APIs touch 278 files
(Chrome’s commit history only shows files added/modified,
not the number of lines of code). In contrast, Sprinter needs
to handle only 3 of these APIs, requiring 28 lines of code.

7 RELATED WORK

Scalable web crawling. The engineering issues associated
with web crawling are well studied [33, 58, 19, 37, 22, 23].
Some of these crawlers [37, 23, 22] are able to achieve a

crawling throughput of upwards of 1000 pages per server.
However, all of these crawlers only download the HTML file
for every page URL. In contrast, Sprinter downloads all the
resources which would be fetched by browser-based crawlers
such as Archivebox [2], Brozzler [5], and Browsertrix [4].
Incremental crawling A large amount of prior work [27,
39, 25, 52] has focused on incremental web crawling, i.e.,
how to efficiently recrawl pages. These techniques are help-
ful only when the same set of pages are crawled multiple
times. Sprinter, on the other hand, eliminates redundant
computations across pages even within a single crawl.
Resource bottlenecks of large-scale distributed systems.
Prior work has studied the bottlenecks in scaling various dis-
tributed data processing workloads such as sorting [45], data
analytics [43], and distributed deep learning [54, 48, 20].
These efforts first identify the hardware resource (CPU,
GPU, network, or disk) that constrains overall performance,
and then propose solutions to optimize the utilization of that
resource. To the best of our knowledge, we are the first to
study the compute bottleneck in browser-based web crawl-
ing and propose a solution to reduce its impact.

Web performance optimization. The negative impact
of a web browser’s computations on user-perceived latency
while loading web pages is well-known [55, 56]. As dis-
cussed earlier (§2.4), proposals to lower page load times
either do not reduce the total amount of computation that
web clients need to perform [41, 46, 40] or require server-
side changes [42, 57]. Sprinter is backward compatible with
the legacy web and reduces the total amount of client-side
processing by memoizing and reusing computations across
pages on the same site.

Compute memoization. Memoization is widely used
across different kinds of application. Prior work has lever-
aged such techniques to reduce compile-time latency [51,
34], improve runtime performance [30, 53], minimize
scheduling overheads [26], and enable faster auditing of web
applications [35]. Sprinter uses similar memoization tech-
niques to reduce the amount of client-side computation re-
quired to crawl pages, and it maximizes its benefits by selec-
tively identifying the state that influences URL fetches.

8 CONCLUSION

Over the years, crawling web pages with high fidelity has
evolved from a workload that is limited by network band-
width to a CPU-intensive one. In this paper, we showed that
the key to mitigating this new bottleneck is to strategically
minimize the use of the web browser and its execution of
JavaScripts. Our design of Sprinter does so by efficiently
identifying and exploiting opportunities to safely reuse the
browser’s computations across the pages on any site. We
hope that our work will spur a new wave of innovation in
scalable web crawling, a task that underlies many important
systems in today’s society.

904 21st USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

REFERENCES

[1] Amazon silk. https:/docs.aws.amazon.com/silk/
latest/developerguide/what-is-silk.html.

[2] Archivebox. https://github.com/ArchiveBox/
ArchiveBox.

[3] Babel. https://babeljs.io/.

[4] Browsertrix crawler. https://github.com/
webrecorder/browsertrix-crawler.

[5] Brozzler. https://github.com/internetarchive/
brozzler.

[6] Cascadia.
cascadia.

[7] Chrome cpu profiler. https://developer.chrome.com/
docs/devtools/performance//.

[8] Chrome devtools protocol. https://chromedevtools.
github.io/devtools-protocol/.

[9] Chrome web page replay. https://chromium.
googlesource.com/catapult/+/HEAD/web_page._
replay_go/README.md.

[10] Common crawl. https://commoncrawl.org/.

[11] CSS selectors. https://developer.mozilla.org/en-US/
docs/Web/CSS/CSS_Selectors.

[12] Gnu wget2. https:/github.com/rockdaboot/wget2.

[13] Goquery. https://github.com/PuerkitoBio/goquery.

[14] Internet archive end of term 2020 web crawls. https:
//archive.org/details/EndOfTerm2020WebCrawls.

[15] Optional chaining. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/
Optional_chaining.

[16] Puppeteer. https://pptr.dev/.

[17] Using media queries. hitps://developer.mozilla.
org/en-US/docs/Web/CSS/Media_Queries/
Using_media_queries.

[18] Web APIs. https://caniuse.com/?compare=
chrome+114 firefox+113&compareCats=all.

[19] F. Ahmadi-Abkenari and A. Selamat. An architecture
for a focused trend parallel web crawler with the appli-
cation of clickstream analysis. Information Sciences,
2012.

[20] T. Akiba, K. Fukuda, and S. Suzuki. Chainermn:
Scalable distributed deep learning framework. arXiv
preprint arXiv:1710.11351, 2017.

[21] A. S. Bale, N. Ghorpade, S. Rohith, S. Kamalesh,
R. Rohith, and B. Rohan. Web scraping approaches and
their performance on modern websites. In International
Conference on Electronics and Sustainable Communi-
cation Systems, 2022.

[22] P. Boldi, B. Codenotti, M. Santini, and S. Vigna. Ubi-
crawler: A scalable fully distributed web crawler. Soft-
ware: Practice and Experience, 2004.

[23] P. Boldi, A. Marino, M. Santini, and S. Vigna. Bubing:
Massive crawling for the masses. ACM Transactions
on the Web, 2018.

[24] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha,

https://github.com/andybalholm/

and V. Sekar. Klotski: Reprioritizing web content to
improve user experience on mobile devices. In NSDI,
2015.

[25] J. Cho and H. Garcia-Molina. The evolution of the web
and implications for an incremental crawler. In VLDB,
2000.

[26] H.Cui, J. Wu, C.-C. Tsai, and J. Yang. Stable determin-
istic multithreading through schedule memoization. In
0OSDI, 2010.

[27] J. Edwards, K. McCurley, and J. Tomlin. An adaptive
model for optimizing performance of an incremental
web crawler. In WWW, 2001.

[28] M. Erdélyi, A. A. Bencziir, J. Masanés, and D. Sikl6si.
Web spam filtering in internet archives. In Interna-
tional Workshop on Adversarial Information Retrieval
on the Web, 2009.

[29] U. Feige. A threshold of In n for approximating set
cover. Journal of the ACM, 1998.

[30] A. Goel, V. Ruamviboonsuk, R. Netravali, and H. V.
Madhyastha. Rethinking client-side caching for the
mobile web. In HotMobile, 2021.

[31] A. Goel, J. Zhu, R. Netravali, and H. V. Madhyastha.
Jawa: Web archival in the era of JavaScript. In OSDI,
2022.

[32] G. Gossen, E. Demidova, and T. Risse. ICrawl: Im-
proving the freshness of web collections by integrating
social web and focused web crawling. In JCDL, 2015.

[33] A. Heydon and M. Najork. Mercator: A scalable, ex-
tensible web crawler. In WWW, 1999.

[34] M. Johnson. Memoization of top down parsing. arXiv
preprint cmp-1g/9504016, 1995.

[35] T. Kim, R. Chandra, and N. Zeldovich. Efficient patch-
based auditing for web application vulnerabilities. In
OSDI, 2012.

[36] R. Ko, J. Mickens, B. Loring, and R. Netravali.
Oblique: Accelerating page loads using symbolic ex-
ecution. In NSDI, 2021.

[37] H.-T. Lee, D. Leonard, X. Wang, and D. Loguinov. Irl-
bot: scaling to 6 billion pages and beyond. ACM Trans-
actions on the Web, 2009.

[38] J. Li, Y. Xiong, X. Liu, and L. Zhang. How does web
service API evolution affect clients? In IEEE Interna-
tional Conference on Web Services, 2013.

[39] G. S. Manku, A. Jain, and A. Das Sarma. Detecting
near-duplicates for web crawling. In WWW, 2007.

[40] S.Mardani, A. Goel, R. Ko, H. Madhyastha, and R. Ne-
travali. Horcrux: Automatic javascript parallelism for
resource-efficient web computation. In OSDI, 2021.

[41] R. Netravali, A. Goyal, J. Mickens, and H. Balakrish-
nan. Polaris: Faster page loads using fine-grained de-
pendency tracking. In NSDI, 2016.

[42] R. Netravali and J. Mickens. Prophecy: Accelerating
mobile page loads using final-state write logs. In NSDI,
2018.

USENIX Association

21st USENIX Symposium on Networked Systems Design and Implementation 905

https://docs.aws.amazon.com/silk/latest/developerguide/what-is-silk.html
https://docs.aws.amazon.com/silk/latest/developerguide/what-is-silk.html
https://github.com/ArchiveBox/ArchiveBox
https://github.com/ArchiveBox/ArchiveBox
https://babeljs.io/
https://github.com/webrecorder/browsertrix-crawler
https://github.com/webrecorder/browsertrix-crawler
https://github.com/internetarchive/brozzler
https://github.com/internetarchive/brozzler
https://github.com/andybalholm/cascadia
https://github.com/andybalholm/cascadia
https://developer.chrome.com/docs/devtools/performance//
https://developer.chrome.com/docs/devtools/performance//
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/README.md
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/README.md
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/README.md
https://commoncrawl.org/
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://github.com/rockdaboot/wget2
https://github.com/PuerkitoBio/goquery
https://archive.org/details/EndOfTerm2020WebCrawls
https://archive.org/details/EndOfTerm2020WebCrawls
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Optional_chaining
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Optional_chaining
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Optional_chaining
https://pptr.dev/
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries
https://caniuse.com/?compare=chrome+114,firefox+113&compareCats=all
https://caniuse.com/?compare=chrome+114,firefox+113&compareCats=all

[43] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and
B.-G. Chun. Making sense of performance in data an-
alytics frameworks. In NSDI, 2015.

[44] X. Pan, Y. Cao, S. Liu, Y. Zhou, Y. Chen, and T. Zhou.
CSPAutoGen: Black-box enforcement of content secu-
rity policy upon real-world websites. In CCS, 2016.

[45] A. Rasmussen, G. Porter, M. Conley, H. V. Mad-
hyastha, R. N. Mysore, A. Pucher, and A. Vahdat. Tri-
tonsort: A balanced large-scale sorting system. In
NSDI, 2011.

[46] V. Ruamviboonsuk, R. Netravali, M. Uluyol, and H. V.
Madhyastha. Vroom: Accelerating the Mobile Web
with Server-Aided Dependency Resolution. In SIG-
COMM, 2017.

[47] P. Saxena, R. Sekar, and V. Puranik. Efficient fine-
grained binary instrumentation with applications to
taint-tracking. In CGO, 2008.

[48] A. Sergeev and M. Del Balso. Horovod: fast and easy
distributed deep learning in tensorflow. arXiv preprint
arXiv:1802.05799, 2018.

[49] S. M. Shariff, H. Li, C.-P. Bezemer, A. E. Hassan, T. H.
Nguyen, and P. Flora. Improving the testing efficiency
of selenium-based load tests. In International Work-
shop on Automation of Software Test, 2019.

[50] P. Slavik. A tight analysis of the greedy algorithm for
set cover. In STOC, 1996.

[51] A. Suresh, E. Rohou, and A. Seznec. Compile-time
function memoization. In International Conference on
Compiler Construction, 2017.

[52] Q. Tan and P. Mitra. Clustering-based incremental web
crawling. ACM Trans. Inf. Syst., 2010.

[53] Y. Tang and J. Yang. Secure deduplication of general
computations. In USENIX ATC, 2015.

[54] C. Unger, Z. Jia, W. Wu, S. Lin, M. Baines, C. E. Q.
Narvaez, V. Ramakrishnaiah, N. Prajapati, P. Mc-
Cormick, J. Mohd-Yusof, et al. Unity: Accelerating
{DNN} training through joint optimization of algebraic
transformations and parallelization. In OSDI, 2022.

[55] X. S. Wang, A. Balasubramanian, A. Krishnamurthy,
and D. Wetherall. Demystifying page load performance
with wprof. In NSDI, 2013.

[56] X. S. Wang, A. Balasubramanian, A. Krishnamurthy,
and D. Wetherall. How speedy is SPDY? In NSDI,
2014.

[57] X. S. Wang, A. Krishnamurthy, and D. Wetherall.
Speeding up web page loads with Shandian. In NSDI,
2016.

[58] Q.Zheng,Z. Wu, X. Cheng, L. Jiang, and J. Liu. Learn-
ing to crawl deep web. Information Systems, 2013.

906 21st USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

	Introduction
	Background and Motivation
	Target workloads
	Shortcomings of static crawling
	Compute overheads of browser-based crawling
	Minimizing browser's computation delays

	Overview
	Observations and approach
	Challenges

	Design
	Memoizing JavaScript execution
	Statically crawling pages
	Scheduling page crawls

	Implementation
	Evaluation
	Evaluation setup
	Throughput and Fidelity
	Comparison with baselines
	Throughput in each phase
	Contribution of techniques

	Sensitivity to crawling parameters
	Number of pages per site
	Repeated crawling
	Preserving static fetches

	Maintainability

	Related work
	Conclusion

